Vis enkel innførsel

dc.contributor.authorFørre, Morten
dc.date.accessioned2020-05-20T09:42:32Z
dc.date.available2020-05-20T09:42:32Z
dc.date.issued2019
dc.PublishedFørre M. Breakdown of the nonrelativistic approximation in superintense laser-matter interactions. Physical Review A (PRA). 2019;99(5):053410eng
dc.identifier.issn2469-9926en_US
dc.identifier.issn2469-9934en_US
dc.identifier.urihttps://hdl.handle.net/1956/22312
dc.description.abstractWe study the breakdown of the nonrelativistic approximation in the multiphoton ionization of atomic hydrogen by some intense x-ray laser pulse, in a regime where the dipole approximation is no longer valid. To this end, both the time-dependent Dirac equation as well as its nonrelativistic counterpart, the time-dependent Schrödinger equation, are solved within an ab initio numerical framework. It is demonstrated that a recently developed semirelativistic Schrödinger equation for superintense laser fields [Lindblom et al., Phys. Rev. Lett. 121, 253202 (2018)] yields results in excellent agreement with the fully relativistic treatment. The semirelativistic equation is then used in an investigation of the role of higher-order beyond-dipole corrections to the laser-matter interaction. The result of the present study can be summarized into two main findings: (1) relativistic effects predict a blueshift of the multiphoton ionization spectrum, and (2) higher-order beyond dipole corrections (beyond the leading-order term) indicate a corresponding redshift of the photoelectron spectrum. However, the two shifts turn out to be of the same order of magnitude, effectively leading to a net cancellation of their respective contributions. This apparent cancellation effect raises an important question: Is the distinction between relativistic blueshifts and higher-order beyond dipole redshifts meaningful from an experimental point of view? The result of the present study indicates that the answer is negative because the two effects nonetheless cannot be measured separately. Therefore, instead, we suggest that the present findings should merely be taken as a demonstration that caution should be exercised when higher-order beyond-dipole and relativistic corrections are to be taken into account in approximation schemes in the modeling of superintense laser-matter interactions.en_US
dc.language.isoengeng
dc.publisherAmerican Physical Societyen_US
dc.titleBreakdown of the nonrelativistic approximation in superintense laser-matter interactionsen_US
dc.typePeer reviewed
dc.typeJournal article
dc.date.updated2020-02-05T13:22:47Z
dc.description.versionpublishedVersionen_US
dc.rights.holderCopyright 2019 American Physical Societyen_US
dc.identifier.doihttps://doi.org/10.1103/physreva.99.053410
dc.identifier.cristin1705611
dc.source.journalPhysical Review A (PRA)


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel