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"The heart of the scientific enterprise is a rational effort to understand

the causes behind the phenomena we observe. In large-scale complex dy-

namical systems such as the Earth system, real experiments are rarely fea-

sible. However, a rapidly increasing amount of observational and simu-

lated data opens up the use of novel data-driven causal methods beyond

the commonly adopted correlation techniques."

(Runge et al. 2019)



iii

Summary

Many different mechanisms have been proposed to explain the change in glacial inten-

sity and duration that occurred during the Mid-Pleistocene Transition (MPT), 1250-700

thousand years ago. Despite a growing volume of paleoclimate archives and advances

in climate modeling, however, there is no consensus on what caused the MPT. In this

thesis I take state-of-the-art paleoclimate records as a starting point, and address the

following questions: (1) According to the observed data, what were the main causal

interactions among key climate system components in the Pleistocene? (2) Did the

strength or directionality of these interactions change across the MPT? I use available

time series of atmospheric CO2 concentration and Northern Hemisphere summer inso-

lation, as well as proxy records for global ice volume and Southern Hemisphere aeolian

dust. To analyze causal connections, I use the Predictive Asymmetry method, a novel

technique that combines concepts from dynamical systems theory and information the-

ory to quantify causal coupling directly from observed time series without modeling

the unknown mechanisms. My results show that there is empirical evidence in the

paleoclimate records for causal connectivity among some of the key components of

the Pleistocene climate system. Both atmospheric pCO2 and Southern Ocean dust flux

were important factors influencing ice volume changes in the Late Pleistocene, with

limited evidence of external forcing by insolation. Furthermore, dynamical informa-

tion in the observed records indicate the some of the causal interactions in the climate

system changed across the MPT. Specifically, forcing of ice volume changes by South-

ern Ocean dust appeared during the MPT and became prominent in the Late Pleis-

tocene. These findings may help evaluate the competing hypotheses for explaining the

MPT. This thesis is the first to make extensive use of Predictive Asymmetry on paleo-

climate records, thus contributing valuable insights into the merits and limitations of

this recently developed technique when studying the complex interconnectivity of the

Earth System.



iv

Acknowledgment

I would like to extend my most heartfelt thanks to my excellent supervisors Bjarte

Hannisdal, Jo Brendryen and Kristian Agasøster Haaga. It has been a true pleasure to

be a part of the Earth System Interactions team. You have allowed me to explore and

meander, all the while generously offering your time, patience and good humour in

both teaching and feedback. Your support during the work of the thesis has been in-

estimable. Thank you for the stimulating discussions, and for your contagious passion

and vision for science. Not least, thank you for the bone-dry jokes that keep the spirit

alive in the wee hours of flicking.

M.S.





vi

Contents

Summary ii

Acknowledgment iii

1 Introduction 1

2 Background 5

2.1 Key aspects of the Pleistocene climate system . . . . . . . . . . . . . . . . 5

2.2 Causal hypotheses for the Mid-Pleistocene Transition . . . . . . . . . . . 6

2.3 Causality from time series - a dynamical systems approach . . . . . . . . 9

3 Data 11

3.1 Proxies for global ice volume . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.1 Ice volume proxy records used in this project . . . . . . . . . . . . 12

3.2 Insolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Atmospheric CO2 concentration . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Southern hemisphere dust records . . . . . . . . . . . . . . . . . . . . . . 19

4 Causal Inference Framework 22

4.1 Dynamical system reconstruction . . . . . . . . . . . . . . . . . . . . . . . 22

4.2 Transfer Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Predictive asymmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.4 Analysis design and work flow . . . . . . . . . . . . . . . . . . . . . . . . 27

4.4.1 Defining the pre-, syn-, and post-MPT time windows . . . . . . . 27



CONTENTS vii

4.4.2 Data wrangling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.4.3 Predictive asymmetry analysis . . . . . . . . . . . . . . . . . . . . 31

4.4.4 Conventions for interpreting the results . . . . . . . . . . . . . . . 34

5 Results 35

5.1 Empirical evidence for causal connections in Pleistocene climate records 36

5.1.1 The pre-MPT time window . . . . . . . . . . . . . . . . . . . . . . 36

5.1.2 The syn-MPT time window . . . . . . . . . . . . . . . . . . . . . . 36

5.1.3 The post-MPT time window . . . . . . . . . . . . . . . . . . . . . . 40

5.2 Sampling-standardized comparison of the pre- and post-MPT dynamics 42

6 Discussion 48

6.1 Implications for our understanding of Pleistocene climate system inter-

actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2 Implications for the use of Predictive Asymmetry on paleoclimate records 52

6.3 Way forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Conclusions 57

References 58

A Appendix 1: Predictive asymmetry results 66

A.1 Predictive asymmetry results for the pre-MPT windows . . . . . . . . . . 66

A.2 Predictive asymmetry results for the syn-MPT windows . . . . . . . . . 69

A.3 Predictive asymmetry results for the post-MPT windows . . . . . . . . . 72

A.4 Comparative analysis for pre- and post-MPT windows . . . . . . . . . . 75

A.5 Sensitivity analyses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.5.1 Temporal binning of time series . . . . . . . . . . . . . . . . . . . 77

A.5.2 Binning of the delay reconstruction (ε) . . . . . . . . . . . . . . . . 80

A.5.3 Time series length (N) . . . . . . . . . . . . . . . . . . . . . . . . . 81



viii

List of Figures

3.1 Ice volume proxy records used in this study . . . . . . . . . . . . . . . . . 13

3.2 Northern hemisphere summer insolation . . . . . . . . . . . . . . . . . . 17

3.3 Atmospheric CO2 records. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Atmospheric dust and Fe supply to the Southern Ocean over the last 4 Ma 20

4.1 Time series and attractor of a deterministic system with chaotic behaviour. 23

4.2 Delay reconstruction and the invariant probability distribution . . . . . . 24

4.3 Calculating transfer entropy from the invariant probability distribution. 25

4.4 Transfer entropy and predictive asymmetry on short and noisy time series 28

4.5 Definition of time windows and overview of time series . . . . . . . . . . 30

5.1 Overview of the inferred causal networks . . . . . . . . . . . . . . . . . . 37

5.2 Predictive asymmetry results for the pre-MPT time window . . . . . . . 38

5.3 Predictive asymmetry results for the syn-MPT time window . . . . . . . 41

5.4 Predictive asymmetry results for the post-MPT time window at 1 kyr

resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.5 Predictive asymmetry results for the post-MPT time window at 500 yr

resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.6 Sampling-standardized comparison of the pre- and post-MPT dynamics 47

6.1 Qualitative summary of causal inferences . . . . . . . . . . . . . . . . . . 52

A.1 Predictive asymmetry results for the pre-MPT time window (15740-1250

ka BP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



LIST OF FIGURES ix

A.2 Predictive asymmetry results for the longer pre-MPT control window

(4000-1250 ka BP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.3 Predictive asymmetry results for the syn-MPT time window (1240-1092

ka BP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

A.4 Predictive asymmetry results for the longer MPT control window (1250-

700 ka BP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.5 Predictive asymmetry results for the post-MPT time window (492-13 ka

BP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A.6 Predictive asymmetry results for the longer post-MPT control interval

(797-13 ka BP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.7 Sampling-standardized comparison of the pre- and post-MPT dynamics 76

A.8 Predictive asymmetry results for the post-MPT time window (492-13 ka

BP) at 500 yr resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.9 Sensitivity analysis on temporal resolution of over-sampled ChaCO2

record. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.10 Sensitivity analysis on temporal resolution of GraSL record. . . . . . . . 79

A.11 Sensitivity analysis on ε over the synMPT and control MPT time inter-

vals (N=149 and N=551, respectively). . . . . . . . . . . . . . . . . . . . . 80





1

Chapter 1

Introduction

The Mid-Pleistocene Transition (1250-700 ka BP, hereafter MPT) is an unsolved mystery

in paleoclimate research. During this transition, the duration and intensity of glacial

intervals increased without any corresponding change in orbital forcing. Ongoing ef-

forts to understand what caused the change in climate dynamics across the MPT have

resulted in a plethora of proposed hypotheses but no conclusive answers so far, which

highlights a gap in our understanding of the natural variability of Earth’s climate sys-

tem. The aim of this thesis is to use dynamical information in available paleoclimate

records to help constrain the number of plausible hypotheses for the change in climate

dynamics across the MPT.

The two main strategies for solving paleoclimate problems are to gather more data,

and/or to build better models. Here, I take a step back and try a different approach to

the problem. Using state-of-the-art empirical time series data on key climatic variables

as a point of departure, I ask the following research questions:

1. According to the observed data, what were the main causal interactions among

key climate system components in the Pleistocene?

2. Did the strength or directionality of these interactions change across the MPT?

Note that these questions involve ontological components (i.e. what were the causal

interactions in the past?) that are inextricably linked to epistemological components (i.e.

how do we extract causal evidence from observations?).

The data sets used are state-of-the-art time series records of the hypothesized key

climatic variables in the Pleistocene climate system, namely: proxy data for ice vol-

ume (δ18O and global sea level), atmospheric CO2 concentration (pCO2)), Northern
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Hemisphere summer insolation, and proxies for marine export productivity (South-

ern Ocean Fe flux and Antarctic dust deposition). The choice of variables is based on

the current understanding of the climate system, reflecting the processes that are con-

sidered key for explaining the transition according to the hypotheses with the most

traction (more on this in chapter 2).

In order to address my research questions, I will use a novel, model-free method for

detecting and quantifying causal connectivity in dynamical systems, directly from time

series data. A model-free approach in this context means that I do not make any model

assumptions about the underlying mechanisms (governing equations are not speci-

fied). Instead, I try to leverage dynamical information in the time series data them-

selves to detect causal directionality and characterize the strength of coupling.

The main contributions of this thesis have the potential to advance the status quo by

• Testing whether or not available records actually contain sufficient information to

determine causal connectivity, which in itself may be of value for future studies

of Pleistocene climate dynamics.

– If state-of-the-art data do not contain sufficient information, then more and

better data may indeed be required in order to constrain and validate climate

models.

– Conversely, if the data contain evidence for dynamical coupling between

key climatic variables, then this evidence may be useful for guiding mecha-

nistic modeling and hypothesis testing.

• Testing whether we can detect any changes in the underlying dynamics (i.e.

changes in strength and directionality of interactions between the variables) across

the MPT. If so, then the results may help constrain the range of plausible hypothe-

ses for explaining the MPT.

• Quantitatively characterizing uncertainties in both measurement values and chronol-

ogy (age estimates) and propagating these uncertainties into the causal analyses

My main findings suggest that there is information in the data to determine causal cou-

pling between the variables: Both Southern Ocean Fe flux and pCO2 were significant

drivers of ice volume changes in the late Pleistocene, whereas forcing from insolation

was weak or insignificant on the time scales studied here. Furthermore, I find that the

(strong) influence of Southern Ocean Fe flux on ice volume is a coupling that emerged

during the MPT transition. This finding is robust regardless of differences in data qual-

ity for the time intervals before and after the MPT.



3

The remainder of this thesis is structured as follows:

Chapter 2 presents a brief review of the key aspects of the Pleistocene climate system,

and the principal causal hypotheses proposed to explain the MPT climatic transition. I

also introduce the notion of model-free causal analysis of time series.

Chapter 3 presents the data used in the analyses, including a discussion of the assump-

tions and uncertainties underlying each time series.

In chapter 4 I present the causal analysis framework and the method of predictive

asymmetry. Because the method is new and unfamiliar, I find it useful to introduce the

underlying concepts of dynamical systems reconstruction and transfer entropy. I also

describe the analysis design and work flow.

In chapter 5 I present the predictive asymmetry results of the pre-, syn-, and post-MPT

time windows as well as an analysis allowing comparison of the relative magnitudes

of coupling between before and after the MPT.

Chapter 6 discusses the findings in the context of the previously proposed causal hy-

potheses. Additionally, I will discuss some of the merits and challenges of the predic-

tive asymmetry method, and point to some important avenues for further study.

Finally, I summarize my main conclusions in Chapter 7. All code needed to reproduce

the results in this thesis is attached in the appendices.
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Chapter 2

Background

2.1 Key aspects of the Pleistocene climate system

Ever since the first continental glaciation hypothesis was put forward by Jens Esmark

(1826), the recurrent glaciations of the Northern Hemisphere in the last ∼3 Myrs have

remained a paleoclimatic puzzle (Raymo and Huybers, 2008). Historically, two main

theories have been proposed to explain the Ice Ages: one astronomical, positing that

orbital control of insolation intensity is the pacemaker of ice ages, and one geochemi-

cal, positing that minor imbalances in the carbon cycle causes the climatic oscillations

(Paillard, 2015).

Although the orbital hypothesis was proposed much earlier, Milankovitch (1941) was

the first to make precise calculations of how the orbital parameters eccentricity, obliq-

uity, and precession modulated the regional distribution of insolation quantities re-

cieved on Earth, thus formalizing a theory of how this could affect Earth’s long-term

climate. Milankovitch theory, which is the favoured hypothesis to this day (Raymo

and Huybers, 2008), posits that glaciations occur when insolation intensities at high

northern latitudes is weak, allowing snow and ice to survive through the melting sea-

son and gradually accumulate into an ice sheet. These conditions are favoured when

Earth’s spin axis is less tilted (governed by obliquity) and when the Earth is far from

the sun (governed by precession), which follows periodicities of ∼41 kyr and ∼21 kyr,

respectively.

The impact of greenhouse gases on Earth’s climate had been suspected since the work

of Fourier (Fourier, 1824). Aiming to solve the problem of ice ages, Arrhenius (Arrhe-

nius, 1896) was the first to make calculations of the role of pCO2 on climate, finding

that the estimated 3◦C global cooling estimated for the ice ages could be reproduced
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by reducing pCO2 by a third. Arrhenius also pointed out that, because the atmosphere

was a relatively small carbon reservoir compared to the ocean or rocks, pCO2 could

easily be changed over time by accumulating small imbalances between the reservoirs.

In the 20th century, the accumulation of paleoceanographic data, as well as major

progress in geochemistry and dating methods, allowed for a more rigorous study of

the Northern Hemisphere glaciation cycles. Evidence backing the orbital hypothesis

was unearthed in the 1970s, when oxygen isotope ratios in marine carbonate (δ18O)

from a deep-sea sediment core revealed the same∼41 kyr periodicities as predicted by

Milankovitch theory (Hays et al., 1976). However, Hays et al. (1976) also observed

a switch to a dominant ∼100 kyr cyclicity in the last 800 kyrs of the record, with

slow build-up and rapid collapse of ice sheets. This ∼100-kyr periodicity, although

matching Earth’s eccentricity periodicity, was perplexing, because the effect of eccen-

tricity variability on radiative forcing is negligible and therefore cannot alone explain

glacial-interglacial cycles as a linear response to insolation forcing. This led Hays et al.

(1976) to conclude that some non-linear mechanism is needed to account for the phase-

locking of glacials to the 100-kyr eccentricity cycles. Since then, several hypotheses

have been proposed to explain the deep glacial maxima and their abrupt terminations.

When ice core data revealed that atmospheric CO2 concentrations had fluctuated in

close step with the glacial-interglacial cycles, the role of pCO2 as a greenhouse gas was

implicated in the glacial-interglacial cycles (Petit et al., 1999; Shackleton, 2000).

The Mid-Pleistocene transition. The switch from roughly symmetric glacial cycles

with a dominant ∼41 kyr periodicity to higher-amplitude, asymmetric cycles with a

dominant ∼100 kyr periodicity occurred in the interval 1.25-0-7 Ma, and is referred

to as the Mid-Pleistocene Transition (MPT). A number of mechanisms have been put

forward to explain the MPT, and here I briefly outline the main hypotheses that can be

directly tied to the available paleoclimate data used in this thesis.

2.2 Causal hypotheses for the Mid-Pleistocene Transition

Hypotheses involving only ice sheet dynamics. There are several hypotheses that in-

voke only internal ice sheet mechanisms with insolation as the only external forcing

mechanism, to explain the transition to 100-kyr periodicity of the late Pleistocene. One

of these hypotheses is the ’regolith hypothesis’ by Clark and Pollard (1998a), which

posits that a change in the basal boundary condition of the ice sheet could explain the

transition. The hypothesis builds on the seemingly contradicting observations that,
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despite δ18O indicating smaller ice volumes in the Early Pleistocene, glaciological ev-

idence suggest ice sheets expanded as far south as 40◦N, which leads the authors to

conclude that Early Pleistocene ice sheets were thin and expansive. Clark and Pollard

(1998b) therefore posit that the basal flow of ice was elevated in the Early Pleistocene,

and developed a hypothesis that an easily deformable layer of regolith had been sub-

strata of the Early Pleistocene ice sheets, allowing little friction and a relatively fast

flow of the ice, resulting in thinner, more extensive ice sheets which responded to the

insolation cycles in a linear way. The subsequent erosion of the regolith would expose

the crystalline basement rock and give more friction to the ice sheets, slowing their

flow and allowing them to grow thicker, which would change the mass-balance both

by reducing ablation and increasing accumulation, respectively. Because thicker ice

takes longer to melt, the ice sheets would ’survive’ the Milankovitch-predicted melt-

ing periods, which could explain the rise of the 100-kyr cycles of the Late-Pleistocene.

Coupled climate — ice-sheet models have been able to reproduce both the 41-kyr

cyclicity observed prior to the MPT Huybers and Tziperman (2008) and the ∼100-kyr

cyclicity after the MPT Abe-Ouchi et al. (2013a) without the implication of pCO2. Huy-

bers and Tziperman (2008) have reproduced the 41-kyr cycles with ice sheet models us-

ing high basal sliding, reminescent of the regolith hypothesis. Abe-Ouchi et al. (2013a)

reproduced the 100-kyr cycles with a coupled climate — ice-sheet model, where the

rapid glacial terminations can be explained by how growth of ice sheets across some

threshold increases the sensitivity to insolation, triggering internal feedbacks between

climate, ice sheets and isostatic rebound. Carbon dioxide is involved in this model, but

is not determinative.

If ice sheet dynamics is in fact the driver of the 100-kyr cycles, and not just a response

to some other factor responsible for the MPT, then we expect to find information in

the ice volume proxy time series that helps predict the evolution of the other climate

system parameters . More specifically, we would suspect to detect an influence from

GSL to pCO2 and dust time series, rather than vice versa. We would also expect an

influence from insolation to GSL, at least for the time intervals preceding the MPT.

In the post-MPT, the effect of insolation on ice sheets may be insignificant, because the

proposed linear response of ice sheets to insolation (Milankovitch, 1941) becomes more

complicated (e.g. Hays et al., 1976).

Hypotheses involving ice sheets, ocean circulation, and CO2. Atmospheric CO2 and

Antarctic temperatures covary with glacial-interglacial cycles, with ∼100 ppm of the

CO2 sequestered in the ocean during glacial periods (Delmas et al., 1980; Neftel et al.,

1982), implicating pCO2 in the ice age dynamics. However, the precise mechanisms for
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CO2 flux between the ocean and atmospheric reservoir are still debated (e.g. Paillard,

2015).

One class of hypotheses ascribes the decrease in pCO2 during glacial periods to changes

in ocean circulation, either by Southern Ocean sea ice stratification or reduction in

meridional overturning circulation (MOC) during glacial intervals, both which would

reduce upwelling and thereby allow a deep-ocean build-up of carbon (e.g. Lear et al.,

2016; Farmer et al., 2019; Pena and Goldstein, 2014).

If these hypotheses are true, then I expect an influence between pCO2 and GSL time

series, where the influence could be in either direction. However, to make a robust

test of this class of hypotheses, one would need to include time series proxies of ocean

circulation.

Hypotheses involving dust — climate couplings. Atmospheric dust is acknowledged

to have significant impact on global climate in several ways: Firstly, through its in-

fluence the planet’s radiative balance, both directly, as an areosol (Tegen and Lacis,

1996; Tegen, 2003), and indirectly, through its effect on cloud formation (Fuks et al.,

2017). Secondly, through supplying iron and other limiting micronutrients to high-

nutrient,low-chlorophyll zones of the ocean to increase marine productivity (Martin,

1990; Martin et al., 1990; Winckler et al., 2016). Marine productivity, in turn, controls

the flux of carbon from the atmosphere to the deep ocean.

Available records show that dust supply to the Southern Ocean (where CO2 leaks from

upwelling deep-water) increases during ice ages Martínez-Garcia et al. (2011). Vari-

ations in iron fertilization of the Subantarctic zone is estimated to account for ∼20

ppm of the glacial-interglacial pCO2 variability Martinez-Garcia (2015). The study of

Martínez-Garcia et al. (2011) found that, in contrast to the gradual increase in atmo-

spheric dust content observed over the past 3 Ma, Southern Ocean dust and iron flux

rose sharply at the onset of the MPT, which is used to argue for an association be-

tween high dust input to the Southern Ocean and the emergence of deep glaciations

during the MPT. Martínez-Garcia et al. (2011) hypothesize that the climate-dust-CO2

feedback may be the ultimate cause for the transition to the ∼100-kyr late Pleistocene

climate variability. Evidence backing these hypotheses is that dust deposition increases

drastically during cold stages of climate cycles (Shaffer and Lambert, 2018). Further-

more, modelling indicates that increased dust may be the deciding factor in reaching

the coldest glacial stages, and maximizing CO2 drawdown.

If the hypothesis that increased atmospheric dust concentration was the ultimate cause

behind the MPT is true, then we expect to find an increased influence from dust to GSL

over the post-MPT time window, as compared to the pre-MPT time window. Further-
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more, if the responsible dust-climate cooling mechanism is increased marine export

productivity through Fe fertilization, we would also expect to find an influence from

dust to pCO2 records.

2.3 Causality from time series - a dynamical systems ap-

proach

The study of causal connections in large-scale, complex dynamical systems such as

the Earth System poses a formidable challenge, because controlled experiments are

either not feasible or ethically problematic. As a substitute, fully coupled Earth System

models can be used to run numerical experiments (Stocker et al., 2013; Zelinka et al.,

2020). However, the only perfect model of the Earth system is the real world itself,

and the errors associated with model approximations can be difficult to assess (Babtie

et al., 2014). Hence, a data-driven approach to detecting causal connections may be a

valuable complement to explicit process modeling (Hannisdal and Liow, 2018; Runge

et al., 2019).

Geologists have a longstanding tradition of inferring causal mechanisms by visual in-

spection of observed time series (a.k.a. ’eyeballing’), or – if more quantitatively minded

– by statistical analyses of (cross-)correlation or periodicities. In addition to the well-

known danger of equating correlation with causation, these traditional approaches are

based on linear concepts, and are thus essentially limited to linear systems. Linear sys-

tems can be broken down into parts that can be analyzed separately and then put back

together, but this luxury cannot be afforded to nonlinear dynamical systems (Kantz

and Schreiber, 2004). Moreover, geologists have typically focused on explaining indi-

vidual ’events’ (e.g. mass extinctions, isotope excursions), and if we seriously believe

that the Earth is a complex, nonlinear dynamical system, then we need to supplement

the event-based causal focus with a more extensive, dynamical notion of causality

(Hannisdal and Liow, 2018).

In this thesis, I use a data-driven (model-free) method that can infer causal relation-

ships directly from time series data. Although they have their limitations, model-free

approaches to causal analysis of time series can be a useful tool, both to test existing

hypotheses, and to help formulate new hypotheses and guide models of how a system

is coupled (Hannisdal and Liow, 2018; Runge et al., 2019). The particular method I will

use here is the novel predictive asymmetry statistic developed by Haaga et al. (2020),

which is able to quantify causal relationships directly from time series data, without
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modelling the unknown mechanisms. The predictive asymmetry is mathematically re-

lated to the underlying dynamics of the system generating the data, and has proven to

be robust even for short and noisy time series, making the method applicable to empiri-

cal time series from a wide range of natural systems (Haaga et al., 2020). The predictive

asymmetry builds on two fundamental concepts from the mathematical fields of dy-

namical systems theory and information theory, namely delay reconstruction (Takens,

1981; Deyle and Sugihara, 2011) and transfer entropy (Schreiber, 2000). These concepts

are presented in Chapter 4.
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Chapter 3

Data

3.1 Proxies for global ice volume

Eustatic sea-level records are of paramount importance in the study of Quaternary

climate change and its dynamics, because global sea level reflects global ice volume. In

the following sections I address how GSL records can be reconstructed from δ18O and

some of the main challenges for GSL reconstruction. This will serve as context for the

following sections, where I present and discuss the time series that are used as proxies

for ice volume in this study.

Oxygen isotopes as a signal of global sea-level. The concept of the oxygen isotope

fractionation signal (δ18O) as a global sea-level, and inversely, ice volume indicator, is

based on the fractionation of oxygen that happens when water evaporates (Emiliani,

1955). Water molecules containing the lighter 16O isotope evaporate more readily than

those containing the heavier 18O isotopes. During glacials, large amounts of freshwa-

ter (enriched in 16O) are sequestered in ice sheets, leaving the isotopic composition

of seawater (δ18Ow) enriched in the heavier isotope. This signal will be reflected in

the isotopic composition of marine calcifying organisms, e.g. foraminifera, because

the oxygen entering the CaCO3 shells of the calcifying plankton captures the oxygen

composition of the sea water at the time of formation. As these organisms die, their

skeletons accumulate on the sea floor where they become part of the sediment record.

With age constraints, these sediment records can therefore be used to construct time

series showing how δ18O, and thus global sea-level and ice volume, has changed over

time.

However, δ18O recorded in foraminiferal calcite is also affected by other factors than

the δ18O of sea water. One important biological process contaminating the GSL signal
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is that foraminifera preferentially incorporate the heavier isotope at colder water tem-

peratures, known as temperature fractionation (Chappell and Shackleton, 1986). An-

other confounding factor is the local hydrography (δ18O of sea water varies spatially

between regions that are affected by net evaporation or net precipitation) (Elderfield

et al., 2012), deviating from the mean ocean δ18O governed by global ice volume. In

order to get a "pure" signal representative of global sea-level from foraminiferal δ18O,

it is therefore necessary to correct for the effects of both temperature fractionation and

local hydrography.

The advantage of using GSL reconstructions as a record of ice volume dynamics, rather

than the ’raw’ δ18O signal recorded in sediment records, is that the temperature com-

ponent and hydrographical component of the δ18O signal are corrected for, so that the

reconstruction explicitly represent changes in ice volume. I have nevertheless chosen

to include the LR04 δ18O stack in the analyses, because this is the only proxy for ice vol-

ume allowing a comparison of results across all time windows. Additionally, because

the LR04 is an important reference record in paleoclimatic studies, several of the other

time series used in this project are tuned to its age model, which, as will be discussed

below, introduces a caveat for the causal inference approach used in this project.

3.1.1 Ice volume proxy records used in this project

There are many sea-level indicators for more recent times (<0.5 Ma), GSL records of

the post-MPT interval are therefore numerous and robust. Further back in time (>0.5

Myr), GSL reconstructions rely heavily on the oxygen isotope signal of deep-sea ben-

thic foraminifera (δ18Ob), which typically have much larger methodological uncertain-

ties (Rohling et al., 2014). In particular, poor constraints of deep-water temperature

influences on the fractionation process, as well as of the spatial variability in δ18Ob,

increase the uncertainty in using δ18O stacks as proxies for GSL (Rohling et al., 2014).

Therefore, the level of confidence that can be ascribed to GSL-reconstructions has long

been constrained by the lack of δ18Ob-independent reconstruction methods, as well

as limited temporal overlap between reconstructions (Rohling et al., 2014). This has

motivated the development of a δ18Ob-independent sea-level reconstruction method

(Rohling et al., 2014; Grant et al., 2014), which is used in the GraSL and RohSL sea-

level reconstructions described below. The age models of the GraSL and RohSL time

series are a particular advantage for the approach of this project, which will be further

discussed below. However, these records have other disadvantages for this project

(also described below), which is why I will also include several δ18Ob based records.
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Figure 3.1: Ice volume proxy records used in this study. The records are plotted with the 95% confi-
dence interval (± 2σ) in both age and value.

To address the challenge of limited confidence in individual GSL reconstructions I have

chosen to run the causal analyses of an ensemble of time series, arguing that this will al-

low me to draw more robust conclusions on the causal connections between ice volume

and the other system components included in the analysis I have chosen to include 5

different records to proxy for ice volume. Each of the records have their own strengths

and shortcomings with regards to the analysis, which will be discussed below in the

presentation of each record.

The advantage of using GSL reconstructions rather than the more direct δ18O record is

that the temperature component and hydrographical component of the δ18O signal are

removed, so that the reconstruction explicitly represents changes in ice volume. I have

nevertheless chosen to include the LR04 δ18O stack in the analyses, because this is the

only proxy for ice volume allowing a comparison of results across all time windows.

Additionally, since the LR04 is an important reference record in paleoclimatic studies,

several of the other time series used in this project are tuned to its age model, which,

as will be discussed below, introduces a caveat for the causal inference approach used

in this project.

LR04: global δ18Ob stack. The LR04 is a principal component analysis (PCA) of a stack

of 57 globally distributed δ18Ob records (Lisiecki and Raymo, 2005) (Fig. 3.1). In princi-
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ple, GSL reconstructions are better proxies of changes in ice volume than the pure δ18O

signal recorded in sediment cores, as the temperature component and hydrographical

component of the δ18O signal are corrected for in GSL reconstructions. I have never-

theless chosen to include the LR04 δ18O stack in the analyses, because this is the only

proxy for ice volume allowing a comparison of results across all time windows.

Age model. The LR04 age model is constructed based on average sedimentation rates

between magnetostratigraphic and orbital tie-points with absolute age constraints. More

specifically, the δ18O signal is tuned to a simple ice model based on June 21st insolation

at 65◦N (i.e., the La2004 time series used herein for northern hemisphere insolation).

For our analyses, the LR04 age model comes with a caveat: Because the LR04 record

is orbitally tuned, its inherently assumes a causal lag where δ18O follows insolation.

This built-in assumption naturally poses a caveat to the validity of our causal analysis,

which uses a lag-based definition of causality to infer causal connectivity between this

very insolation signal and ice volume. Because several of the other records used in

this study are tuned to the LR04 age model, entailing the same built-in assumptions of

orbital forcing, this caveat also applies for those records.

Lisiecki and Raymo (2005) report the LR04 age model uncertainty as "Including all

sources of error, we therefore estimate the uncertainty in the LR04 age model to be 40

kyr form 5.3-5Ma, 30 kyr from 5-4 Ma, 15 kyr from 4-3 Ma, 6 kyr from 3-1 Ma, and 4 kyr

from 1-0 Ma", which I have interpreted as the maximum confidence envelope (±2σ) of

potential systematic deviations in the age model. To propagate these uncertainties in

the analyses, I have included the LR04 age model uncertainty in the preprocessing of

the LR04 record and the other records that are tuned to the LR04 age model.

SpraSL: global sea-level stack. A "reference" record of global sea-level equivalent to

the LR04 is the Spratt & Lisiecki sea-level stack (Fig. 3.1), hereafter denoted SpraGSL

(Spratt and Lisiecki, 2016). This is a record built on PCA of 4-7 sea-level records span-

ning the last 800 kyrs.

The strength of using a stack of several GSL reconstructions is that it gives a robust

record with conservative confidence, but a drawback is the length, the SpraSL GSL

stack only covers the Late Pleistocene ice sheet dynamics. Another drawback with this

GSL record is that it is tuned to the LR04 reference stack, and thereby raises the same

caveat on orbital tuning of the age model.

EldSL: GSL record from temperature-deconvolution of δ18Ob. The global sea-level

reconstruction by Elderfield et al. (2012), hereafter denoted EldGSL, is a high resolu-

tion, continuous sea-level record spanning the past 1.574 Myrs (Fig. 3.1). The long

time span covered by the EldSL record enables comparison of all three time spans of
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interest: the pre-MPT, syn-MPT and post-MPT.

The EldSL record is based on the δ18Ob-signal from a marine sediment core at the Chat-

nam Rise in the Southern Pacific Ocean. The temperature component of the δ18O signal

has been deconvoluted through a separate Mg/Ca paleothermometry reconstruction

of deep-sea temperatures at the site. Because the hydrographical component of the

δ18O signal is estimated to be insignificant at the core site (Elderfield et al., 2012), the

temperature deconvolution of δ18O should leave a pure signal for global sea-level.

Uncertainties. For the EldSL record, no uncertainty is included in the public dataset, but

the article reports an "error in δ18OW of ±0.2‰from propagation of estimated temper-

ature and δ18O uncertainties" (Elderfield et al., 2012). However, according to Rohling

et al. (2014), the uncertainty in the Elderfield record is poorly constrained. Rohling

et al. (2014) performed a probabilistic assessment of the EldSL record, where they find

a total uncertainty is of about ±35 meters (1σ), the bulk of which is random calibra-

tion uncertainty on temperature sensitivity (TS) due to many unknowns. In addition

there is the δ18OW sea-level conversion uncertainty of ±10 % (0.1 meters uncertainty

per meter GSL change is the standard ratio). Rohling et al. (2014) further state that

this uncertainty "may appear large, but there is strong autocorrelation in the record,

which leads to considerably tighter uncertainty limits to underlying ’mean’ trends."

For the purpose of this project, the point of interest of the GSL record is not the abso-

lute sea-level, but rather the dynamics, or relative change, of sea-level. Including the

random calibration uncertainty would therefore be an exaggeration of uncertainty. A

more appropriate uncertainty estimate would be to include the sea-level conversion

uncertainty given by Rohling et al. (2014), which is set to the standard ratio of 1σ =

±10% (e.g. 0.1 meters uncertainty per meter GSL change).

Age model. The Elderfield δ18O signal is tuned to the LR04 age model. I have therefore

added potential systematic deviations reported for the LR04 age model when defining

the EldGSL age uncertainties. The same caveats about orbital tuning thus apply to the

EldSL record.

GraSL: Red Sea sea-level record. Rohling et al. (2014) make a point that the uncer-

tainty in the deep-water temperature influences on the fractionation process are poorly

constrained (Rohling et al., 2014), increasing the uncertainty in using δ18Ob stacks as

proxies for GSL. This has motivated them, to develop new δ18Ob independent meth-

ods to reconstruct global sea-level. An δ18Ob-independent method of reconstructing

GSL was first proposed with the Red Sea relative sea-level record (Grant et al., 2014).

The Grant sea-level record (GraSL) (Fig. 3.1) shows relative sea-level at the Straight

of Bab el Mandab RSLBeM which links the Red Sea to the Indian Ocean. RSLBeM is
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reconstructed δ18O of pelagic foraminifera, coupled with an hydraulic basin model of

the Red Sea (Grant et al., 2014). Here, at lower sea-level, the sill at the straight of Bab

el Mandab becomes shallower, which reduces the exchange of water between the Red

Sea and the Indian Ocean. Hence, there is less water exhange over the straight at sea-

level low stands. Since the rate of evaporation is assumed to remain roughly constant,

the Red Sea δ18O composition becomes relatively more influenced by evaporation frac-

tionation, a signal that is recorded in the foraminifera of the Red Sea. By implementing

the measured δ18O values in a hydrological model of the Red Sea basin, the water ex-

change is reconstructed, and thereby also the sea-level stand at the straight of Bab el

Mandab.

Age model. The GraSL age model is not tuned to insolation cycles, which lessens the

age model bias for our causal time series analysis. Instead, the GraSL age model makes

use of the monsoon-signal of the Inter-Tropical Convergence Zone (ITCZ), which is

recorded both in the Red Sea sedimentary basin and by the Sanbao speleothem in

China, providing tie-points in absolute age. The age model is then constructed cal-

culating the average sedimentation rates between the radiometrically dated tie points.

Drawbacks with using the GraSL is record is that it only covers the last 500 kyrs, and

this record is therefore only suitable for analysing post-MPT dynamics.

RohSL: Mediterranean sea-level record. To the best of my knowledge, the RohSL

record is the only long (>0.5 Ma) sea-level reconstruction that does not inherently as-

sume an insolation forcing on ice volume (Fig. 3.1). The RohSL record reconstructs

relative sea level at the Straight of Gibraltar following the same philosophy as the

Grant record Rohling et al. (2014), with some adaptations to the the Mediterranean

Basin. Although the Mediterranean Basin has a more complex hydrological model,

it also has a much longer and very well constrained δ18O stack, spanning back 5.3

Myrs Rohling et al. (2014). However, parts of the record is riddled with intervals of

major surface freshwater dilution, referred to as ’sapropel’intervals, which are associ-

ated with anoxic sea-floor conditions and identified visually as a dark olive/black in

sediment cores Rohling et al. (2014). Rohling et al. (2014) have used a signal process-

ing approach to correct for the sapropel intervals, but comparison with other available

GSL reconstructions allows for the identification of three intervals where the signal-

processing approach may have failed to filter out the δ18O anomalies relating to sapro-

pel intervals. The temporal distribution of the identified remaining δ18O anomalies are

between 400-700 ka BP, i.e. compromising RohSL analyses over the post-MPT window.

To avoid most of the issues arising from sapropel intervals in the record, I have chosen

not to include the the RohSL record in analyses over the post-MPT interval.
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Figure 3.2: Northern hemisphere summer insolation. Numerical solution of the La2004 equations
(Laskar et al., 2004), showing daily mean top of atmosphere (TOA) solar flux at 65◦N on June 21 (summer
solstice).

Assumptions underlying the RohSL record. (Rohling et al., 2014) present two assump-

tions that must hold true for the RohSL record to be representative of global sea lev-

elFirstly, tectonic stability at the straight of Gibraltar is assumed, however, this is less

certain early (>3.8 Ma) part of the record (Rohling et al., 2014). The second assumption

concerns the ’δ18Ob-to-RSL-converter’, where it is assumed that the past parameter

relationships of the foraminiferal species used remained within the same uncertainty

ranges as found for the Late Pleistocene).

I take the liberty to add a third caveat to the RohSL record: there may be other sapro-

pel intervals in the early parts of the record which, if missed by the signal processing

approach, would go undetected because of limited temporal overlap betweeen RohSL

and other GSL records. I will therefore interpret the results from analyses with this

record with caution.

In summary, none of the sea level records are perfect for studying the causal relation-

ships in Pleistocene ice age dynamics. In this thesis, I therefore employ ensemble time

series analysis over the selection of GSL records here presented, which presumably

allows for more robust conclusions to be drawn.

3.2 Insolation

According to Milankovitch (1941), ice volume responds to summer energy at high

northern latitudes. As a representative of northern latitude summer energy I here use

the midsummer daily mean top of atmosphere (TOA) solar flux at 65°N, as given by the

’La2004’ equations of Laskar et al. (2004) (Fig. 3.2). The numerical solution, hereafter

denoted Ins, was computed using the AnalySeries software (Paillard et al., 1996).

Uncertainties. The chaotic behaviour of planetary orbits introduce uncertainties in the

La2004 for projections further than 60 Ma into the past and future, but uncertainties

are negligible over the time span considered here.
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Figure 3.3: Atmospheric CO2 records. a) Direct measurements from air bubbles in Antarctic ice cores
(red with dots) (Bereiter et al., 2015), b) pCO2 reconstruction from the δ11B proxy (Chalk et al., 2017), c)
pCO2 estimation from the δ11B proxy (Hönisch et al., 2009).

3.3 Atmospheric CO2 concentration

For the Late Pleistocene climate system, available records of pCO2 are of high resolu-

tion and well constrained, owing to the great climate archives contained in ice sheets

(Fig. 3.3). I use the Antarctic ice core record of pCO2 spanning the last 800 kyrs com-

piled by Bereiter et al. (2015, and refs. therein), here labeled BerCO2. Further back

in time, the pCO2 data records are unfortunately either of low temporal resolution

or short duration, owing both to the available climate archives and methodologies.

A δ11B-based reconstruction of pCO2 by Hönisch et al. (2009) provide constraints on

pCO2 over the past 2.1 Ma (Fig. 3.3). However, this record is not of sufficient resolu-

tion to contain dynamical information on the timescales studied here. To better resolve

the role of pCO2 in the MPT, Chalk et al. (2017) reconstructed a high resolution pCO2

record (here labeled ChaCO2) spanning the early part of the MPT (ca 1.240-1.090 Ma).

BerCO2: EDC ice core record of pCO2 (post-MPT). The best record of pCO2 per today

is the compilation of Antarctic ice core pCO2 records by Bereiter et al. (2015) and refer-

ences therein, here labeled BerCO2 (Fig. 3.3). BerCO2 is a high resolution record with

an uncertainty range of only a few ppm (Bereiter et al., 2015). The atmospheric compo-

sition of pCO2 through time is constructed by direct measurements of pCO2 from air

bubbles trapped in the ice of Antarctic ice cores.

Age model. Absolute age constraints of the BerCO2 record is derived from the AICC2012

age model (Bazin et al., 2013; Veres et al., 2013) ). The AICC2012 combines many dif-

ferent dating tools for different parts of the record, the details of which are outside

the scope of this study. The AICC2012 age model has conservative estimates on the
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age uncertainty, stemming from temporal divergences between Antarctic ice cores in

recording of the same climatic events.

ChaCO2: δ11B proxy record of pCO2. The ChaCO2 pCO2 record is a δ11B-based record

of atmospheric pCO2 spanning the early part of the MPT (ca 1.240-1.090 Ma)(Fig. 3.3).

The boron isotope ratio (δ11B) recorded in shells of foraminifera reflect sea-water pH

at the time or formation (Hemming and Hanson, 1992). Because pCO2 in the sur-

face ocean is in equilibrium with the atmosphere, atmospheric pCO2 will affect surface

ocean pH, and in turn, the δ11B ratio in pelagic foraminifera. The ChaCO2 record is

communicated with associated uncertaintiy constraints quantified by Monte-Carlo re-

sampling (Chalk et al., 2017). The record is resampled to a temporal resolution of 125

years Chalk et al. (2017), while the original sampling is one sample per 3.5-4.5 kyrs.

Age model. The ChaCO2 age model was constructed by alignment of a local δ18Ob stack

to the LR04 reference stack. I have therefore added the LR04 age model uncertainty to

ChaCO2 to propagate the uncertainties in the analyses.

3.4 Southern hemisphere dust records

The history of atmospheric dust is recorded in both ice cores and marine sediment

cores. One advantage of using marine sediment cores to reconstruct dust flux, as op-

posed to ice core records, is that marine sediment cores cover much longer time spans.

For example, the Antarctic EDC ice core record by Lambert et al. (2008) (IceDust) spans

the last 800 kyrs, while the marine record (MarFe) yields dust flux data back to 4 Ma BP

(Martínez-Garcia et al., 2011). MarFe and IceDust show excellent agreement Martínez-

Garcia et al. (2011) , indicating that they both record large scale depositional changes

(Fig. 3.4).

The marine sediment core used in this project (MarFe, described below) is a (quasi-)

continuous high resolution record spanning the last 4 Ma, and thereby covers all the

time windows of analysis in this project. MarFe represents dust flux spatially delimited

to the Southern ocean, which is identified as a key high-nutrient, low-chlorophyll zone,

meaning that increased Fe flux has the potential to increase marine productivity here

(Martin, 1990; Winckler et al., 2016). Therefore, I consider MarFe to be a well-suited

time series to test the role of Fe fertilization-mediated drawdown of pCO2 across the

MPT. The MarFe record also has high temporal resolution, and is continuous over the

studied time windows, which allows the testing of climate-dust interactions across the

studied time intervals. Additionally, I include the EDC ice core record of dust deposi-
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Figure 3.4: Atmospheric dust and Fe supply to the Southern Ocean over the last 4 Ma.

tion by Lambert et al. (2008) (IceDust), because IceDust and BerCO2 are both records

from the same EDC ice core. Inclusion of the IceDust record therefore significantly

reduces age uncertainties between pCO2 and dust in this project. Tighter relative age

constraints is a great advantage for the sensitivity of the method used for causal in-

ference, which operates on a lag-based definition of causality (more on this in chapter

4).

MarFe: Marine sediment core of Southern Ocean Fe flux record. The principal time

series chosen to represent atmospheric dust is the Fe-component of a high-resolution

dust flux record from a sediment core in the sub-Antarctic Atlantic ocean (Martínez-

Garcia et al., 2011), dubbed MarFe (Fig. 3.4). The MarFe record spans the last 4 Ma,

and is thereby the first record to give insights to Southern Ocean dust deposition

throughout the entire time span of Quaternary climatic transitions (Martínez-Garcia

et al., 2011).

Age model. The MarFe record is divided into three intervals that each are tuned to dif-

ferent age models. The first 800 kyrs of the record are tuned to the EDC3 age model

(Parrenin et al., 2007) by graphic correlation of XRF Fe measurements to the IceDust

record. The remainder of the record is on a core site-specific δ18O-based age model,

with a slight modification in the latter part of the record (>2.9 Ma) based on biostratig-

raphy

IceDust: EDC Ice core record of Antarctic dust deposition (post-MPT). The IceDust

record is a high-resolution record of Antarctic aeolian dust record as measured by dust

concentration in the EDC ice core by Lambert et al. (2008) (Fig. 3.4). In their paper,

Lambert et al. (2008) refer to the dust flux [µ/kg/year], which is the quantity that is

implicated in the dust-climate hypotheses. Unfortunately only dust concentration in
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snow [µ/kg] is reported in the published dataset. Flux and concentration are not nec-

essarily equivalent in terms of recording dynamics (years with little snowfall will give

a higher dust concentration even though they may not have a higher dust flux), Unfor-

tunately, the dynamical parameters used by Lambert et al. (2008) to reconstruct vari-

ations snowfall could not be found, therefore the IceDust time series as used in this

project is of dust concentration. Furthermore, it has been cautioned that the larger-

scale climatic signal contained in Antarctic dust records may be contaminated by local

glacial transport mechanisms (Shaffer and Lambert, 2018). I have nevertheless chosen

to include this time series in the analyses is to see if it still contains some dynamical in-

formation that can help resolve the relationship between southern hemisphere aeolian

dust and pCO2. As mentioned above, the IceDust record has the advantage that it al-

lows for substantial reduction of age model uncertainties in analyses with pCO2 in this

project, because IceDust and BerCO2 are both from EDC ice cores, which reduces the

relative age uncertainty to the lock-in depth of gas bubbles in the ice. Even if I will not

hypothesize on what mechanistic process or regional extent the IceDust record may

represent, I wish to explore the possibility that the IceDust record nevertheless may

contain some dynamical information that will leave us better equipped to resolve the

causal relationship between pCO2 and aeolian dust.

Data. To construct the Antarctic dust flux record (not found published, ref. section

above), Lambert et al. (2008) collected both laser scatter (lpc) and coulter counter (cc)

data of the dust concentration as well as fine particle percentage (fpp). However, I

have chosen only to use the data collected with the laser scatter method (lpc) data, as

this dataset has the highest resolution for the older parts of the record.

Uncertainties and age model. No uncertainties were reported for the original Lambert

dataset, neither in age nor value. In order to align the IceDust record on the same

age model as BerCO2, I have transferred the IceDust data from the original EDC3 age

model (Parrenin et al., 2007; Lambert et al., 2008) to the AICC2012 age model (Bazin

et al., 2013), yielding conservative estimates of age uncertainty.
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Chapter 4

Causal Inference Framework

In the context of time series analysis, a wide range of methods have been designed

to detect causal connectivity (see Hlaváčková-Schindler et al., 2007; Hannisdal and

Liow, 2018; Runge et al., 2019, for reviews). Among these methods, the data-driven,

model-free (a.k.a. non-parametric, or equation-free) approaches are of particular in-

terest when studying natural systems, because they do not require mechanistic model

assumptions, that is, we don’t have to specify a model of how the system works. All

of these methods have both theoretical and practical limitations, however, and to over-

come some of these limitations, Haaga et al. (2020) recently proposed a novel approach

called the Predictive Asymmetry, which I have used in this thesis.

In their paper, Haaga et al. (2020) show how the strength and directionality of causal

interactions in dynamical systems can be studied by taking a difference between two

information-theoretic quantities that are computed directly from observed time series.

Crucially, they mathematically prove that the value of this difference is fundamentally

related to the dynamics of the unknown system that generated the time series. The

two main theoretical concepts underpinning the predictive asymmetry are dynamical

systems reconstruction and transfer entropy. Because these concepts lie outside the tra-

ditional disciplinary boundaries of geology (and my own comfort zone), I will briefly

introduce them in the following sections before moving onto the predictive asymmetry

method itself.

4.1 Dynamical system reconstruction

Dynamical systems theory is the study of time-dependent processes (Strogatz, 2018).

In nature, dynamical systems often show complex, nonlinear, and chaotic behaviour,
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Figure 4.1: Time series and attractor of a deterministic system with chaotic behaviour. Left: Time
series X and Y of a fully deterministic system with chaotic behaviour (logistic map). Right: State space
configuration (attractor) of the system.

which can be difficult to model. Instead, we can take a geometric approach and de-

scribe the evolution of the system as trajectories in a state space defined by the compo-

nents of the system (Fig. 4.1). These trajectories in the state space allow us to study the

invariant properties of the dynamics (the attractor) describing the long-term behaviour

of the system (well-known examples are the "limit cycles" of predator-prey systems,

or the famous "butterfly" attractor of the Lorenz system). However, we typically don’t

have (or even want) access to all the components of a system, so how can we then

obtain a faithful state-space representation of the system?

Four decades ago, mathematicians were able to show that a faithful representation of

the state space (attractor) of a dynamical system can be obtained from a single time

series realization of the system by delay reconstruction (Takens, 1981): by using lagged

(time-delayed) coordinates of a time series to define reconstructed states, we obtain

a state-space configuration that is topologically equivalent (in 1:1 correspondence) to

the original system’s attractor (Fig. 4.2). This result implies that we can study the

invariant properties of the dynamics without having access to all the components of the

system (Fig. 4.2). Although proven in the context of deterministic systems, equivalent

concepts hold true also for stochastic systems, as long as they have some deterministic

component. Delay reconstruction is the starting point for model-free approaches to

detecting causality from time series. However, to make the leap to causality, we need

the concept of transfer entropy.
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Figure 4.2: Delay reconstruction and the invariant probability distribution. Left panel: Delay recon-
struction of the coupled logistic map, now including an element of time, by adding a time delay to one
of the time series. Right panel: An estimate of the invariant probability distribution of the system ob-
tained by gridding the delay reconstruction and counting the number of times the system visits each
cell in the grid (the visitation frequency). Figures courtesy of David Diego.

4.2 Transfer Entropy

Causality is a concept that has eluded scientists and philosophers for centuries, but

there is general agreement at least on two criteria that should be met in order to infer a

causal relationship: (1) the cause should precede the effect, and (2) observing the cause

should increase the probability of observing the effect (Hannisdal and Liow, 2018). In

the context of time series, these two criteria were formalized by Schreiber (2000) in a

quantity he called transfer entropy.

Transfer entropy from a source time series X to a target time series Y, both synchronously

measured and consisting of N data points, is defined as

TEX→Y(η,ε) = ∑ p(xt,yt,yt+η)log
p(yt+η|yt, xt)

p(yt+η|yt)
. (4.1)

Equation 4.1 says that if knowing the state xt increases the probability of knowing the

state yt η steps in the future (yt+η), i.e. p(yt+η|yt, xt) > p(yt+η|yt), then the transfer

entropy will be a positive number. Conversely, if (for all prediction lags η), know-

ing x does not increase the probability of knowing y in the next prediction lag η, i.e.

(p(yt+η|yt, xt) = p(yt+η|yt)), then the transfer entropy will (as N→∞) equal 0.

Transfer entropy is thus a property of multivariate probability distributions constructed

from multivariate time series data. In the context of dynamical systems, the relevant

probability distribution is the invariant distribution that we estimate from the delay

reconstruction (Fig. 4.2). By superimposing a grid on the delay reconstruction, we can
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Figure 4.3: Calculating transfer entropy from the invariant probability distribution.

count the number of times the system visits each cell in the grid (i.e. the visitation

frequency), which yields a multivariate histogram that estimates the invariant proba-

bility distribution (the probability of the system occupying different regions of the state

space; Fig. 4.2). When we use a generalized delay reconstruction that includes both x

and y components (Deyle and Sugihara, 2011), then the approximation of the invari-

ant probability distribution contains the information we need to estimate the transfer

entropy (Fig. 4.3).

To compute the transfer entropy in practice, we restate eq. 4.1 as a sum of information

entropies:

TEX→Y(η,ε) =−H(xt,yt,yt+η) + H(yt+η,yt) + H(xt,yt)− H(yt), (4.2)

where H =−∑ p(x) log p(x) is the information entropy as defined by Shannon (1948).

The reformulated transfer entropy (eq. 4.2) does not involve conditional probabilities

and can be readily calculated from the joint probability distributions estimated by vis-

itation frequency. With sufficient time series length, the estimated probability distribu-

tions will approach the true distributions, and thus transfer entropy (being a property

of probability distributions) will also converge on the true transfer entropy.

Despite its intuitive appeal, however, the transfer entropy can suffer from statistical

biases and yield ambiguous or misleading results in practical applications, as illus-

trated in the supplement of Haaga et al. (2020). It turns out, however, that by doing the

seemingly non-sensical exercise of comparing the values of transfer entropy for posi-

tive prediction lags (predicting into the future) with the values for negative prediction

lags (predicting into the past), we obtain a much more robust causality statistic: the

predictive asymmetry (Haaga et al., 2020).
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4.3 Predictive asymmetry

The predictive asymmetry (A) is defined as the difference between TE forwards in time

and TE backwards in time:

AX→Y(η,ε) =
∫ ηmax

0
TEX→Y(η)−

∫ ηmax

0
TEX→Y(−η) (4.3)

where η is the prediction lag, and ε is the size of the cells used for gridding the delay

reconstruction to estimate the invariant probability distribution. Because A is defined

using the transfer entropy, it is tempting to interpret the values as some kind of mea-

sure of "information flow", as Schreiber (2000) interpreted transfer entropy. Unlike

transfer entropy, however, the predictive asymmetry is theoretically supported by a

deep mathematical result relating the value of A to the underlying dynamics of the

(unknown) system that generated the time series (Haaga et al., 2020). Both analytical

(exact) and numerical results in Haaga et al. (2020) show that:

• If there is no coupling between X and Y, then AX→Y and AY→X converge on

zero.

• If there is a unidirectional coupling, say X → Y, then AX→Y is positive and

AY→X ≤ 0.

• If there is a (strong) bidirectional coupling, X↔ Y, then both AX→Y and AY→X

are positive.

Although A is much more robust than transfer entropy itself, numerical estimation

from short and noisy time series inevitably induces statistical fluctuations (Fig. 4.4).

In addition, the intrinsic magnitude of the transfer entropy used in calculating A is

system-dependent, making it difficult to interpret the relative magnitude of A in terms

of coupling strength. To rectify this, Haaga et al. (2020) propose a normalization of A

to the system-characteristic magnitude of transfer entropy:

A f
X→Y(η) :=

AX→Y(η)
f
η

∫ ηmax
−ηmax

TEX→Y(η)dη

. (4.4)

Now, the relative magnitude of the normalized predictive asymmetry A yields a mea-

sure of relative coupling strength that can be compared across different systems. More-

over, the normalization factor f equips theA statistic with a built-in significance thresh-

old with which we can statistically accept or reject the hypothesis of a causal coupling.
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Increasing the normalization factor f will increase the specificity of our analyses (i.e.

fewer false positives), but does so at the cost of the method’s sensitivity (i.e. increase

in false negatives). Appropriate significance thresholds have been determined heuris-

tically with synthetic systems by analyzing false positive rates as a function of time

series length and system types, indicating that f =1 is sufficient in most cases (Haaga

et al., 2020). That said, Haaga et al. (2020) stress that for time series with N=150 data

points or less, it is recommended to raise f to 1.5 for most systems. The conventions

used in this thesis for interpreting the significance of the A results is described at the

end of this chapter.

4.4 Analysis design and work flow

The main objectives of this project are to i) resolve whether or not there exists infor-

mation in the data to determine causal connectivity between the Earth system com-

ponents, and ii) assess whether or not there is evidence in the data of a change in the

dynamics (change in causal coupling) of the climate system before and after the MPT. I

have approached both objectives by predictive asymmetry analyses of the chosen time

series in separate with time windows before, during and after the MPT (Fig. 4.5). In

this section, I present the way I have chosen to design and implement a work flow for

my analyses.

The notebooks (NBs) attached to the thesis contain all the work done in this project

and allow for all of the results to be reproduced. Preparation of the data for analysis

is documented in NB1. NB2 focuses on explaining the method through examples of

synthetic systems, and serves as supplement to this chapter. The code used for the

predictive asymmetry analyses is summarized in NB3. Finally, all the analyses and

results for the different time intervals are found in the NBR notebooks.

4.4.1 Defining the pre-, syn-, and post-MPT time windows

Pre-MPT. To represent the climate system prior to the MPT, I have chosen the time

window 1574-1250 ka BP, labeled pre-MPT (NBR-A results in appendix A.1). This time

interval is chosen to allow the inclusion of three ice volume proxies in the analyses

(EldSL, in addition to RohSL and LR04) allowing for more robust conclusions to be

drawn regarding ice volume dynamics. Because the robustness of A depends to some

extent on time series length, additional analyses covering a longer time window (4000-

1250 ka BP) are also performed for comparison, but this window only includes LR04
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A

B

C

Figure 4.4: Transfer entropy and predictive asymmetry on short and noisy time series. (A) Two time
series with uncertainties in both age and value. The time series belong to a first-order autoregressive
system of the first order (AR1) and are dynamically coupled in the direction X → Y. (B) Left panel:
Transfer entropy between the two time series in (A), computed for positive and negative lags. Right
panel: Predictive asymmetry (A) between the time series computed from the transfer entropy values in
the left panel. (C) Transfer entropy (left) and predictive asymmetry (right) for ten different time series
realizations generated by sampling within the uncertainties in (A).
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and RohSL as ice volume proxies (NBR-D results in appendix A.2). As mentioned in

chapter 3, there exists no record of pCO2 prior to the MPT with sufficient resolution for

the time scale of dynamics studied here. Therefore, my analyses of this time interval are

limited to exploring the causal relationships between ice volume proxies, insolation,

and Southern Ocean Fe flux.

Syn-MPT. To analyse the climate system dynamics during the MPT, I have chosen

the time interval from 1240-1092 ka BP, labeled syn-MPT, which is defined according

to available high resolution data for pCO2 (ChaCO2). Note that this time interval is

relatively short (149 data points at 1 kyr resolution), and spans only the early part of

the MPT. Again, additional A analyses over the full MPT time interval (1250-700 ka

BP) are also computed for comparison, albeit without a suitable pCO2 record over this

longer interval (NBR-E results in appendix A.4).

Syn-MPT. To analyse climate dynamics after the MPT, I have chosen the time window

492-13 ka BP, labeled post-MPT. This time interval is chosen to allow inclusion of the

GraSL sea level record in the analyses, which has two main advantages. First, the

GraSL record age model does not inherently assume any lagged response of ice volume

to insolation, which is the case for the δ18Ob-based proxies. Second, the GraSL record

has a far better temporal resolution than the other ice volume proxy records (125 yrs vs

1000 yrs). Additional A analyses over a longer time interval (792-800 ka BP) are also

computed for comparison, albeit without the GraSL record (NBR-F results in appendix

A.6).

4.4.2 Data wrangling

In notebook NB1, I collect the relevant data from global data repositories, and construct

data sets combining average (mean or median) values with uncertainties. For handling

the uncertainties in a streamlined way, I use the software package UncertainData.jl

Haaga (2019), which offers seamless integration with the CausalityTools.jl software

used for the causal analyses.

Interpolation. Unfortunately, hiatuses and irregular temporal sampling are typical

characteristics of geological time series, which presents a challenge for methods based

on delay reconstruction. For records with relatively high temporal resolution relative

to the age model uncertainty, irregular sampling can be ameliorated through resam-

pling. For records in which hiatuses are larger than the age model uncertainty, inter-

polation of missing data is a possible solution. Here I have interpolated values for

all records that have gaps larger than 1 kyr in the original resolution (EldSL, BerCO2,

https://github.com/kahaaga/UncertainData.jl/
https://github.com/JuliaDynamics/CausalityTools.jl
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Figure 4.5: Definition of time windows and overview of time series. The empirical records are interpo-
lated and resampled to a regular time grid with one value per 1 kyr. Uncertainties in age and value are
incorporated through Monte Carlo analysis. Time series used in analyses are LR04 (Lisiecki and Raymo,
2005), SpraSL (Spratt and Lisiecki, 2016), EldSL (Elderfield et al., 2012), RohSL Rohling et al. (2014) and
GraSL (Grant et al., 2014) as proxies of global ice volume; BerCO2 (Bereiter et al., 2015) and ChaCO2
(Chalk et al., 2017) representing pCO2; IceDust (Lambert et al., 2008) and MarFe (Martínez-Garcia et al.,
2011) representing Southern Hemisphere aeolian dust.
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IceDust and MarFe). I have then used linear interpolation of mean and standard devia-

tions (σ) in both age and value and created new data arrays of mean and (σ) containing

values interpolated for every 100 yr. These interpolated arrays are in turn resampled

on a coarser grid according to the same procedure as for the non-interpolated data,

as described below. To guard against potential adverse effects of interpolation on the

A results, I have set the mean temporal resolution of each record’s original sampling

as the highest bound for the temporal bin resolution of the resampling grid. Thus,

only the records that had a high temporal resolution (mean > 500 yrs) in the original

sampling are included in the high resolution analyses.

Redefining data as probability distributions. UncertainData.jl provides a framework

for handling of uncertainties in both age and value, through the data type UncertainIn-

dexValueDataset (hereafter referred to as uivDs), which redefines the data as probability

distributions by kernel density estimation (KDE), allowing for a convenient handling

of data with uncertainties of different types. Each data point in the uivD consists of

two probability distributions: one describing the value of the data point (e.g. sea-level

in meters) and one describing the timing of the data point (age in kyr). Next, the uivD

is resampled by Monte Carlo analysis, following the procedure detailed below.

Binned resampling of time series data on a regular time grid. To ensure that each

data point in one time series X will represent the exact same time point as each data

point in another time series Y, the probability distribution (KDE) of the observations

are resampled on an equidistant time grid (hereafter referred to as binned resampling)

using the BinnedResampling function from UncertainData.jl.

There is a trade-off to be made when deciding on a temporal bin size for resampling

on the equidistant time grid. On the one hand, longer time bins (lower temporal res-

olution) on the final time series grid may obviate the need to interpolate data. On the

other hand, the time grid has to be fine enough to preserve the dynamical information

encoded in the time series. The choice of temporal bin size is also made as a trade-

off between datasets: There is overall higher temporal resolution in the data spanning

the post-MPT interval compared to the records spanning further back in time. As an

overall compromise I have chosen a common bin size of 1 kyr that will work for all the

records across all the time windows.

4.4.3 Predictive asymmetry analysis

To run the predictive asymmetry analyses, I have written a ’Toolbox’ notebook (NB3

in attachments), which includes all the ingredients necessary to perform the predictive

https://github.com/kahaaga/UncertainData.jl/
https://github.com/kahaaga/UncertainData.jl/
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asymmetry analyses in this thesis: I import all the libraries that are needed down-

stream, and read the wrangled time series data into the notebook. I have also writ-

ten shorthand functions used in the analyses and results notebooks (NBRs). Specifi-

cally, the computePredictiveAsymmetry function implements the VisitationFrequencyTest

and PredictiveAsymmetryTest from the CausalityTools.jl package, which are described

in more detail below.

Each results notebook (NBR) is defined by its time window of analysis. In total, there

are 7 NBRs; one notebook for each of the 6 time windows presented above, plus

one NBR for the comparative analysis between the pre-MPT and post-MPT intervals,

which is described in the last section of this chapter. In the NBRs, the first step is

to select and cut the time series to the time window that will be analysed. Again, be-

cause transfer entropy operates with a lag-based definition of causality, it is crucial that

the corresponding indexes in the binned resampled time series represent simultaneous

time points, if not, the values computed for A will not make any sense.

Estimating transfer entropy between time series pairs. The transfer entropy from

source to target is estimated using the visitation frequency test, which takes four in-

put arguments: a source time series X, a target time series Y, a bin size argument (ε)

which will determine the partitioning of the delay reconstruction, and an array of pre-

diction lags (ηs = −ηmax:ηmax) for which we will compute transfer entropies. In the

VisitationFrequencyTest function, the time series X and Y are used to make the delay

reconstruction of the dynamics. Next, a rectangular grid is projected onto the delay

reconstruction, with ε defining the number of bins (i.e. the level of ’coarse-graining’

of the state space). The VisitationFrequencyTest then counts how many times the delay

reconstruction visits each partition in the grid, yielding an estimate of the invariant

probability distribution over the grid. The estimated invariant distributions, together

with the prediction lags ηs are then used to compute transfer entropy, according to eq.

4.2.

Choice of bin size argument ε. In the same way that the number of bins in a his-

togram affects the shape of probability distribution that the histogram approximates,

the estimation of the invariant probability distribution will be sensitive to the binning

resolution of the delay reconstruction, which is given by ε. I have chosen ε according to

the heuristic rule proposed by Paluš (1995), hereafter referred to as the ’Palus horizon’:

ε =
[

N1/(D+1)
]

, (4.5)

where N is the time series length, D is the embedding dimension, and [x] is the round-

https://github.com/JuliaDynamics/CausalityTools.jl
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ing operator which rounds the number x to the nearest integer. I have used the default

embedding dimension of D = 3 in all my analyses, following the recommendations

of Haaga et al. (2020). Note that for very short time series, the Palus horizon is too

coarse-grained and does not give reliable results (A.11). I have therefore decided to

operate with a lower limit of ε=4 (43=64 bins). In practice, this choice affects only the

short syn-MPT interval. My preliminary sensitivity analysis suggests that the choice of

ε mainly affects the confidence interval of the A results, but seems to have little effect

on the inferred directionality of coupling (A.11).

Choice of prediction lag range ηmax. The predictive asymmetry is computed by in-

tegrating over a spectrum of prediction lags η (eq. 4.3). In synthetic systems that are

not periodic (e.g. AR1) the A nicely converges with increasing ηmax, but in systems

with strong periodicity, the A can also appear quasi-periodic (Haaga et al., 2020). To

minimize the potential effects of large-scale (glacial-interglacial) periodicity on the pre-

dictive asymmetry, I decided to limit ηmax to the equivalent of 20 kyrs (the scale of a

glacial cycle). For time series that are resampled with a temporal bin resolution of 1

kyr, I thus use ηmax = 20, and for time series resampled to a 500-yr and 125-yr temporal

resolution I use ηmax values of 40 and 160, respectively.

Accounting for uncertainty. Because of the uncertainty in the time series, the data are

passed as uivD to the PredictiveAsymmetryTest, which then generates a distribution of

A values for each value of η (see Fig. 4.4c for an example with only ten realizations).

In this way, we ensure that the uncertainty in the values and ages of the observed

time series are propagated through the analyses. However, I add another layer of

uncertainty to the analyses by randomly drawing sub-segments of the time series that

are slightly shorter than the original (down to 70% of the total number of observations),

using the RandomSequencesTest. I draw a family of 150 random segments, from which

I extract the 0.025, 0.5 and 0.975 quantiles of the A values, shown as 95% confidence

ribbons on the result plots.

Choice of significance level. I normalize the predictive asymmetry according to eq. 4.4

using the normalizePredictiveAsymmetry function defined in NB3. As mentioned above,

Haaga et al. (2020) propose f = 1 as an acceptable threshold for most types of systems,

as long as time series are above ca. 100-150 data points long. To be conservative, I

have chosen to raise the significance threshold to f = 1.5 for time series consisting of

less than 200 observations, which affects only the syn-MPT window, where time series

have 149 observations on the 1-kyr grid.
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4.4.4 Conventions for interpreting the results

• Positive A above the significance threshold indicates a causal coupling in the di-

rection A source→target. To infer a causal coupling, I require that more than half

of the random sequence iterations (i.e. the median A) must be above the signifi-

cance threshold by η = ηmax.

• Because the predictive asymmetry is normalized, A is comparable across the

analyses in terms of coupling strength, as long as the time series length and the

parameters chosen for the analyses are the same.

• A complete divergence of the 95% confidence ribbons of the A in either direction

(i.e. no overlap) is taken to be unequivocal evidence of unidirectional coupling.

• If A is not above the significance threshold by η=ηmax, then there is not enough

information in the data to infer a causal coupling between the time series on the

given time scales. As always, the absence of evidence is not evidence of absence.
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Chapter 5

Results

In this chapter I will present the results of the predictive asymmetry analyses between

each of the observed climate system components in three different time intervals of the

Pleistocene. At the end of the chapter, I also present results from a comparative analysis

between pre-MPT and post-MPT intervals, where I standardize sampling to ensure

that the records from the two time intervals have the same number of observations

(notebook NBR-G attached to the thesis).

Before presenting the results, I will briefly explain my choice of wording in the descrip-

tion of the results. Strictly speaking, the results consist of values of the normalized pre-

dictive asymmetry A relative to the built-in significance level, according to the criteria

described in Section 4.4.4. However, to avoid repetition and in an attempt to increase

the readability of this chapter, I have chosen to describe the results in terms of the pres-

ence and strength of evidence for causal coupling. This phrasing is analogous to the

convention used in statistical correlation analyses, e.g. instead of repeatedly referring

to the results as "a Spearman ρ value that exceeds the 95th percentile of a uniformly

random null distribution", we simply refer to "a significant correlation". The predic-

tive asymmetry is a statistical measure of causal coupling, not correlation, hence I will

typically describe the results in terms of evidence for a significant causal coupling. In

cases where the causal inference from A is ambiguous I will briefly argue for the in-

ference made, to avoid unnecessary repetition of results descriptions in the Discussion

chapter.
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5.1 Empirical evidence for causal connections in Pleis-

tocene climate records

The results in this section address the first objective of the thesis, namely to quantify the

directionality and relative strength of coupling in the Pleistocene climate system based

on empirical evidence in the best available data. As described in Section 4.4, I have

run separate analyses on three time windows in the Pleistocene, and the empirical evi-

dence for causal connections varies somewhat for the different time windows. Before I

describe the results for each time window in detail, I provide a graphical summary of

all the analyses and causal inferences (Fig. 5.1).

5.1.1 The pre-MPT time window

Ice volume — insolation. Analyses of the pre-MPT time window (1574-1250 ka BP)

show a significant positive predictive asymmetry from Ins to LR04 for well over half

of the random sequences (Fig. 5.2a). There is no significant A between insolation and

the pure GSL time series however (Fig. 5.2b and c). Over the longer pre-MPT control

window (4-1.25 Ma BP), there is no empirical evidence in these records for a causal

coupling between the insolation and ice volume time series (Appendix A.2a,b).

Ice volume — Fe flux. No causal coupling is inferred between ice volume and Fe flux

in the pre-MPT, as the median A between the time series does not cross the set sig-

nificance threshold in either direction (Fig. A.1d-f). Over the longer pre-MPT control

window (4-1.25 Ma BP), however, a positive A from LR04 to MarFe suggests that in-

formation contained in the δ18O time series significantly helps predict the evolution of

Fe flux, thus implying an underlying causal connection.

Insolation — Fe flux. Similarly, no causal coupling is inferred between the insolation

and Fe flux time series (Fig. 5.2g) over the pre-MPT interval, as median A between

the time series does not cross the set significance threshold in either direction. Over

the longer pre-MPT control window, the empirical evidence of an influence of inso-

lation on Fe flux is somewhat more suggestive, but the median A does not cross the

significance threshold (appendix A.2a,b).

5.1.2 The syn-MPT time window

Ice volume — insolation. Over the syn-MPT window (1240-1090 ka BP), the predictive

asymmetry is below the significance threshold for both LR04 and RohSL time series
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Figure 5.1: Overview of the inferred causal networks. Time windows of analysis are chosen based on a
hypothesized change in dynamical coupling in the climate system before and after the Mid-Pleistocene
Transition, as well as according to time series overlap. The time windows analysed are 1574-1250 ka
BP (A), 1240-1092 ka BP (B) and 492-13 ka BP (C) (labeled pre-MPT, syn-MPT and post-MPT, respec-
tively), as well as three longer control windows (D, E, F). Time series are grouped according to which
processes they are thought to represent: global ice volume (blue), northern hemisphere summer insola-
tion (yellow), atmospheric CO2 concentration (red), and atmospheric dust (green). See Fig. 4.5 for time
series acronyms. Arrows represent the inferred causal connections, with the line thickness reflecting the
relative magnitude of the predictive asymmetry. Stippled lines indicate negative results, i.e. where no
significant coupling is detected between the time series. Line colours are used to distinguish the three
different temporal resolutions used in binning the time series for analysis: 1 kyr (black), 500 yrs (gray)
and 125 yrs (light blue). Red stars mark inferred causal couplings that are known to be false positives.
The predictive asymmetry analyses used to make this overview can be studied in detail in the following
figures: (A) 5.2; (B) 5.3 and A.9; (C) 5.4, 5.5 and A.10; (D) A.2; (E) A.4; (F) A.6.
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Figure 5.2: Predictive asymmetry results for the pre-MPT time window. Left column: time series for
the pre-MPT interval on a temporal bin resolution of 1 kyr. See Fig. 4.5 for time series acronyms. (a -
g) Predictive asymmetry results. Values are medians and 95% ranges of A values computed according
to the analysis design described in chapter 4. Dashed line represents the significance threshold using a
normalization factor of f = 1 (eq. 4.4).
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5.3a and c, respectively), hence there is no empirical support for a causal coupling be-

tween insolation and ice volume in this time window. Interestingly, median predictive

asymmetry from EldSL to Ins is above the significance threshold (Fig. 5.3b), which we

know to be a false positive, because a GSL forcing on insolation is non-sensical. This

false positive persists despite taking the precautions of setting a lower bound on ε =

4, and using the conservative significance threshold (raising the normalization factor

f = 1.5). Possible reasons for this false positive will be discussed in the next chapter.

Meanwhile, I note that over the longer control time interval (1250-700 ka BP), predic-

tive asymmetry is below the significance interval for all ice volume proxies, implying

that any dynamical information in these time series do not support a causal coupling

between ice volume and insolation in this time window (Fig. A.4a-c).

Ice volume — pCO2. Over the syn-MPT window, we find significant predictive asym-

metry from ice volume proxies to pCO2 with the LR04 and RohSL time series (Fig. ??d

and f, respectively). In the case of the EldSL time series, however, there is no evidence

for a causal coupling (Fig. 5.3e). There is no suitable pCO2 record to confirm the results

over the longer control interval.

Ice volume — Fe flux. There is also significant positive predictive asymmetry from Fe

flux to ice volume, where both A MarFe→LR04 and A MarFe→EldSL cross the significance

threshold in a large majority of the random sequences (Fig. 5.3g and h, respectively).

A MarFe→RohSL crosses the significance threshold at η=20 in just under half of the iter-

ations (Fig. 5.3i), and is therefore just short of the significance threshold set for causal

inference, although the overall pattern of predictive asymmetry matches that of the

other ice volume proxies. The same analyses performed over the longer control inter-

val give unambiguous results of a causal coupling from Fe flux to ice volume, with

most or all of the 95% confidence envelope rising above the significance threshold for

all three ice volume proxies (Fig. A.4d-f, appendix A).

Fe flux — pCO2. The predictive asymmetry between ChaCO2 and MarFe is below

the significance threshold for the syn-MPT-interval (Fig. 5.3j), implying that no causal

coupling between Fe flux and pCO2 can be inferred from the data in this time window.

No equivalent analysis is possible over the longer control interval, due to the lack of a

suitable pCO2 record.

Fe flux — insolation. The predictive asymmetry between MarFe and insolation is

below the significance threshold for the syn-MPT-interval (Fig. 5.3l), meaning there is

not sufficient dynamical evidence in the time series to infer a causal coupling between

these components. The same result holds for the longer control interval (Fig. A.4g,

appendix A).
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Insolation — pCO2. Predictive asymmetry between ChaCO2-Ins time series indicates

no significant coupling when computed on a 1 kyr time bin resolution (Fig. 5.3k).

However, the same analysis computed on a higher-resolution binning of 125 yrs gives

a median predictive asymmetry above the significance threshold, (A.9c) implying a

causal influence from pCO2 to insolation. Again, we know this is a false positive, and

the possible reasons behind this result will be discussed in the next chapter.

5.1.3 The post-MPT time window

Ice volume — insolation. Using a time bin resolution of 1 kyr, the median predictive

asymmetry does not cross above the significance level for any of the ice volume records

(Fig. 5.4a-d). The same result holds for the GraSL record on a binning resolution of 500

yr (Fig. 5.5h). These findings suggest that there is not sufficient dynamical evidence for

a causal coupling between insolation and ice volume. However, for a higher resolution

analysis with a temporal bin duration of 125 years, there is a positive predictive asym-

metry from Ins to GraSL with a medianA that crosses above the significance threshold

(??c), appendix A). This result implies that if the temporal bin resolution is sufficiently

high (125 yr bins), then there is empirical evidence for insolation as a forcing of ice vol-

ume dynamics. Note, however, that the predictive asymmetry decreases after about

η=40 and dips below the significance threshold again at η=60.

Ice volume — pCO2. Median predictive asymmetry is significant from BerCO2 to all

the ice volume proxy time series in analyses with a time bin resolution of 1 kyr (Fig.

5.4e-h). The higher resolution analysis between GraSL and BerCO2 with a temporal bin

duration of 500 years also indicates a coupling from pCO2 to ice volume (Fig. ??e). This

agreement between independent ice volume proxies, with independent age models,

provide robust evidence that pCO2 is a driver of ice volume dynamics over the post-

MPT time interval. Common to all the pCO2— ice volume analyses over the post-MPT

window is A values of around 1-2 by 20 prediction lags. Among the records analyzed

here, only Fe flux has a stronger relative forcing on ice volume.

Fe/dust flux — pCO2. Predictive asymmetry between pCO2 and Fe/dust records anal-

ysed on 1 kyr time bin resolution approaches the significance threshold with both the

MarFe an the IceDust time series (Fig. 5.4s and t, respectively), implying that the infor-

mation in these records at this resolution is not sufficient to determine any clear causal

connection. A higher resolution analysis (500-yr bins) finds predictive asymmetry that

reaches just above the significance threshold in both directions, BerCO2→MarFe at ∼
η = 20, and MarFe→ BerCO2 at∼ η = 40, with confidence confidence intervals largely
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Figure 5.3: Predictive asymmetry results for the syn-MPT time window. Left column: time series for
the syn-MPT interval on a temporal bin resolution of 1 kyr. See Fig. 4.5 for time series acronyms. (a -
l) Predictive asymmetry results. Values are medians and 95% ranges of A values computed according
to the analysis design described in chapter 4. Dashed line represents the significance threshold using a
normalization factor of f = 1.5 (eq. 4.4).
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overlapping, (Fig. A.8e). This result could imply a bidirectional coupling between Fe

flux and pCO2, but it could also stem from chronological uncertainties (i.e. age un-

certainties may obscure a lead-lag relationship). The IceDust record can help resolve

this issue, because the IceDust and BerCO2 records are derived from the same ice core,

which greatly reduces the relative age uncertainties between dust and pCO2 dynamics.

Indeed, the predictive asymmetries between BerCO2 and IceDust clearly diverge, sug-

gesting a clear directionality of coupling from IceDust to BerCO2 (Fig. 5.5b), implying

that Fe/dust dynamics is the driver and pCO2 changes is the response.

Insolation — pCO2. Predictive asymmetry is insignificant between Ins and BerCO2,

both in analysis with 1 kyr time bins (Fig. 5.4r) and 500 yr bins (Fig. 5.5i), implying

that there is no evidence in the data of a coupling between pCO2 and insolation.

Insolation — dust. Similarly, predictive asymmetry is insignificant between Ins with

MarFe and IceDust, both in analysis with 1 kyr prediction lag (Fig. 5.4q) and 500 yr

prediction lag (Fig. 5.5c,f), implying that there is no evidence in these records of a

coupling between Fe/dust flux and insolation.

5.2 Sampling-standardized comparison of the pre- and

post-MPT dynamics

In the previous section I presented causal couplings inferred between different com-

ponents of the climate system analyzed in different time windows. However, any

inferred differences between the time windows are possibly confounded by the fact

that the duration of the time windows (and hence the number of observations) and the

system components available for analysis are not the same.

I have therefore set up a second analysis to better distinguish between differences that

might arise from unequal sampling and differences that might arise from an underly-

ing change in the system dynamics. This section presents the results of this sampling-

standardized comparison between the pre-MPT and post-MPT, which addresses the

second objective of this thesis: Is there evidence in the data that the causal coupling of

the climate system has changed across the MPT?

In this analysis I have only used time series that span both the post-MPT and pre-

MPT windows, including LR04, EldSL, MarFe, and Ins. These records have the same

underlying assumptions and roughly the same resolution in both post- and pre-MPT

time intervals. Hence, differences in data quality are primarily due to differences in

time series length, i.e the number of available data points (N). The pre-MPT window
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Figure 5.4: Predictive asymmetry results for the post-MPT time window at 1 kyr resolution. Left
column: time series for the post-MPT interval on a temporal bin resolution of 1 kyr. See Fig. 4.5 for
time series acronyms. (a - t) Predictive asymmetry results. Values are medians and 95% ranges of A
values computed according to the analysis design described in chapter 4. Dashed line represents the
significance threshold using a normalization factor of f = 1.0 (eq. 4.4).
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Figure 5.5: Predictive asymmetry results for the post-MPT time window at 500 yr resolution. Left
column: time series for the post-MPT interval on a temporal bin resolution of 500 yrs. See Fig. 4.5 for
time series acronyms. (a - i) Predictive asymmetry results. Values are medians and 95% ranges of A
values computed according to the analysis design described in chapter 4. Dashed line represents the
significance threshold using a normalization factor of f = 1.0 (eq. 4.4).
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has a shorter time series length as compared to the post-MPT window. Time series

length is a key factor in the statistical robustness ofA, as shown by sensitivity analyses

in Haaga et al. (2020).

To make the analyses of post- and pre-MPT windows more equitable, and thus allow

for a comparison of the results, I ranA analyses with the common time series (LR04, El-

dSL, MarFe, Ins) and the same bin resolution (1 kyr), but now with random sequences

of equal length. I chose to set the length of the random sequences to the same length as

the pre-MPT interval (N = 325). I used a set of 150 random sequences of length N=325,

yielding an ensemble of 150 delay reconstructions for transfer entropy estimation and

computation of predictive asymmetries. For the post-MPT window, the 150 sequences

were chosen at random within the larger post-MPT window (N = 479). For the pre-

MPT window, each random sequence spanned the same window (1574-1250 kaBP),

but different realizations were obtained by drawing randomly within the uncertainties

associated with the time series, thus yielding different transfer entropy estimates in

each iteration.

Where predictive asymmetries of pre-MPT and post-MPT overlap, the information of

causal coupling is equal between the two periods. Where the predictive asymmetries

are different, this means that information flow between the parameters have changed

between the two time intervals.

Ice volume — insolation. Analysis of LR04 and Ins shows that empirical evidence

for a causal influence from the insolation time series to ice volume proxy is present in

the pre-MPT interval, but not in the post-MPT interval (Fig. 5.6a and b, respectively).

Analysis of EldSL and Ins, on the other hand, detects a coupling from the insolation

time series to the ice volume proxy only for the post-MPT interval, while no causal

coupling can be detected in the pre-MPT interval (Fig. 5.6d and c, respectively). There

are similarities between the results where a causal coupling is inferred - both diverge

after just a few prediction lags, and reaches a prediction skill of around 2 by 20 ηs (Fig.

5.6a and d), indicating a comparable coupling strength.

Ice volume — Fe flux. In the case of LR04 and MarFe, no coupling is detected in the

pre-MPT window, but a causal coupling is inferred from MarFe to LR04 is present in

the post-MPT window (Fig. 5.6e and f, respectively). The same change in inferred

causal interactions is found in analyses of MarFe and EldSL, with no coupling de-

tected by A in the pre-MPT window, but there is strong support for a causal coupling

from MarFe to EldSL in the post-MPT window (Fig. 5.6g and h respectively). Given

that the analyses are computed in the same way, and with sampling standardization,

these results provide compelling evidence for a significant change in the causal role of
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Southern Ocean Fe flux in the climate system across the MPT.
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Figure 5.6: Sampling-standardized comparison of the pre- and post-MPT dynamics. Left column:
time series for the pre- and post-MPT intervals on a temporal bin resolution of 1 kyr. The post-MPT
time series are constrained to match the number of observations in the pre-MPT window (N=325). See
Fig. 4.5 for time series acronyms. (a - l) Predictive asymmetry results. Values are medians and 95%
ranges of A values computed according to the analysis design described in chapter 4. Dashed line
represents the significance threshold using a normalization factor of f = 1.0 (eq. 4.4).
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Chapter 6

Discussion

6.1 Implications for our understanding of Pleistocene cli-

mate system interactions

The role of Southern Ocean Fe flux. Dynamical evidence in the records I have ana-

lyzed suggest that some of the climate system interactions changed across the MPT.

Southern ocean dust flux emerged as a key player affecting changes in global sea level

after the MPT (Fig. 5.6e-h). Prior to the MPT, the causal relationship between dust and

glacial-intergacial fluctuations was either not significant (Fig. 5.6e,g), or possibly of op-

posite directionality (Fig.A.2c), i.e. changes in ice volume influenced changes in dust

flux. The roles seem to have shifted already during the MPT (Figs. A.3g-i and A.4d-f).

In the post-MPT time window, A results imply that Southern Ocean Fe flux was the

most important climatic forcing among the system components considered here.

In light of the mechanistic hypotheses outlined in Chapter 2, these results may sup-

port the notion that the relative importance of feedback mechanisms between climate

and dust shifted in the MPT. More specifically, the feedbacks between dust and cli-

mate prior to the MPT may have been more dominated by glacial climates impact on

dust flux, where a generally cold and dry glacial climate, less vegetation cover and

strong winds would increase the atmospheric dust flux (Shaffer and Lambert, 2018). In

contrast, climate-dust feedbacks in the opposite direction could become more promi-

nent in the post-MPT, perhaps triggered by the nonlinear amplification of atmospheric

dust load induced by the increasingly deeper glacial climates. This amplification could

tip the balance in favour of dust-driven mechanisms, for example through increased

global cooling due to aerosol scattering of incoming solar radiation (e.g. Tegen and

Lacis, 1996), or through indirect interactions with biogeochemical cycles (Martin, 1990).
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In principle, the analyses performed in my thesis could help quantify the empirical

support for this latter hypothesis of increased glacial dust flux increasing marine pro-

ductivity. However, according to the relative coupling strength inferred fromA results,

the dust forcing on ice volume was substantially greater than the pCO2 forcing in the

post-MPT interval. Dynamical information in the available records thus indicate that

dust-climate feedbacks other than increased marine productivity (e.g. aerosol scat-

tering or cloud formation) were important factors determining the nature of the Late

Pleistocene glacial cycles.

The role of pCO2. My results also strongly suggest that atmospheric pCO2 was an im-

portant forcing of ice volume changes after the MPT (5.4e-h), although the causal rela-

tionship might have been of opposite directionality during the MPT (5.3d,f). The lack

of high resolution, extensive records of pCO2 limits what can be inferred of causal cou-

plings in the climate system prior to the MPT. Atmospheric pCO2 has been implicated

in hypotheses of glacial-interglacial sea level change ever since the strong covariation

of the two variables became known two decades ago (Petit et al., 1999; Shackleton,

2000). Nevertheless, the causal relationship between the two has remained controver-

sial (Abe-Ouchi et al., 2013b). The findings presented in this thesis show that there is

significant information in the data supporting the causal hypothesis that pCO2 was an

important driver of glacial-interglacial changes in the Late Pleistocene climate system.

With the time series available in this study, I have only tested one of the proposed

mechanisms by which pCO2 itself may plausibly have been controlled, namely seques-

tration of carbon from the atmospheric reservoir by increased marine productivity, if

enabled by Fe fertilization of the Southern Ocean. The relationship between pCO2

and Southern Ocean Fe flux is difficult to resolve when taking into account the un-

certainties associated with the data. I do, however, find that when minimizing age

uncertainties by analysing Antarctic dust and pCO2 from the same core, and choosing

higher-resolution time bins, there is dynamical information in the Antarctic aeolian

dust record that helps predict changes in pCO2. Here, the inferred coupling is unidi-

rectional (A.8e).

Given the good agreement between the Southern Ocean marine sediment Fe record

and the Antarctic ice core dust record (MarFe and IceDust), my expectation would be

that this direction of coupling would also be found between Southern ocean dust flux

and pCO2 if the records had tighter age constraints. If so, and if the IceDust record actu-

ally represents a regionally coherent atmospheric dust signal as proposed by Martínez-

Garcia et al. (2011), then such a finding would provide evidence in support of the

hypothesis that Fe fertilization increased marine productivity during glacial periods,
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leading to a drawdown of pCO2 that was a forcing factor of Late Pleistocene changes

in ice volume. I stress, however, that this argument assumes the equivalence of the

Antarctic dust concentration record with the Southern ocean dust flux record, which is

not straightforward, as pointed out by Shaffer and Lambert (2018).

The role of insolation. Whether or not the predictive asymmetry detects a causal re-

lationship from the insolation time series to the ice volume proxy records appears to

depend the time window selected and on the temporal binning resolution. Causal

coupling is detected over the last 800 kyrs (Fig. A.6b-c), but not over the last 500 kyrs

(Fig. 5.4a-d). Interestingly, this time-window sensitivity is not obviously related to

the number of observations, because A values indicate causal coupling on the shorter

(N=325 data points) pre-MPT time interval (Fig. 5.2), but not on the longer (N=2750

data points) pre-MPT control interval (Fig. A.2). The possible role of age model differ-

ences is discussed in the next section.

Higher-resolution analysis detects a coupling from Northern Hemisphere insolation to

global ice volume (Fig. A.10c). This preliminary sensitivity analysis of the effect of

temporal binning suggests that a time bin resolution of 1 kyr is not the ideal resolution

to resolve the dynamics between insolation and ice volume. It might also suggest that

the coupling between insolation and ice volume operates with shorter (∼centennial)

response times, and I will thus argue that if higher resolution ice volume proxy records

were available they might help resolve a coupling between insolation and ice volume

further back in time (e.g. in syn-MPT and pre-MPT intervals).

Limitations of the pre-MPT time window There is information in the data suggest-

ing ice volume forcing of Southern ocean dust flux in the longer control time window

analysis (Fig. A.2c), but not in the shorter pre-MPT window analysis (Fig. 5.2d-f). As

discussed below, this result is consistent with the expectation that a sufficiently long

window of observation is needed for the empirical delay reconstruction to capture the

dynamics. However, this expectation does not explain the finding that Northern Hemi-

sphere insolation helps predict changes in δ18O values in the shorter time window (Fig.

5.2a), but not in the longer control time window (Fig. A.2a). It is also notable that I do

not detect this causal coupling when using the RohSL sea level reconstruction, only

the LR04 δ18O record. As mentioned in Chapter 3, the RohSL record has its issues both

with possible tectonic instability in early parts of the record, and with the presence of

sapropel intervals, both of which might render the RohSL record less representative of

ice volume dynamics. A third option, discussed below, is that the temporal binning

resolution is too coarse to capture the relevant time scales. Overall, however, with the

time series used in these analyses, there is limited dynamical information to support
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the inference of causal couplings in the pre-MPT time interval.

Limitations of the syn-MPT time window The false positives found in analyses of

the syn-MPT time window indicate that one should be careful in accepting the results

for this time interval. In the case of the EldSL — Ins result (Fig. 5.3b), it is plausible

that the time series length is too short for the A test to be statistically robust, as the

syn-MPT window only contains 149 observations when using 1 kyr time bins. Fur-

thermore, the random sequences used to compute the predictive asymmetry further

sub-sample down to 70% of this time series length, leaving the A computation at the

very lower limit of what is required according to comprehensive sensitivity analyses of

synthetic systems (Haaga et al., 2020). Because the statistical robustness of A is system

dependent (e.g. dimensionality, nonlinearity, chaos, noise properties) we have no exact

estimate of the lower data limit for real systems of unknown complexity.

Should we then reject all couplings inferred for this short time window? An argument

can be made that the A results showing a causal coupling from ChaCO2 and MarFe

to the ice volume records are qualitatively more trustworthy, because the predictive

asymmetries fully diverge, with non-overlapping confidence ribbons (Fig. 5.3d, f and

g). This is not the case for the borderline significant false positive between EldSL-Ins,

which just barely crosses the significance threshold. Furthermore, the Fe flux forcing

of ice volume is confirmed by the same analyses performed over the longer control

interval (Fig. A.4d-f). The tentative conclusion that pCO2 and Fe flux acted as a forcing

on ice volume in the syn-MPT interval would arguably also be somewhat more ro-

bust, given that the couplings are detected with two out of the three ice volume proxy

records.

