Vis enkel innførsel

dc.contributor.authorCastilho, Aureaen_US
dc.contributor.authorAmbrósio, António F.en_US
dc.contributor.authorHartveit, Espenen_US
dc.contributor.authorVeruki, Margaret Linen_US
dc.date.accessioned2018-01-04T12:03:20Z
dc.date.available2018-01-04T12:03:20Z
dc.date.issued2015-04
dc.PublishedCastilho A, Ambrósio, Hartveit E, Veruki ML. Disruption of a neural microcircuit in the rod pathway of the mammalian retina by diabetes mellitus. Journal of Neuroscience. 2015;35(13):5422-5433eng
dc.identifier.issn1529-2401
dc.identifier.issn0270-6474
dc.identifier.urihttps://hdl.handle.net/1956/17118
dc.description.abstractDiabetes leads to dysfunction of the neural retina before and independent of classical microvascular diabetic retinopathy, but previous studies have failed to demonstrate which neurons and circuits are affected at the earliest stages. Here, using patch-clamp recording and two-photon Ca2+ imaging in rat retinal slices, we investigated diabetes-evoked changes in a microcircuit consisting of rod bipolar cells and their dyad postsynaptic targets, AII and A17 amacrine cells, which play an essential role in processing scotopic visual signals. AII amacrines forward their signals to ON- and OFF-cone bipolar cells and A17 amacrines provide GABAergic feedback inhibition to rod bipolar cells. Whereas Ca2+-permeable AMPA receptors mediate input from rod bipolar cells to both AII and A17 amacrines, diabetes changes the synaptic receptors on A17, but not AII amacrine cells. This was expressed as a change in pharmacological properties and single-channel conductance of the synaptic receptors, consistent with an upregulation of the AMPA receptor GluA2 subunit and reduced Ca2+ permeability. In addition, two-photon imaging revealed reduced agonist-evoked influx of Ca2+ in dendritic varicosities of A17 amacrine cells from diabetic compared with normal animals. Because Ca2+-permeable receptors in A17 amacrine cells mediate synaptic release of GABA, the reduced Ca2+ permeability of these receptors in diabetic animals leads to reduced release of GABA, followed by disinhibition and increased release of glutamate from rod bipolar cells. This perturbation of neuron and microcircuit dynamics can explain the decreased dynamic range and sensitivity of scotopic vision that has been observed in diabetes.en_US
dc.language.isoengeng
dc.publisherSociety for Neuroscienceeng
dc.subjectamacrine cellseng
dc.subjectcalcium-permeable AMPA receptorseng
dc.subjectDiabeteseng
dc.subjectretinaeng
dc.titleDisruption of a neural microcircuit in the rod pathway of the mammalian retina by diabetes mellitusen_US
dc.typePeer reviewed
dc.typeJournal article
dc.date.updated2017-10-17T15:09:38Z
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2015 The Author(s)
dc.identifier.doihttps://doi.org/10.1523/jneurosci.5285-14.2015
dc.identifier.cristin1248507
dc.source.journalJournal of Neuroscience
dc.relation.projectNorges forskningsråd: 178105
dc.relation.projectHelse Vest RHF: 911349
dc.relation.projectNorges forskningsråd: 213776
dc.relation.projectNorges forskningsråd: 182743
dc.relation.projectNorges forskningsråd: 189662
dc.subject.nsiVDP::Medisinske fag: 700::Klinisk medisinske fag: 750::Nevrologi: 752
dc.subject.nsiVDP::Midical sciences: 700::Clinical medical sciences: 750::Neurology: 752


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel