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A B S T R A C T

We test the application of parametric, non-parametric, and semi-parametric calibration models for re-
constructing summer (June–August) temperature from a set of tree-ring width and density data on the same
dendro samples from 40 sites across Europe. By comparing the performance of the three calibration models on
pairs” of tree-ring width (TRW) and maximum density (MXD) or maximum blue intensity (MXBI), we test
whether a non-linear temperature response is more prevalent in TRW or MXD (MXBI) data, and whether it is
associated with the temperature sensitivity and/or autocorrelation structure of the dendro parameters. We note
that MXD (MXBI) data have a significantly stronger temperature response than TRW data as well as a lower
autocorrelation that is more similar to that of the instrumental temperature data, whereas TRW exhibits a
redder” variability continuum. This study shows that the use of non-parametric calibration models is more
suitable for TRW data, while parametric calibration is sufficient for both MXD and MXBI data – that is, we show
that TRW is by far the more non-linear proxy.

1. Introduction

Tree-ring data play a central role for reconstructing temperature and
hydroclimate variability over the past one to two millennia (Cook et al.,
2004, 2010, 2015; Esper et al., 2016, 2018; Ljungqvist et al., 2016,
2019b,a; Wilson et al., 2016; Anchukaitis et al., 2017). This palaeoclimate
archive has a strong advantage due to its annual resolution and absolute
dating accuracy (Schweingruber, 1988; Cook and Kairiukstis, 1990;
Büntgen et al., 2018) in combination with relatively good knowledge of
the biological processes governing tree growth (Fritts, 1976; Speer, 2010;
Anchukaitis, 2017). The most frequently and successfully used tree-ring
parameters for the study of past temperature variation are tree-ring width
(TRW) and maximum latewood density (MXD) (e.g. Esper et al. (2016,
2018)). TRW contains considerable variability obscuring climatic

information, such as age and size related trends (Cook and Kairiukstis,
1990; Weiner and Thomas, 2001), biological memory effects (Fritts,
1976; Esper et al., 2015), and external disturbances (Rydval et al., 2018)
whereas MXD appears to be less affected by non-climatic interference
(Briffa et al., 2004) – resulting in a generally stronger temperature signal
in MXD data than in TRW data (Kirdyanov et al., 2007; Büntgen et al.,
2011; Konter et al., 2016). Recently, techniques using reflected light from
the surface of wood (blue intensity) (see Appendix A) as a surrogate for
the X-ray derived MXD has shown promising results (Wilson et al.,
2017a), both in terms of replicating variability of the MXD parameter by
using the corresponding maximum blue intensity (MXBI) parameter
(Björklund et al., 2014), and in terms of its ability to reconstruct
temperature (Kaczka et al., 2018).

Almost all tree-ring records are influenced, to a greater or lesser
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extent, by both growing season temperature and hydroclimatic condi-
tions (Babst et al., 2013; St George and Ault, 2014; St George, 2014;
Klesse et al., 2018). However, the response to either temperature or
hydroclimate may be strongly dominating for tree-ring data from cer-
tain locations allowing the reconstruction of one of the parameters. This
typically occurs at the extreme limit of a tree species’ distribution where
climate may strongly dominate tree growth at certain locations, al-
lowing the reconstruction of either temperature or hydroclimate from
the tree-ring data (Hellmann et al., 2016). However, even at such lo-
cations, the strength of the response is typically unstable over time
(Büntgen et al., 2013; Galván et al., 2014; Schultz et al., 2015; Seim
et al., 2016; Babst et al., 2019).

For various reasons, including those mentioned above, the re-
lationship between tree growth and climate can often be of a non-linear
nature (for definitions of non-linearity, see Section 3). The most well-
known example of such non-linear tree-growth behaviour is the “di-
vergence problem” (Wilson et al., 2007; D’Arrigo et al., 2008): the
apparent weakening – or even negative – response of temperature-
sensitive tree-ring chronologies to temperature, and/or trend departure,
since around the 1970s (Jacoby and D’Arrigo, 1995). A temperature
disassociation with tree growth has been identified for both TRW and
MXD, mainly affecting the low-frequency signal and trend (Briffa et al.,
1998), although a reduced high-frequency sensitivity has also been
reported (D’Arrigo et al., 2008).

Especially in regions where climate is not the main limiting factor
for tree growth, multiple factors can influence tree growth and in-
troduce non-linearities, ranging from forest management (He et al.,
2016), stand competition (Cook, 1985), and insect outbreaks (Esper
et al., 2006; Büntgen et al., 2009) and so forth. The climate signal in
tree-ring records can also be affected by natural and anthropogenic
changes in the forest cover even at apparently pristine sites (Gunnarson
et al., 2012). An additional potential, and poorly constrained, non-
linear effect on the tree growth–climate relationship in modern times is
the CO2 fertilization effect (Graybill and Idso, 1993; Keenan et al.,
2013; Zhu et al., 2016) that may recently artificially have enhanced
growth for some tree species and in certain locations (Körner et al.,
2007; Frank et al., 2015; Scharnweber et al., 2019).

Another factor to consider, of relevance in any assessment of non-
linear climate–tree growth relationships, is that tree-ring data contain a
different autocorrelation structure than their instrumental target data –
something that can constitute unexplained variance. This was already,
for TRW, highlighted by Schulman (1956) and Matalas (1962). It ap-
pears as though TRW data exhibit a larger biological carry-over effect
(Frank et al., 2007) due to the utilisation of carbohydrates from pre-
vious year(s) (Vaganov et al., 2006) than MXD data (Schweingruber
et al., 1978; Björklund et al., 2017), leading to TRW data containing a
considerably “redder” variability continuum than instrumental ob-
servations and MXD data (Bunde et al., 2013; Franke et al., 2013;
Büntgen et al., 2015; Esper et al., 2015; Zhang et al., 2015).

While the non-linear temperature response in tree-ring data has
been addressed in numerous publications – and differences in the
temperature correlation strength and autocorrelation structure between
TRW and MXD have been discussed as well – these issues have not
hitherto been treated together in a systematic way. In particular, the
issue of whether non-linear temperature responses in TRW data are
more prevalent than in MXD data has never been thoroughly tested.
Støve et al. (2012) tested the use of a mixture of parametric and non-
parametric calibration methods upon a set of annually resolved tem-
perature-sensitive proxy data, of which 19 were tree-ring records out of
30 proxies. Moreover, Støve et al. (2012) explored the potential benefits
of applying a semi-parametric calibration method on proxy data ex-
hibiting various degrees of non-linear response to temperature. The
particular non-linear relationship between temperature and a tree-ring
record represents a deterministic relationship (i.e. an exact relationship
between the two variables). In reality, the relationship between tem-
perature and tree-ring data (or other proxies) is non-deterministic for a

number of reasons, several of which are not handled by the testing
procedure or the conceptual framework of the deterministic non-linear
relationship. The method by Støve et al. (2012) for detecting non-lin-
earity works best when using “pairs” of data, making it possible to
compare which record of the two behaves more non-linear than the
other. In this case, the need for “pairs” of data requires the use of a
compromise target season – e.g. June–August – for the TRW, MXD, and
MXBI data despite a shorter seasonal response for the former data type
and a longer one for the latter data types (see further Section 5.2).

Here, we expand on the work of Støve et al. (2012) and test the use
of parametric, non-parametric, and semi-parametric calibration
methods upon a set of TRW, MXD, and MXBI data from identical tree-
ring samples from 40 sites across Europe. We further explore whether
the incidence of detected non-linearity is associated with the tem-
perature correlation strength and/or the autocorrelation of the data. We
explicitly pose the following testable questions: (1) Are MXD (MXBI)
data more linear in their response to temperature than TRW data? (2) Is
the potential linearity/non-linearity of TRW, MXD, and MXBI data,
respectively, related to the strength of the temperature signal and/or
autocorrelation structure? (3) Can the response of MXBI and MXD be
distinguished from each other in their relationship with TRW?

2. Data

2.1. Tree-ring temperature-sensitive data

We have compiled published tree-ring temperature-sensitive data for
Europe from locations where such chronologies exist both for TRW and
MXD or MXBI (or for all three) covering the period 1860–2000 (Table 1;
Fig. 1). The aim has been to compile records to provide a representative
coverage, with northern Scandinavia serving as the principal test bed,
but not to include all existing “pairs” of TRW and MXD (MXBI) data. A
large number of additional TRW and MXD records are available, in
particular from the Alps (Frank and Esper, 2005), but these records un-
fortunately end prior to the year 2000. Our data compilation consists of
32 “pairs” of TRW and MXD data and of 13 “pairs” of TRW and MXBI
data. For practical purposes, we have grouped the tree-ring records into
four regions: Scandinavia, Scotland, Continental Europe (the Alps and
Tatra Mountains), and the Pyrenees (Table 1; Fig. 2).