The false positive between ChaCO2 — Ins on the other hand, is unlikely to be the

result of insufficient time series length, because with time bins of 125 years the time

series consisted of 1192 observations, with random sequences down to a minimum of

834 data points, well above the lower data limit for all systems tested in Haaga et al.

(2020). Instead, there are two possible culprits of this false positive. Firstly, the ChaCO2

time series was resampled by Chalk et al. (2017) and published with a resolution of 125

years, although the original observations had one data point every 3.5-4.5 kyrs , i.e. an

order of magnitude lower (Chalk et al., 2017). Although the effects cannot be assessed

without knowing the resampling technique and running sensitivity tests onA, it is not

unlikely that this degree of oversampling may have introduced biases in the ChaCO2

record.

The other possibility is that the syn-MPT time window simply is not wide enough to

capture the relevant dynamics of the system (regardless of temporal resolution and
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Figure 6.1: Qualitative summary of causal inferences. Arrows represent the inferred causal connec-
tions, with the line thickness reflecting the relative magnitude of the predictive asymmetry. Black
arrows/lines show results that are comparable across time intervals. Grey arrows/lines can only be
compared within the respective time windows. Stippled arrows show causal couplings that are only
detected under specific conditions (only one time series, or sensitive to time window or temporal bin).
Solid lines show that the signal is detected across many different records, suggesting a more robust
conclusion.

number of observations). An insufficient window of observation would imply that the

delay reconstruction from the time series would be unable to capture the dynamics of

the system in such a way that causal couplings can be determined. If this were the case

then it would compromise all causal inferences made by A over the syn-MPT time

interval. I will therefore interpret the results of the syn-MPT interval with caution,

and focus instead on the results for the longer control interval (Fig. A.4). Over this

longer syn-MPT control interval, there is no dynamical evidence of coupling between

insolation and ice volume (Fig. A.4a-c), but there is solid dynamical evidence in the

data that Southern Ocean Fe flux was a driver of global ice volume during the MPT

(Fig. A.4d-f).

6.2 Implications for the use of Predictive Asymmetry on

paleoclimate records

As this is the first study that makes extensive use of the novel predictive asymmetry

method on empirical data and ’real world’ questions where causal couplings are un-

known, it is of particular relevance to reflect upon the insights gained concerning the

method and its further development.

Using an model-free approach like the A to infer causality makes two assumptions:

Firstly, it must be assumed that the dynamics of the observed system has settled on
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some typical behaviour, or global attractor. Secondly, it must be assumed that the

system has been observed long enough to be able to describe this behaviour, such that a

delay reconstruction is able to characterise relevant aspects of the invariant properties

of the dynamics. Only then can the visitation frequency estimator approximate the

true probability distribution of the system’s states and provide accurate estimates of

the transfer entropy. It follows from this second point that a sufficiently long window

of observation and a sufficient number of observations within that window are crucial

for A to yield statistically robust causal inferences.

Window of observation. Although sensitivity analyses on synthetic systems have

shown theA test to be remarkably robust to sampling, with only a few hundred obser-

vations being sufficient for many complex systems, there is another aspect of sampling

that may be as important in real-world applications, namely the duration of the win-

dow of observation. Even if we are safe in assuming that the system under study has

settled on its attractor, we need to observe the system over enough time to adequately

sample the state space for delay reconstruction. For example, the syn-MPT time win-

dow may not fully capture the relevant dynamics for some of the processes involved,

as suggested by the visible trend in the syn-MPT EldSL record, which may only rep-

resent a fragment of longer-term oscillations. Hence, the false positive EldSL — Ins

result disappears when the analysis is performed on the extended MPT control inter-

val (1250-700 ka BP; Appendix A.4).

Originally, the pre-, syn-, and post-MPT time intervals were chosen for the analysis de-

sign of this study, based on the overlap of the available paleoclimate records. However,

the additional analyses performed to explore the effect of sampling on the robustness

of results has led to the insight that not only the number of observations, but also the

choice of time window has an impact on what causal relationships can be inferred by

the predictive asymmetry (I here refer to the seemingly ephemeral results of causal

coupling between ice volume records and insolation both before and after the MPT).

Age models. Assuming causal mechanisms when constructing the age models (e.g.

LR04) naturally poses a caveat when using a lag-based causal analysis framework

such as the predictive asymmetry. A predictive asymmetry analysis previously done

on some of the same time series used in this thesis (i.e. SpraSL, GraSL and Ins) has

attributed differences in causal inference between different ice volume proxies to the

effect of age model assumptions (Haaga et al., 2020). Haaga et al. (2020) found signif-

icant A from Ins to the orbitally tuned SpraSL over the past 800 kyrs, while A from

Ins to the orbitally independent GraSL over the past 500 kyrs was found to be insignif-

icant. They attributed this result to bias in the SpraSL age model, which inherently
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assumes a lagged response of sea level to orbital forcing. What I find in this thesis

work, however, is that analyzing SpraSL and the other ice volume proxies used herein

over the same time intervals yield consistent results of orbital forcing over the past 800

kyrs and no orbital forcing over the past 500 kyrs, which rejects the argument that the

differing results are due to different assumptions in the age models. Instead, I will

argue that further work is needed to assess the impact of choice of time window on

the outcome of the predictive asymmetry. However this does not take away from the

admonition that age model construct should be taken into special consideration when

using lag-based causal inference methods.

Temporal binning, interpolation and over-sampling. Geological records are often rid-

dled with hiatuses and irregular sampling resolution. In order to apply a method such

as the A that requires time series sampled on a regular time grid, geological records

will often require some kind of regularization by resampling or interpolation. I have

chosen to run analyses mainly using a temporal bin resolution of 1 kyr, because this

was more compatible with the resolution of the time series used here. However, I have

found that running the analyses with shorter prediction lags for the time series where

higher resolution data is available can in some cases give further revelations of causal

coupling (e.g. fig. A.10).

One may question what would be the most meaningful temporal resolution for a causal

analysis. As is well known, the Earth system and the climate system operate on many

different time scales. Consider, for example, atmospheric pCO2, which on tectonic

timescales is regulated by erosion and uplift, while on seasonal or even diurnal time

scales pCO2 fluctuates in response to the respiration of plants. For dynamics that op-

erate across very large time scales, the time series used here will not be long enough to

contain the relevant dynamical information. At the other extreme, where the response

time is shorter than the temporal bin duration used in the analysis, we intuitively ex-

pect that the relevant dynamics is not captured. However, when there is memory in

the system (expressed as autocorrelation in the records), dynamics that operate faster

than the time bin duration may still be picked up.

Arguably, although the predictive asymmetry is a data-driven method which in the-

ory requires no initial model, the a priori choices made concerning temporal binning

and the range of prediction lags ηmax will have implications for what causal relation-

ships can be uncovered. The analysis design will thus inevitably carry some ’model’

assumptions about the system to be studied. Choices regarding temporal binning and

ηmax will inevitably be based on what process we wish to study and our understand-

ing of what time scale it operates on. To assess the effect of making such choices, one
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solution could be to compute the predictive asymmetry over an array of different time

bin resolutions, as far as our data resolution allows.

Furthermore, if we assume that the false positive result between ChaCO2 and Ins in

the syn-MPT is not due to an inadequate window of observations, then a possible

explanation is the fact that at a resolution of 125 yrs, the ChaCO2 record provided by

Chalk et al. (2017) is highly over-sampled. The time series resolution used to compute

the predictive asymmetry here is an order of magnitude higher than the original data,

which raises a warning flag for data-driven causal analysis.

Further work is needed to better understand how data interpolation and over-sampling

affect the predictive asymmetry, which is outside the scope of this thesis, but I offer

some suggestions in the next section.

6.3 Way forward

Quantifying the robustness of our results with regards to the number of observa-

tions. How many observations are required to go from saying the results are sensitive

to sampling to claiming the results are robust? This would be an important goal for

further work. One approach would be to do a sensitivity analysis on the most robust

post-MPT results with the same analysis by gradually down-sampling the time series.

Understanding the effect of uncertainties. For time series with associated uncertain-

ties, which is typically the case in geological records, a computational framework for

dealing with uncertainties and propagating them into the analysis has already been

made available (Haaga, 2019), which I have used in this thesis. However, further work

is needed to understand how these uncertainties affect causal inferences, especially

when trying to reconstruct causal networks among variables with different levels of

uncertainty.

Investigating the effect of interpolation. Short time series and discontinuous sam-

pling are inherent problems in geological records. Time series length is probably the

most important determinant of the robustness of dynamical system reconstruction of

the Earth system. Furthermore, the temporal resolution determines the time scales

of the dynamics to be studied, but naïve interpolation may have unintended conse-

quences for data-driven causal analysis. A systematic approach is needed to quantita-

tively assess the effect of time series interpolation on the predictive asymmetry.

Lessons learned from false positives. The false positives draw extra attention to

where there is a need for further work in understanding the robustness ofA. In partic-
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ular, understanding how incomplete delay reconstruction due to an insufficient win-

dow of observation would affect A (would it sometimes detect a coupling that isn’t

there?) could be investigated by sensitivity analyses on synthetic systems. Likewise,

further work is needed to push the boundaries of uncertainty handling by resampling

(e.g. how much resampling is over-sampling?).

Better understanding of how the choice of time intervals may affectA. We have seen

that slight changes in the choice of time interval may have an impact in whether or not

a causal coupling is detected (e.g. analyses between Ins and ice volume proxy records

in different time windows). As this does not necessarily relate to the number of obser-

vations or data quality, further work is needed to understand how to make informed

choices for analysis design, and to assess the impact of choice of time intervals on the

outcome of the predictive asymmetry.
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Chapter 7

Conclusions

In this thesis I have used a novel causal analysis framework on state-of-the-art paleocli-

mate records to uncover empirical evidence for causal connectivity among some of the

key components of the Pleistocene climate system. Specifically, the dynamical informa-

tion in the time series suggests that atmospheric pCO2 and Southern Ocean dust flux

were important factors influencing ice volume changes in the Late Pleistocene. In con-

trast, there is limited support for external insolation forcing, at least on the time scales

I have targeted here. Furthermore, a comparative analysis of pre-MPT and post-MPT

time windows suggests that the strength and directionality of some of the causal in-

teractions in the climate system changed across the MPT. Specifically, Southern Ocean

dust seems to have emerged as a forcing factor during the MPT and became a signifi-

cant forcing of ice volume in the Late Pleistocene. These findings can help constrain the

number of hypotheses currently competing to explain the rise of the ∼100-year peri-

odicity of Late Pleistocene glacial cycles. Moreover, this data-driven approach may be

valuable for assessing the level of dynamical information contained in available data,

and for guiding mechanistic modeling efforts. In order to further quantify the rela-

tive empirical support for different proposed causal mechanisms, I suggest including

proxy records for ocean circulation, which has been implicated in deep-ocean carbon

storage.

This thesis is the first to use the predictive asymmetry method on a comprehensive

set of paleoclimate records since it was developed by Haaga et al. (2020). The ability

to determine the strength and directionality of causal interactions directly from ob-

served time series, without specifying a model, is remarkable, but it also places tough

demands on the observational records and on the analysis design. In my experience,

the two most prominent challenges to making robust causal inferences are associated

with data pre-processing (temporal binning, resampling, and interpolation), and with
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the assumption that the time window of observation is sufficiently long to capture the

dynamics of the system. If future developments of the analytical framework can help

overcome some of these challenges, then the method can expand our toolkit for both

testing and building hypotheses on causal interactions in the complex Earth system.
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Appendix A

Appendix 1: Predictive asymmetry

results

A.1 Predictive asymmetry results for the pre-MPT win-

dows
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Figure A.1: Predictive asymmetry results for the pre-MPT time window (15740-1250 ka BP). This fig-
ure is included here to facilitate comparison with the corresponding analysis over the longer control
window.
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Figure A.2: Predictive asymmetry results for the longer pre-MPT control window (4000-1250 ka BP).
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A.2 Predictive asymmetry results for the syn-MPT win-

dows
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Figure A.3: Predictive asymmetry results for the syn-MPT time window (1240-1092 ka BP). This figure is
included here to facilitate comparison with the corresponding analysis over the longer control window.
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Figure A.4: Predictive asymmetry results for the longer MPT control window (1250-700 ka BP).
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A.3 Predictive asymmetry results for the post-MPT win-

dows
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Figure A.5: Predictive asymmetry results for the post-MPT time window (492-13 ka BP). This figure is
included here to facilitate comparison with the corresponding analysis over the longer control window.
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Figure A.6: Predictive asymmetry results for the longer post-MPT control interval (797-13 ka BP).
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A.4 Comparative analysis for pre- and post-MPT windows
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Figure A.7: Sampling-standardized comparison of the pre- and post-MPT dynamics. The post-MPT
time series are constrained to match the number of observations in the pre-MPT window (N=325).
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A.5 Sensitivity analyses

A.5.1 Temporal binning of time series
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Figure A.8: Predictive asymmetry results for the post-MPT time window (492-13 ka BP) at 500 yr
resolution.
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Figure A.9: Sensitivity analysis of temporal resolution of over-sampled ChaCO2 record (1kyr, 500 yrs
and 125 yrs) on the syn-MPT time window (1240-1092 ka BP).
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Figure A.10: Sensitivity analysis of temporal resolution of GraSL record (1kyr, 500 yrs and 125 yrs) on
the post-MPT time window (492-13 ka BP).
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A.5.2 Binning of the delay reconstruction (ε)
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Figure A.11: Sensitivity analysis on ε over the synMPT and control MPT time intervals (N=149 and
N=551, respectively).
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A.5.3 Time series length (N)
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