Vis enkel innførsel

dc.contributor.authorHartveit, Espenen_US
dc.contributor.authorZandt, Bas-Janen_US
dc.contributor.authorVeruki, Margaret Linen_US
dc.contributor.editorHartveit, Espen
dc.date.accessioned2020-05-22T10:46:18Z
dc.date.available2020-05-22T10:46:18Z
dc.date.issued2019
dc.PublishedHartveit E, Zandt B, Veruki ML: Multiphoton excitation microscopy for the reconstruction and analysis of single neuron morphology . In: Hartveit E. Multiphoton Microscopy, 2019. Springer Nature p. 161-194eng
dc.identifier.isbn978-1-4939-9701-5en_US
dc.identifier.issn1940-6045
dc.identifier.issn0893-2336
dc.identifier.urihttps://hdl.handle.net/1956/22343
dc.description.abstractNeurons are the main cellular components of the circuits of the central nervous system (CNS). The dendritic and axonal morphology of individual neurons display marked variability between neurons in different regions of the CNS, and there is evidence that the morphology of a neuron has a strong impact on its function. For studies of structure-function relationships of specific types of neurons, it is important to visualize and quantify the complete neuronal morphology. In addition, realistic and detailed morphological reconstruction is essential for developing compartmental models that can be used for studying neuronal computation and signal processing. Here we describe in detail how multiphoton excitation (MPE) microscopy of dye-filled neurons can be used for visualization and imaging of neuronal morphology, followed by a workflow with digital deconvolution and manual or semiautomatic morphological reconstruction. The specific advantages of MPE structural imaging are low phototoxicity, the ease with which it can be combined with parallel physiological measurements from the same neurons, and the elimination of tissue post-processing and fixation-related artifacts. Because manual morphological reconstruction can be very time-consuming, this chapter also includes a detailed, step-by-step description of a workflow for semiautomatic morphological reconstruction (using freely available software developed in our laboratory), exemplified by reconstruction of a retinal amacrine cell (AII).en_US
dc.language.isoengeng
dc.publisherSpringereng
dc.relation.ispartofMultiphoton Microscopy
dc.relation.ispartofseriesNeuromethodseng
dc.subjectMultifoton mikroskopi / Multiphoton microscopyeng
dc.subjectNeurovitenskap / nevrovitenskap / Neuroscienceseng
dc.subjectNevrofysiologi / Neurophysiologyeng
dc.titleMultiphoton excitation microscopy for the reconstructionand analysis of single neuron morphologyen_US
dc.typeChapter
dc.typePeer reviewed
dc.date.updated2019-12-01T15:30:57Z
dc.description.versionacceptedVersionen_US
dc.rights.holderCopyright 2019 Springer
dc.identifier.doihttps://doi.org/10.1007/978-1-4939-9702-2_8
dc.identifier.cristin1725564
dc.relation.projectNorges forskningsråd: 261914
dc.relation.projectNorges forskningsråd: 214216
dc.relation.projectNorges forskningsråd: 182743
dc.relation.projectNorges forskningsråd: 189662
dc.subject.nsiVDP::Medisinske fag: 700::Basale medisinske, odontologiske og veterinærmedisinske fag: 710
dc.subject.nsiVDP::Midical sciences: 700::Basic medical, dental and veterinary sciences: 710
dc.identifier.citationIn: Hartveit E. Multiphoton Microscopy, 2019. Springer Nature p. 161-194


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel