

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. DISCRETE MATH. c© 2019 Society for Industrial and Applied Mathematics
Vol. 33, No. 3, pp. 1277–1296

RANK VERTEX COVER AS A NATURAL PROBLEM FOR
ALGEBRAIC COMPRESSION∗

SYED M. MEESUM† , FAHAD PANOLAN‡ , SAKET SAURABH§ , AND MEIRAV ZEHAVI¶

Abstract. The question of the existence of a polynomial kernelization of the Vertex Cover

Above LP problem was a long-standing, notorious open problem in parameterized complexity. Some
years ago, the breakthrough work by Kratsch and Wahlström on representative sets finally answered
this question in the affirmative [FOCS 2012]. In this paper, we present an alternative, algebraic
compression of the Vertex Cover Above LP problem into the Rank Vertex Cover problem.
Here, the input consists of a graph G, a parameter k, and a bijection between V (G) and the set of
columns of a representation of a matroid M , and the objective is to find a vertex cover whose rank
is upper bounded by k.

Key words. kernelization, algebraic compression, vertex cover, odd cycle transversal

AMS subject classifications. 05C85, 68R10

DOI. 10.1137/17M1154370

1. Introduction. The field of parameterized complexity concerns the study of
parameterized problems, where each problem instance is associated with a parameter
k that is a nonnegative integer. Given a parameterized problem of interest, which is
generally computationally hard, the first, most basic question that arises asks whether
the problem at hand is fixed-parameter tractable (FPT). Here, a problem Π is said to be
FPT if it is solvable in time f(k)·|X |O(1), where f is an arbitrary function that depends
only on k and |X | is the size of the input instance. In other words, the notion of FPT
signifies that it is not necessary for the combinatorial explosion in the running time of
an algorithm for Π to depend on the input size, but it can be confined to the parameter
k. Having established that a problem is FPT, the second, most basic question that
follows asks whether the problem also admits a polynomial kernel. A concept closely
related to kernelization is one of polynomial compression. Here, a problem Π is said
to admit a polynomial compression if there exists a problem Π̂ and a polynomial-time
algorithm such that given an instance (X, k) of Π, the algorithm outputs an equivalent

instance (X̂, k̂) of Π̂, where |X̂| = k̂O(1) and k̂ ≤ k. Roughly speaking, compression
is a mathematical concept that aims to analyze preprocessing procedures in a formal,
rigorous manner. We note that in case Π = Π̂, the problem is further said to admit
a polynomial kernelization, and the output (X̂, k̂) is called a kernel.

The Vertex Cover problem is (arguably) the most well-studied problem in
parameterized complexity [12, 9]. Given a graph H and a parameter k, this problem
asks whether H admits a vertex cover of size at most k. Over the years, a notable
number of algorithms have been developed for the Vertex Cover problem [4, 2,
13, 27, 7, 5, 8]. Currently, the best-known algorithm solves this problem in the
remarkable time 1.2738k · nO(1) [8]. While it is not known whether the constant

∗Received by the editors October 30, 2017; accepted for publication (in revised form) April 22,
2019; published electronically July 23, 2019.

https://doi.org/10.1137/17M1154370
Funding: Supported by Parameterized Approximation, ERC Starting Grant 306992, and Rig-

orous Theory of Preprocessing, ERC Advanced Investigator Grant 267959.
†Institute of Computer Science, University of Wroc�law, Poland (meesum.syed@gmail.com).
‡Department of Informatics, University of Bergen, Norway (fahad.panolan@ii.uib.no).
§The Institute of Mathematical Sciences, HBNI, Chennai, India (saket@imsc.res.in).
¶Ben-Gurion University of the Negev, Beer-Sheva, Israel (meiravze@bgu.ac.il).

1277

D
ow

nl
oa

de
d

03
/0

5/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/17M1154370
mailto:meesum.syed@gmail.com
mailto:fahad.panolan@ii.uib.no
mailto:saket@imsc.res.in
mailto:meiravze@bgu.ac.il

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1278 MEESUM, PANOLAN, SAURABH, AND ZEHAVI

1.2738 is “close” to optimal, it is known that unless the exponential time hypothesis
fails, Vertex Cover cannot be solved in time 2o(k) · nO(1) [18]. On the other hand,
in the context of kernelization, the picture is clear in the following sense: It is known
that Vertex Cover admits a kernel with O(k2) vertices and edges [4], but unless
NP ⊆ co-NP/poly, it does not admit a kernel with O(k2−ε) edges [11] for any ε > 0.
We remark that it is also known that Vertex Cover admits a kernel not only of
size O(k2) but also with only 2k vertices [7, 22], and it is conjectured that this bound
might be essentially tight [6].

It has become widely accepted thatVertex Cover is one of the most natural test
beds for the development of new techniques and tools in parameterized complexity.
Unfortunately, the vertex cover number of a graph is generally large—in fact, it is often
linear in the size of the entire vertex set of the graph [12, 9]. Therefore, alternative
parameterizations, known as above-guarantee parameterizations, have been proposed.
The two most well known such parameterizations are based on the observation that
the vertex cover number of a graph H is at least as large as the fractional vertex cover
number of H , which in turn is at least as large as the maximum size of a matching
of H . Here, the fractional vertex cover number of H is the solution to the linear
program that minimizes

∑
v∈V (H) xv subject to the constraints xu + xv ≥ 1 for all

{u, v} ∈ E(H) and xv ≥ 0 for all v ∈ V (H). Accordingly, given a graph H and a
parameter k, the Vertex Cover Above MM problem asks whether H admits a
vertex cover of size at most μ(H)+k, where μ(H) is the maximum size of a matching
of H , and the Vertex Cover Above LP problem asks whether H admits a vertex
cover of size at most �(H)+k, where �(H) is the fractional vertex cover number of H .

On the one hand, several parameterized algorithms for these two problems have
been developed in the last decade [30, 29, 10, 26, 23]. Currently, the best-known
algorithm for Vertex Cover Above LP, which is also the best-known algorithm
for Vertex Cover Above MM, runs in time 2.3146k ·nO(1) [23]. On the other hand,
the question of the existence of polynomial kernelizations of these two problems was a
long-standing, notorious open problem in parameterized complexity. Five years ago,
the breakthrough work by Kratsch and Wahlström [21] on representative sets finally
answered this question in the affirmative. To date, the kernelizations by Kratsch and
Wahlström have remained the only known (randomized) polynomial compressions of
Vertex Cover Above MM and Vertex Cover Above LP. Note that since �(H)
is necessarily at least as large as μ(H), a polynomial compression of Vertex Cover

Above LP also doubles as a polynomial compression of Vertex Cover Above

MM. We also remark that several central problems in parameterized complexity,
such as the Odd Cycle Transversal problem, are known to admit parameter-
preserving reductions to Vertex Cover Above LP [23]. Hence, the significance
of a polynomial compression of Vertex Cover Above LP also stems from the
observation that it simultaneously serves as a polynomial compression of additional
well-known problems and can therefore potentially establish the target problem as a
natural candidate to express compressed problem instances.

Recently, a higher above-guarantee parameterization of Vertex Cover, result-
ing in the Vertex Cover Above Lovász-Plummer, has been introduced by Garg
and Philip [14]. Here, given a graph H and a parameter k, the objective is to deter-
mine whether H admits a vertex cover of size at most (2�(H)− μ(H)) + k. Garg and
Philip [14] showed that this problem is solvable in time 3k · nO(1), and Kratsch [20]
showed that it admits a (randomized) kernelization that results in a large yet polyno-
mial kernel. We remark that above-guarantee parameterizations can very easily reach
bars beyond which the problem at hand is no longer FPT. For example, Gutin et

D
ow

nl
oa

de
d

03
/0

5/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPRESSION VIA RANK VERTEX COVER 1279

al. [16] showed that the parameterization of Vertex Cover above m/Δ(H), where
Δ(H) is the maximum degree of a vertex in H and m is the number of edges in H ,
results in a problem that is not FPT (unless FPT=W[1]).

Our results and methods. In this paper, we present an alternative, algebraic
compression of the Vertex Cover Above LP problem into the Rank Vertex

Cover problem. We remark that Rank Vertex Cover was originally introduced
by Lovász [24] as a tool for the examination of critical graphs. Given a graph H , a
parameter �, and a bijection between V (H) and the set of columns of a representation
of a matroid M , the objective of Rank Vertex Cover is to find a vertex cover of
H whose rank, which is defined by the set of columns corresponding to its vertices, is
upper bounded by �. Note that formal definitions of the terms used in the definition
of Rank Vertex Cover can be found in section 2.

We obtain a (randomized) polynomial compression of size O(k7 + k4.5 log 1
ε),

where ε is the probability of failure and k = �− μ(H). Here, by failure we mean that
we output an instance of Rank Vertex Cover which is not equivalent to the input
instance. Our work makes use of properties of linear spaces and matroids and also
relies on elementary probability theory. One of the main challenges it overcomes is the
conversion of the methods of Lovász [24] into a procedure that works over rationals
with reasonably small binary encoding.

2. Preliminaries. We use N to denote the set of natural numbers. For any
n ∈ N, we use [n] as a shorthand for {1, 2, . . . , n}. In this paper, the notation F will
refer either to a finite field of prime size or to the field R of real numbers. Accordingly,
F
n is an n-dimensional linear space over the field F, where a vector v ∈ F

n is a tuple of
n elements from the field F. Here, the vector v is implicitly assumed to be represented
as a column vector, unless stated otherwise. A finite set of vectors S over the field F

is said to be linearly independent if the only solution to the equation
∑

v∈S λvv = 0,
where it holds that λv ∈ F for all v ∈ S, is the one that assigns zero to all of the scalars
λv. A set S that is not linearly independent is said to be linearly dependent. The
span of a set of vectors S, denoted by S (or span(S)), is the set {∑v∈S αvv : αv ∈ F},
defined over the linear space F

n.
For a graph G, we use V (G) and E(G) to denote the vertex set and the edge

set of G, respectively. We treat the edge set of an undirected graph G as a family of
subsets of size 2 of V (G), i.e., E(G) ⊆ (

V (G)
2

)
. An independent set in a graph G is a

set of vertices X such that for all u, v ∈ X , it holds that {u, v} /∈ E(G). For a graph
G and a vertex v ∈ V (G), we use G \ v to denote the graph obtained from G after
deleting v and the edges incident with v.

2.1. Matroids.

Definition 2.1. A matroid X is a pair (U, I), where U is a set of elements and
I is a set of subsets of U , with the following properties: (i) ∅ ∈ I; (ii) if I1 ⊂ I2 and
I2 ∈ I, then I1 ∈ I; and (iii) if I1, I2 ∈ I and |I1| < |I2|, then there is x ∈ (I2 \ I1)
such that I1 ∪ {x} ∈ I.

A set I ′ ∈ I is said to be independent; otherwise, it is said to be dependent. A set
B ∈ I is a basis if no superset of B is independent. For example, Ut,n = ([n], {I : I ⊆
[n], |I| ≤ t}) forms a matroid known as a uniform matroid. For a matroid X = (U, I),
we use E(X), I(X), and B(X) to denote the ground set U ofX , the set of independent
sets I of X , and the set of bases of X , respectively. Here, we are mainly interested in
linear matroids, which are defined as follows. Given a matroid X = (U, I), a matrix
M having |U | columns is said to represent X if (i) the columns of M are in bijection

D
ow

nl
oa

de
d

03
/0

5/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1280 MEESUM, PANOLAN, SAURABH, AND ZEHAVI

with the elements in U and (ii) a set A ⊆ U is independent in X if and only if the
columns corresponding to A in M are linearly independent. Accordingly, a matroid
is a linear matroid if it has a representation over some field. For simplicity, we use
the same symbol to refer to a matroid M and its representation. For a matrix M and
some subset B of columns of M , we let M [�,B] denote the submatrix of M that is
obtained from M by deleting all columns not in B. The submatrix of M over a subset
of rows R and a subset of columns B is denoted using M [R,B]. We define the Rank

Vertex Cover problem using a representable matroid as follows.

Rank Vertex Cover

Input : A graph H , an integer �, and a bijection φ between V (H) and the set of
columns of a representation of a matroid M .
Output : Is there a vertex cover S ⊆ V (H) ofH such that rank({φ(s) : s ∈ S}) ≤ �?

In the paper we would be working with the above-guarantee parameter k, where
k = �−μ(H). We proceed by stating several basic definitions related to matroids that
are central to our work. For this purpose, let X = (U, I) be a matroid. An element
x ∈ U is called a loop if {x} /∈ I; equivalently, it does not belong to any independent
set of X . If X is a linear matroid, then loops correspond to zero column vectors in its
representation. An element x ∈ U is called a co-loop if it occurs in every basis of X .
Note that for a linear matroid X , an element x is a co-loop if and only if it is linearly
independent from any subset of U \ {x}. Observe that for any co-loop x and A ∈ I,
we have A∪ {x} ∈ I. For a subset A ⊆ U , the rank of A is defined as the maximum
size of an independent subset of A, that is, rankX(A) := maxI′⊆A{|I ′| : I ′ ∈ I}. We
remove the subscript of rankX(A) if the matroid is clear from the context. The rank
of a matroid is defined to be the rank of the set U .

The rank function of X is the function rank : 2U → N that assigns rank(A) to
each subset A ⊆ U . Note that this function satisfies the following properties:

1. 0 ≤ rank(A) ≤ |A|;
2. if A ⊆ B, then rank(A) ≤ rank(B);
3. rank(A ∪B) + rank(A ∩B) ≤ rank(A) + rank(B).

A set F such that ∅ ⊆ F ⊆ U is a flat if rank(F ∪ {x}) > rank(F) for all x /∈ F .
Let F be the set of all flats of the matroid X . For any subset A of U , the closure A
is defined as A =

⋂
F∈F{F : A ⊆ F}. It can be seen that the closure of a set is the

flat of minimum rank containing it. We list out some useful properties of flats and
the closure operation as follows:

1. For any flat F , we have F = F .
2. For any two flats X,Y , we have that X ∩ Y is also a flat.
3. For any set S ⊆ U , we have rank(S) = rank(S).

For a linear matroid the analogue of closure operation is the operation of span. To
denote the span of a set in a matroid M , we would use the notation spanM and re-
move the subscript if the matroid is clear from the context. In this paper, for a linear
matroid both these notions have been used interchangeably. Flats in a linear matroid
are the subspaces of the column space of the representation matrix. Any matroid
always contains two flats trivially if it has a nonzero matrix representation, namely,
the flat containing the zero vector and the column space of the representation. We
next define the notion of general position on a flat for a linear matroid.

Definition 2.2 (general position on a flat in a linear matroid). Let F be a flat
of a linear matroid X. An element x ∈ F is said to be in general position on F if for
any flat F ′ of X, if x is contained in span(F ′ \ {x}), then F ⊆ F ′.

D
ow

nl
oa

de
d

03
/0

5/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPRESSION VIA RANK VERTEX COVER 1281

The notion of general position is related to the independent sets of a linear matroid
as follows.

Lemma 2.3. Given a linear matroid M , a flat F of M , and a vector x ∈ F . If for
all I ∈ I(M) such that F �⊆ I we have I ∪ {x} ∈ I(M), then x is in general position
on F .

Proof. We prove the contrapositive. Assume that x is not in general position on
F . Using Definition 2.2, we see that there exists a flat F ′ with x ∈ F ′ \ {x} such that
F ′ does not contain F . In particular, F is not spanned by any subset of F ′. Let I
be a maximal independent set contained in F ′ \ {x}. Clearly, I does not span F , but
I ∪ {x} is a dependent set.

Observation 1. If a vector x is in general position on a flat F with rank(F) ≥ 1,
in a linear matroid, then x is nonzero.

Proof. Assume that x = 	0. As F has rank at least one, we get that the repre-
sentation matrix M is nonzero. So, M has F ′ = {	0} as a flat such that F �⊆ F ′, but
x ∈ span(F ′ \ {x}) = span(∅) = {	0}. Therefore, we get a contradiction.

Deletion and contraction. The deletion of an element u from X results in
a matroid X ′, denoted by X \ u, with ground set E(X ′) = E(X) \ {u} and set of
independent sets I(X ′) = {I : I ∈ I(X), u /∈ I}. The contraction of a nonloop
element u from X results in a matroid X ′, denoted by X/u, with ground set E(X ′) =
E(X) \ {u} and set of independent sets I(X ′) = {I \ {u} : u ∈ I and I ∈ I(X)}.
The basis sets in a matroid and its contraction satisfy the following.

Observation 2. A set B is a basis in X/u if and only if B ∪ {u} is a basis in X .

When we are considering two matroids X and X/u, then for any subset T ⊆
E(X) \ {u}, T represents the closure of T with respect to the matroid X.

A matroid can also be represented by a ground set and a rank function, and for
our purposes, it is sometimes convenient to employ such a representation. That is,
we also use a pair (U, r) to specify a matroid, where U is the ground set and r is rank
function. Now, we prove several lemmas regarding operations on matroids, which are
used later in the paper.

Observation 3. Let X be a matroid, u ∈ E(X) be a nonloop element, and v be a
co-loop in X . Then v is a co-loop in X/u. Moreover, rank(X/u) = rank(X)− 1.

Proof. If B is a basis in X/u, then B ∪ {u} is a basis in X by Observation 2. As
v is a co-loop in X , v ∈ B ∪ {u}, which implies that v ∈ B. Hence, v is a co-loop in
X/u.

Given a matrix (or a linear matroid) A and a column v ∈ A, by moving the
column vector v to some vector u, we refer to the operation of replacing v in A by a
vector u.

Lemma 2.4. Let X = (U, I) be a linear matroid, W ⊆ U , and let u, v /∈ W be two
elements in X with v a co-loop in X. Let X ′ be the matroid obtained by replacing u
with any vector in span(W). Then v is also a co-loop in X ′.

Proof. Let u′ denote the vector in the span of W which replaced u. Notice that
the only modification performed with respect to the vectors of X is the update of u
to u′. Suppose, by way of contradiction, that v is not a co-loop in X ′. Then there
exists a set of elements S ⊆ E(X ′), where v /∈ S, whose span contains v. If u′ /∈ S,

D
ow

nl
oa

de
d

03
/0

5/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1282 MEESUM, PANOLAN, SAURABH, AND ZEHAVI

then S ⊆ U , which implies that v was not a co-loop in X . Since this results in a
contradiction, we have that u′ ∈ S. As u′ is in the span of W , v must be in the span
of (W ∪ S) \ {u′}. Since (W ∪ S) \ {u′} ⊆ U and v /∈ (W ∪ S) \ {u′}, we have thus
reached a contradiction.

We remark that Lemma 2.4 also holds in the special case when vector u is moved
to a general position on the flat spanned by W .

In general, the rank of any set in the contracted matroid is given by the following.

Lemma 2.5 (see [15, Proposition 3.9]). Let v be an element in a matroid X =
(U, I), which is not a loop in X. Let T ⊆ U such that v /∈ T . Then rankX/v(T) =
rankX(T ∪ v)− 1.

The next lemma follows from the above.

Lemma 2.6. Let v be an element in a matroid X = (U, I), which is not a loop in
X. Let T be a subset of U such that v ∈ T . Then rankX/v(T \ {v}) = rankX(T)− 1.

The lemma above can be rephrased as follows: If T is a set of elements in a
matroid X = (U, I) such that an element v ∈ U is contained in the span of T , then
the rank of T \ {v} in the contracted matroid X/v is smaller by 1 than the rank of T
in X . The span of sets in a contracted matroid are given by the following.

Lemma 2.7 (see [28, Proposition 3.1.12]). For any matroid X, let T ⊂ E(X)
and A ⊆ E(X) \ T . Then spanX/T (A) = spanX(A ∪ T) \ T .

3. Compression. Our objective is to give a polynomial compression of Ver-

tex Cover Above LP. More precisely, we develop a polynomial-time randomized
algorithm that, given an instance of Vertex Cover Above LP with parameter k
and ε > 0 with probability at least 1 − ε, outputs an equivalent instance of Rank

Vertex Cover whose size is bounded by a polynomial in k and ε. It is known
that there is a parameter-preserving reduction from Vertex Cover Above LP to
Vertex Cover Above MM such that the parameter of the output instance is linear
in the parameter of the original instance [21]. Thus, in order to give a polynomial
compression of Vertex Cover Above LP to Rank Vertex Cover where the
size of the output instance is bounded by O(k7 + k4.5 log 1

ε) , it is enough to give a
polynomial compression of Vertex Cover Above MM to Rank Vertex Cover

with the same bound on the size of the output instance. For a graph H , we use μ(H)
and β(H) to denote the maximum size of a matching and the vertex cover number
of H , respectively. Let (G, k) be an instance of Vertex Cover Above MM. Let
n = |V (G)| and In denote the n × n identity matrix. That is, In is a representation
of Un,n. Notice that (G, k) is a Yes-instance of Vertex Cover Above MM if and
only if (G, In, μ(G) + k) with any arbitrary bijection between V (G) and columns of
In, is a Yes-instance of Rank Vertex Cover.

In summary, to give the desired polynomial compression of Vertex Cover

Above LP, it is enough to give a polynomial compression of instances of the form
(G, In, μ(G) + k) of Rank Vertex Cover where the size of the output instance is
bounded by O(k7 + k4.5 log 1

ε) . Here, the parameter is k. For instances of Rank

Vertex Cover, we assume that the columns of the matrix are labeled by the vertices
in V (G) in a manner corresponding to a bijection between the input graph and col-
umns of the input matrix. As discussed above, we again stress that now our objective
is to give a polynomial compression of an instance of the form (G, In, μ(G) + k) of
Rank Vertex Cover to Rank Vertex Cover, which can now roughly be thought
of as a polynomial kernelization. We achieve the compression in two steps:

D
ow

nl
oa

de
d

03
/0

5/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPRESSION VIA RANK VERTEX COVER 1283

1. In the first step, given (G,M = In, μ(G) + k), in polynomial time we either
conclude that (G, In, μ(G)+k) is a Yes-instance of Rank Vertex Cover or
(with high probability of success) output an equivalent instance (G1,M1, �) of
Rank Vertex Cover where the number of rows in M1 and hence rank(M1)
is upper bounded by O(k3/2). Moreover, we also bound the bits required for
each entry in the matrix to be Õ(k5/2 + log(1/ε)) This step is explained in
section 3.2. Notice that after this step, the graph G1 need not be bounded
by kO(1).

2. In the second step, we work with the output (G1,M1, �) of the first step, and
in polynomial time we reduce the number of vertices and edges in the graph
G1 (and hence the number of columns in the matrix M1). That is, output of
this step is an equivalent instance (G2,M2, �), where the size of G2 is bounded
by O(k3). This step is explained in section 3.3.

Throughout the compression algorithm, we work with Rank Vertex Cover.
Notice that the input of Rank Vertex Cover consists of a graphG, an integer �, and
a linear representation M of a matroid with a bijection between V (G) and the set of
columns ofM . In the compression algorithm, we use operations that modify the graph
G and the matrix M simultaneously. To employ these “simultaneous operations”
conveniently, we define (in section 3.1) the notion of a graph-matroid pair. We note
that the definition of a graph-matroid pair is the same as a pregeometry defined in
[24], and various lemmas from [24] which we use here are adapted to this definition.
We also define deletion and contraction operations on a graph-matroid pair and state
some properties of these operations.

3.1. Graph-matroid pairs. We start with the definition of a graph-matroid
pair.

Definition 3.1. A pair (H,M), where H is a graph and M is a matroid over
the ground set V (H), is called a graph-matroid pair.

Notice that there is natural bijection between V (H) and E(M), which is the
identity map. Now, we define deletion and contraction operations on graph-matroid
pairs.

Definition 3.2. Let P = (H,M) be a graph-matroid pair, and let u ∈ V (H).
The deletion of u from P , denoted by P \ u, results in the graph-matroid pair (H \
u,M \ u). If u is not a loop in M , then the contraction of u in P , denoted by P/u,
results in the graph-matroid pair (H \u,M/u). For an edge e ∈ E(H), P \e represents
the pair (H \ e,M).

We remark that matroid deletion and contraction can be done in time polynomial
in the size of ground set for a linear matroid. For details, we refer the reader to [15, 28].

Definition 3.3. Given a graph-matroid pair P = (H,M), the vertex cover num-
ber of P is defined as τ(P) = min{rankM (S) : S is a vertex cover of H}.

For example, if M is an identity matrix (where each element is a co-loop), then
τ(P) is the vertex cover number of H . Moreover, if we let M be the uniform matroid
Ut,n such that t is at least the size of the vertex cover number of H , then τ(P) again
equals the vertex cover number of H .

Let P = (H,M) be a graph-matroid pair, where M is a linear matroid. Recall
that M is also used to refer to a given linear representation of the matroid. For the
sake of clarity, we use vM to refer explicitly to the column vector associated with a
vertex v ∈ V (H). When it is clear from context, we use v and vM interchangeably.

D
ow

nl
oa

de
d

03
/0

5/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1284 MEESUM, PANOLAN, SAURABH, AND ZEHAVI

Lemma 3.4 (see [24, Proposition 4.2]). Let P = (H,M) be a graph-matroid pair
and v ∈ V (H) such that the vector vM is a co-loop in M , where M is a linear matroid.
Let P ′ = (H,M ′) be the graph-matroid pair obtained by moving vM to a vector vM ′

such that in the matroid M ′, vM ′ is in general position on a flat containing the
neighbors of v, NH(v). Then τ(P ′) = τ(P).

Proof. Note that the operation in the statement of the lemma does not change
the graph H . The only change occurs in the matroid, where we map a co-loop vM to
a vector lying in the span of its neighbors. It is clear that such an operation does not
increase the rank of any vertex cover. Indeed, given a vertex cover T of H , in case it
excludes v, the rank of T is the same in both M and M ′, and otherwise, since vM is
a co-loop, the rank of T cannot increase when M is modified by replacing vM with
any other vector. Thus, τ(P ′) ≤ τ(P).

For the other inequality, let T be the set of vectors corresponding to a minimum
rank vertex cover of the graph H in the graph-matroid pair P ′ (where we have re-
placed the vector vM by the vector vM ′). In what follows, note that as we are working
with linear matroids, the closure operation is the linear span. We have the following
two cases:

Case 1: vM ′ /∈ T . In this case, T has the same rank in M as it has in M ′. Thus,
τ(P ′) = rankM ′(T) = rankM (T) ≥ τ(P).

Case 2: vM ′ ∈ T . Here, we have two subcases:
• If vM ′ /∈ T \ {vM ′}, then note that τ(P ′) = rankM ′ (T) = rankM ′ (T \{vM ′})+

1 = rankM ((T \ {vM ′}) ∪ {vM}) ≥ τ(G). The third equality follows because
vM is a co-loop.

