Vis enkel innførsel

dc.contributor.authorBae, Egileng
dc.contributor.authorTai, Xue-Chengeng
dc.date.accessioned2011-09-19T09:29:46Z
dc.date.available2011-09-19T09:29:46Z
dc.date.issued2009eng
dc.PublishedLecture Notes in Computer Science 5681/2009: 28-41en_US
dc.identifier.urihttps://hdl.handle.net/1956/5018
dc.descriptionIn: Proc. Seventh International Conference on EnergyMinimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2009), pg.28-41, Lecture Notes in Computer Science, Springer, Berlin, 2009. (Extended journal version).en
dc.description.abstractThe Mumford-Shah model is an important variational image segmentation model. A popular multiphase level set approach, the Chan-Vese model, was developed as a numerical realization by representing the phases by several overlapping level set functions. Recently, a variant representation of the Chan-Vese model with binary level set functions was proposed. In both approaches, the gradient descent equations had to be solved numerically, a procedure which is slow and has the potential of getting stuck in a local minima. In this work, we develop an efficient and global minimization method for a discrete version of the level set representation of the Chan-Vese model with 4 regions (phases), based on graph cuts. If the average intensity values of the different regions are sufficiently evenly distributed, the energy function is submodular. It is shown theoretically and experimentally that the condition is expected to hold for the most commonly used data terms. We have also developed a method for minimizing nonsubmodular functions, that can produce global solutions in practice should the condition not be satisfied, which may happen for the L1 data term.en_US
dc.language.isoengeng
dc.publisherSpringer Verlagen_US
dc.relation.ispartof<a href="http://hdl.handle.net/1956/5017" target="blank">Efficient global minimization methods for variational problems in imaging and vision</a>en_US
dc.titleEfficient Global Minimization for the Multiphase Chan-Vese Model of Image Segmentationen_US
dc.typePeer reviewed
dc.typeJournal article
dc.description.versionupdatedVersionen_US
dc.rights.holderCopyright Springer-Verlag. All rights reserved.en_US
dc.identifier.doihttps://doi.org/10.1007/978-3-642-03
dc.subject.nsiVDP::Mathematics and natural science: 400::Mathematics: 410en_US
dc.subject.nsiVDP::Mathematics and natural science: 400::Information and communication science: 420::Simulation, visualization, signal processing, image processing: 429en_US


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel