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i Abstract 
In one millilitre of seawater there is on average approximately 106 microbial cells, and these 

are largely responsible for nearly half of all primary production on Earth. Mixotrophic 

microorganisms are ubiquitous in the photic zone of the ocean yet their role has long been 

unclear. Marine mixotrophs are, as all marine organisms, expected to be affected by the current 

climate changes. Increased temperatures are expected to increase brownification of lakes and 

coastal waters due to more precipitation causing higher input of dissolved organic carbon 

(DOC). The darker water is in turn hypothesised to increase phagotrophy in mixotrophs due to 

lower availability of light, which is needed to perform photosynthesis. Increased availability of 

dissolved iron (dFe) has been observed in relation to increased input of DOC. My main 

hypotheses were that brownification and increased dFe concentrations lead to changes in the 

microbial community composition, that brownification promotes higher percentages of 

mixotrophic plankton, and that altered dFe concentrations affect these percentages. To test these 

hypotheses, samples from a mesocosm experiment were examined through flow cytometry by 

enumerating different groups and species and, using the probe LysoTracker, investigating how 

many phototrophs performed phagotrophy. Here I show that brownification did change the 

composition of the microbial community but did not lead to higher percentages of mixotrophic 

organisms. Addition of dFe did not affect composition nor mixotrophic percentages. Among 

the groups accounted for in this experiment, brownification led to increased abundances of 

autotrophic picoeukaryotes and bacteria, and decreased abundances of autotrophic 

nanoeukaryotes (ANEs). Brownification also led to decreased percentages of mixotrophic ANE 

cells. Though addition of dFe was expected to induce a bloom of the coccolithophore Emiliania 

huxleyi, no effect was observed in any of the studied groups. Some ANEs were pictured through 

confocal microscopy and shown to have unspecific staining from LysoTracker. The factors 

controlling mixotrophy in microbial communities, especially in relation to climate change, are 

yet to be understood. As this and similar studies show, a change in the microbial communities 

is expected to happen due to ongoing climate change. Understanding these effects is important 

to understand how whole marine communities will change. This is just one of many new studies 

in this study area, and there is much yet to explore before a clearer understanding of what will 

happen is reached.  
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iv Abbreviations and terms 
ABBREVIATIONS 

ANE Autotrophic nanoeukaryote 

APE Autotrophic picoeukaryote 

Bro Brownification 

dFe Dissolved iron 

DOC Dissolved organic carbon 

DOM Dissolved organic matter 

FLB Fluorescently labelled bacteria 

HNF Heterotrophic nanoflagellate 

N Nitrogen 

P Phosphorus 

POM Particulate organic matter 

SE Standard error 

 

TERMS 
Autotrophy Nutritional process where CO2 is reduced and assimilated into cell 

material. Includes phototrophs (through phototrophy) and 

chemolithotrophs (through chemosynthesis).  

Constitutive 
mixotrophs (CMs) 

Organisms that perform phagotrophy and have an inherent capacity 

of phototrophy. (See Box 2) 

Eutrophic Rich in organic and mineral nutrients.  

Heterotrophy Nutrition involving use of organic compounds as a carbon source.  

Meso- Prefix indicating an organism size of >200 µm.  

Micro- Prefix indicating an organism size of 20-200 µm.  

Microbe Microorganism, organism too small to be seen by the naked eye.  

Mixotrophy Nutrition involving both autotrophy and heterotrophy. (See Box 2) 

Nano- Prefix indicating an organism size of 2-20 µm.  

Non-constitutive 
mixotrophs (NCMs) 

Organisms that perform phagotrophy and acquire a capability for 

phototrophy by consuming phototrophic prey. Prey can be specific 

(SNCMs) or non-specific (general; GNCMs). (See Box 2) 

Oligotrophic Poor in nutrients.  

Phagotrophy A form of heterotrophy that involves engulfing a particle to bring it 

into the cell to be digested.  

Phototrophy A form of nutrition that involves conversion of light energy into 

ATP that is used in cellular processes. Often combined with 

autotrophy (photoautotrophy) to fix CO2 using light energy.  

Pico- Prefix indicating an organism size of 0.2-2 µm.  

Plankton Organisms suspended in the water column that are unable to resist 

water currents.  

  



 6 

1 Introduction 

1.1 Marine microorganisms 
Microorganisms, organisms too small to be seen by the naked eye (Madigan et al., 2019), have 

been observed for several centuries. Their discovery is credited to Antonie van Leeuwenhoek 

in the second half of the seventeenth century (The Editors of Encyclopaedia Britannica, 2019). 

It was only towards the end of the twentieth century, with new technological advances, that 

studying marine microorganisms entered mainstream science, and it is still a fast-growing area 

of research (Munn, 2011).  

The oceans cover 71% of the surface of the Earth and contain 97% of the water on the planet 

(Munn, 2011). In one millilitre of seawater there is, on average, approximately 106 microbial 

cells (Madigan et al., 2019). Marine environments comprise a great variety of microorganisms: 

bacteria, archaea, eukaryotic microbes, as well as viruses (Munn, 2011). The eukaryotic 

microbes include a wide variety of organisms at several levels in the food web, including 

smaller phototrophic microbes like haptophytes, heterotrophic flagellates like dinoflagellates, 

and ciliates that graze on other microbes (Munn, 2011).  

The oceans perform nearly half of all primary production on Earth, of which the 

microorganisms are responsible for a large proportion (Field, Behrenfeld, Randerson, & 

Falkowski, 1998). Carbon dioxide (CO2) is used by autotrophic organisms to create particulate 

organic matter (POM) and dissolved organic matter (DOM). This can then be taken up by small 

heterotrophic organisms, that in return can be eaten by larger heterotrophs (Munn, 2011). The 

processes in which carbon is transferred between the atmosphere, the ocean, and marine 

organisms, is collectively called the biological carbon pump (Mitra et al., 2014). In this cycle, 

CO2 is incorporated into cell material by phototrophs, and these organisms are either eaten by 

heterotrophs that produce CO2, or they die, break down to POM, and sink to the seabed (Munn, 

2011). The POM can be consumed by heterotrophs like heterotrophic bacteria in the lower 

ocean or seabed (Munn, 2011). Models of the biological pump highlights the importance of 

marine microorganisms and shows how all marine life depends on the production of the 

autotrophs.  

Since marine microorganisms were discovered, scientists have worked to understand 

interactions between them and their environment. In 1983 the model of the microbial loop was 

introduced to the marine food web (Azam et al., 1983) (Box 1, Fig. 1). The goal was to explain 

the cycling of DOM, in which microorganisms have important roles. In fact, about half of the 
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organic carbon fixed by phototrophs goes through the microbial loop, not the classic simple 

food chain (Munn, 2011). This model, although it has continuously developed over time with 

new discoveries, focuses on the traditional concept that microorganisms are either 

“phytoplankton” that are autotrophic and perform primary production, or “zooplankton” that 

are heterotrophic and perform secondary production (Flynn et al., 2013; Stoecker et al., 2017). 

This is based on the classification of macroorganisms on land, with “phytoplankton” resembling 

plants on land and “zooplankton” resembling land-living animals (Flynn et al., 2013). Of 

course, even among macroorganisms there is not always a clear line of distinction between the 

two. For example there is the carnivorous plant genus Drosera and the photosynthetic green 

sea slug Elysia chlorotica (Adamec, 1997; Baumgartner, Pavia, & Toth, 2015). In 

microorganisms the line between these is even less defined, and many are in fact mixotrophic 

– they can act as both “phytoplankton” and as “zooplankton” (Box 2).  

BOX 1 | The microbial loop in the marine food web 

Models of the marine food web are often very simplified, with few levels and interactions. While many 

include more complex interactions of macroorganisms, most do not include interactions of microorganisms 

beyond “zooplankton” consuming “phytoplankton” or “algae”. As the importance of microorganisms in the 

oceans has become more recognised, new models have been introduced that include the microbial loop, which 

was first modelled by Azam et al. (1983) (Fig. 1). This model includes bacteria, autotrophic and heterotrophic 

flagellates, microzooplankton (heterotrophic plankton in the size range 20-200 µm, for example ciliates), 

mesozooplankton (heterotrophic plankton that are >200 µm, for example copepods), and often viruses. It 

shows much more complex interactions at the microbial stage of the food web, and emphasises the importance 

of dissolved organic matter (DOM) (Munn, 2011).  

 

Figure 1. Model of the microbial loop in the marine food web, adapted from Azam et al. (1983). Full lines 

show transfer of material to the next trophic level. Dashed orange lines show transfer of material to the pool 

of dissolved and particulate organic matter in the oceans. Dashed black arrow at the top indicates transfer to 

higher trophic levels. Green squares indicate primary production and blue squares indicate heterotrophic 

organisms. Note that not all interactions are included here, and mixotrophic plankton will be able to act as 

both phototrophic plankton and heterotrophic plankton in this web at the same time. DOM = dissolved organic 

matter, POM = particulate organic matter.  



 8 

Even though the prevalence and importance of marine mixotrophic microorganisms are 

beginning to be recognised, there are so many different definitions of what a mixotroph is (e.g. 

Godrijan, Drapeau, & Balch, 2020; Heifetz, Förster, Osmond, Giles, & Boynton, 2000; Sanders, 

BOX 2 | Mixotrophy  

Mixotrophy has been observed for over 100 years (Biecheler, 1936; Pascher, 1917), but only recently has the 

importance and prevalence of mixotrophy in aquatic environments been realised (Flynn et al., 2019; Mitra et 

al., 2016). There have been many attempts at defining mixotrophy, and the definition can vary depending on 

the field of study. Traditionally, mixotrophy referred to the acquisition of alternate forms of carbon, but now 

also includes acquisition of nitrogen (N), phosphorous (P), trace elements, trace nutrients, and energy 

(Stoecker, Hansen, Caron, & Mitra, 2017). Using different definitions, it can include everything from the 

uptake of dissolved organic carbon (DOC) to symbioses (Stoecker et al., 2017).  

Generally, phagotrophy (uptake of nutrients in particulate form) provides nutrients like N and P, while 

photoautotrophy provides carbon via photosynthesis (Anderson, Charvet, & Hansen, 2018; Mitra et al., 2014). 

Mixotrophy exists in both the groups typically referred to as “phytoplankton” and those in the photic zone 

considered to be “microzooplankton” (Mitra et al., 2016). At first, mixotrophy in photoautotrophic organisms 

was considered to be important for uptake of nutrients primarily in oligotrophic waters, but its importance in 

eutrophic waters has also been recognised (Burkholder, Glibert, & Skelton, 2008). Furthermore, mixotrophy 

has been described in both marine and freshwater, indicating that this is a widespread strategy (Sanders, 1991).  

Mitra et al. (2016) defined mixotrophs by dividing the planktonic protists into four ecological groups: (i) 

phagoheterotrophs with no phototrophic ability, (ii) photoautotrophs with no phagotrophic ability, (iii) 

constitutive mixotrophs (CMs) – phagotrophs with an inherent capacity for phototrophy, and (iv) non-

constitutive mixotrophs (NCMs) that acquire their phototrophic capacity by ingesting prey that can be either 

specific (SNCM) or general (GNCM). These are ecophysiologically based functional groups, based on how 

the organisms acquire energy and nutrients.  

When research began to focus more on mixotrophy, it was at first considered to be rare (e.g. Bird & Kalff, 

1986; Sanders & Porter, 1988). Over time more and more species were discovered to be mixotrophic, and 

now it is known that mixotrophy is common in eukaryotic protists in the photic zone (e.g. Hartmann et al., 

2012; Jeong et al., 2010; Pitta & Giannakourou, 2000; Sanders & Gast, 2012; Unrein, Massana, Alonso-Sáez, 

& Gasol, 2007; Zubkov & Tarran, 2008). Flynn et al. (2013) argues that photosynthetic protists should in fact 

all be assumed to perform mixotrophy, as this appears to be the norm rather than the exception. The only 

group of photosynthetic protists assumed to be strictly phototrophs is the diatoms (Flynn et al., 2013).  

Flynn et al. (2013) presents the idea that photosynthetic protists can be placed on a continuum, with strict 

phototrophs and strict phagotrophs as the extremes (Fig. 2). This allows any mixotrophs to be placed 

anywhere in between. Based on their contribution to primary and secondary production they will be closer to 

the strict phototrophs, which only perform primary production, or the strict phagotrophs, which only perform 

secondary production. This continuum thus highlights the fact that primary and secondary production is in 

fact possible in one cell, and that the level of mixotrophy can change over time for a single cell.  

 
Figure 2. Illustration showing the scale of mixotrophy, from strict phototrophs at one end to strict phagotrophs 

at the other. All species placed between will be mixotrophic to some degree. Adaptation of figure by Flynn et 

al. (2013).  



 9 

1991), making it difficult to compare studies and draw conclusions. Another challenge is that 

much of the existing science on marine microorganisms has assumed that they fit into the 

dichotomy and are not mixotrophs (see Flynn et al., 2013 and references therein), which could 

affect how we understand them today.  

1.2 Climate change and mixotrophy 
The ongoing climate change has received increasing focus over the last years and decades, both 

in scientific communities and in the general public. It is a complex mechanism with many 

effects. These include increasing temperatures both on land and in the oceans, increasing 

precipitation in the Northern Hemisphere, ocean acidification, decreasing mass of ice sheets, 

increasing extreme weather, and rising sea levels (IPCC, 2014). These effects in turn lead to 

other changes, for example in marine communities, stratification, and primary production 

(IPCC, 2014; Walther et al., 2002).  

It is expected that the ongoing climate change will affect the composition of marine microbial 

communities (Harley et al., 2006). Increasing runoff from land and rivers due to enhanced 

precipitation affects coastal waters by increasing the amounts of dissolved organic carbon 

(DOC) and suspended minerals, which causes brownification and thus a decrease in the light 

penetration in the water (Aksnes et al., 2009; S. Larsen, Andersen, & Hessen, 2011; 

Pozdnyakov et al., 2007). Other factors seem to be involved in the process of brownification, 

though many are still debated. For example, Kritzberg and Ekström (2012) argued that iron 

accounts for a significant portion of the variation in water colour. They theorised that an 

increase in concentrations of dissolved iron (dFe) is controlled by similar processes to those 

controlling increases in DOM and POM. Nitrogen (N) levels in the oceans are expected to 

increase, both due to natural causes and agricultural runoff containing fertilizer (Randall & 

Mulla, 2001). This could cause the usually N-limited systems to become phosphorus (P)-limited 

(Cotrim da Cunha, Buitenhuis, Le Quéré, Giraud, & Ludwig, 2007; Munn, 2011). Increased 

input of dFe could also affect microbial communities, as iron is an essential micronutrient for 

growth of phototropic microbes due primarily to its central role in photosynthesis (Behrenfeld 

& Milligan, 2013). The increasing nutrient input will likely lead to more coastal areas becoming 

eutrophic (Burkholder et al., 2008), and is expected to increase phototrophic activity (Jickells, 

1998).  

The change in light attenuation is expected to favour mixotrophs over strict phototrophs. This 

is because they are not as dependent on light, and because they do not have to directly compete 
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for inorganic P with the bacteria (Jones, 2000). The ongoing climate change also makes the 

oceans warmer, which will likely favour mixotrophic phototrophs over strict phototrophs 

(Cabrerizo, González‐Olalla, Hinojosa‐López, Peralta‐Cornejo, & Carrillo, 2019; Urrutia‐

Cordero et al., 2017). This is expected due to a predicted increase in bacteria (Urrutia‐Cordero 

et al., 2017), as well as the limitation of photosynthetic rates due to low light and higher 

temperatures (Wilken, Huisman, Naus‐Wiezer, & Van Donk, 2013). The expected favouring of 

mixotrophs will likely lead to less diverse communities due to them outcompeting strict 

phototrophs, and mixotrophs heavily relying on phototrophy (Urrutia‐Cordero et al., 2017).  

With increasing mixotrophic activity, it is possible that the efficiency of the biological carbon 

pump will increase due to an enhancement of transfer of biomass to larger organisms at higher 

trophic levels (Ward & Follows, 2016). It has been reported that larger photosynthetic cells like 

diatoms are being replaced in some places by autotrophic picoeukaryotes (APEs), and since 

these smaller cells include many known mixotrophs, this shift will likely change the transfer of 

carbon to the deep ocean, as smaller cells sink slower (Worden et al., 2015). The change in the 

composition of the microbial communities may also affect how organisms on higher trophic 

levels interact with their prey, as studies have shown that feeding on mixotrophs can negatively 

affect growth of a predator compared to feeding on strictly autotropic cells of the same species 

(Weithoff & Wacker, 2007).  

Understanding mixotrophy is therefore important, not only to gain knowledge, but also to be 

able to predict future scenarios as accurately as possible. As the research of the effects of climate 

change is more relevant than ever, being able to create models that best represent reality is 

necessary, but this is not possible until the significant role of mixotrophy in marine 

microorganisms is understood.  

1.3 Studying mixotrophic microbes 
One way of studying marine mixotrophic microbes is through observing specific species in a 

laboratory. This has been done for several decades on many species of different phylogenetic 

groups (e.g. Anderson et al., 2018; Brutemark & Granéli, 2011; Caron, Porter, & Sanders, 1990; 

Rothhaupt, 1996; Tranvik, Porter, & Sieburth, 1989; Young & Beardall, 2003).  

Another way to commonly study marine mixotrophs is to take water samples from a marine 

environment (e.g. Anderson, Jürgens, & Hansen, 2017; Havskum & Riemann, 1996; Pitta & 

Giannakourou, 2000; Unrein, Gasol, Not, Forn, & Massana, 2014). This way it is possible to 

analyse for example which species are present, which groups are present, which cells are 
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phototrophic or heterotrophic and/or which are mixotrophic, their growth rates, and cellular 

activities. Through studies like these, it is possible to gain an understanding of the natural 

environment in which these organisms exist, who they are, and how they interact with each 

other. Studies in natural environments, however, are difficult to perform, especially if it 

involves looking at mixotrophs. This is because methods of detecting mixotrophy in cells rely 

on living cells as they either need to be currently feeding (when using labelled prey) or the cell 

must be able to retain a dye. Membrane potential, and thus the ability to retain dye, is reduced 

significantly after cells die (Rose, Caron, Sieracki, & Poulton, 2004). Analysis must therefore 

be performed shortly after sample collection, which is rarely possible if the samples are 

collected from the ocean due to limited access to equipment and other resources. One reason 

that mesocosm (i.e. water enclosure) studies are useful is that they allow for a semi-natural 

environment while still being confined like in a laboratory experiment (Box 3).  

Beisner, Grossart, and Gasol (2019) present an overview of available methods used to 

characterise phototrophic organisms that perform phagotrophy, including addition of 

fluorescently labelled bacteria (FLBs) to cultures to determine whether any have been ingested 

(e.g. Havskum & Riemann, 1996; Unrein et al., 2007), food vacuole staining in combination 

with microscopy, flow cytometry, and/or genome sequencing (e.g. Anderson et al., 2017; Li, 

BOX 3 | Mesocosms  

A mesocosm, as defined by Odum (1984), is a bounded and partially enclosed outdoor experimental setup 

where it is possible to study both the smaller parts like populations, and the whole ecosystem. Since Odum’s 

definition, mesocosms have also been performed indoors (e.g. Hoppe et al., 2008; Sommer et al., 2007). 

Mesocosms are a middle-ground between laboratory studies (microcosms) and studying the real world 

(macrocosms).  

Mesocosm experiments have been conducted for several decades to study microbial communities in a semi-

natural environment (Odum, 1984). These studies can be conducted on land in large tanks (e.g. Lebaron et 

al., 1999; Urrutia‐Cordero et al., 2017), or in large bags immersed in the sea or a lake (e.g. Egge & Aksnes, 

1992; Lebret, Langenheder, Colinas, Östman, & Lindström, 2018). Water, that can be either unfiltered or 

filtered, is pumped into the enclosures, and the organisms and conditions within are followed for a length of 

time. In tanks, conditions can be manipulated to simulate natural conditions, and for the bags it is important 

to choose materials that will give conditions close to the water surrounding them. In a mesocosm experiment 

it is possible to get conditions close to the natural environment while still being able to keep track of the 

organisms and manipulate the water by for example adding nutrients.  

There are some disadvantages to using mesocosm studies; mainly that there is no way to get a true control, as 

all enclosures are manipulated in some way, creating a bottle effect (Marrase, Lim, & Caron, 1992), though 

this effect is reduced with increasing volume. When having bags immersed in water, it is possible to take 

samples of the surrounding water, but this is not a proper control sample.  

Mesocosm experiments are particularly useful to study reactions to future scenarios. However, though they 

can give us an idea of future reactions, it is important to keep in mind that changes in the climate happen 

much slower than over the few weeks or months a mesocosm experiment takes place. 
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Podar, & Morgan-Kiss, 2016), and use of fluorescent in situ hybridization (FISH) to label 

bacteria that can be quantified in food vacuoles (e.g. Gerea et al., 2012; Medina-Sánchez, Felip, 

& Casamayor, 2005). Genome sequencing is useful both to identify species known to be 

mixotrophic by sequencing deoxyribonucleic acid (DNA) (e.g. Li et al., 2016; Unrein et al., 

2014), and to sequence ribonucleic acid (RNA) to examine activities (e.g. Liu, Campbell, 

Heidelberg, & Caron, 2016; Santoferrara, Guida, Zhang, & McManus, 2014). There are 

advantages and disadvantages to all methods, and the method used is usually determined by 

what the research is focused on.  

The fluorescent dye LysoTracker Green is an example of a dye that stains acidic compartments 

in cells (Rose et al., 2004). This dye has been used in several studies (Anderson et al., 2018; Li 

et al., 2016), as well as similar dyes like LysoSensor (Carvalho & Granéli, 2006), to detect cells 

assumed to be mixotrophic. Though it is often assumed in studies of mixotrophy involving 

LysoTracker Green that it is food vacuoles and/or lysosomes that are being stained, some 

compartments of chloroplasts are also acidic, meaning that the dye could also accumulate there 

(Rose et al., 2004; Wilken et al., 2019). Carvalho and Granéli (2006) noted that in their test of 

a green acidotropic probe they experienced low specificity for food vacuoles, with the probe 

staining the cell membrane, cytoplasm, and chloroplasts. In contrast, Li et al. (2016) did not 

detect fluorescence from the dye in the purely photosynthetic Chlamydomonas species they 

analysed. This remains a method that needs more research to understand how LysoTracker 

interacts with compartments of plankton cells.  

1.4 Knowledge gaps 
Throughout the years most studies on mixotrophic microbes have been performed in a 

laboratory setting, commonly using labelled bacteria (e.g. Anderson et al., 2018; Nygaard & 

Tobiesen, 1993; Rothhaupt, 1996; Tranvik et al., 1989). More recently research has focused 

more on mixotrophy in natural or semi-natural environments (e.g. Anderson et al., 2017; Unrein 

et al., 2014; Unrein et al., 2007; Wilken et al., 2018), but there is still much that is unknown. 

Identifying mixotrophs in natural environments like the ocean is difficult, and finding methods 

that can be applied generally is challenging, as there is a large diversity among mixotrophic 

species (Stoecker et al., 2017). Even if a mixotroph is identified, there are still many unknown 

factors, such as which organism(s) it eats, how often it eats, the rate of photosynthesis, and what 

variables affects phagotrophy (Flynn et al., 2019). When studies are performed on whole 

communities it is not possible to know what the individual species contribute, and when 
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studying individual species in the laboratory it is unknown how they would behave in a natural 

setting and interact with other organisms.  

There are many unknown factors when it comes to mixotrophy in marine microbes, and many 

of them are pointed out in a recent paper by Flynn et al. (2019). Since many species that were 

previously assumed to be strictly photo- or heterotrophic have since been discovered to be 

mixotrophic, the findings from earlier studies of these species may not show the whole picture. 

Ideally a wide range of factors (for example changing light attenuation, increased temperatures, 

increased availability of DOM, and other effects of climate change) should be studied to see 

whether they affect the mixotrophic activity or not, both in individual species and in 

communities, in laboratory and field experiments.  

Understanding the marine food web and the interactions between the organisms it comprises, 

is vital to be able to predict changes, especially regarding climate change. Since the microbial 

loop and the microorganisms within it are the base of the entire food web, any 

misunderstandings here could have wide effects. This is one of the reasons why incorporating 

mixotrophy into mainstream marine science is so important, and why it is necessary to do more 

research on this topic. With the immense variety in mixotrophic microorganisms there will 

likely be a wide variety of reactions to the changes in their environment. Though some studies 

have been performed, both in the laboratory (Anderson et al., 2018; Brutemark & Granéli, 2011; 

Wilken et al., 2013) and in the field (Urrutia‐Cordero et al., 2017; Wilken et al., 2018), to gain 

a better understanding of how mixotrophs react to the effects of climate change, there is still 

much to learn, both on the species and community level.  

1.5 Objectives 
The objective of this thesis was to gain a wider understanding of how mixotrophic phototrophs 

in a marine environment may respond to climate changes. More specifically how this group 

responds to the addition of brownification and dissolved iron by testing the following 

hypotheses: 

Hypothesis 1 Brownification leads to a change in the composition of the microbial community. 

Hypothesis 2 Brownification leads to a higher percentage of mixotrophic phototrophs. 

Hypothesis 3 Addition of dissolved iron affects both a) the composition of the microbial 

community, and b) the percentage of mixotrophic phototrophs.  
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The hypotheses were tested by following the community in a mesocosm experiment by 

counting cells on a flow cytometer and using an acidotropic probe to identify potentially 

phagotrophic phototrophs.   
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2 Materials and methods 

2.1 Mesocosm setup 
A mesocosm experiment was conducted in June of 2019 at Espegrend Marine Biological 

Station (60°16'N 5°13'E), located in the Raunefjord near Bergen, Norway. June 5th was set as 

day 0 of the experiment, and the end was June 26th, day 21.  

The 12 mesocosm bags were made of high-density polyethylene and were covered by lids made 

of low-density polyethylene (11m3). Both materials are transparent to photosynthetically active 

radiation and ultraviolet radiation. The bags were all filled with fjord water from 6 m depth. 

Airlifts were placed in the bags to create circulation of the enclosed water to ensure that the 

water within the mesocosms was homogenous (Egge & Heimdal, 1994).  

The mesocosms were each given one of four treatments of brownification (Bro) and dissolved 

iron (dFe): -Bro-dFe, -Bro+dFe, +Bro-dFe, or +Bro+dFe, with the minus sign meaning the 

substance was not added, and the plus sign meaning it was (Fig. 3). There were three replicates 

of each treatment. The mesocosms were located in the fjord attached to a floating platform, 

with randomised placement along the platform.  

 
Figure 3. Illustration showing the 12 mesocosms in the experiment and which treatment they were given. M1-M3: 

-Bro-dFe, M4-M6: +Bro-dFe, M7-M9: +Bro+dFe, M10-M12: -Bro+dFe. 

To achieve the desired level of brownification, HuminFeed® (Humintech, granulated sodium 

humate) was added to the +Bro mesocosms at the concentration of 2 mg L-1. Dissolved iron 

was added to the +dFe mesocosms as the siderophore desferoxamine B (DFB) at a concentration 

of 70 nM. Both HuminFeed® and DFB was added at day 2 of the experiment. The nutrients 
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nitrate (10 µM) and phosphate (0.3 µM) were added at day 0. This was done to induce a bloom 

of the coccolithophore Emiliania huxleyi.  

2.2 Flow cytometry 
Samples were taken from the mesocosms at days 0, 2, 6, 8, 10, 12, 14, 16, 19, and 21. At day 0 

water was pooled from all the mesocosms, while at later dates, water was collected from each 

mesocosm in carboys. 20 L of water were collected in the morning (between 6 and 8) at 2 m 

depth by gently vacuum pumping into acid-washed carboys (Segovia et al., 2017). These were 

then kept at 10°C. In addition, samples were collected in the same way from the fjord at days 

6, 8, 10, 12, 14, 16, 19, and 21. From each carboy approximately 50 mL of water were collected 

(between 8 and 10). This was brought to the lab at the Department of Biological Sciences at the 

University of Bergen in a cooled container, and kept at 8°C.  

When counting phototrophs (A. Larsen et al., 2001), samples were prepared for flow cytometry 

by adding 3 mL of each sample to two sets of flow cytometry tubes. One set of sample tubes 

was then directly counted on the flow cytometer (Attune NxT Acoustic Focusing Cytometer, 

Thermo Fisher Scientific; Box 4), while the tubes in the other had 10 µL LysoTracker® Green 

DND-26 (Thermo Fisher Scientific) added to them at a concentration of 3.33 µL mL-1, and 

incubated at room temperature in the dark for 10 minutes before counting started. Settings for 

the flow cytometer used when counting phototrophs are given in Appendix A1.  

For each water sample, a tube was filled with 4 mL of the sample. These samples were fixed 

using 20 µL mL-1 glutaraldehyde, and after at least 2 hours in the fridge they were flash frozen 

in liquid nitrogen and stored in a -80°C freezer.  

To count heterotrophic nanoflagellates (HNFs) and bacteria, the frozen samples in the 4 mL 

tubes were thawed. This was done 5-8 months after freezing. For the bacteria counting (Marie, 

Partensky, Vaulot, & Brussaard, 1999), a dilution series of 5x, 10x, 50x, 100x, 500x, and 1,000x 

was prepared for each sample. The samples were vortexed before being diluted in filtered (0.2 

µm, Whatman) TE-buffer to a total volume of 1 mL. 10 µL SYBR Green (Thermo Fisher 

Scientific) was then added to the tubes before mixing by vortexing. The samples were then 

incubated at room temperature in the dark for at least 10 minutes. For counting of HNFs 

(Zubkov, Burkill, & Topping, 2007), 3 mL vortexed sample was added to flow cytometry tubes 

before the addition of 30 µL SYBR green, to a final concentration of 10 µL mL-1. The samples 

were vortexed and incubated at room temperature in the dark for approximately 2 hours. When 

counting both HNFs and bacteria, the tubes were vortexed shortly before counting on the flow 
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cytometer (Attune NxT Acoustic Focusing Cytometer, Thermo Fisher Scientific). Settings for 

the flow cytometer used when counting both bacteria and HNFs are given in Appendix A1.  

BOX 4 | How flow cytometry works 

Flow cytometry is a technique that is used to count cells in a liquid medium and examine their properties 

(Madigan, Bender, Buckley, Sattley, & Stahl, 2019). The technique was first developed for biomedical use, 

but has been used in marine studies since the late 1970s, frequently in studies of marine microbes to enumerate 

and characterise them (Munn, 2011; Sosik, Olson, & Armbrust, 2010).  

A modern flow cytometer has three main components: the fluidics system, the optical system, and the 

electronics (Marie, Simon, & Vaulot, 2005). The fluidics system organises a sample that has been taken up 

into a single-file stream of cells. The cells in the sample are transported to the point where a laser light meets 

the stream of cells, and when the beam of laser light meets a cell or another particle, the light will scatter and 

fluoresce (Fig. 4) (Marie et al., 2005; Sosik et al., 2010). This is the optical system. The scattering of light is 

measured by the electronics as forward angle scatter (FSC) and side angle scatter (SSC), which are correlated 

to cell size, and there are also detectors that measure the fluorescence emitted by fluorophores associated with 

the cell (Marie et al., 2005). All the information gathered on each cell can be viewed and analysed in the 

computer software, where it is possible to get figures like dot plots, histograms, and density plots, with the 

desired properties as variables.  

Phototrophic cells naturally have fluorescence due to their photosynthetic pigments, of which chlorophyll a, 

phycoerythrin, and phycocyanin are most common, which allows for identification of such cells even 

untreated (Marie et al., 2005; Sosik et al., 2010). Both chlorophyll a and phycoerythrin are excited by a 488 

nm laser, which is commonly used, making them ideal properties to analyse (Marie et al., 2005). Based on 

their properties, such as size and pigmentation, it is possible to differentiate between groups or even species 

of phototrophs (Olson, Zettler, & Anderson, 1989; Sosik et al., 2010). For example, coccolithophores covered 

in coccoliths (cell coverings of calcium carbonate) can be identified due to their depolarisation of forward 

scattered light (Olson et al., 1989), the cyanobacteria Synechococcus can be identified due to its high level of 

phycoerythrin (Olson, Chisholm, Zettler, & Armbrust, 1990), and picoeukaryotes can be identified based on 

size (Sosik et al., 2010).  

                        
Figure 4. Illustration showing how a flow cytometer works. Arrows indicate direction of fluid/light. The 

sample (most often a cell suspension) is narrowed to a stream of single-cell width with help of the sheath 

fluid. Each cell then goes through a beam of laser light, which scatters the light and the light is detected by 

different detectors: forward scatter, side scatter, and different fluorescence detectors (normally able to detect 

red, yellow, and/or green light). 
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During flow cytometry, HNFs were discriminated from autotrophic nanoeukaryotes (ANEs) 

based on green (SYBR Green) vs red (chlorophyll) fluorescence and bacteria based on green 

fluorescence (Figs. 5c and 5d) (Zubkov et al., 2007). Autotrophic picoeukaryotes (APEs), 

ANEs, and Synechococcus sp. were discriminated based on red vs orange (phycoerythrin) 

fluorescence (Fig. 5b) (Bratbak et al., 2011; A. Larsen et al., 2004). E. huxleyi was identified 

in plots of side scatter vs red fluorescence due to elevated side scatter caused by their coccoliths 

(Fig. 5a) (Jacquet et al., 2002). Cryptophytes were identified due to their high orange 

fluorescence (Fig. 5b) (Bratbak et al., 2011).  

 

Fig. 5. Plots from the Attune software showing how the different groups were discriminated. Percentages show 

what percentage of total events occurred inside the gate. a) dot plot showing how side scatter (SSC) vs red 

fluorescence (BL3) plot was used to identify the coccolithophore Emiliania huxleyi (“ehux”), b) dot plot showing 

how orange (YL1) vs red (YL3) fluorescence was used to identify autotrophic nanoeukaryotes (ANEs, “nano”), 

cryptophytes (“crypto”), autotrophic picoeukaryotes (APEs, “pico”), and Synechococcus sp. (“syn”), c) density 

plot showing how green (BL1) vs orange (BL2) fluorescence was used to identify bacteria (“bact”) and a group of 

possible viruses not discussed in this thesis (“vir”), d) dot plot showing how red (BL3) vs green (BL1) fluorescence 

was used to discriminate heterotrophic nanoflagellates (HNFs, “hnf”) from ANEs (“nano”) and APEs (“pico”).  
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2.3 Data analysis  
The Attune software was used to calculate the percentage of possibly mixotrophic cells. For 

each sample an overlay of the BL1 (green fluorescence) histograms with and without 

LysoTracker was made for each organism group. A threshold marker was placed on the 

histogram without LysoTracker in such a way that <2% of the counted cells were above it (Fig. 

6). The cells on the sample with LysoTracker that were above this threshold were considered 

to be possible mixotrophs and were called “LysoTracker positive cells”.  

 

Fig. 6. Examples of histogram overlays showing samples with (light green colour) and without (dark red colour) 

LysoTracker added. Cells represented inside the R1 gate were considered LysoTracker positive. a) histogram of 

counted autotrophic nanoeukaryote (ANE) cells where 0.15% of the non-stained and 13% of the stained samples 

were inside the R1 gate, b) histogram of counted cryptophyte cells where 1.0% of the non-stained and 22% of the 

stained samples were inside the R1 gate.  

2.4 Statistical analysis 
Statistical analyses were performed in R version 3.6.0 (The R Foundation). For each organism 

group on each sample day the two treatments (-Bro and +Bro, or -dFe and +dFe) were 

compared, using a two-way mixed ANOVA with the treatment as the between-subjects factor 

and sample day as the within-subjects factor (Kassambara, n.d.). An α-value of 0.05 was used, 

as well as adjusted p-values that correct for type I error (i.e. rejection of a null hypothesis 

without a true effect) were used to determine statistical significance.  
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3 Results 
Where no SE is given only one sample was collected. Sampling of the fjord started at day 6.  

3.1 Abundances of microbial groups 

3.1.1 Autotrophic nanoeukaryotes 

For the -Bro treatment (no HuminFeed® added), the mean abundance of autotrophic 

nanoeukaryotes (ANEs) spanned from 8.20×102 ± 6.60×101 cells mL-1 to 4.40×103 ± 7.41×102 

cells mL-1 (Fig. 7). The initial abundance was 1.50×103 cells mL-1 for both the -Bro and +Bro 

treatment (with HuminFeed® added). In -Bro mesocosms two peaks, one at day 6 at 2.64×103 

± 1.59×102 cells mL-1, and one at day 19 at 4.40×103 ± 7.41×102 cells mL-1, were observed. 

Abundances in +Bro treated mesocosms ranged from 6.89×102 ± 8.21×101 cells mL-1 to 

2.97×103 ± 1.55×102 cells mL-1 with a peak at day 6 at 2.97×103 ± 1.55×102 cells mL-1 mean 

abundances below 1.50×103 cells mL-1 after day 10. Abundance in the fjord ranged from 

7.13×102 cells mL-1 to 4.92×103 cells mL-1, with a peak at day 10 at 4.17×103 cells mL-1, and a 

rapid increase from day 16 to the end of the experiment at day 21, with an abundance of 

4.92×103 cells mL-1.  

 
Figure 7. Abundance (cells mL-1) of autotrophic nanoeukaryotes (ANEs) on each sample day of the experiment. 

The dashed grey line shows the abundance in the fjord, while the brown and blue lines show the mean ± SE with 

and without brownification, respectively. n=6 for both the -Bro and +Bro treatments (days 2-21), n=1 for the fjord, 

n=1 for day 0. Stars indicate a significant difference between the -Bro and the +Bro treated mesocosms.  
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3.1.2 Cryptophytes and Emiliania huxleyi 

The initial abundance of cryptophytes in both -Bro and +Bro treated mesocosms was 1.22×102 

cells mL-1 (Fig. 8a). The mean abundance peaked at day 2 in both treatments, at 1.45×102 ± 

1.85×101 cells mL-1 in the -Bro mesocosms and 1.66×102 ± 1.09×101 cells mL-1 in the +Bro 

mesocosms. Abundances in the -Bro mesocosms ranged from 3.67×100 ± 0.843×100 cells  

mL-1 to 1.45×102 ± 1.85×101 cells mL-1, and in the +Bro mesocosms from 1.00×101 ± 1.95×100 

cells mL-1 to 1.66×102 ± 1.09×101 cells mL-1. Both treatments had mean abundances at 

<5.00×101 cells mL-1 from day 6 (-Bro treatment) or day 8 (+Bro treatment). Abundance in the 

fjord ranged from 5.30×101 cells mL-1 to 3.09×102 cells mL-1 and peaked at day 10 (3.09×102 

cells mL-1) and day 14 (2.75×102 cells mL-1). From day 19 (5.30×101 cells mL-1) there was a 

rapid increase until the end of the experiment (day 21) at 2.23×102 cells mL-1.  

Initial abundance of E. huxleyi in both -Bro and +Bro treated mesocosms was 5.09×102 cells 

mL-1 (Fig. 8b). Abundance in the -Bro mesocosms spanned from 1.25×102 ± 4.16×101 cells 

mL-1 to 5.09×102 cells mL-1. There was a decrease until day 6 (2.68×102 cells mL-1), before a 

peak at day 8 at 3.86×102 ± 3.54×101 cells mL-1. From day 14 (1.25×102 cells mL-1) there was 

an increase in abundance until the end of the experiment (day 21) at 3.78×102 ± 2.61×102 cells 

mL-1, with large standard errors at days 16, 19, and 21. Abundance in the +Bro mesocosms 

ranged from 7.75×101 ± 1.51×101 cells mL-1 to 5.24×102 ± 6.15×101 cells mL-1, decreased until 

day 2 (3.17×102 cells mL-1), and then peaked at 5.24×102 ± 6.15×101 cells mL-1 at day 8. It 

decreased rapidly until day 14 (7.75×101 ± 1.51×101 cells mL-1) and stayed below 2.00×102 

cells mL-1 until the end of the experiment (day 21). Abundance in the fjord decreased from day 

6 (6.30×102 cells mL-1) to day 19 (5.20×101 cells mL-1), before increasing to 7.30×101 cells  

mL-1 at the end of the experiment (day 21).  
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Figure 8. Abundance (cells mL-1) of cryptophytes (a) and the coccolithophore Emiliania huxleyi (b) on each 

sample day of the experiment. The dashed grey line shows the abundance in the fjord, while the brown and blue 

lines show the mean ± SE with and without brownification, respectively. n=6 for both the -Bro and +Bro treatments 

(days 2-21), n=1 for the fjord, n=1 for day 0.  

3.1.3 Autotrophic picoeukaryotes 

For both -Bro and +Bro treatments initial autotrophic picoeukaryote (APE) abundance was 

4.08×103 cells mL-1 (Fig. 9a). In -Bro mesocosms the abundance spanned from 1.75×103 ± 

7.06×102 cells mL-1 to 2.78×104 ± 3.33×103 cells mL-1, with a peak at day 6 at 2.78×104 ± 

3.33×103 cells mL-1. In the +Bro mesocosms APE abundance peaked at day 8 with a mean 

abundance of 6.72×104 ± 1.85×103 cells mL-1 and spanned from 1.73×103 ± 4.92×102 cells  

mL-1 to 6.72×104 ± 1.85×103 cells mL-1. In both treatments mean abundances were <8.00×103 

cells mL-1 after day 10. In the fjord abundances remained below 1.50×104 cells mL-1 throughout 

the experiment, with the highest values being at day 10 at 1.34×104 cells mL-1, and the lowest 

abundance being at day 16 at 6.22×102 cells mL-1. APE abundance increased towards the end 

of the experiment, reaching an abundance of 9.45×103 cells mL-1 at day 21.  

The initial abundance of Synechococcus sp. for both the -Bro and +Bro treatments was 9.54×103 

cells mL-1 (Fig. 9b). For the -Bro treatment, the abundance spanned from 1.52×103 ± 5.11×102 

cells mL-1 to 1.99×104 ± 1.77×101 cells mL-1. From day 2 Synechococcus sp. abundance 

decreased until day 12 (1.52×103 ± 5.11×102 cells mL-1), before an exponential increase lasting 
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until the end of the experiment (day 21), reaching 1.99×104 ± 1.77×101 cells mL-1, took place. 

Abundances in +Bro mesocosms ranged from 4.40×103 ± 5.53×102 cells mL-1 to 2.95×104 ± 

3.53×103 cells mL-1, and peaked at day 8 at 1.56×104 ± 4.70×102 cells mL-1 before decreasing 

to 4.40×103 ± 5.53×102 cells mL-1 at day 14. From day 14 a rapid increase until day 21 to 

2.95×104 ± 3.53×103 cells mL-1 was observed. The fjord abundance ranged from 1.00×104 cells 

mL-1 to 4.47×104 cells mL-1, with a peak at day 10 at 4.47×104 cells mL-1. From 1.00×104 cells 

mL-1 at day 16, an increase until day 21 to 2.93×104 cells mL-1 was observed.  

 
Figure 9. Abundance (cells mL-1) of autotrophic picoeukaryotes (APEs) (a) and the cyanobacterium 

Synechococcus sp. (b) on each sample day of the experiment. The dashed grey line shows the abundance in the 

fjord, while the brown and blue lines show the mean ± SE with and without brownification, respectively. n=6 for 

both the -Bro and +Bro treatments (days 2-21), n=1 for the fjord, n=1 for day 0. Star indicates a significant 

difference between the -Bro and the +Bro treated mesocosms.  

3.1.3 Bacteria 

The bacterial abundance at day 0 in both the -Bro and the +Bro mesocosms was 8.88×105 cells 

mL-1 (Fig. 10). Abundance in the -Bro mesocosms ranged from 4.19×105 ± 6.71×104 cells  

mL-1 to 1.19×106 ± 2.31×104 cells mL-1, and peaked at day 2 (1.19×106 ± 2.31×104 cells mL-1) 

and day 14 (5.96×105 ± 5.50×104 cells mL-1). From day 16 the abundance increased until the 

end of the experiment (day 21) to 8.78×105 ± 5.82×104 cells mL-1. Abundance in the +Bro 

mesocosms spanned from 4.62×105 ± 4.93×104 cells mL-1 to 1.17×106 ± 3.04×104 cells mL-1. 

It peaked at 1.17×106 ± 3.04×104 cells mL-1 at day 2 and day 6, decreased until day 16 (4.62×105 
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cells mL-1), and peaked again at day 19 at 6.61×105 ± 8.45×104 cells mL-1. Abundances in the 

fjord spanned from 3.99×105 cells mL-1 to 9.73×105 cells mL-1, starting at 9.73×105 cells mL-1 

at day 6, then decreasing until day 8 at 7.05×105 cells mL-1. It peaked at day 12 at 9.45×105 

cells mL-1 before it decreased until day 19 (3.99×105 cells mL-1) and then increased until the 

end of the experiment (day 21) to 4.98×105 cells mL-1.  

 
Figure 10. Abundance in cells mL-1 of bacteria on each sample day of the experiment. The dashed grey line shows 

the abundance in the fjord, while the brown and blue lines show the mean ± SE with and without brownification, 

respectively. n=6 for both the -Bro and +Bro treatments (days 2-21), n=1 for the fjord, n=1 for day 0. Star indicates 

a significant difference between the -Bro and the +Bro treated mesocosms. 

3.1.4 Heterotrophic nanoflagellates 

The initial abundance of heterotrophic nanoflagellates (HNFs) in both the -Bro and +Bro treated 

mesocosms was 1.02×103 cells mL-1 (Fig. 11). Abundance in the -Bro mesocosms spanned 

from 7.00×102 ± 6.19×101 cells mL-1 to 3.36×103 ± 1.51×102 cells mL-1, peaked at day 6 

(1.47×103 ± 8.30×101 cells mL-1), decreased until day 10 (7.00×102 cells mL-1), and peaked 

again at day 16 (3.36×103 ± 1.51×102 cells mL-1). Abundance in the +Bro mesocosms spanned 

from 9.93×102 ± 1.24×102 cells mL-1 to 2.46×103 ± 6.79×101 cells mL-1. It peaked at day 6 

(2.46×103 ± 6.79×101 cells mL-1) and day 16 (2.29×103 ± 2.76×102 cells mL-1) and reached 

approximately 1.00×103 cells mL-1 both before, between, and after the peaks. Abundance in the 

fjord spanned from 3.93×102 cells mL-1 to 2.26×103 cells mL-1. It started at 1.15×103 cells  
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mL-1 at day 6 (1.15×103 cells mL-1) and had a peak at day 12 (2.26×103 cells mL-1), then 

decreased until day 16 (3.93×102 cells mL-1) and increased to 6.71×102 cells mL-1 at the end of 

the experiment (day 21). An extreme outlier at day 12 (M6) with an HNF abundance of 8.59 × 

103 cells mL-1 was excluded as this was considered a measuring error.  

 

Figure 11. Abundance in cells mL-1 of heterotrophic nanoflagellates (HNFs) on each sample day of the experiment. 

The dashed grey line shows the abundance in the fjord, while the brown and blue lines show the mean ± SE with 

and without brownification, respectively. n=6 for both the -Bro and +Bro treatments (days 2-21), n=1 for the fjord, 

n=1 for day 0. 

3.2 Percentages of LysoTracker positive cells 

3.2.1 Autotrophic nanoeukaryotes 

The initial percentage of LysoTracker positive autotrophic nanoeukaryote (ANE) cells was 56% 

for both the +Bro and the -Bro treated mesocosms (Fig. 12a). The mean percentages of 

LysoTracker positive cells in the -Bro mesocosms ranged from 20% ± 3.8% to 59% ± 3.6%. It 

decreased to 27% ± 6.8% at day 2, and from day 12 (20% ± 3.8%) it increased until a peak at 

day 19 at 59% ± 3.6%. Mean percentages in the +Bro mesocosms ranged from 13% ± 1.5% to 

56%, decreased to 28% ± 1.3% at day 2, and continued to decrease until day 10 (13% ± 1.5%). 

In +Bro mesocosms the mean percentage peaked at day 19 at 45% ± 4.6%. Percentages in the 

fjord ranged from 6.3% to 61%, and peaked at days 8 (25%), 12 (18%), and 19 (61%). At day 

14, an outlier not included in the line graph due to an error in the method, the mean percentage 
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of LysoTracker positive cells in -Bro mesocosms was 68% ± 2.5% and 63% ± 2.7% in +Bro 

mesocosms, and the percentage in the fjord was 18%.  

 
Figure 12. Percentages of LysoTracker positive cells on each sample day of the experiment for each group; 

autotrophic nanoeukaryotes (ANEs) (a), autotrophic picoeukaryotes (APEs) (b), cryptophytes (c), Emiliania 

huxleyi (d), and Synechococcus sp. (e). The grey lines show the fjord percentage, while the brown and blue lines 

show the mean percentage ± SE with and without brownification, respectively. The points on day 14 show the 

mean percentage ± SE when an error was made when preparing the samples. n=6 for both the -Bro and +Bro 

treatments (days 2-21), n=1 for the fjord, n=1 for day 0. The star indicates a significant difference between the  

-Bro and the +Bro treated mesocosms. 

3.2.2 Cryptophytes and Emiliania huxleyi 

The initial percentage of LysoTracker positive cryptophyte cells in both -Bro and the +Bro 

treated mesocosms was 73% (Fig. 12c). Mean percentages in the -Bro mesocosms ranged from 

27% ± 15% to 73%, and decreased until day 2 to 48% ± 12%. A peak was observed at day 6 

(58% ± 8.3), then the percentage decreased until day 10 (27% ± 15%) before increasing until 

the end of the experiment (day 21) to 51% ± 14%. The mean percentages of LysoTracker 

positive cryptophytes in +Bro mesocosms ranged from 6.5% ± 3.3% to 77% ± 3.1% and peaked 

at day 2 (77% ± 3.1%) and day 19 (40% ± 10%). At day 10, between the two peaks, the mean 

percentage was 6.5% ± 3.3%. The percentage in the fjord of LysoTracker positive cells ranged 

from 1.2% to 38%, had a peak at day 8 at 35%, decreased until day 16 (3.9%), and increased 

until day 21 to 38%. At day 14, an outlier not included in the line graph due to an error in the 
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method, the mean percentage in the -Bro mesocosms was 62% ± 14% and in the +Bro treatment 

71% ± 7.4%, and the percentage in the fjord was 1.2%. 

The mean percentages of LysoTracker positive cells of E. huxleyi ranged from 3.9% ± 1.1% to 

49% in the -Bro mesocosms, and from 2.1% ± 0.44% to 49% in the +Bro mesocosms (Fig. 

12d). The initial percentage in both treatments was 49%. The mean percentage in the -Bro 

mesocosms decreased until day 6 to 6.6% ± 0.56% and peaked at day 8 at 15% ± 1.0%. From 

day 12 (3.9%) it increased to a second peak at day 19 (27% ± 5.6%). The percentage in the 

+Bro mesocosms decreased until day 8 (2.1% ± 0.44%), increased until day 12 to 5.1% ± 3.5%, 

and increased from day 16 (4.9% ± 0.70%) until day 21 to 15% ± 3.3%. The percentages in the 

fjord ranged from 3.4% to 25% and peaked at day 10 (14%) and day 19 (25%). At day 14, an 

outlier not included in the line graph due to an error in the method, the mean percentage of 

LysoTracker positive cells in -Bro mesocosms was 31% ± 13% and 22% ± 8.2% in +Bro 

mesocosms, and the percentage in the fjord was 3.3%. 

3.2.3 Autotrophic picoeukaryotes 

The initial percentage of LysoTracker positive autotrophic picoeukaryote (APE) cells was 24% 

for both the -Bro and the +Bro treated mesocosms (Fig. 12b). Mean percentages in the -Bro 

mesocosms ranged from 14% ± 4.7% to 49% ± 4.8%. It decreased until day 2 (14% ± 4.7%), 

then peaked at 25% ± 3.0% at day 8. From day 8 it decreased until day 12 (19% ± 3.7%), then 

increased to another peak at day 19 (49% ± 4.8%). The percentages in the +Bro mesocosms 

ranged from 15% ± 1.8% to 45% ± 4.6%, decreased until day 2 (15% ± 1.8%), and remained 

<20% until day 14. It peaked at day 19 at 45% ± 4.6%. The percentage of LysoTracker positive 

cells in the fjord samples remained <10% throughout the experiment, except for a peak at day 

19 (12%). At day 14, an outlier not included in the line graph due to an error in the method, the 

mean percentage in -Bro mesocosms was 79% ± 1.7% and 69% ± 1.9% in +Bro mesocosms, 

and the percentage in the fjord was 0.41%. 

The initial percentage of LysoTracker positive Synechococcus sp. cells was 3.9% in both -Bro 

and +Bro treated mesocosms (Fig. 12e). The mean percentages in -Bro mesocosms ranged from 

3.5% ± 0.88% to 10% ± 2.5%, and peaked at day 10 at 6.8% ± 3.1%. From day 12 (3.9% ± 

1.2%) it increased to another peak at day 19 (10% ± 2.5%). The mean percentages in the +Bro 

mesocosms ranged from 2.1% ± 0.33% to 9.7% ± 1.7%. From day 2 (4.4% ± 0.73%) it 

decreased until day 10 (2.1% ± 0.33%), then peaked at day 16 at 9.7% ± 1.7%. The percentages 

of LysoTracker positive cells in the fjord ranged from 0.18% to 2.9%, and peaked at day 8 
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(2.9%) and day 19 (2.6%). At day 14, an outlier not included in the line graph due to an error 

in the method, the mean percentage was 8.1% ± 2.5% in -Bro mesocosms and 12% ± 2.2% in 

+Bro mesocosms, and the percentage in the fjord was 0.55%. 
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4 Discussion 

4.1 Effects of brownification on the composition of the community 

4.1.1 Succession patterns of the different groups 

Generally, abundances initially increased to a peak on days 2-8, then decreased before either 

staying low or again increasing during the second half of the experiment (Figs. 7-11). This 

mostly compares well with other experiments at the same location (Paulino, Egge, & Larsen, 

2008; Segovia et al., 2017). In addition to the groups accounted for in this study, larger grazers 

such as ciliates likely affected abundances by grazing on both nano- and pico-sized organisms 

(Rassoulzadegan, Laval-Peuto, & Sheldon, 1988), and viruses are always present and play an 

important role for protist communities (Suttle, 2005). However, none of these groups were 

targets for the main objectives of the current study.  

Autotrophic nanoeukaryotes (ANEs), which peaked twice in some mesocosms and were found 

in high abundances in the fjord (Fig. 7), normally bloom during early summer in temperate 

areas (Andersson, Haecky, & Hagström, 1994; Tarran & Bruun, 2015), during which this 

experiment took place. The mesocosms were filled with water with relatively high abundances 

of Emiliania huxleyi (Fig. 8b). E. huxleyi typically blooms on the west coast of Norway during 

this time of year (e.g. Tyrrell & Merico, 2004, and references therein), and its rapid decrease in 

abundance in the fjord outside the enclosures indicates a demising bloom when the filling took 

place.  

Cryptophytes may bloom both in spring and late summer in the Raunefjord depending on the 

year (Paulino et al., 2018), and in late summer/early autumn in other temperate areas (Tarran & 

Bruun, 2015). Therefore, not unexpectedly, initial cryptophyte abundances were low in this 

experiment carried out in early summer (Fig. 8a). Due to their large cell size compared to other 

groups accounted for, cryptophytes likely grow slowly (Marañón, 2015; Tang, 1995), which 

probably accounts for their low numbers throughout the experiment. They could also have been 

hindered by competition from faster growing cells. The fact that the abundances in the 

mesocosms were lower than the fjord abundance indicates that the mesocosms created a poor 

environment for these cells.  

The peaks in autotrophic picoeukaryote (APE) abundance (Fig. 9a) show that the environment 

in the mesocosms was favourable for this group. It has long been thought that growth rate 

decreases with size (Tang, 1995), but recent studies have shown intermediate sizes to have the 

highest growth rates (reviewed in Marañón, 2015). The APEs grew faster initially than any 
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other group in this experiment, indicating that the ANEs were either heavily grazed upon or 

experienced limitations or unfavourable conditions not experienced by the APEs. The rapid 

decrease in APE abundance after the peak may have been caused by a viral attack, predation, 

or a combination of these factors (Baudoux, Veldhuis, Witte, & Brussaard, 2007; Evans, 

Archer, Jacquet, & Wilson, 2003). APE abundances remaining low during the second half of 

the experiment could have been due to competition and/or predation. Both heterotrophic 

nanoflagellates (HNFs) and ciliates are known grazers of APEs (Rassoulzadegan et al., 1988; 

Stockner & Antia, 1986), meaning both groups likely contributed to keeping the APE 

abundance low.  

Synechococcus sp. cells exhibited minimal initial growth and stayed at low abundances for most 

of the experiment (Fig. 9b). They are pico-sized and are thus, together with the heterotrophic 

bacteria, of the smallest cells included in the current study. Their minimal initial net growth 

could support the theory that small cells have lower growth rates than intermediately sized cells, 

though they could have been kept at low abundances due to grazing, competition, or non-

favourable conditions. I find the most plausible explanation to be competition (likely from 

heterotrophic bacteria) or predation since their net growth was much higher towards the end of 

the experiment when the abiotic environmental conditions were similar, presumably due to less 

predation or newly available nutrients. Growth of Synechococcus sp. after roughly two weeks 

has been observed in mesocosms due to decreased predation (Agawin, Duarte, & Agustí, 2000). 

HNFs are the main grazers of pico-sized phototrophs (Agawin et al., 2000; Šimek et al., 1997; 

Stockner & Antia, 1986). This is supported by our experiment, as the steeper increase in 

Synechococcus sp. abundance (Fig. 9b) started when the HNF abundance significantly 

decreased (Fig. 11).  

The succession pattern of bacteria (Fig. 10) corresponds with mesocosm studies from both the 

Raunefjord (Segovia et al., 2017) and a Swedish lake (Urrutia‐Cordero et al., 2017). HNFs are 

the main predators also of bacteria (e.g. Fenchel, 1982; Sanders, Porter, Bennett, & DeBiase, 

1989), but other factors such as nutrient availability, predation from other organisms (e.g. 

mixotrophs), and virus activity would also have affected bacterial abundance. By comparing 

abundance patterns, it can be assumed that HNFs were likely not a major predator of APEs in 

this experiment, though they could have consumed ANEs in addition to bacteria. As HNFs and 

ANEs are in the same size category, grazing is more likely to have been from larger organisms 

like ciliates (Rassoulzadegan et al., 1988).  
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4.1.2 Was there a difference between treatments? 

There was little statistically significant difference between the brownification (Bro) treatments 

(HuminFeed® additions) during the first ANE abundance peak, but we observed significantly 

higher ANE abundances in the -Bro mesocosms than the +Bro mesocosms during the second 

peak (Fig. 7). Possible reasons for this could be that ANEs perform badly in low light 

conditions, or that there was more grazing on ANEs or competition for nutrients in +Bro 

mesocosms. Studies have shown that ciliates do better in areas of low light and high 

concentrations of dissolved organic carbon (DOC) (Kammerlander et al., 2016), indicating that 

ciliates could have been grazing more in the +Bro than the -Bro mesocosms and keeping the 

abundance low. Peaks at late stages of similar experiments (here observed in -Bro mesocosms 

only) have previously been observed in mesocosms with high concentrations of N, P, and 

silicon (Duarte, Agusti, & Agawin, 2000). In our experiment, these nutrients were added to the 

same concentrations in all mesocosms, so the peak was likely an effect of brownification, not 

high nutrient concentrations.  

The cryptophyte abundance showed little to no reaction to brownification. The mean 

abundances were similar in both treatments, with the +Bro abundances being slightly higher at 

some time points (Fig. 8a). It has been theorised that brownification favours cryptophytes 

(Weyhenmeyer, Willén, & Sonesten, 2004), but our results cannot support this theory. Our 

experiment took place during very low cryptophyte abundances. It is possible an effect would 

have been observed at bloom concentrations. Other factors such as grazing may also have had 

a bigger effect than the different Bro treatments.  

From day 14, E. huxleyi abundance in one of the -Bro mesocosms increased rapidly, reaching 

1.68 × 103 cells mL-1 at the end of the experiment. There does not appear to be a clear reason 

for this bloom only happening in one mesocosm. The same mesocosm also had higher 

abundances of APEs (5.37 × 103 cells mL-1 at day 19) and Synechococcus sp. cells (1.73 × 104 

cells mL-1 at day 21) than the other -Bro-dFe mesocosms. This mesocosm could have had lower 

levels of predation, for example due to a viral attack on the predominant grazers, or possibly 

higher levels of available nutrients.  

The significantly higher APE abundance peak early in the experiment in +Bro mesocosms 

compared to both -Bro mesocosms and the fjord shows that our artificial brownification created 

a favourable environment for the APEs (Fig. 9a). This could mean that APEs are better at 

utilizing DOC or better adapted to low light conditions than their competitors, or that 
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brownification inhibits their main grazers. The latter is less likely, as brownification appeared 

to favour HNFs (assumed to be grazers of APEs) during the APE peak (Fig. 11), did not affect 

most mixotrophs negatively (see chapter 4.2), and is reported to favour ciliates as well 

(Kammerlander et al., 2016). This difference between treatments contrasts findings in 

freshwater studies, where an increase in DOC and decrease in light has been reported to have 

negative or no effect on the APEs (Drakare, Blomqvist, Bergström, & Jansson, 2003; Rasconi, 

Gall, Winter, & Kainz, 2015). This could be due to differences in marine and freshwater 

environments, or our initial addition of nutrients causing a difference from natural conditions. 

The DOC that leads to brownification in marine environments comes from terrestrial or 

freshwater runoff (Hedges, Keil, & Benner, 1997), so these microbial communities may have 

been more adapted to dealing with brownification. It is also likely that the longer time spans in 

these other studies contributed to the differing results, suggesting that short term studies can 

show a different picture than long term ones.  

Synechococcus sp. abundance means were higher in +Bro than -Bro mesocosms throughout the 

experiment (Fig. 9b), particularly during the small peak at day 8, though this difference was 

never statistically significant. Armbrust, Bowen, Olson, and Chisholm (1989) explain how 

Synechococcus sp. cell cycles last longer during light limitation, meaning they grow slower. 

Our results do not show this, indicating that other factors inhibit Synechococcus sp. growth in 

-Bro mesocosms, for example higher levels of predation or competition.  

HuminFeed®, the substance added to achieve brownification, contains large amounts of DOC. 

High bacterial abundances, as observed between day 2 and day 6 (Fig. 10), were therefore 

expected in the +Bro mesocosms since bacteria rely on dissolved organic matter (DOM; 

includes DOC) to grow (Fig. 1) (Azam et al., 1983). Increased bacterial growth due to increased 

concentrations of DOC, brownification, and temperature have been observed in mesocosm 

studies previously (Wilken et al., 2018). In our experiment the statistically significant difference 

between treatments was not due to increased bacterial abundance in the +Bro mesocosms as 

expected, but due to the high abundances lasting longer. As HNFs rely on bacteria for food, the 

peak in bacterial abundance could have been the cause of the spike in HNF abundance at day 6 

that was not present in -Bro mesocosms (Fig. 11). It is possible that the bacterial community in 

the +Bro mesocosms was more resistant to grazers and/or viruses than that in the -Bro 

mesocosms. The bacterial community could be adapting to different conditions quickly enough 

that no effects from the treatments given are observed. As the bacteria were not separated into 

groups or identified, it is not known how the bacterial community changed throughout the 
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experiment. The composition of the bacterial community has been shown to change throughout 

a mesocosm experiment (Riemann, Steward, & Azam, 2000), and bacterial communities are 

resilient to changing conditions caused by both top-down control and nutrient concentrations 

(Matz & Jürgens, 2003; Tsagaraki et al., 2018).  

The hypothesis that brownification would lead to changes in the composition of the microbial 

communities was partly supported, as statistically significant changes were observed to some 

degree for ANEs, APEs, and bacteria, with bacteria showing the least difference between 

treatments of the three groups.  

4.2 Effects of brownification on percentage of mixotrophs 

4.2.1 Development of percent LysoTracker positive cells 

The general trend in patterns of percent LysoTracker positive cells was that percentages 

decreased or stayed low for the first half of the experiment, before increasing towards the end 

(Fig. 12). Assuming that mixotrophy is a survival strategy for the cells, this suggests that 

conditions in the mesocosms grew worse for them over time and more non-constitutive 

mixotrophs (NCMs) were performing phagotrophy towards the end of the experiment. 

Mixotrophy could also have been performed as a response to an abundance of nutrients, with 

cells only then being able to maintain a phagotrophic capability in addition to phototrophy. 

Similar studies to ours have shown that N and P concentrations decreased rapidly (Egge & 

Aksnes, 1992; Segovia et al., 2017), meaning the increase in mixotrophic cells was likely a 

survival mechanism. Though some bacteria perform phagotrophy, Synechococcus sp. is only 

known to be prey through bacterial phagotrophy (Rashidan & Bird, 2001), not a predator. 

Therefore, there must have been another explanation for the LysoTracker positive 

Synechococcus sp. cells, likely unspecific staining.  

Mixotrophic autotrophic nanoeukaryotes (ANEs) are known to be of great importance. They 

comprise up to 50% of the ANE population and are responsible for >80% of bacterivory in 

some areas (Havskum & Riemann, 1996; Sanders et al., 1989). Percentages of LysoTracker 

positive ANE cells started high on day 0 and had been reduced by approximately half by day 2 

of the experiment (Fig. 12a). This could be the result of suboptimal conditions in the fjord at 

the time the water was added to the mesocosms, or cells experiencing stress when being pumped 

into the mesocosms, causing them to resort to phagotrophy. Another possibility is that the strict 

phototrophs grew faster than the mixotrophs, making the percentage of LysoTracker positive 

cells decrease.  However, predominantly phototrophic mixotrophs, as these cells are assumed 
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to be, have been reported to have growth rates similar to those of strict phototrophs due to the 

relatively low cost of maintaining a phagotrophic capability (Raven, 1997). Percent 

LysoTracker positive ANE cells increased towards the end of the experiment (Fig. 12a), 

coinciding with an increase in abundance, particularly in mesocosms without addition of 

HuminFeed® (Fig. 7). It appears that the cells behaving more phagotrophically made it possible 

for them to grow, which could mean that mixotrophy in these cells is mainly a survival strategy 

for poor conditions. This strategy has previously been observed in several nutrient-limited 

ANEs (Anderson et al., 2018).  

The percentages of LysoTracker positive Emiliania huxleyi cells starting high on day 0 and then 

dropping significantly (Fig. 12d) could mean that also this particular ANE species uses 

mixotrophy as a survival strategy and that conditions improved once they were placed in the 

mesocosms. It could also mean that they turned to phagotrophy due to stress during the pumping 

of the water into the enclosures. Towards the end of the experiment there was an increase in 

percent LysoTracker positive cells (Fig. 12d), indicating that the conditions turned suboptimal 

and E. huxleyi cells again had to resort to phagotrophy. It is possible that cells only perform 

phagotrophy under optimal conditions but given the rapid decline in LysoTracker positive cells 

right after nutrients were added (day 0), this is unlikely. The fact that only a small portion of E. 

huxleyi cells were LysoTracker positive indicates that they are NCMs. This is supported by 

other studies having observed some, but minimal, phagotrophy in E. huxleyi cells (Avrahami & 

Frada, 2020; Rokitta et al., 2011). The higher percentage of mixotrophs in our study could be 

due to unspecific staining in the cells or difference in methods.  

The percentages of LysoTracker positive cryptophyte cells had wide error bars due to few cells 

present in the mesocosms (often <20 cells mL-1 from day 8, Fig. 12c). Anderson et al. (2017) 

only calculated percentages of mixotrophs when the abundance of a group was >30 cells mL-1, 

which decreases the chance of a type II error (to not reject a false null hypothesis). Most 

percentages of LysoTracker positive cryptophytes in our experiment would not have been used 

when applying this cut-off, so no conclusions should be drawn from these values.  

Autotrophic picoeukaryotes (APEs) have also been shown to contribute significantly to 

bacterivory (Sanders & Gast, 2012; Zubkov & Tarran, 2008), but are less known to be 

mixotrophic than ANEs. This could be a result of the methods used to determine mixotrophy, 

as observing ingested particles in pico-sized cells can be challenging, and mixotrophic APEs 

have been shown to not ingest larger prey (Sanders & Gast, 2012). During the first half of the 
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experiment, percentage of LysoTracker positive APE cells stayed relatively low, before 

increasing towards the end of the experiment in all mesocosms (Fig. 12b), coinciding with a 

slight increase in abundance (Fig. 8a). This may indicate that the APE population experienced 

growth towards the end of the experiment due to more cells performing phagotrophy.  

Synechococcus sp. showed a trend of increasing percentage of LysoTracker positive cells 

towards the end of the experiment (Fig. 12e). Up to 20% of Synechococcus sp. cells in each 

sample during this experiment were stained, and since Synechococcus sp. is not known to 

perform phagotrophy, this indicates that LysoTracker not only stained food vacuoles. One 

possible explanation is staining of the thylakoid lumen in chloroplasts, as the pH is similar to 

that in food vacuoles. Rose et al. (2004) did not find a difference in fluorescent signal between 

live and dead Synechococcus sp. cells, meaning that this is a possibility only if chloroplasts are 

not destroyed in dead cells. Unspecific staining in Synechococcus sp. cells does not necessarily 

mean that this also occurred in eukaryotic cells, as it is possible that Synechococcus sp. cells or 

cyanobacteria in general interact differently than eukaryotes with the LysoTracker stain.  

The Fv/Fm values (optimal quantum yield of photosystem II) were calculated in each mesocosm 

throughout the experiment and give insight into how healthy the phototrophic cells in the 

communities were (Fig. A1, method in Appendix A.2). Normally Fv/Fm values reach about 0.6 

in nutrient rich conditions and about 0.3 during nutrient limitation (Crespo, Espinoza-Gonzalez, 

Teixeira, Castro, & Figueiras, 2011). In the current experiment, the Fv/Fm values started 

declining at day 6, and percentages of LysoTracker positive cells of most groups started 

increasing around day 10 or 12 (Fig. 12). It is possible that with the chloroplasts yielding less 

energy, cells needed to perform more phagotrophy. It is also possible that the Fv/Fm values relate 

little or not at all to mixotrophy, and that the reason that the phototrophs in +Bro mesocosms 

were less healthy was that the brownification of the water made photosynthesis less effective 

so cells created more chloroplasts to compensate. The first theory is supported by the fact that 

even Synechococcus sp. cells had an increase in LysoTracker positive cells towards the end of 

the experiment (Fig. 12e), possibly caused by staining of the thylakoid lumen of chloroplasts. 

As they do not have food vacuoles, the increase must have another cause, for example staining 

of the thylakoid lumen. There could also have been less nutrients available in the +Bro 

mesocosms.  
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4.2.3 Was there a difference between treatments? 

The statistically significant difference in percentage of LysoTracker positive ANE cells 

between treatments towards the end of the experiment indicated that more cells in the -Bro 

mesocosms were mixotrophic than in the +Bro (brownification) mesocosms (Fig. 12a). This 

contradicted the hypothesis that brownification leads to more mixotrophs. The difference 

occurred during the second peak in ANE abundance in -Bro mesocosms, possibly indicating 

that ANE cells resort to phagotrophy due to limited resources, as observed in some ANE species 

by Anderson et al. (2018). The fact that this difference was observed could be due to the higher 

abundances of ANEs in -Bro mesocosms causing less nutrients to be available to strict 

phototrophs. This supports the idea that phagotrophy is a survival strategy for these cells. 