• If vM ′ ∈ T \ {vM ′}, then as vM ′ is in general position on a flat contain-
ing its neighbors, by definition this means that all of the neighbors of vM ′

are also present in T \ {vM ′}. Since vM and vM ′ have the same neighbors,
as the graph H has not been modified, all of the neighbors of vM belong
to T \ {vM ′}. Thus, T \ {vM ′} is a vertex cover of H . Therefore, τ(P ′) =
rankM ′(T) = rankM ′(T) = rankM ′(T \ {vM ′}) = rankM (T \ {vM ′}) ≥ τ(P).
The second equality crucially relies on the observation that the rank of a set
is equal to the rank of the span of the set.

This completes the proof of the lemma.

Lemma 3.5 (see [24, Proposition 4.3]). Let P = (H,M) be a graph-matroid
pair, and let v be a vertex of H such that v is not a loop and v is contained in the flat
spanned by its neighbors. Let P ′ = P/v. Then τ(P ′) = τ(P) − 1.

Proof. Recall that the contraction of a vertex v in P results in the graph-matroid
pair P ′ = (H ′,M ′) = (H \ v,M/vM); i.e., the vertex is deleted from the graph and
contracted in the matroid.

We first prove that τ(P) ≤ τ(P ′)+1. Let T be a minimum rank vertex cover in P ′,
i.e., rankM ′(T) = τ(P ′). Let W be a maximum sized independent set in I(M ′) con-
tained in T . Then, by the definition of contraction, W ∪{v} is a maximum sized inde-
pendent set in I(M) contained in T∪{v}. Moreover, T∪{v} is a vertex cover inH , and
therefore we get that τ(P) ≤ rankM (T∪{v}) = |W∪{v}| = rankM ′(T)+1 = τ(P ′)+1.

Now we prove that τ(P ′) ≤ τ(P) − 1. Assume that T is a minimum rank vertex
cover of P . In case v /∈ T , it holds that all the neighbors of v must belong in T
to cover edges incident to v. By our assumption, v is in the span of its neighbors
in M . Therefore, in any case, v necessarily belongs to the span of T . Note that
T \ {v} is a vertex cover of H ′. By Lemma 2.6, we have that τ(P) = rankM (T) =
rankM ′(T \ {v}) + 1 ≥ τ(P ′) + 1. This completes the proof.

D
ow

nl
oa

de
d

03
/0

5/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPRESSION VIA RANK VERTEX COVER 1285

3.2. Rank reduction. In this section we explain the first step of our compres-
sion algorithm. Formally, we want to solve the following problem.

Rank Reduction

Input : An instance (G,M = In, μ(G) + k) of Rank Vertex Cover, where
n = |V (G)|.
Output : An equivalent instance (G′,M ′, �) such that the number of rows in M ′

is at most O(k3/2).

Here, we give a randomized polynomial-time algorithm for Rank Reduction. More
precisely, along with the input of Rank Reduction, we are given an error bound
ε > 0, and the objective is to output a “small” equivalent instance with probability
at least 1 − ε. We begin by stating the well-known crown decomposition, which is
used as a reduction rule.

Definition 3.6 (crown decomposition). A crown decomposition of a graph G
is a partitioning of V (G) into three parts C, H, and R such that the following hold:

• C and H are nonempty.
• C is an independent set.
• There are no edges between vertices of C and R. That is, H separates C and

R.
• Let E′ be the set of edges between vertices of C and H. Then E′ contains a

matching of size |H |.
Using the decomposition above, we get the following reduction rule. For correct-

ness, we refer the reader to [9, section 2.3].

Reduction Rule 1 (crown reduction). For an instance (P, �) of Rank Ver-

tex Cover with P = (G, I|V (G)|), if G has a crown decomposition (C,H,R), then
return (P ′ = P \ (H ∪ C), �′ = �− |H |).

If a graph G has a crown decomposition (C,H,R), then there is an optimum
vertex cover containing H . Any maximum matching of G can be modified to give
another maximum matching of G which matches every vertex of H to some vertex in
C; this gives us μ(G − (H ∪ C)) ≥ μ(G) − |H |. Therefore, for the output instance
(P ′, �′) in Reduction Rule 1, �′ − μ(G′) ≤ �− μ(G), where G′ = G− (H ∪ C). There
exists a polynomial-time algorithm which produces an induced subgraph of the input
graph G such that the crown reduction is not applicable on it; we refer the reader
to [31, section 4, Theorem 6] for details. We call a graph crown reduced if crown
reduction is not applicable to it. The rule above is applied to exhaustion once before
any of the rules described below are applied. Next, we state a reduction rule that
reduces the rank by 2.