A cubic smoothing spline (Cook and Peters, 1981, 1997) with a 50%
frequency-response cut-off equal to 300 years were applied to remove
non-climatic age trends from the raw TRW, MXD, and MXBI measure-
ment series. This procedure limits the amount of low-frequency climate
information preserved (Cook et al., 1995) compared to Regional Curve
Standardisation (Esper et al., 2003) and related “signal free” (Melvin
and Briffa, 2008) detrending techniques. However, this is of little im-
portance here as we only consider temperature variability over the 141-
year period 1860–2000 (see further Section 5.1). No special adjustment
(Frank et al., 2007) was made for temporal variance changes between
the individual series in each chronology. The indexed series were de-
rived with division for TRW data and subtraction for MXD and MXBI
data (Bräker, 1981; Schweingruber et al., 1988). Finally, the chron-
ologies were produced by using the bi-weight robust mean (Hoaglin
et al., 1983) in the program ARSTAN (Cook and Krusic, 2005). Only for
TRW data from Scotland, some individual series were standardised
using a 100-year spline to avoid a negative trend or a false positive
trend at the end of the series. A number of individual measurement
series in the Scotland MXBI data were deleted due to several zero values
(e.g. 4 time series for Glen Derry North [GDN], 14 in Glen Falloch
[GLF], 3 in Inverey [INV], 2 in Quoich [QUO], and 7 in Rhiddoroch
[RHD]). Based on a disturbance assessment by Rydval et al. (2016) for
all the Scottish data, only those site chronologies for which the dis-
turbance effect was found to be minimal were included in this study.
The sample depth and the Expressed Population Signal (EPS; Wigley
et al. (1984)) values were calculated using the program ARSTAN (Cook
and Krusic, 2005). The EPS was measured in standardised time-series

F.C. Ljungqvist, et al. Dendrochronologia 59 (2020) 125652

2



within a window length of 50 years, with a window overlap of 25 years,
meaning an EPS value every 25 years from the beginning of the time
series to the last year. Table 2 report the minimum and the maximum
values of sample depth and EPS from 1860 to 2000. The frequently
used, but arbitrarily chosen, EPS threshold of 0.85 suggests that a tree-
ring chronology is dominated by a clear population-level signal rather
than by individual noise (Speer, 2010).

2.2. Instrumental temperature data

Instrumental data for this study were obtained from HadCRUT4.04
(Morice et al., 2012), consisting of gridded monthly mean temperature

data and presented on a 5° latitude by 5° longitude grid. It is a blend of
the CRUTEM4 land surface air temperature dataset (Jones et al., 2012)
and the HadSST3 sea surface temperature dataset (Kennedy et al.,
2011a,b). The temperature data from each meteorological station was
first converted to an anomaly with regard to the 1961–90 average
temperature for the station and then the monthly mean was calculated
for all the station anomalies within each 5°×5° grid-cell from 1850 to
the present. We started our analysis in 1860 because of considerable
missing data in earlier years (Christiansen and Ljungqvist, 2017) and
since the instrumental temperature measurements contain a well-
known warm bias during the summer months prior to c. 1860 (Moberg
et al., 2003; Frank et al., 2007; Böhm et al., 2010).

Table 1
List of tree-ring records included in this study (listed after latitude from north to south). The abbreviation code for tree species follows the standard used in the
International Tree-Ring Data Bank (ITRDB) as listed in Grissino-Mayer (1993) as follows: LADE = European larch (Larix decidua Mill.), PCAB = Norway spruce
(Picea abies (L.) H. Karst.), PICE = Swiss stone pine (Pinus cembra L.), PISY = Scots pine (Pinus sylvestris L.), and PIUN = Mountain pine (Pinus uncinata Ramond ex
DC.). Other abbreviations: Long. = longitude; Lat. = Latitude; Elev. = elevation above sea level; TRW = tree-ring width; MXD = maximum latewood density; MXBI
= maximum blue intensity. A “X” mark indicates the presence of data and a dash (–) indicates the absence of data.

Record Long. Lat. Elev. (m) Species TRW MXD MXBI Key reference

Scandinavia
Northern Finland 28.20 68.90 200 PISY X X X Björklund et al. (2019)
Forfjorddalen 15.73 68.79 40–160 PISY X X – McCarroll et al. (2013)
Kiruna (KID) 20.17 68.50 430 PISY X X – Büntgen et al. (2011)
Kiruna (KIW) 20.17 68.50 430 PISY X X – Büntgen et al. (2011)
Ketomella (PTD) 24.08 68.37 300 PISY X X – Büntgen et al. (2011)
Ketomella (PTK) 24.08 68.37 300 PISY X X – Büntgen et al. (2011)
Ketomella (PTW) 24.08 68.37 300 PISY X X – Büntgen et al. (2011)
Laanilaa 27.35 68.49 220–310 PISY X X – McCarroll et al. (2013)
Torneträsk (TOD) 19.80 68.33 390 PISY X X – Büntgen et al. (2011)
Torneträsk (TOW) 19.80 68.33 390 PISY X X – Büntgen et al. (2011)
Kesänkijärvi (KES) 24.50 67.93 450 PISY X X – Büntgen et al. (2011)
Luosu (PIS) 24.25 67.83 300 PISY X X – Büntgen et al. (2011)
Luosu (PIT) 24.25 67.83 300 PISY X X – Büntgen et al. (2011)
Muddus 20.30 66.90 450–510 PISY X X – Björklund et al. (2019)
Tjeggelvas 17.16 66.60 460–580 PISY X X – Björklund et al. (2014), Linderholm et al. (2015)
Arjeplog 18.20 66.30 550–700 PISY X X X Björklund et al. (2014), Linderholm et al. (2015)
Ammarnäs 16.10 65.90 400–600 PISY X X – Björklund et al. (2014), Linderholm et al. (2015)
Kittelfjäll 15.50 65.20 530–600 PISY X X – Björklund et al. (2014), Linderholm et al. (2015)
Jämtland 13.50 63.20 650–680 PISY X X X Björklund et al. (2014), Linderholm and Gunnarson (2019)
Rogen 12.40 62.37 700–900 PISY X – X Fuentes et al. (2018)
Scotland
Rhiddoroch (RHD)b –4.98 57.90 180–230 PISY X – X Rydval et al. (2017b)
Glen Affric (GAN) –4.92 57.28 300 PISY X X – Rydval et al. (2017b)
Ryvoan (RYO)c –3.65 57.17 420–480 PISY X X X Rydval et al. (2017b)
Glen Derry North (GDN)d –3.58 57.05 530–600 PISY X – X Rydval et al. (2017b)
Quoich (QUO)e –3.52 57.02 430–500 PISY X – X Rydval et al. (2017b)
Inverey (INV)f –3.52 57.00 500–550 PISY X – X Rydval et al. (2017b)
Upper Glen Feshie (UGF) –3.87 56.98 400–520 PISY X – X Rydval et al. (2017b)
Ballochbuie (BAL) –3.32 56.97 300–500 PISY X X X Rydval et al. (2017b)
Meggernie (MEG) –4.33 56.57 325 PISY X – X Rydval et al. (2017b)
Glen Falloch (GLF)g –4.65 56.37 160–200 PISY X – X Rydval et al. (2017b)
Continental Europe
Dolina Suchej Wody 20.03 49.25 1480 PCAB X X – Büntgen et al. (2007)
Dolina Mengusovska 20.07 49.15 1450 LADE X X – Büntgen et al. (2007)
Oetztal 11.02 46.85 1900 PCAB X X – Esper et al. (2007)
Lötschental 7.85 46.47 2200 LADE X X – Büntgen et al. (2006)
Val di Sole 10.69 46.42 2250 PICE X X – Cerrato et al. (2019)
The Pyrenees
Lac d’Aumer –0.09 42.51 2400 PIUN X X – Büntgen et al. (2010)
Sobrestivo –0.06 42.42 2500 PIUN X X – Büntgen et al. (2010)
Gerber –0.59 42.38 2400 PIUN X X – Büntgen et al. (2010)
Port de Cabus –1.25 42.32 2450 PIUN X X – Büntgen et al. (2010)
Eyne –2.07 42.28 2400 PIUN X X – Büntgen et al. (2010)

a For the site Laanila, a larger number of TRW measurements than MXD measurements are included as the number (15) of TRW measurements otherwise would be
insufficient to build a reliable chronology.

b For Rhiddoroch (RHD), 7 individual MXBI measurement series were deleted due to several zero values.
c For the site Ryvoan (RYO), TRW and MXBI parameters were measured on the same samples. However, MXD was measured on samples from the same trees but

not on the exact same sample as TRW and MXBI. The MXD samples were extracted just above where cores for TRW and MXBI were extracted.
d For Glen Derry North (GDN), 4 individual MXBI measurement series were deleted due to several zero values.
e For Quoich (QUO), 2 individual MXBI measurement series were deleted due to several zero values.
f For Inverey (INV), 3 individual MXBI measurement series were deleted due to several zero values.
g For Glen Falloch (GLF), 14 individual MXBI measurement series were deleted due to several zero values.
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The reason we use the HadCRUT4 ensemble of gridded instrumental
temperature data, rather than just the land-based part – i.e. CRUTEM4
(Jones et al., 2012) – is to assess the sensitivity of our results to small
variations in the instrumental temperature data used. An ensemble,
consisting of 100 different members, for this purpose is only available
for the HadCRUT4 data set. The 100 ensemble members sample the
spread of the possible distribution surface temperature anomalies while
considering method-choice biases from station homogenisation adjust-
ment procedures, station climatological normal uncertainties, adjust-
ments for urbanisation, the influence of thermometer exposure biases,
and data coverage uncertainties.

Christiansen and Ljungqvist (2017) explored the uncertainties in-
herent in the HadCRUT4 data set, and their Figure 7 shows that before
1950 most of the uncertainties are represented by the spread of the
ensemble, i.e., by systematic errors. It is clear that for the temperatures
derived from HadCRUT4 there is a need to in-fill missing values. We
therefore inspected all HadCRUT4 local 5°×5° grid-cell series extracted
from the data set. It is evident that the 5°×5° grid-cell both for the
Pyrenees and for northeastern Scandinavia lack data as noted above,
and these years were omitted so that the analysis is performed on the
same set of years. The coverage-error in HadCRUT4 decreases with
time, becoming small after 1950, but investigating the effect of this on
our results is beyond the scope of the present analysis. Sampling and
observational errors could additionally be sampled by stochastic mod-
elling, but we will not go further into this issue in the present article.

3. Methods for testing non-linearity

We start with some general considerations regarding linear and non-
linear relationships between two variables (e.g., temperature and tree
growth). The concept of a linear relationship suggests that two quan-
tities or variables are proportional to each other. The most widely used
statistical tool for exploring a linear relationship between variables is
the linear regression model: = + +y a ebx , where y and x are the
respective variables. The variable e captures all other factors which
influence the dependent variable y other than the regressor x including
noise. Furthermore, a and b are unknown parameters that can be esti-
mated by ordinary least squares (OLS) when we have observations of
the variables x and y. This model is a so-called parametric model, as we
have specified a functional relationship between the variables x and y,
and in this case a linear relationship. However, there are cases where
such a model is unsuitable because of intrinsic non-linearity in the data.

One way of accounting for non-linearities is to adjust the linear
regression model to a non-linear version: e.g., = + +y a bx e2 .
Doubling x now gives rise to a quadrupled increment of y. However,
this is still a parametric model since the functional relationship between
y and x is specified. Furthermore, we can still use OLS to estimate the
unknown parameters, a and b, as we can now transform the data of x by
squaring it before applying the estimation method (OLS). However,
sometimes we do not know the true functional relationship between x
and y, thus we would like to have a method that does not impose a

Fig. 1. Map showing the location of the temperature-sensitive tree-ring data. The colour-coded symbols indicate “pairs” of TRW, MXD, and MXBI data. Square
symbols indicate two or more TRW and MXD “pairs” from essentially the same location.
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particular functional relationship. This is possible by using a non-
parametric regression model: = +y s x e( ) , where s is an unknown
function that can be estimated by various “smoothing” or kernel
methods (Fan and Gijbels, 1996). Such a model is called non-para-
metric, since we do not assume a specific functional form of s. However,
the estimate of s may reveal a non-linear relationship, and the obtained
estimate can even guide us to set up a parametric functional form for s,
either linear or non-linear, depending on the shape of the estimate of s.

So far, we have only considered a single variable as the regressor x

but the above can be extended to many regressors x x, ..., p1 . However, it
is well known that estimation of such high-dimensional problems using
non-parametric methods suffers from the so-called curse-of-di-
mensionality, e.g., that in order to obtain a statistically sound and re-
liable result in the estimate of s, the amount of data needed to support
the result grows exponentially with the dimensionality. Thus, one often
assumes additivity, as we also will do throughout this article, i.e. with

=p 2, = + + +y a s x s x e( ) ( )1 1 2 2 , where again s1 and s2 represent un-
known functions that must be estimated, typically by the back-fitting

Fig. 2. Visualisation of the included tree-ring data over the period 1860–2000 for each regional subset, standardised to z-score units over the full period, with TRW
data in blue, MXD data in red, and MXBI data in yellow. (a) Scandinavia, (b) Scotland, (c) Continental Europe, and (d) the Pyrenees. Note the overall larger spread in
the TRW data and the similarity between MXD and MXBI data. The numbers within the parentheses indicate the number of “pairs”.
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algorithm, confer Section 3.1. The generality of such additive models is
attractive. However, precision and power are likely to be lost if a non-
parametric component is adopted when a linear or other parametric
term is adequate. There are therefore many situations where a semi-
parametric approach will be more beneficial. Models of this type allow
mixtures of linear and non-parametric components, for example

= + + +y a b x s x e( )1 1 2 2 , where now the variable x1 is having a linear
effect on the response y, whereas the variable x2 has a non-parametric,
thus potentially a non-linear, effect on y due to the estimation of the
unknown function s2.

In this article, we compare four different models – a linear model,
two semi-parametric models, and a full non-parametric model – by
examining the Akaike Information Criterion (AIC) (Akaike, 1974). AIC
is an estimator of the relative quality of statistical models for a given set
of data. Given a collection of models for the data, AIC estimates the
quality of each model, relative to each of the other models. In this way
AIC provides a means for calibration model selection.

3.1. Non- and semi-parametric regression models

As outlined above, non- and semi-parametric modelling aim to relax
assumptions about the form of a regression function, by letting the data
define a suitable function that describes the available data well. These
approaches are powerful in exploring fine structural relationships and
provide useful diagnostic tools for parametric models. This leads us to
the following additive non-parametric model between observables Y
and X ,

= + +
=

Y s X e( ) ,
j

d

j j
1 (1)

where s s, ..., d1 are unknown (smooth) uni-variate functions, =E e( ) 0,
=eVar( ) 2 and e is independent of the vector of co-variates X . To

ensure identifiability, s s, ..., d1 are required to satisfy

= =E s X j d[ ( )] 0, 1, ..., ,j j (2)

which implies that =E Y( ) . Estimation of the unknown functions

Table 2
Pearson correlation coefficient values (R) between instrumental June–August temperature data and tree-ring records and the autocorrelation (AC1) values for tree-
ring records included in this study. Abbreviations as follows: MXBI = maximum blue intensity; MXD = maximum latewood density; TRW = tree-ring width; T =
Instrumental temperature; EPS = Expressed Population Signal. An EPS value exceeding 0.85 suggests the dominance of a clear population-level growth/climate
signal. The sample depth shows the range from the lowest to the highest sample depth occurring during the period 1860–2000. All tree-ring records are listed after
latitude from north to south. A dash (–) indicates the absence of data.

Record R TRW R MXD R MXBI AC1 T AC1 TRW AC1 MXD AC1 MXBI EPS TRW EPS MXD EPS MXBI Sample depth

Scandinavia
Northern Finland 0.39 0.68 0.59 0.16 0.86 0.36 0.55 0.95–0.99 0.90–0.95 0.96–0.99 69–84
Forfjorddalen 0.54 0.63 – 0.11 0.50 0.10 – 0.96–0.98 0.97–0.98 – 31–42
Kiruna (KID) 0.49 0.73 – 0.16 0.77 0.20 – 0.98–0.98 0.99–0.99 – 45–101
Kiruna (KIW) 0.46 0.74 – 0.16 0.67 0.32 – 0.96–0.98 0.96–0.98 – 25–83
Ketomella (PTD) 0.38 0.68 – 0.16 0.68 0.20 – 0.97–0.98 0.98–0.99 – 43–58
Ketomella (PTK) 0.33 0.72 – 0.16 0.78 0.35 – 0.96–0.98 0.98–0.99 – 58–69
Ketomella (PTW) 0.34 0.71 – 0.16 0.74 0.36 – 0.96–0.98 0.98–0.99 – 36–39
Torneträsk (TOD) 0.42 0.70 – 0.11 0.70 0.27 – 0.96–0.98 0.98–0.99 – 36–42
Laanila 0.42 0.66 – 0.16 0.64 0.41 – 0.94–0.98 0.93–0.97 – 33–58
Torneträsk (TOD) 0.42 0.70 – 0.11 0.70 0.27 – 0.96–0.98 0.98–0.99 – 33–95
Torneträsk (TOW) 0.47 0.69 – 0.11 0.71 0.28 – 0.94–0.97 0.96–0.98 – 13–77
Kesänkijärvi (KES) 0.25 0.75 – 0.16 0.51 0.07 – 0.97–0.98 0.99–0.99 – 72–86
Luosu (PIS) 0.17 0.67 – 0.16 0.63 0.03 – 0.93–0.98 0.97–0.99 – 26–55
Luosu (PIT) 0.15 0.71 – 0.16 0.65 0.12 – 0.96–0.97 0.98–0.99 – 36–53
Muddus 0.40 0.63 – 0.16 0.55 0.15 – 0.61–0.79 0.74–0.92 – 6–6
Tjeggelvas 0.33 0.59 – 0.11 0.47 0.15 – 0.90–0.95 0.97–0.98 – 34–53
Arjeplog 0.38 0.57 0.58 0.11 0.58 0.30 0.02 0.92–0.95 0.96–0.97 0.96–0.97 32–41
Ammarnäs 0.44 0.64 – 0.11 0.50 0.09 – 0.90–0.96 0.93–0.98 – 24–35
Kittelfjäll 0.29 0.52 – 0.11 0.69 0.20 – 0.88–0.95 0.93–0.94 – 22–36
Jämtland 0.38 0.65 0.71 –0.03 0.55 0.14 0.10 0.90–0.96 0.95–0.97 0.94–0.97 30–37
Rogen 0.55 – 0.79 –0.03 0.27 – 0.00 0.98–0.99 – 0.97–0.98 104–119
Scotland
Rhiddoroch (RHD) 0.24 – 0.29 0.11 0.58 – 0.54 0.76–0.86 – 0.86–0.92 10–16
Glen Affric (GAN) 0.21 0.53 – 0.11 0.66 0.39 – 0.69–0.78 0.77–0.86 – 11–11
Ryvoan (RYO) 0.30 0.49 0.32 0.11 0.61 0.39 0.45 0.86–0.91 0.86–0.94 0.86–0.92 14–16
Glen Derry North (GDN) 0.43 – 0.59 0.11 0.58 – 0.16 0.87–0.92 – 0.93–0.94 25–27
Quoich (QUO) 0.35 – 0.63 0.11 0.54 – 0.29 0.66–0.84 – 0.87–0.92 15–17
Inverey (INV) 0.28 – 0.53 0.11 0.75 – 0.24 0.81–0.93 – 0.71–0.87 18–19
Upper Glen Feshie (UGF) 0.29 – 0.67 0.11 0.61 – –0.02 0.95–0.98 – 0.97–0.98 76–89
Ballochbuie (BAL) 0.33 0.55 0.62 0.11 0.68 0.10 0.05 0.82–0.89 0.91–0.94 0.90–0.93 19–21
Glen Falloch (GLF) 0.23 – 0.43 0.11 0.74 – 0.48 0.95–0.98 – 0.93–0.96 79–82
Meggernie (MEG) 0.18 – 0.41 0.11 0.65 – 0.27 0.78–0.91 – 0.74–0.94 11–20
Continental Europe
Dolina Suchej Wody 0.50 0.56 – 0.33 0.37 0.13 – 0.96–0.98 0.98-0.99 – 43–56
Dolina Mengusowska 0.24 0.47 – 0.33 0.38 0.21 – 0.97–0.99 0.96–0.98 – 34–58
Oetztal 0.32 0.36 – 0.23 0.67 0.08 – 0.93–0.96 0.96–0.98 – 39–45
Lötschental 0.33 0.58 – 0.16 0.41 0.27 – 0.95–0.97 0.96–0.97 – 24–29
Val di Sole 0.33 0.31 – 0.23 0.63 0.27 – 0.82–0.93 0.72–0.83 – 6–12
The Pyrenees
Lac d’Aumer 0.26 0.49 – 0.14 0.42 0.09 – 0.96–0.98 0.97–0.98 – 50–64
Sobrestivo 0.02 0.03 – 0.14 0.44 0.11 – 0.91–0.93 0.86–0.91 – 26–33
Gerber 0.19 0.32 – 0.14 0.38 0.02 – 0.95–0.98 0.96–0.97 – 62–69
Port de Cabus 0.28 0.38 – 0.14 0.33 0.19 – 0.91–0-94 0.92–0.94 – 17–23
Eyne 0.28 0.39 – 0.14 0.51 0.11 – 0.93–0.97 0.95–0.98 – 32–70
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s s, ..., d1 can be done by the back-fitting algorithm, introduced by
Breiman and Friedman (1985) and Buja et al. (1989). A description of
the back-fitting algorithm is available in Støve et al. (2012), along with
examples of the implementation of these methods in a palaeoclimate
context, and further theoretical details about the methods.

In the linear regression model each regressor represents one degree
of freedom – in the additive model more degrees of freedom are used
up, see Hastie and Tibshirani (1990), which is detrimental to the sta-
tistical power when addressing a fixed amount of data – it is therefore
generally advantageous to consider models that contain both linear and
non-linear terms using semi-parametric models,

= + + +
= = +

Y s X X e( ) · .
j

p

j j
j p

d

j j
1 1 (3)

3.2. Testing “pairs” of tree-ring data for non-linearity

For “pairs” of tree-ring width (TRW)i and maximum tree-ring density
(MXD )i (or maximum blue intensity, MXBIi) at a specific location and
for year i, regressions for a purely linear model, a purely non-para-
metric, and two mixed semi-parametric models are performed. Below,
MXD is understood to indicate MXD as well as MXBI,

= + +T ·TRW ·MXD ,i i i i1 2 (4)

= + +T s·TRW (MXD ) ,i i i i3 1 (5)

= + +T s (TRW) ·MXD ,i i i i2 4 (6)

and

= + +T s s(TRW) (MXD ) .i i i i3 4 (7)

where Ti is the observed temperature, 1 4 are unknown parameters,
s s1 4 unknown smoothing functions, and i.i.d. error terms.

3.3. Calibration model inter-comparison

We are posing the testable question whether TRW or MXD (or
MXBI) is the most linear carrier of temperature information. We do this
by testing the four separate regression-style models and comparing
their ability to represent temperature at different locations: a fully
linear model (Eq. (4)), a fully non-linear model (Eq. (7)), and the semi-
parametric models (Eqs. (5) and (6)), where the latter two allow in-
terchange of the roles played by TRW and MXD (MXBI). We use tests
based on descriptive statistics for goodness of fit and significance of the
fits to answer these questions.1

We inspect terms in the full non-linear model (7) for significance of
the non-linear terms in order to (a) ensure that the terms, and thus the
model, is indeed statistically significant, and (b) whether one term is
more significant than the other. Together, the analysis is intended to
reveal whether (1) a full non-linear model for both TRW and MXD
(MXBI) best utilises the information in the data, (2) whether it is TRW
or MXD (MXBI) that is most in need of non-linear treatment – i.e. which
one is the most non-linear, and (3) whether the best model is sig-
nificantly better than the other models.

By performing a relative analysis like this, and doing so for a set of
tree-ring “pairs”, and using the HadCRUT4 temperature ensemble
(Morice et al., 2012) we can derive a distribution of p values and AIC
values and directly test for significant differences in the statistics by
distribution-comparison, which is a simpler and more intuitive way of
testing a set of results than is e.g. Bonferroni-corrections (Bonferroni,
1936), or other methods, e.g. Dunn (1961) used when analysing joint
significance levels. By counting the number of cases in which AIC for

the model with TRW treated as non-linear was smaller than the number
of cases where AIC for the model where MXD (MXBI) was treated as
non-linear, we can use the “sign test” (Arbuthnott, 1710; Dixon and
Mood, 1946) to express the probability that the observed counts could
be drawn from a simple null hypothesis along the lines of “either out-
come is equally likely”.

We use the standard 0.95 probability level throughout the study.
That choice will be made explicit in the following sections; however, it
can be briefly summarised by the following: Comparisons of AIC values
are based on finding which of several model-fits obtained the smallest
AIC value. The best model is that with the smallest AIC value – either
smallest positive number or most negative number. However, when two
AIC values do not differ by much there is not so much relevance in the
test. As AIC values are similar to likelihood ratios it is possible to ex-
plicitly state that an AIC-difference between two compared model fits
(with the same number of parameters), that differ by more than 6,
indicates that the model-fit with the smaller AIC is significantly better,
at the standard p level of 0.95. We use the simple sign test to express
the significance of the distribution based on the 100 ensemble mem-
bers: e.g., if 95 of the 100 ensemble members show the same result – i.e.
that either TRW or MXD (MXBI) is the more non-linear parameter – we
use this count as the indicator of significance.

4. Results

4.1. Correlation and autocorrelation structure

Both MXD and MXBI data exhibit a considerably stronger correla-
tion with instrumental June–August temperature than TRW data
(Fig. 3a): the mean/median correlation R is 0.33/0.33 for TRW, 0.57/
0.61 for MXD, and 0.57/0.59 for MXBI. The first and third quartiles of
the distribution of correlations between TRW data and temperature do
not even overlap with the first and third quartiles of the distribution of
correlations between temperature and MXD (MXBI) data. Notably, the
correlation strength is close to identical for MXD and MXBI data.

The correlation between TRW and MXD (MXBI) data from the same
sites over the period 1860–2000 are relatively high: mean/median R for
TRW/MXD is 0.51/0.55 and for TRW/MXBI 0.54/0.58 (Fig. 3b). The
mean/median correlation between MXD/MXBI series, bearing in mind
that we only have five MXD and MXBI records from the same sites
(Table 1; Fig. 1), is as high as 0.89/0.91. Considering the almost
identical correlation between TRW/MXD and TRW/MXBI series, to-
gether with the extremely high MXD/MXBI correlation, we may con-
clude that MXD and MXBI data exhibit almost identical characteristics
(at least in the studied frequencies).

The autocorrelation is much higher for TRW data than for either
instrumental June–August temperature data (here represented by the
local 5°×5° grid-cells corresponding to tree-ring locations) or for MXD
or MXBI data (Fig. 3c). The mean/median instrumental autocorrelation
is 0.13/0.13, for MXD data 0.20/0.19, for MXBI data 0.24/0.24, and for
TRW 0.58/0.60. As with the case of the correlation to instrumental
data, the first and third quartiles for the autocorrelation values for TRW
do not even overlap with the first and third quartiles for the auto-
correlation values for MXD/MXBI data. On the other hand, the first and
third quartiles for the autocorrelation in instrumental data are fully
overlapping with the first and third quartiles for the autocorrelation for
MXD/MXBI data.

A tendency to a negative relationship between correlation strength
and autocorrelation can be observed for TRW data from each of the four
regions (Scandinavia, Scotland, Continental Europe, and the Pyrenees).
It means that TRW records with a stronger correlation to instrumental
temperature data, in general, have a lower autocorrelation than those
records with a weaker correlation to instrumental temperature. No re-
lationship can be found for MXD data between correlation strength and
autocorrelation. MXBI records with a low autocorrelation (i.e., similar
to instrumental autocorrelation) also show higher correlation values.

1 All coding was performed using the software environment R (Core Team,
2018) and in particular the GAM library (Wood, 2017).
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4.2. Linear and non-linear temperature response

Tables 3 and 4 presents summary statistics of the four regressions in
Eqs. (4)–(7). Eq. (4) is the fully linear model – we allow both TRW and
MXD (MXBI) to be in the regression model as linear terms; Eq. (7) is the
fully non-linear model – i.e., we allow both TRW and MXD (MXBI) to be
represented as non-linear terms in the regression, which allows for
capture of non-linear behaviour; Eqs. (5) and (6) are the pair of models
that only allow either TRW or MXD (MXBI) to be treated as linear while
the other is treated as non-linear. Comparison of the successes of these
last two models is the key to our analysis: by looking at the results for
these two models, we find out whether TRW or MXD (MXBI) are best
represented as non-linear relative to the other model, i.e., whether TRW
or MXD (MXBI) best capture temperature information linearly or non-
linearly.

Tables 3 and 4 shows the AIC values for each model. These statistics
are based on the medians of the samples of values obtained by fitting
models to each version of the HadCRUT4 ensemble. In the last column
of Tables 3 and 4 we show results pertaining to the performance of
individual members of this ensemble. This ensemble consists of 100
equally realistic versions of HadCRUT4 temperature ensemble members
for the given 5°×5° grid-cell locations, given processing steps in gen-
erating the HadCRUT4 series from “raw” temperature observations and
taking realistic observing choices and uncertainties into account (see
Section 2.2).

Inspecting the medians of the AIC values of the four models over the
instrumental temperature ensemble (the 4 columns following the tree-
ring record name) we see that AIC for the fully non-linear model per-
forms best for 31 of the 32 records with two ties, and one performs less
well (the record Luosu [PIS]). Comparing only the two semi-parametric
models, we find that the model where TRW is treated non-linearly and
MXD linearly always performs best, except for two records – Ketomella
(PTW) and Oetztal – for which model (5) (i.e. MXD is treated as non-
linear and TRW as linear) shows higher skill. However, small differ-
ences in AIC (say, less than 6) are not significant at the =p 0.05crit level
on an individual basis. We note that between the two semi-parametric
models (Eqs. (5) and (6)) we have only 4 cases (Northern Finland,
Luosu [PIS], Glen Affric [GAN], and Dolina Mengusowska) where one
shows better AIC results than the other by as much as 5. However, these

AIC values are based on distribution medians.
Considering the individual performances over the instrumental

June–August temperature ensemble of 100 realisations for each 5°×5°
grid-cell (last column of Tables 3 and 4) we note that for 16 “pairs” of
TRW vs. MXD data (out of the 32 “pairs”) AIC for model (6) (i.e. where
TRW is treated as non-linear and MXD as linear) is smaller (i.e. better)
than AIC for model (5) (i.e. MXD is treated as non-linear and TRW as
linear) across more than 95% of the ensemble, and for 28 records in
more than 50% of the ensemble. This joint result is a robust indicator
that the model in Eq. (6) (i.e. where TRW is treated as non-linear and
MXD as linear) is better at explaining variance than the model in
Equation (5) (i.e., MXD as non-linear and TRW as linear) for most re-
cords and for most temperature ensemble members. The model in Eq.
(6) contains smoothing of TRW, and we interpret this as TRW having a
more non-linear relationship to instrumental temperature data than
MXD data.

Considering TRW vs. MXBI we find that out of 13 MXBI records
tested, the model treating TRW and MXBI both as non-linear performs
best in 12 cases with one tie (Rogen is the exception). Comparing the
two mixed models (TRW treated as linear and MXBI treated as non-
linear vs. TRW treated as non-linear and MXBI treated as linear) we find
an almost equal split – 6 of the 13 records are best treated with TRW as
a linear term, while for 7 records it is better to treat MXBI as the linear
term and TRW as the non-linear term. Looking at the performance of
individual ensemble members (i.e. looking at column N in Tables 3 and
4) we find that 6 of the 13 records favour treating TRW as non-linear at
the 95% significance level – however, these are also the only records
performing better at the 50% level, unlike Table 3 where TRW vs. MXD
was compared. The results for TRW vs. MXBI are thus not like those for
TRW vs. MXD – for “pairs” of TRW and MXBI there is an almost even
split between favouring TRW as non-linear, or MXBI.

In summary, we observed (see also Fig. 4) a robust and strong
tendency for most TRW series to be best represented as non-linear terms
in the temperature-models, compared to MXD, although exceptions to
this exist in individual cases. However, for TRW vs. MXBI (Fig. 4 b and
c) no such strong tendency is seen, although pure linear treatment for
both TRW and MXBI is ruled out by our results. We discuss possible
reasons for these exceptions, and the difference between MXD and
MXBI data, in Section 5.3.

Fig. 3. Box-plot figures showing (a) the Pearson correlation coefficient (R) between instrumental June–August temperature data and TRW (blue), MXD (red), and
MXBI (yellow) data over the period 1860–2000, (b) Pearson correlation coefficient (R) between TRW and MXD (blue), TRW and MXBI (red), and MXD and MXBI
(yellow) data over the period 1860–2000, and (c) the autocorrelation (AC1) value for June–August instrumental temperature data from 5°×5° grid-cells corre-
sponding tree-ring record locations (grey), TRW (blue), MXD (red), and MXBI (yellow) data over the period 1860–2000. The coloured bars represent the first and
third quartiles, the line across the box shows the median, the black dot is the mean, the filled circles represent each individual value, and minimum and maximum
values are indicated by the whiskers.
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4.3. Relationships between non-linearity, correlation strength and
autocorrelation

We find no consistent patterns between non-linearity and correla-
tion strength or autocorrelation structure. Even though we only eval-
uate 40 sites, divided into four regions with different climate-dependent
data properties, the absence of a pattern can be interpreted at least in
qualitative terms. Neither correlation strength nor autocorrelation of
either TRW or MXD (MXBI) data stands out in the cases where TRW
data show a more linear response to temperature in the majority of the
cases that are evaluated using the HadCRUT4 instrumental temperature
ensemble.

Special consideration may be given the only two records –
Ketomella (PTW) and Oetztal – where a higher skill is obtained by

treating MXD as a non-linear term and TRW as a linear term. Ketomella
(PTW) has an unusually high autocorrelation for MXD data, although
not higher than for a few other MXD records that also show a more
linear response to temperature than TRW data from corresponding
sites. For Oetztal, the correlation values are relatively low for both TRW
and MXD, and the MXD data show a significantly lower autocorrelation
than the instrumental data; moreover, an inverse relationship during
certain years is detected in the TRW and MXD data.

Most of the Scottish tree-ring series show a low or relatively low
inter-series correlation (see Section 2). This may contribute to a spur-
ious detection of non-linearity among many of the Scottish series. Di-
verging trends between TRW and MXBI data appears to be a plausible
reason why many MXBI records from Scotland are showing a more non-
linear response to temperature than the TRW records from corre-
sponding sites. The two MXBI records from Scotland showing a con-
sistently more linear response to temperature than the TRW records
from the same sites – Glen Falloch (GLF) and Quoich (QUO) – have
stable (or slightly increasing) MXBI values and increasing TRW in the
post-1980 period. For Ballochbuie (BAL), Inverey (INV), Ryvoan (RYO),
and Upper Glen Feshie (UGF) the MXBI values are stable since the
1980s whereas the TRW values are increasing; for Meggernie (MEG)
and Rhiddoroch (RHD) the MXBI values are stable since the 1950s
whereas the TRW values are decreasing. The MXD values for Balloch-
buie (BAL) and Ryvoan (RYO) are not behaving as the MXBI values but
rather follow the TRW trends.

4.4. Identifying the nature of the non-linearities: two examples

What does it mean that we have found non-linearity in some of the
tree-ring proxy series? As an example, we consider the series from
Jämtland (Björklund et al., 2014; Linderholm and Gunnarson, 2019).
Fig. 5 (upper right-hand panel) shows that of TRW, MXD and MXBI, it is
only MXD data that tests positively for non-linearity. We also see that
the non-linearity may chiefly be related to low values in the series. As a
test we remove those points, and re-apply the GAM procedure, in order
to better understand whether they represent a true non-linear response
in the tree's physiological system to environmental conditions, or might
be “noise”.

Table 3
Non-linearity testing using GAM models based on “pairs” of TRW and MXD
data. Equations (4)–(7) were fitted to local 5°×5° grid-cell June–August tem-
perature data from HadCRUT4.0 (Morice et al., 2012). At each location the full
HadCRUT4 temperature data ensemble (100 members) was fitted one at a time
and then the ensemble-median values of statistical quantities were calculated
and shown here. The first column contains the names of the tree-ring records.
Columns 2–5 represent AIC values for the full linear model, the two mixed
models, and the full non-linear model, respectively. The column labelled
AICmix1 gives the AIC value for the model in Eq. (5) treating MXD as the non-
linear term. The column labelled AICmix2 gives the AIC value for the model in
Eq. (6) treating TRW as the non-linear term. Columns AIClm and AICgam re-
present the fully linear and the fully non-linear models. The last column, la-
belled N , shows results of individual model-comparisons across the 100 en-
semble members. The value given is the number (N ), out of 100 ensemble trials,
where the model (6) had smaller AIC than the model (5) – that is, when the
analysis indicates that model performance benefits from treating TRW rather
than MXD as non-linear. Values in bold indicate p-values of 0.05 using a simple
sign test (Dixon and Mood, 1946). All tree-ring records are listed after latitude
from north to south.

Record AIClm AICmix1 AICmix2 AICgam N

Scandinavia
Northern Finland 283.86 283.85 275.83 275.83 100
Forfjorddalen 333.07 333.04 332.84 332.45 74
Kiruna (KID) 298.59 298.58 298.39 298.14 42
Kiruna (KIW) 297.46 297.43 295.80 295.57 87
Ketomella (PTD) 321.38 321.37 320.55 320.50 99
Ketomella (PTK) 302.13 302.12 301.78 301.60 31
Ketomella (PTW) 303.02 300.93 302.55 300.87 5
Laanila 291.78 290.50 289.93 288.58 88
Torneträsk (TOD) 314.17 314.15 313.02 312.99 97
Torneträsk (TOW) 312.03 311.87 311.15 311.08 94
Kesänkijärvi (KES) 293.10 293.04 291.46 291.31 93
Luosu (PIS) 321.22 320.80 315.23 315.23 100
Luosu (PIT) 310.08 310.08 309.41 309.38 100
Muddus 334.70 334.60 334.01 333.90 95
Tjeggelvas 346.30 346.29 344.84 344.83 100
Arjeplog 350.61 350.58 349.81 349.66 100
Ammarnäs 332.68 332.63 332.39 332.17 69
Kittelfjäll 363.07 363.04 361.61 361.60 100
Jämtland 332.96 332.48 330.99 330.93 93
Scotland
Glen Affric (GAN) 359.61 359.59 354.25 354.19 100
Ryvoan (RYO) 368.56 360.51 357.41 356.88 100
Ballochbuie (BAL) 357.17 356.72 356.41 356.01 70
Continental Europe
Dolina Suchej Wody 327.46 327.44 327.43 327.39 91
Dolina Mengusowska 370.40 355.79 345.95 345.90 100
Oetztal 376.20 375.78 376.05 375.40 24
Lötschental 350.20 349.67 348.21 347.65 99
Val di Sole 385.83 385.52 383.07 382.52 100
The Pyrenees
Lac d’Aumer 368.25 368.12 364.82 363.97 99
Sobrestivo 406.85 405.05 404.97 403.14 59
Gerber 391.69 391.59 390.46 390.52 92
Port de Cabus 381.24 381.17 377.14 376.97 100
Eyne 379.29 379.23 379.04 378.97 90

Table 4
Non-linearity testing with GAM modelling using “pairs” of TRW and MXBI data
(instead of “pairs” of TRW and MXD data). For reference, the column labelled
AICmix1 gives the AIC value for the model in Eq. (5) which is the model
treating MXD as the non-linear term. The column labelled AICmix2 gives the
AIC value for the model in Eq. (6) which is the model treating TRW as the non-
linear term. Columns AIClm and AICgam represent the fully linear and the fully
non-linear models. The last column N shows the number of times, out of 100,
that the temperature ensemble reveals a more non-linear relationship between
temperature and TRW data than between temperature and MXBI data. Values in
bold indicate p-value of 0.05 using a simple sign test (Dixon and Mood, 1946).
All tree-ring records are listed after latitude from north to south.

Record AIClm AICmix1 AICmix2 AICgam N

Scandinavia
Rogen 272.70 272.78 270.80 272.42 96
Arjeplog 348.14 348.11 347.74 347.63 100
Northern Finland 308.93 308.91 303.53 303.52 100
Jämtland 311.14 311.01 309.76 309.71 96
Scotland
Ballochbuie (BAL) 340.60 338.13 339.71 337.29 0
Ryvoan (RYO) 389.30 333.55 369.42 332.31 0
Glen Falloch (GLF) 374.69 374.66 373.52 372.96 100
Glen Derry North (GDN) 348.20 346.09 346.80 344.44 18
Inverey (INV) 358.23 357.44 358.04 357.28 9
Meggernie (MEG) 376.96 373.93 374.03 371.28 46
Quoich (QUO) 334.98 334.96 333.40 333.40 100
Rhiddoroch (RHD) 393.54 382.82 392.88 382.33 0
Upper Glen Feshie (UGF) 325.09 321.56 323.98 320.59 0
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Fig. 4. AIC from the two semi-parametric models fitted to the 100 ensemble members. Each dot represents an AIC-pair for one ensemble member. Ensembles below
the red diagonal imply support for TRW as the most non-linear of the two proxies.
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We inspected the MXD data series and identify the years that cor-
respond to these low values of MXD. We removed increasing number of
them (first one then two, …, 18) starting at the smallest value and re-
applied the GAM methodology as described above for each set of data.
The GAM procedure still detected non-linearity when up to 8 of the
smallest values had been removed – but at 9 or more removals linearity
was instead detected. This suggests that the non-linearity property is
robust – i.e. non-linearity is a property contributed by a substantial
fraction of the data. Adding to robustness is also the observation that
these MXD values are distributed across the whole time-range of the
series – i.e. the low MXD values observed represent a non-linear state of
the tree's response to growth conditions, it is not likely a “noise” or “bad
data” occurrence.