Another possibility is that there was more competition in +Bro mesocosms, causing more ANEs 

to not be able to consume bacteria. Since the changes observed due to brownification were not 

until the last two days of the experiment, it is possible that more changes would have been 

observed in a longer lasting experiment. Both the cryptophytes and E. huxleyi appear to show 

a trend of higher percentages of LysoTracker positive cells in -Bro mesocosms towards the end 

of the experiment (Figs. 12c and 12d), supporting these findings.  

Increase in APE abundances did not cause a coinciding increase in percentages of LysoTracker 

positive cells (Figs. 9a and 12b). The significantly higher APE abundances in +Bro mesocosms 

compared to -Bro mesocosms can therefore not be explained by an increase in cells capable of 

performing phagotrophy. The mean percentages of LysoTracker positive APE cells in the -Bro 

and +Bro treatments did not show significant differences (Fig. 12b), meaning that 

brownification did not affect percentages of mixotrophs in this experiment.  The same was true 

for Synechococcus sp. Though there were more differences in means for this group (Fig. 12e), 

these differences were not statistically significant due to larger error bars and did not show a 

clear trend.  

Studying the effects of brownification on mixotrophic microorganisms using mesocosms is 

often done in combination with increasing temperatures (e.g. Urrutia‐Cordero et al., 2017; 

Wilken et al., 2018). This is because brownification and increased concentrations of dissolved 

organic carbon (DOC) are indirect effects of the increase in runoff caused by higher temperature 

in predicted future scenarios in lakes and coastal waters (IPCC, 2014; S. Larsen et al., 2011). 

The results of our study indicate that the effects shown in such studies could be due to a 

combined effect or an increasing temperature rather than brownification, though studies 

showing an effect of brownification alone exist (e.g. Lebret et al., 2018). All the aforementioned 
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studies were performed in freshwater lakes, but parallels can still be made to marine 

environments, particularly coastal areas, since not only does freshwater affect the oceans due 

to input of water, but effects could still be similar even in different environments. Coastal areas 

are expected to be affected due to input of dissolved organic matter (DOM) from rivers and 

lakes, as observed in Norwegian fjords (Aksnes et al., 2009).  

Though the only statistically significant difference between treatments occurred for ANEs, a 

more general trend of all nano-sized groups (ANEs, cryptophytes, and E. huxleyi) appeared, 

showing a decrease in mixotrophs due to brownification. As this experiment only ran for 21 

days, and an increase in mixotrophs was observed only in the second half, it is likely that more 

pronounced differences would have appeared if the experiment lasted longer. However, the 

hypothesis could not be supported, as the trends show the opposite effect.  

4.3 Effects of iron addition 
For phototrophs, iron is an important micronutrient for growth due to its involvement in 

photosynthesis and assimilation of N (Behrenfeld & Milligan, 2013), as well as to minimise 

DNA damage (Segovia, Lorenzo, Iñiguez, & García-Gómez, 2018). The North Atlantic is 

generally not regarded as iron-limited (Behrenfeld et al., 2009), but in some areas Emiliania 

huxleyi may experience iron limitation (Nielsdóttir, Moore, Sanders, Hinz, & Achterberg, 2009; 

Segovia et al., 2017). Therefore, the overall hypothesis put forward in the BIPWeb project was 

that addition of dissolved iron (dFe) would promote a bloom of phototrophic plankton, 

particularly E. huxleyi.  

The average abundances of both autotrophic nanoeukaryotes (ANEs) (Fig. A2) and E. huxleyi 

(Fig. A3b) cells appeared to be higher in -dFe mesocosms than +dFe mesocosms, indicating 

that iron could have had a negative effect on these cells. Partly responsible for this trend was 

the bloom in one of the -dFe mesocosms. This contrasted both the hypothesis of the project and 

previous findings that E. huxleyi responds positively to dFe addition (Nielsdóttir et al., 2009; 

Segovia et al., 2017). The cryptophyte abundances did not appear to be affected by the dFe 

addition, as the means were similar in both treatments (Fig. A3a).  

Neither autotrophic picoeukaryote (APE) nor Synechococcus sp. abundances appeared to be 

affected by the addition of dFe (Fig. A4). Synechococcus sp. has previously been reported to 

be positively affected by dFe in a similar mesocosm experiment (Segovia et al., 2017), and 

natural APE populations in the Pacific Ocean were stimulated by iron as well (Behrenfeld, Bale, 

Kolber, Aiken, & Falkowski, 1996). Neither of those experiments included a brownification 
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effect, so it is possible that the brownification treatment concealed or stopped the positive 

effects of dFe.  

Hutchins, Witter, Butler, and Luther (1999) found that eukaryotic and prokaryotic phototrophs 

used different strategies to assimilate iron, with eukaryotic species relying more on porphyrin-

complexed iron and cyanobacteria relying more on siderophores. This could be part of the 

reason why dFe appeared to have little effect on abundances of the eukaryotic phototrophs 

accounted for in this experiment, though it does not explain why our results contradict others. 

It is possible that any effect of dFe was obscured by the effect of brownification, or that the 

organisms in the mesocosms simply did not experience iron-limitation.  

Bacterial and heterotrophic nanoflagellate (HNF) abundances also appear to have been 

unaffected by dFe addition (Figs. A5 and A6). The effects of iron on bacterial abundance 

reported are varied. Some report little to no changes due to iron addition (Church, Hutchins, & 

Ducklow, 2000; Kirchman et al., 2000), while others report that bacteria are stimulated by 

addition of iron (Cochlan, 2001; Pakulski et al., 1996). This variation could be due to the area 

or time of year studies are performed, or the composition of the bacterial population, as different 

species could respond differently to iron addition or have different needs for iron.  

The percentages of LysoTracker positive ANE cells appear to be slightly elevated in +dFe 

mesocosms (Fig. A7a), though not enough to be statistically significant. This trend is not 

observed for the other nano-sized groups (cryptophytes and E. huxleyi; Figs. A7c and A7d). 

Both pico-sized groups, APEs (Fig. A7b) and Synechococcus sp. (Fig. A7e), also show a slight 

increase in LysoTracker positice cells in +Bro mesocosms, but not a statistically significant 

difference. As previously discussed, Synechococcus sp. cannot perform phagotrophy and thus 

staining of these cells must be unspecific.  

It has been shown that ingestion of bacteria in Ochromonas sp., a species belonging to the 

ANEs, can provide large amounts of the iron needed for growth, indicating that mixotrophs are 

well-adapted to iron-limitation (Maranger, Bird, & Price, 1998). Assuming that bacterivory is 

not performed solely to acquire iron in these cells, this seems to be supported by our results that 

show little positive effect from dFe addition to percent LysoTracker positive cells of all groups. 

If cells already perform bacterivory to meet other needs and acquire iron through this, there is 

no need to transition into using dFe. Behrenfeld et al. (1996) found that iron enrichment caused 

the Fv/Fm values to increase exponentially. Our results contradict this, with the -dFe mesocosms 

having a higher peak than the +dFe mesocosms at the start of the experiment and reaching lower 
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values towards the end (Fig. A8). Our results imply that phototrophs in the -dFe mesocosms 

were healthier than those in the +dFe mesocosms.  

The hypothesis that addition of dFe would affect both the composition of the microbial 

community and the percentage of mixotrophic phototrophs could not be supported based on the 

results from this experiment. There are many possible reasons, for example that any effect from 

dFe was concealed by the effects of brownification or that the water was not iron limited to 

begin with.  

4.4 The LysoTracker method 
The method used to determine whether cells were mixotrophic or not was first used by Rose et 

al. (2004) for enumeration of heterotrophic nanoflagellates (HNFs) in natural samples, and 

further developed by Sintes and Del Giorgio (2010). It has recently been used to target and 

identify mixotrophic phototrophs in some studies (Anderson et al., 2018; Anderson et al., 2017; 

Li et al., 2016), but is still not a widely applied method. In this study the method was used to 

enumerate mixotrophic phototrophs. I chose to denote these potentially mixotrophic cells 

“LysoTracker positive cells” since unspecific staining could not be ruled out.  

I used a fluorescence microscope to observe how the LysoTracker stain interacted with cells 

from several cultures and found that it was sometimes unclear whether the stained parts were 

food vacuoles. Therefore, to examine in more detail how LysoTracker interacts with some algae 

cells, I investigated cells from cultures of Dunaliella tertiolecta K-0591, Ochromonas sp., and 

Tetraselmis sp. using confocal microscopy (Box 5, method in Appendix A.3). D. tertiolecta 

(described as a pure phototroph; Fischer, Giebel, Hillebrand, & Ptacnik, 2017) cells did not take 

up LysoTracker stain, whereas both Ochromonas sp. (a confirmed mixotroph; Pringsheim, 

1952) and Tetraselmis sp. (a possible mixotroph) cells did (Fig. 13b, 13d). Ochromonas sp. 

cells (Fig. 13b) showed a clear line around the cell that indicated staining of the cytoplasmic 

membrane, and possibly the cytoplasm itself due to staining in some areas inside the cell. In 

BOX 5 | Confocal microscopy 

Confocal microscopy, also called confocal laser scanning microscopy (CLSM), is an imaging technique that 

was patented by Marvin Minsky in 1957 and has since become important in many fields, including 

microbiology (Inoué, 2006). It uses a laser light source and an optical microscope that is connected to a 

computer with a digital imaging system (Munn, 2011). By focusing the light on a narrow part of the specimen 

it is possible to create clear images of those slices of specimen (Inoué, 2006). It is also possible to combine 

such images into a 3D image of for example a cell, and to put brightfield or phase-contrast images next to or 

superimposed on confocal images (Inoué, 2006). In relation to microbiology, one of the great advantages of 

confocal microscopy is that it can be used on live cells (Munn, 2011).  
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some Ochromonas sp. cells (like the lower right cell pictured in Fig. 13b) there appeared to be 

an outline of a vacuole or a similar structure, indicating staining of the membrane of a cell 

structure. This was not as expected, and something that has not been discussed in any other 

papers (to my knowledge). Wilken et al. (2019) show micrographs of Ochromonas CCMP2951 

stained with LysoTracker. They observed a clear signal from one part of the cell which is 

assumed to be a food vacuole. Similar results have been observed in the chlorophyte 

Chlamydomonas sp. ICE-MDV and the haptophyte Isochrysis sp. MDV (Li et al., 2016), where 

a small part of the cell was clearly stained. In our micrographs, Tetraselmis sp. cells were 

stained in large parts of the cells where no chlorophyll fluorescence was observed. I interpret 

this as a large stained food vacuole, staining of the cytoplasm, or a combination of these due to 

the large stained area. The chloroplasts in Tetraselmis sp. cells did not appear to be stained, as 

has been theorised can happen (Wilken et al., 2019), since the red colour of the chlorophyll and 

the green colour of the LysoTracker were well separated.  

Though Ochromonas sp. is a well-known phagotroph (e.g. Andersson, Falk, Samuelsson, & 

Hagström, 1989; Pringsheim, 1952), this does not mean that the cells pictured must be 

mixotrophic. These cells could be non-constitutive mixotrophs (NCMs) and thus not always 

have food vacuoles present. This is supported by the fact that only one of the cells pictured 

(lower right cell in Fig. 13b) shows the outline of what could be a food vacuole. The pictured 

Ochromonas sp. cells have less chlorophyll (red colour) than the other cells pictured, indicating 

more efficient chloroplasts, lower demand for energy and nutrients, or them being less reliant 

on photosynthesis. Whether one of the pictured Ochromonas sp. cells show a food vacuole or 

not, the majority of staining in the pictured cells was unspecific. Anderson et al. (2017) briefly 

mention that they checked for unspecific binding to structures other than food vacuoles on 12 

species of small phytoflagellates (<20 µm). They did not observe unspecific binding, though 

the method used to examine this was not mentioned. Wilken et al. (2019) observed unspecific 

staining within a plastid of a cell when using the acidotropic probe LysoSensor that likely 

resulted from staining of the acidic thylakoid lumen. These differing results means that more 

work needs to be done to develop this method for use on cells that perform phototrophy, as this 

use of LysoTracker is a relatively new method and was originally developed for use on strict 

heterotrophs (Rose et al., 2004).  
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Figure 13. Micrographs taken using confocal microscopy. Chlorophyll is shown in dark red and the acidotropic 

probe LysoTracker Green in light green. Images show the negative control Dunaliella sp. with LysoTracker added 

(a), the positive control Ochromonas sp. with LysoTracker added (b), Tetraselmis sp. without added LysoTracker 

(c), and Tetraselmis stained with LysoTracker (d).  

Little research has been done to examine how LysoTracker interacts with cell structures like 

chloroplasts. Wilken et al. (2019) argue that unspecific staining is more likely in phototrophs 

than strict heterotrophs due to a lack of lumen activity in strict heterotrophs. Considering the 

LysoTracker methodology was originally developed for use in HNFs (Sintes & Del Giorgio, 

2010), then used in mixotrophs without adaptation (Anderson et al., 2017; Li et al., 2016), it is 

necessary to research the effect of the probe specifically on mixotrophs before establishing the 

method as common practice.  
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Due to an error, on day 14 the LysoTracker samples were treated slightly differently than all 

other days, with the LysoTracker being added to the tubes before the water samples. The normal 

procedure was to add LysoTracker into the samples already aliquoted into the tubes. Since the 

percentages of LysoTracker positive cells were higher on day 14 than any other days (Fig. 12), 

I suspect that a homogenous solution was not created when mixing by gently turning the tubes 

in circles. Using a vortexer would be more damaging to the cells but mix more efficiently, and 

the protocol by Sintes and Del Giorgio (2010) does in fact include gently vortexing the samples. 

As samples are collected by the flow cytometer at the bottom of the tubes, it is possible that the 

percentages on day 14 are the more accurate values. Supporting this theory is the fact that high 

percentages of mixotrophs (>90%) during early summer have been observed in freshwater lake 

mesocosms previously (Wilken et al., 2018). It was still assumed that the ratios between days, 

treatments, and groups were true to life for the rest of the measurements, even though the 

percentages could be lower (due to a non-homogenous solution) or higher (due to unspecific 

staining) than the true values.  

4.5 Conclusion 
Through this mesocosm experiment we were able to observe how brownification led to a change 

in the composition of the microbial community. Both the autotrophic picoeukaryotes (APEs) 

and bacteria were positively affected, while autotrophic nanoeukaryotes (ANEs) were 

negatively affected. The difference between brownification treatments was strongest for ANEs 

and APEs. Our results imply that microbial communities in future coastal areas with increasing 

brownification will comprise of fewer ANEs and more APEs, and experience increased 

bacterial abundances.  

Percentages of LysoTracker positive cells, cells assumed to be mixotrophic, was raised in 

mesocosms without brownification compared to mesocosms with brownification for ANEs at 

the end of the experiment. The other nano-sized groups (cryptophytes and Emiliania huxleyi) 

also showed this trend. This implies that, contrary to predicted scenarios, brownification leads 

to fewer phototrophic cells performing phagotrophy.  

Though the addition of dissolved iron (dFe) was expected to induce a bloom of E. huxleyi, no 

effect was observed on the composition of the microbial community. Similarly, no significant 

effect of dFe was observed on percentages of LysoTracker positive cells. Based on these results, 

it was assumed that cells did not experience iron limitation during this experiment, or that any 
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effect was obscured by the effect of brownification. Our results could indicate that iron has little 

effect on mixotrophic activity in a microbial community.  

The method using LysoTracker to identify mixotrophs was shown through confocal microscopy 

to lead to unspecific staining in some of the pictured ANEs. This method should be further 

developed for use on mixotrophs.  

4.6 Future Work 
It has become clear that the ongoing climate changes will have a great impact on the oceans 

and marine communities. Understanding the effects of these changes is already in focus, but 

the effects on microbial communities are still uncertain. Moving forward with this research it 

is important not only to focus on the marine microbes, but also to include mixotrophy. 

Mesocosm studies are invaluable in understanding how marine microbial communities interact 

and react to different scenarios and will continue to be so moving forward. Most studies on 

climate change effects (e.g. brownification, increased temperature) relating to aquatic microbes 

are performed in lakes, but I would argue for a larger focus on marine environments, as recent 

research has shown these are significantly affected as well.  

Future mesocosm studies focusing on mixotrophy should be performed in a range of different 

environments to investigate if they react differently to expected scenarios. Using molecular 

methods like sequencing could be beneficial to examine how the community changes as more 

or fewer mixotrophs are present, or as the environment changes. This could give indications as 

to who are more mixotrophic, and who are more likely to dominate communities in future 

environments.  

While studies of mesocosms and natural environments provide an overview of the larger 

picture, laboratory studies are useful for understanding single species. Not many mixotrophs 

have been studied in detail, so cultivation and examining of such species is still needed to 

understand how specific species contribute to the larger picture provided by studies of 

communities. Most studied species are nano-sized, so particularly pico-sized organisms are 

little understood and need to be studied regarding mixotrophy. By understanding how single 

species react, it becomes easier both to understand how whole communities react, and to predict 

how they will react to future scenarios.  

When further studying the effects of iron addition on mixotrophic behaviour, it would be 

beneficial to start investigating effects of iron alone before looking at interactions with other 
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factors like brownification. Levels of mixotrophy in relation to iron concentrations is a study 

area with little previous knowledge, so there is much yet to be understood.  
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Appendix A: Methods 

A.1 Flow cytometry settings 
Table A1. Settings on the flow cytometer (Attune NxT Acoustic Focusing Cytometer, Thermo Fisher Scientific) 

when counting algae. The same settings were used with and without LysoTracker.  FSC = forward scatter, SSC = 

side scatter, BL1, BL2, and BL3 = detectors that measure output from the 488 nm laser (blue light), YL1, YL2, 

YL3, and YL4 = detectors that measure output from the 561 nm laser (yellow light).  

Acquired volume (µl) 2000 

Flow rate (µl/min) 500 

Parameter Corresponding voltage (mV) 

FSC 350 

SSC 240 

BL1 260 

BL2 320 

BL3 370 

YL1 400 

YL2 400 

YL3 400 

YL4 400 

Threshold 

OR BL3 0.5 (x1,000) 

 

Table A2. Settings for the flow cytometer (Attune NxT Acoustic Focusing Cytometer, Thermo Fisher Scientific) 

when counting bacteria.  FSC = forward scatter, SSC = side scatter, BL1, BL2, and BL3 = detectors that measure 

output from the 488 nm laser (blue light), YL1, YL2, YL3, and YL4 = detectors that measure output from the 561 

nm laser (yellow light).  

Acquired volume (µl) 500 (1,000x, 500x, 100x) 
200 (50x, 10x) 
100 (5x) 

Flow rate (µl/min) 500 (1,000x, 500x, 100x) 
200 (50x, 10x) 
100 (5x) 

Parameter Corresponding voltage (mV) 

FSC 350 

SSC 500 

BL1 420 

BL2 480 

BL3 320 

YL1 340 

YL2 400 

YL3 240 

YL4 400 

Threshold 

AND SSC 0.2 (x1,000) 

AND BL1 0.4 (x1,000) 
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Table A3. Settings on the flow cytometer (Attune NxT Acoustic Focusing Cytometer, Thermo Fisher Scientific) 

when counting HNFs. FSC = forward scatter, SSC = side scatter, BL1, BL2, and BL3 = detectors that measure 

output from the 488 nm laser (blue light), YL1 = detector that measure output from the 561 nm laser (yellow light).  

Acquired volume (µl) 2500 

Flow rate (µl/min) 500 

Parameter Corresponding voltage (mV) 

FSC 350 

SSC 400 

BL1 250 

BL2 400 

BL3 400 

YL1 400 

Threshold 

AND SSC 0.1 (x1,000) 

AND BL1 1.0 (x1,000) 

 

A.2 Fv/Fm 
The optimal quantum yield (Fv/Fm) of photosystem II (PSII) in the phototrophs’ chloroplasts 

was measured by María Segovia and her team in the BIPWeb project 

(https://coccosphere.es/bipweb/) according to Segovia et al. (2018). This was done on 10 min 

dark-adapted samples by pulse amplitude modulated fluorometry (Water-PAM, Walz). Fv is the 

difference between the maximum fluorescence from fully reduced PSII reaction centres (Fm) 

and the minimum fluorescence (FO) that occurs in fully oxidised PSII reaction centres 

(Baumgartner et al., 2015; Figueroa et al., 2009).  

A.3 Confocal microscopy 
Using cultures available at the Department of Biological Sciences at UiB (chlorophytes 

Dunaliella tertiolecta K-0591 and Tetraselmis sp., and the chrysophyte Ochromonas sp.), 

micrographs were taken of several mixotrophic species with the probe LysoTracker® Green 

DND-26. 100 µL LysoTracker Green was added to 1 mL of culture and incubated for 10 

minutes. Then the sample was looked at and taken micrographs of using a confocal microscope 

(Leica TCS SP8 STED 3x, performed at Molecular Imaging Centre at Institute of Biomedicine 

at University of Bergen).  

  

https://coccosphere.es/bipweb/
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Appendix B: Results 

B.1 Fv/Fm 

The mean Fv/Fm value for the -Bro treatment spanned from 4.13×10-1 ± 1.39×10-2 to 5.16×10-1 

± 8.63×10-3 (Fig. A1). It started at 4.69×10-1 ± 1.02×10-2 at day 0, then increased until day 6, 

at 5.16×10-1 ± 8.63×10-3. From day 6 it decreased until day 19, at 4.13×10-1 ± 1.39×10-2, and 

ended at 4.20×10-1 ± 1.23×10-2. For the +Bro treatment, the mean Fv/Fm value ranged from 

3.46×10-1 ± 2.90×10-2 to 5.24×10-1 ± 7.39×10-3. From a value of 4.72×10-1 4.54×10-3 at day 0, 

it increased to 5.24×10-1 ± 7.39×10-3 at day 6. There was then a decrease until day 19, at 

3.46×10-1 ± 2.90×10-2, and it ended at 3.56×10-1 ± 1.51×10-2 at day 21. The mean Fv/Fm value 

for the fjord spanned from 3.35×10-1 ± 2.20×10-2 to 4.78×10-1. It started at 4.75×10-1 at day 0, 

and from a mean of 4.78×10-1 at day 2 it decreased until day 4, at 4.36×10-1 ± 4.00×10-3. From 

day 6, at 4.52×10-1 ± 1.15×10-2, there was a decrease until day 16, at 3.35×10-1 ± 2.20×10-2, 

then an increase until the end of the experiment, with a mean Fv/Fm value of 4.55×10-1 ± 

3.35×10-2 at day 21.  

 
Figure A1. Fv/Fm mean values ±SE throughout the experiment for both the -Bro (blue line) and +Bro (brown line) 

treatments, and the fjord sample (dashed grey line). n=3 for day 0 and day 2 and n=6 for day 4 to day 21 for the  

-Bro and +Bro treatments, and n=1 for day 0 and day 2 and n=2 for day 4 to day 21 for the fjord.  
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B.2 Effect of iron treatment 
If no SE is given, only one sample was collected. Sampling of the fjord started at day 6. 

B.2.1 Abundances of microbial groups 

B.2.1.1 Autotrophic nanoeukaryotes 

The mean abundance of ANEs started at 1.50×103 cells mL-1 at day 0 for both the -dFe and the 

+dFe treatments (Fig. A2). The -dFe treatment mean spanned from 8.75×102 ± 4.98×101 cells 

mL-1 to 3.54×103 ± 1.03×103 cells mL-1. There were peaks at day 6 at 3.05×103 ± 1.11×102 cells 

mL-1, and at day 19 at 3.54×103 ± 1.03×103 cells mL-1. There was also a smaller peak at day 12 

at 1.35×103 ± 5.19×102 cells mL-1. The +dFe treatment mean ranged from 6.74×102 7.03×101 

cells mL-1 to 2.57×103 ± 1.57×102 cells mL-1. There was a peak at day 6 at 2.57×103 ± 1.57×102 

cells mL-1, and another at day 19 at 2.24×103 ± 6.11×102 cells mL-1. The fjord abundance 

spanned from 7.13×102 cells mL-1 to 4.92×103 cells mL-1. It started at 1.26×103 cells mL-1 at 

day 6, peaked at day 10 at 4.17×103 cells mL-1 and from an abundance of 7.13×102 cells mL-1 

at day 16 it increased until the end of the experiment, at 4.92×103 cells mL-1.  

 
Figure A2. Abundance (cells mL-1) of ANEs on each sample day of the experiment. The dashed grey line shows 

the abundance in the fjord, while the orange and blue lines show the mean ± SE with and without dFe, respectively. 

n=6 for both the -dFe and +dFe treatments (days 2-21), n=1 for the fjord, n=1 for day 0.  
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B.2.1.2 Cryptophytes and Emiliania huxleyi 

The abundance of cryptophytes at day 0 was 1.22×102 cells mL-1 for both the -dFe and the +dFe 

treatment (Fig. A3a). The -dFe treatment had mean abundances spanning from 7.83×100 ± 

1.64×100 cells mL-1 to 1.58×102 ± 1.83×101 cells mL-1. There was a peak at day 2 at 1.58×102 

± 1.83×101 cells mL-1, then a decrease until day 10 at 7.83×100 ± 1.64×100 cells mL-1 and an 

increase from day 10 until the end of the experiment, with an abundance of 4.00×101 ± 5.65×100 

cells mL-1. The +dFe treatment mean spanned from 6.00×100 ± 1.37×100 cells mL-1 to 1.53×102 

± 1.29×101 cells mL-1. It peaked at day 2 at 1.53×102 ± 1.29×101 cells mL-1, decreased until 

day 14 at 6.00×100 ± 1.37×100 cells mL-1, and then increased until the end of the experiment, 

at 2.50×101 ± 6.89×100 cells mL-1. The fjord abundance spanned from 5.30×101 cells mL-1 to 

3.09×102 cells mL-1. It started at 1.86×102 cells mL-1 at day 6, then had two peaks: one at day 

10 at 3.09×102 cells mL-1, and one at day 14 at 2.75×102 cells mL-1. From an abundance of from 

5.30×101 cells mL-1 at day 19 it increased until day 21 at 2.23×102 cells mL-1.  

The mean abundance of E. huxleyi at day 0 was 5.10×102 cells mL-1 for both the -dFe and the 

+dFe treatment (Fig. A3b). The -dFe treatment mean spanned from 1.38×102 ± 3.79×101 cells 

mL-1 to 5.17×102 ± 5.99×101 cells mL-1. It had a peak at day 8 at 5.17×102 ± 5.99×101 cells  

mL-1, then decreased until day 14 at 1.38×102 ± 3.79×101 cells mL-1. From day 14 there was an 

increase until the end of the experiment, at 3.55×102 ± 2.65×102 cells mL-1, with SEs of 

>1.62×102 for day 16, 19, and 21. The mean abundance for the +dFe treatment spanned from 

6.53×101 ± 1.52×101 cells mL-1 to 5.10×102 cells mL-1. From day 0 there was a decrease until 

day 2 at 3.08×102 ± 1.47×101 cells mL-1, then a peak at day day 8 at 3.93×102 ± 4.23×101 cells 

mL-1. From day 14, at 6.53×101 ± 1.52×101 cells mL-1, there was an increase until the end of 

the experiment, at 1.36×102 ± 4.95×101 cells mL-1. The fjord abundance spanned from 5.20×101 

cells mL-1 to 6.30×102 cells mL-1. It started at 6.30×102 cells mL-1 at day 6, decreased until day 

19 at 5.20×101 cells mL-1, and from day 19 it increased until day 21 at 7.30×101 cells mL-1.  
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Figure A3. Abundance (cells mL-1) of cryptophytes (a) and E. huxleyi (b) on each sample day of the experiment. 

The dashed grey line shows the abundance in the fjord, while the orange and blue lines show the mean ± SE with 

and without dFe, respectively. n=6 for both the -dFe and +dFe treatments (days 2-21), n=1 for the fjord, n=1 for 

day 0. 

B.2.1.3 Autotrophic picoeukaryotes 

The mean abundance of APEs started at 4.08×103 cells mL-1 for both the -dFe and the +dFe 

treatments (Fig. A4a). The -dFe treatment spanned from 1.37×103 ± 3.43×102 cells mL-1 to 

4.68×104 ± 1.02×104 cells mL-1. There was a peak at day 8 at 4.68×104 ± 1.02×104 cells mL-1, 

and from day 10 the mean abundance stayed at <4.80×103 cells mL-1. The abundance mean for 

the +dFe treatment spanned from 1.99×103 ± 6.99×102 cells mL-1 to 4.28×104 ± 1.09×104 cells 

mL-1. It peaked at day 8 at 4.28×104 ± 1.09×104 cells mL-1, and from day 10 stayed at <6.70×103 

cells mL-1. The fjord abundance started at 1.50×103 cells mL-1 at day 6, and spanned from 

6.22×102 cells mL-1 to 1.34×104 cells mL-1, peaking at day 10 at 1.34×104 cells mL-1. From an 

abundance of 6.22×102 cells mL-1 at day 16, it increased until the end of the experiment to 

9.45×103 cells mL-1.  