We also investigated Ballochbuie (BAL) (Rydval et al., 2017b) to see
if the nature of the detected non-linearity can be clarified. We subjected
the “bulge” (see Fig. 5, lower panels) from – 1 to 0 in standardised TRW
data to varying degrees of point removal. The results are more difficult
to interpret – partially because the range of data omitted are inter-
mediary to the rest of the data range, and not at the end, as was the case
for Jämtland. Removing data values falling between – 0.75 and – 0.25,
in standardised TRW data, results in loss of sensitivity in TRW for both
the TRW vs. MXD and the TRW vs. MXBI, with MXD and MXBI be-
coming approximately linear in both cases. Again, the years affected are
not isolated, but are distributed across the range of years, so we are not
seeing a “bad data” issue.

5. Discussion

It is, in general, more advisable to use only a smaller number of
proxy records with a high temperature correlation strength than to use
a larger number of proxy records, when many have a low temperature
correlation strength, in large-scale temperature reconstructions
(Christiansen and Ljungqvist, 2017) considering the large spatial co-
variability of temperature on seasonal and longer time-scales (Jones
et al., 1997). This implies that TRW data – with its more non-linear
response to temperature, lower temperature correlation strength, and
higher autocorrelation – should be avoided whenever a sufficient
number of MXD and/or MXBI records are available (see also Esper et al.
(2018)). However, for much of the world – and in particular a millen-
nium back in time – very few MXD (and no MXBI) records are available
to date (Esper et al., 2016). This is essentially precluding such a se-
lective approach for tree-ring based millennium-long temperature re-
constructions on continental to hemispheric scales (see, however,
Schneider et al. (2015)). Under these circumstances, our results indicate
that any large-scale reconstruction including both TRW and MXD
(MXBI) data would benefit from applying a calibration model that

treats TRW data non-parametrically (non-linearly) and MXD and MXBI
data parametrically (linearly).

5.1. The effect of sample replication and choice of detrending method

The correlation values we show between instrumental temperature
data and MXD, MXBI, and TRW data are slightly biased towards low
values for TRW when compared to the typical correlation values be-
tween temperature and TRW data in published TRW-based temperature
reconstructions. This is a result of including fewer TRW samples in the
TRW chronologies than is usually the case because we only used the
exact same tree-rings, from the same trees, for TRW, MXD and MXBI.
Far more tree-ring samples are usually included in a TRW chronology
than in a MXD or MXBI chronology as this proxy is comparatively cheap
to produce and the large number of samples, given the lower tem-
perature correlation strength in TRW, generally improves the signal as
non-climatic noise is cancelled out. To a lesser extent, we also show a
bias towards low correlation values for MXD and MXBI as composites of
site reconstructions from more locations are typically included in
published MXD or MXBI based temperature reconstructions, cancelling
out noise and enhancing the temperature signal. An example may be
given: calibrating the Torneträsk TRW and MXD records by Melvin
et al. (2013) against the same instrumental data as we use gives R 0.53
and R 0.77, respectively, compared to our two sites from Torneträsk,
TOD and TOW, giving R 0.42/0.70 and R 0.47/0.69, respectively.

It cannot be precluded (Cook et al., 1995) that some amount of low-
frequency information is lost using individual spline detrending (Cook
and Peters, 1981, 1997) even if we only consider a comparatively short
time-scale of 141 years (1860–2000). However, we have compared ten
northern Scandinavian TRW and MXD “pairs” in Büntgen et al. (2011),
using both individual detrended chronologies and RCS detrended ver-
sions, and found that over 1860–2000 the individual detrended and the
RCS detrended chronologies are virtually identical even in their long-
term trends. We thus conclude that detrending choices likely have a
marginal effect on the results of this study (see further Klippel et al.
(2019) regarding the effect of different choices of tree-ring data de-
trending over various time-scales).

5.2. Sensitivity to seasonality and the length of the calibration period

We may expect the relationship between tree-ring growth and
temperature to be more non-linear during certain seasonal windows
than during other seasonal windows and that this varies with location
(i.e., with climate). The method by Støve et al. (2012) for detecting
non-linearity require us to use “pairs” of data, to compare which record
of the two behaves in a more non-linear way than the other, for the

Fig. 4. (continued)
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same target season (e.g. June–August) for both TRW, MXD, and MXBI
data. It is a plausible hypothesis that part of the reason that TRW data
behave non-linearly than MXD/MXBI data is related to the much
shorter seasonal response window of TRW, which varies with location
and tree species (Björklund et al., 2017). We attempted to test for this
possibility by repeating all the calculations using the shorter seasonal
window of June–July (instead of June–August). At the same time, we
note that two metrics with different seasonal response windows can
never be fully comparable regardless of which window is chosen. The
correlation between TRW and instrumental temperature data increases
(but in most cases only marginally) with the seasonal window June–-
July in 17 out of 40 cases but actually decreases in the other cases.
Thus, no general benefit is apparent from using June–July instead of
June–August as a calibration target season. As expected, the correlation
between instrumental temperature and MXD data decreases when using
June–July instead of June–August in all cases except one as well as in
all cases for MXBI. The mean/median correlation R for June–July,
compared to June–August, is 0.33/0.34 vs. 0.33/0.33 for TRW, 0.47/
0.52 vs. 0.57/0.61 for MXD, and 0.46/0.50 vs. 0.57/0.59 for MXBI data.
From this we conclude that June–August (as commonly used) is, in
general, a more suitable calibration target season than June–July for
MXD and MXBI data, and just as suitable for TRW data.

The choice of a shorter June–July season also has only a modest
influence on the AIC values. However, for “pairs” of TRW and MXD
data, MXD show a more linear response to temperature than TRW data
in a larger number of temperature ensemble members in 12 cases
compared to a lower number of temperature ensemble members in 8
cases (this is most clear for data from Scandinavia with the numbers
being 10 vs. 2). Thus, our main conclusion that MXD data show a more
linear response to temperature than TRW data is further strengthened
when using the shorter June–July seasonal window. On the other hand,
no clearer picture emerges when testing the June–July season, instead
of June–August season, on “pairs” of TRW and MXBI data.

5.3. Possible biases in MXD and MXBI measurements

Here we consider two different types of biases, the first arise in the
measurement phase and the second is an inherent part of the tree
growth. It is possible that, in some cases, limitations associated with
MXD or MXBI measurement generation can be responsible for produ-
cing MXD or MXBI data that exhibit data non-linearity to a similar
degree to TRW. The MXD parameter is commonly obtained from a
measurement profile produced by moving a photo sensor across an X-
ray image of a tree-ring sample (Schweingruber et al., 1978). With the
exception of systems that identify the darkest/most dense parts of a tree
ring within a specified window covering a larger area of the latewood of
each ring (Rydval et al., 2014), the MXD and MXBI parameters are
usually a representation of one or two tracheids in the radial direction
(pith to bark) (Vaganov et al., 2006; Campbell et al., 2011). The radial
extension of a conifer tracheid in the latewood is typically 10 µm,
which means that if this spatial resolution is not captured in the mea-
surement profile, the true MXD or MXBI risk being distorted by cells of
lower density adjacent to the “true” MXD cells. While the nominal
measurement resolution is often defined at 10 µm, it can be com-
promised for several reasons (Björklund et al., 2019) and consequently
produce a measurement profile with a deflated amplitude. This trans-
lates to a lower mean of all MXD values in a sample, but the MXD
measurements of narrow tree-rings also become more deflated than
those of wide tree rings. Thus, an artificially strong relationship be-
tween TRW and MXD is created. If we expect TRW to be more non-
linearly related to a temperature target, MXD or MXBI measured at low
resolution could risk being identified as non-linearly related to tem-
perature as well.

Another likely factor that could affect MXBI data is the heart-
wood–sapwood discolouration bias (Björklund et al., 2014; Rydval
et al., 2014). Rydval et al. (2014) showed that un-detrended versions of

Fig. 5. Example illustration of GAM output. Two full GAM models are shown –
one with TRW and MXD as regressors (upper row), and one with TRW and
MXBI as regressors (lower row). In the figures, the x-axis shows the (standar-
dised) tree-ring values, and on the y-axis the instrumental temperature model
(also standardised, i.e. unitless) determined by the GAM procedure – where the
output may be linear or non-linear. A perfectly horizontal line indicates that no
relevant relationship (whether linear or not) has been found between tree-ring
values and temperature. A straight diagonal line indicates that a linear re-
lationship has been found, and a curved graph indicates a non-linear relation-
ship. (a) Illustration of GAM results for Jämtland (Björklund et al., 2014;
Linderholm and Gunnarson, 2019). Note that although TRW by itself may be a
relevant regressor in Jämtland it is not detected here when tested in a pair with
other regressors – MXD, although found non-linear, manages to also contain the
linear dependency. With MXBI no non-linearity at all is detected by the GAM
procedure and all the linearity is expressed in MXBI. (b) Illustration of GAM
results for Ballochbuie (BAL) (Rydval et al., 2017b). When the non-linearity is
stronger, or present in both TRW and either MXD or MXBI then GAM finds a
non-linear model for both, as in the case with Ballochbuie (BAL). Here, MXD
and MXBI both have modest non-linearities but as they are curves and not
straight lines GAM formally determined that they are non-linear records. TRW,
however, both when paired with MXD and with MXBI, is a much more non-
linear proxy. Notice that the models based on TRW depend on which other
proxy it was paired with, so in principle the output models for both regressors
should be inspected – the case of TRW in Jämtland does not hold in general.
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the Scottish MXBI chronologies from Ballochbuie (BAL) and Ryvoan
(RYO) exhibit a trend deviation from their MXD counterparts and at-
tributed this discrepancy to a difference in colour between the heart-
wood and sapwood. Although varying resin extraction approaches
(acetone vs. ethanol) and measurement systems (CooRecorder vs.
WinDendro) were used to generate Scottish and Scandinavian MXBI
data, respectively, a comparison of the MXBI chronologies produced for
the BAL and RYO Scottish sites using a range approaches did not yield
appreciably different results and all versions have been shown to con-
tain the same trends which diverge from the MXD chronologies re-
gardless of the methodological approach adopted. Therefore, we do not
believe that differences in sample preparation or used measurement
systems would account for the non-linear properties of MXBI data from
Scotland compared to the Scandinavian data. Instead, it is possible that
a greater inherent degree of heartwood–sapwood colour difference
between Scottish and Scandinavian MXBI samples may be responsible.
Recently developed techniques to correct for discolouration in BI series
could potentially be used to remedy this issue (Björklund et al., 2014,
2015) (see Appendix A for further information).

In addition to the above-mentioned measurement bias, some non-
linearities could potentially arise from the presence of non-climatic (i.e.
disturbance) pulses in the TRW, which could also affect the MXD and
MXBI data. This bias is reportedly severe for some of the Scotland data
(Rydval et al., 2016), but may also occur in other localities. Although
this type of non-climatic impact has not directly been observed to affect
MXD or MXBI data, it is, however, not entirely clear whether or not this
type of data could also be impacted in some way. The disturbance
impact should be thought of as occurring along a continuum where the
degree of disturbance affecting a chronology is related to the proportion
of samples in a chronology that contain disturbance trends, their se-
verity, and synchronisation. Moreover, the amount of disturbance im-
pact also varies through time meaning that some parts of chronologies
may be affected while others are not (or not as much). Observe that
only those Scottish chronologies for which the disturbance effect was
found to be minimal was retained for the current study (see Section
2.1).

6. Conclusion and outlook

We have systematically compared the presence of a non-linear re-
sponse to the temperature correlation strength, and the autocorrelation
structure in a European network of summer temperature-sensitive TRW,
MXD, and MXBI data derived from identical tree-ring samples from 40
different sites. The main findings of this study can be summarised in the
following points: (a) The temperature correlation strength is con-
sistently significantly weaker for TRW data than for MXD/MXBI data,
while the autocorrelation is much higher for TRW: the distributions of
correlation and autocorrelation values hardly overlap with those of
MXD/MXBI data. (b) MXD and MXBI data have virtually identical
characteristics in terms of non-linearity, temperature correlation
strength, and autocorrelation, supporting the view that MXBI is an
excellent surrogate for MXD. (c) When TRW and MXD/MXBI data are
used in combination, it is advisable to treat TRW as a non-linear
function and MXD/MXBI as a linear function.

To validate these findings, we envision that a similar assessment
across other regions containing “pairs” of temperature-sensitive tree-
ring width and density data would be beneficial. It appears less feasible
to follow the “protocol” of this study for hydroclimate-sensitive tree-
ring data of the simple reason that very few hydroclimate-sensitive
density records have been produced so far. Furthermore, we suggest
that our non-linearity test can be applied as an independent and useful
tool in dendroclimatology, in that it reveals relationships not otherwise
revealed by the standard statistics in dendroclimatology (e.g., EPS va-
lues) or tests based on time-series correlations, as discussed in this ar-
ticle.
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Appendix A. Tree-ring maximum blue intensity (MXBI) data

As the MXBI parameter may be less well known to many readers,
compared to TRW and MXD, we provide a more in-depth description of
it here. Blue intensity (BI), also sometimes termed blue reflectance, is a
comparatively new, less labour-intensive and less expensive, alternative
to MXD with very similar properties – including a strong latewood
temperature signal in tree ring samples from locations where tem-
perature is limiting to growth (Björklund et al., 2019). As the density of
the tracheid cell wall should be relatively constant in the conifer xylem
(Stamm and Sanders, 1966; Kellogg and Wangaard, 2007), it has been
suggested that wood density can be derived from the proportion of cell-
wall area to the full cell area (Park and Telewski, 2007) using reflected
light images of wood as a substitute to X-radiographs of wood samples
(Yanosky and Robinove, 1986; Yanosky et al., 1987). In recent decades,
studies using reflected light from tree ring samples have focused on the
blue bandwidth of the visible light spectrum due to the strong light-
absorbing properties of lignin in this part of the spectrum (McCarroll
et al., 2002; Campbell et al., 2007, 2011) as a surrogate for density, and
in particular MXBI as the blue reflectance counterpart to MXD
(Björklund et al., 2014). MXBI, which represents a measure of absorbed
light, can also be referred to as latewood BI (LWBI) or minimum BI
(MBI), which typically represent reflected light (Campbell et al., 2007;
Björklund et al., 2014; Rydval et al., 2014).

The strong relationship between MXBI, MXD and summer tem-
peratures is related to the thickening and lignification of latewood cell
walls. Several studies have shown promising results in terms of tem-
perature associations on par with what would be expected from the
traditional MXD parameter (Tene et al., 2011; McCarroll et al., 2013;
Wilson et al., 2014; Björklund et al., 2015; Linderholm et al., 2015;
Dolgova, 2016; Kaczka et al., 2017; Rydval et al., 2017a,b; 2017a,
2017b; Fuentes et al., 2018; Kaczka et al., 2018; Rydval et al., 2018),
however the fidelity of multi-decadal to centennial scale trends in MXBI
in relation to MXD has been questioned (Björklund et al., 2014, 2015;
Rydval et al., 2014; Buckley et al., 2018). Although the relationship
between density and reflected brightness is strongly coupled, it may be
distorted for several reasons, such as differential discoloration of cell
walls related to heartwood vs. sapwood staining (Raven et al., 2005).
Treatment of samples using a solvent (e.g. ethanol, acetone) in order to
remove resins and other extractives, which may discolour the wood, has
been found to be imperfect and so may not eliminate discoloration
biases entirely (Sheppard and Wiedenhoeft, 2007; Björklund et al.,
2014; Rydval et al., 2014). Björklund et al. (2014) demonstrated that
discoloration in latewood BI (LWBI) can be mitigated using earlywood
BI (EWBI) by subtracting EWBI from LWBI for each tree-ring, producing
a third parameter, the “delta-BI” parameter, later improved upon using
a contrast-adjusted delta-BI parameter (Björklund et al., 2015;
Linderholm et al., 2015; Fuentes et al., 2018). Despite these possible
limitations, especially in the low-frequency domain, MXBI has featured
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in large-scale (hemispheric) reconstructions of temperature (Wilson
et al., 2016; Anchukaitis et al., 2017).
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