Both the -dFe and the +dFe abundance of Synechococcus sp. started at 9.54×103 cells mL-1 (Fig. 

A4b). The -dFe abundance mean spanned from 2.88×103 ± 7.20×102 cells mL-1 to 2.38×104 ± 

5.77×103 cells mL-1. Until day 8, at 1.10×104 ± 2.60×103 cells mL-1, there was a slight increase 

in the abundance mean, and then it decreased until day 14 at an abundance of 2.88×103 ± 

7.20×102 cells mL-1 before increasing until the end of the experiment, at 2.38×104 ± 5.77×103 

cells mL-1. The +dFe abundance mean spanned from 2.50×103 ± 7.54×102 cells mL-1 to 
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2.56×104 ± 7.04×103 cells mL-1. From day 2 at 1.23×104 ± 2.28×102 cells mL-1 it decreased 

until day 12 at 2.50×103 ± 7.54×102 cells mL-1. It then increased until the end of the experiment, 

at 2.56×104 ± 7.04×103 cells mL-1. The fjord abundance spanned from 1.00×104 cells mL-1 to 

4.47×104 cells mL-1. It started at 1.39×104 cells mL-1 at day 6, and reached a peak at day 10 at 

4.47×104 cells mL-1. It then decreased until day 16 at 1.00×104 cells mL-1 before increasing 

until the end of the experiment, at 2.93×104 cells mL-1.  

 
Figure A4. Abundance (cells mL-1) of APEs (a) and Synechococcus sp. (b) on each sample day of the experiment. 

The dashed grey line shows the abundance in the fjord, while the orange and blue lines show the mean ± SE with 

and without dFe, respectively. n=6 for both the -dFe and +dFe treatments (days 2-21), n=1 for the fjord, n=1 for 

day 0. 

B.2.1.4 Bacteria 

For both the -dFe and the +dFe treatments the mean abundance of bacteria started at 8.88×105 

cells mL-1 (Fig. A5). The -dFe treatment mean spanned from 4.72×105 ± 6.13×104 cells mL-1 

to 1.22×106 ± 3.64×104 cells mL-1. There was a peak at day 2 at 1.22×106 ± 3.64×104 cells  

mL-1, then a decrease until day 10 at 5.01×105 ± 7.53×104 cells mL-1. A smaller peak at 6.22×105 

± 1.11×105 cells mL-1 was present at day 12, and from day 16 at 4.72×105 ± 6.13×104 cells  

mL-1 there was an increase until day 21, at 8.02×105 3.64×104 cells mL-1. The mean for the 

+dFe treatment spanned from 4.09×105 ± 5.46×104 cells mL-1 to 1.14×106 ± 2.09×104 cells  

mL-1. It peaked at day 2 at 1.14×106 ± 2.09×104 cells mL-1 and then decreased until day 12 at 
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4.86×105 ± 3.50×104 cells mL-1. There was a smaller peak at 5.79×105 ± 4.85×104 cells mL-1 at 

day 14, a decrease to 4.09×105 ± 5.46×104 cells mL-1 at day 16, and then an increase to 7.23×105 

± 1.22×105 cells mL-1 at the end of the experiment. The fjord abundance spanned from 3.99×105 

cells mL-1 to 9.73×105 cells mL-1. It started at 9.73×105 cells mL-1 at day 6, and decreased until 

day 8 at 7.05×105 cells mL-1. It had a peak at day 12 at 9.45×105 cells mL-1, then decreased 

until day 19 at 3.99×105 cells mL-1 before increasing to 4.98×105 cells mL-1 at day 21.  

 
Figure A5. Bacterial abundance (cells mL-1) on each sample day of the experiment. The dashed grey line shows 

the abundance in the fjord, while the orange and blue lines show the mean ± SE with and without dFe, respectively. 

n=6 for both the -dFe and +dFe treatments (days 2-21), n=1 for the fjord, n=1 for day 0.  

B.2.1.5 Heterotrophic nanoflagellates 

The mean abundance of HNFs for both the -dFe and the +dFe treatments was 1.02×103 cells 

mL-1 at day 0 (Fig. A6). The -dFe treatment mean spanned from 8.68×102 ± 1.01×102 cells  

mL-1 to 3.01×103 ± 2.44×102 cells mL-1. It had two peaks: one at day 6 at 1.95×103 ± 2.43×102 

cells mL-1, and one at day 16 at 3.01×103 ± 2.44×102 cells mL-1. Between the peaks it decreased 

to 8.68×102 ± 1.01×102 cells mL-1 at day 10, and after the second peak there was a decrease 

until the end of the experiment, at 1.32×103 ± 1.76×102. The +dFe treatment mean spanned 

from 8.24×102 ± 1.33×102 cells mL-1 to 2.64×103 ± 3.74×102 cells mL-1. It peaked both at day 

6 and day 16, at 1.98×103 ± 2.22×102 cells mL-1 and 2.64×103 ± 3.74×102 cells mL-1, 

respectively. After the first peak the mean decreased to 8.24×102 ± 1.33×102 cells mL-1 at day 
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10, and after the second peak it decreased until day 19 at 1.10×103 ± 1.09×102 cells mL-1, before 

increasing until day 21 at 1.40×103 ± 2.46×102 cells mL-1. The abundance in the fjord spanned 

from 3.93×102 cells mL-1 to 2.26×103 cells mL-1. It started at 1.15×103 cells mL-1 at day 6, and 

had a peak at day 12 at 2.26×103 cells mL-1. It then decreased to 3.93×102 cells mL-1 at day 16, 

before increasing to 6.71×102 cells mL-1 at the end of the experiment.  

 
Figure A6. Abundance (cells mL-1) of HNFs on each sample day of the experiment. The dashed grey line shows 

the abundance in the fjord, while the orange and blue lines show the mean ± SE with and without dFe, respectively. 

n=6 for both the -dFe and +dFe treatments (days 2-21), n=1 for the fjord, n=1 for day 0. 

B.2.2 Percentages of LysoTracker positive cells 

B.2.2.1 Autotrophic nanoeukaryotes 

The percentage of LysoTracker positive ANE cells at day 0 was 56% for both the -dFe and the 

+dFe treatment (Fig. A7a). The -dFe percentage spanned between 14% ± 1.2% and 56%. From 

day 0 there was a decrease until day 2, at 21% ± 3.8%, and from day 6, at 22% ± 0.67% there 

was a further decrease until day 10, at 14 ± 1.2%. There was then a peak at day 19 at 54% ± 

2.8%. The +dFe percentage spanned between 20% ± 5.2% and 56%. There was a decrease from 

day 0 to day 10, at 20% ± 5.2%, then a peak at day 19 at 50% ± 6.6%. The fjord percentage 

ranged from 6.3% to 61%. It started at 6.3% at day 6, had a peak at 25% at day 8, another peak 

at day 12 at 18%, and a last peak at day 19 at 61%. At day 14 the -dFe treatment mean was 66% 

± 2.4%, the +dFe treatment mean was 65% ± 3.2%, and the fjord mean was 18%.  
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Figure A7. Percentages of LysoTracker positive cells on each sample day of the experiment for each group; ANEs 

(a), APEs (b), cryptophytes (c), E. huxleyi (d), and Synechococcus sp. (e). The grey lines show the fjord percentage, 

while the orange and blue lines show the mean percentage ± SE with and without dFe, respectively. The points on 

day 14 show the mean percentage ± SE when an error was made when preparing the samples. n=6 for both the  

-dFe and +dFe treatments (days 2-21), n=1 for the fjord, n=1 for day 0.  

B.2.2.2 Cryptophytes and Emiliania huxleyi 

For the cryptophytes, the mean percentage of LysoTracker positive cells was 73% at day 0 for 

both the -dFe and the +dFe treatment (Fig. A7c). The -dFe treatment mean spanned from 19% 

± 10% to 73%. From day 0 there was a decrease until day 12 at 19% ± 10%. There was then an 

increase until a peak at day 19, at 44% ±13%. The +dFe treatment mean spanned from 14% ± 

8.8% to 73%. From day 0 there was a decrease until day 10, at 14% ± 8.8%, then an increase 

until day 19, at 40% ± 13%, and ending at 39% ± 11% at day 21. The fjord percentage ranged 

from 2.1% to 38%. It started at 2.1% at day 6, then had a peak at day 8 at 35%, and decreased 

until day 16 at 3.9%. After day 16 there was an increase until the end of the experiment, at 38%. 

At day 14 the -dFe treatment percentage mean was 55 ± 10%, the +dFe treatment percentage 

mean was 78% ± 9.1%, and the fjord percentage was 1.2%.  

For E. huxleyi, the mean percentage of LysoTracker positive cells was 49% at day 0 for both 

the -dFe and the +dFe treatment (Fig. A7d). The -dFe treatment mean spanned from 3.5% ± 

1.2% to 49%. From day 0 it decreased until day 6, at 3.9% ± 0.77%, then there was a small 

peak at day 8 at 8.3% ± 2.6%. From day 10, at 3.5% ± 1.2%, there was an increase until a peak 
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at day 19 at 21% ± 4.4%, and it ended at 20% ± 3.9% at day 21. The +dFe treatment mean 

spanned from 3.4% ± 1.1% to 49%. From day 0 there was a decrease until day 8, at 8.8% ± 

3.3%, then a peak at day 10, at 14% ± 9.5%. From day 12, at 3.4 ± 1.1%, there was an increase 

until the end of the experiment, at 22% ± 4.4%. The fjord percentage ranged between 3.4% and 

25%. It started at 5.9% at day 6, increased to a peak at day 10 at 14%, and from day 12, at 3.4%, 

there was an increase to another peak at day 19 at 25%. It ended at 14% at day 21. At day 14 

the -dFe treatment percentage mean was 20% ± 7.2%, the +dFe treatment percentage mean was 

33% ± 13%, and the fjord percentage was 3.3%.  

B.2.2.3 Autotrophic picoeukaryotes 

The mean percentage of LysoTracker positive APE cells at day 0 was 24% for both the -dFe 

and the +dFe treatment (Fig. A7b). The -dFe treatment mean ranged from 9.6% ± 2.7% to 48% 

± 3.6%. From day 0 it decreased until day 2 at 9.6% ± 2.7%. There was a small peak at day 8 

at 22% ± 2.9%, and from day 10 at 13% ± 2.5% there was an increase until a peak at day 19 at 

48% ± 3.6%. The +dFe treatment mean ranged from 19% ± 1.5% to 51% ± 2.9%. From day 0 

there was a slight decrease until day 6 at 19% ± 1.5%, and a peak at day 16 at 51% ± 2.9%. 

From the peak there was a decrease until the end of the experiment, at 40% ± 4.6%. The fjord 

percentage spanned from 0.31% to 11%. There were peaks at day 8, 12, and 19, at 7.5%, 5.4%, 

and 11%, respectively. Between the peaks the percentage was at <0.8%, and at day 21 it was at 

2.5%. At day 14 the -dFe treatment percentage mean was 73% ± 1.6%, the +dFe treatment 

percentage mean was 75% ± 3.6%, and the fjord percentage was 0.41%.  

The mean percentage of LysoTracker positive Synechococcus sp. cells at day 0 was 3.9% for 

both the -dFe and the +dFe treatment (Fig. A7e). The -dFe treatment spanned from 1.4% ± 

0.25% to 9.8% ± 1.9%. From day 0 it decreased until day 6, at 1.7% ± 0.14%. From day 8, at 

2.4% ± 0.91%, there was a decrease until day 10, at 1.4% ± 0.25%, then a peak at day 19 at 

9.8% ± 1.9%. It ended at 4.2% ± 0.73% at day 21. The +dFe treatment ranged from 3.9% to 

9.8% ± 2.0%. From day 0 there was an increase until day 6, at 6.1 ± 0.78%, and from day 8, at 

4.6% ± 1.2%, it increased to a peak at day 10, at 7.5% ± 2.8%. From day 12, at 4.7% ± 1.2%, 

there was an increase until a peak at day 19, at 9.8% ± 2.0%. It ended at 7.3 ± 1.1% at day 21. 

At day 14, the -dFe treatment percentage mean was 6.7% ± 1.6%, the +dFe treatment percentage 

mean was 14% ± 2.3%, and the fjord percentage was 0.55%.  

B.2.3 Fv/Fm 

The mean Fv/Fm values for the -dFe treatment spanned from 3.89×10-1 ± 1.37×10-2 to  

5.41×10-1 ± 4.43×10-3 (Fig. A8). It started at day 0 at 4.63×10-1 ± 8.08×10-3, then had a peak at 
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day 6 at 5.41×10-1 ± 4.43×10-3. From day 6 there was a decrease until day 16, at 3.89×10-1 ± 

1.37×10-2, then a small peak an increase until day 19, at 4.11×10-1 ± 2.53×10-2, before ending 

at 4.04×10-1 ± 1.41×10-2 at the end of the experiment. The mean Fv/Fm values for the +dFe 

treatment spanned from 3.47×10-1 ± 2.03×10-2 to 5.05×10-1 ± 4.87×10-3. It started at 4.77×10-1 

at day 0, and increased until day 4, at 5.05×10-1 ± 4.87×10-3. From day 8, at 5.04×10-1, there 

was a decrease until day 19, at 3.47×10-1 ± 2.03×10-2, then an increase until day 21, at  

3.72×10-1 ± 1.79×10-2. The fjord mean Fv/Fm values ranged from 3.35×10-1 ± 2.20×10-2 to 

4.78×10-1. It started at 4.75×10-1 at day 0, and from a value of 4.78×10-1 at day 2, there was a 

decrease until day 4, at 4.36×10-1 ± 4.00×10-3. From day 6, at 4.52×10-1 ± 1.15×10-2, there was 

a decrease until day 16, at 3.35×10-1 ± 2.20×10-2, then an increase until the end of the 

experiment, when the value was 4.55×10-1 ± 3.35×10-2.  

 
Figure A8. Fv/Fm mean values throughout the experiment for both the -dFe (blue line) and +dFe (orange line) 

treatments, and the fjord sample (dashed grey line). n=3 for day 0 and day 2 and n=6 for day 4 to day 21 for the  

-dFe and +dFe treatments, and n=1 for day 0 and day 2 and n=2 for day 4 to day 21 for the fjord. 

 

 