Reduction Rule 2 (vertex deletion). Let (P, �) be an instance of Rank Ver-

tex Cover, where P = (G,M) is a graph-matroid pair. Let v ∈ V (G) be a vertex
such that vM is a co-loop in M and the flat spanned by its neighbors NG(v) is nonzero.
Let M1 be the matrix obtained after moving vM to a vector vM1 which is in general
position on the flat spanned by NG(v) in the matroid M1. Let P1 = (G,M1), and let
P ′ = P1/vM1 . Then output (P ′, �− 1).

Lemma 3.7. Reduction Rule 2 is safe.

Proof. We need to show that (P, �) is a Yes-instance if and only if (P ′, � − 1) is
a Yes-instance, which follows from Lemmas 3.4 and 3.5.

D
ow

nl
oa

de
d

03
/0

5/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1286 MEESUM, PANOLAN, SAURABH, AND ZEHAVI

Lemma 3.8. Let (P, �) be an instance of Rank Vertex Cover, where P =
(G,M) is a graph-matroid pair. Let (P ′, � − 1) be the output of Reduction Rule 2,
where P ′ = (G′,M ′). Then rank(M ′) = rank(M)− 2.

Proof. In Reduction Rule 2, we move a co-loop vM ofM to a vector vM1 , obtaining
a matrix M1. If Reduction Rule 2 is applicable, the rank of flat spanned by neighbors
of vM has rank at least 1. So, by Observation 1, vM1 is not a loop in M1. As
M ′ = M1/vM1 , by Observation 3, we get rank(M ′) = rank(M1)−1 = rank(M)−2.

Now, we will explain how to apply Reduction Rule 2 efficiently. Later we will
explain (Lemma 3.22) how to keep the bit length of each entry in the matrix bounded
by a polynomial in k.

We first elaborate the effect of contracting one element on the size of representing
matrix. To contract an element e in a matroid M , we perform row reduction such
that there is exactly one nonzero entry in the column corresponding to e in M . If row
r is the one containing the only nonzero entry in column e in M , then the contracted
matroid is represented by the matrix obtained from M by deleting row r and column
e from it. We can do this step in a straightforward manner; it is similar to one step
of Gaussian elimination for row reduction of a matrix. We first fix a nonzero row
element of e as a pivot. Suppose, without loss of generality, that the first element e1
of e is nonzero. Next, to make any other row element ej in column e equal to zero,
we multiply the jth row of M by e1 and subtract from it the product of the first row
of M with ej . Hence, we get the following observation.

Observation 4. Let e be a nonloop element in a linear matroid M with integer
entries. If each entry in the representation M has an absolute value at most m, then
there is a polynomial-time computable representation of M/e over integers with each
entry at most 2m2 in absolute value.

Lemma 3.9. Let M be a linear matroid of rank r represented over integers with
|E(M)| = n, and let p ≥ 2n be an integer. Then Reduction Rule 2 can be applied
in polynomial time with success probability at least 1 − 2n

p . If the longest entry in
the matrix M has an absolute value m, then the longest entry in the output matrix
is at most 2(mnp)2 in absolute value after applying Reduction Rule 2. Moreover, the
output matrix is over integers.1

Proof. Suppose Reduction Rule 2 is applied to a co-loop v. We first show how to
find a vector in general position which replaces the co-loop v. Let F be the set of col-
umns in M corresponding to NG(v). Using formal indeterminates x = {xh : h ∈ F},
obtain a vector g(x) =

∑
h∈F xhh. Suppose the values of the indeterminates have

been fixed to some numbers x∗ such that for any independent set I ∈ I(M) which
does not span F , I∪{g(x∗)} is also independent. Using Lemma 2.3, we see that g(x∗)
is in general position on F .

Let I be an independent set which does not span F . We need to select x in such a
way that DR,I(x) = det(M [R, I ∪ {g(x)}]) is not identically zero for some R. First of
all, note that there is a choice of R for which the polynomial DR,I(x) is not identically
zero and has total degree 1. This is so becauseDR,I(x) =

∑
h∈F xh det(M [R, I∪{h}]);

if it is identically zero for every R, then ∀h ∈ F we have det(M [R, I ∪ {h}]) = 0, im-
plying that every element h ∈ F is spanned by I. Thus, this case does not arise due
to the choice of I. Let us fix this choice of rows to be R for the rest of the proof. If
we choose x ∈ [p]|F | uniformly at random, for some number p, then the probability

1We remark that we are unaware of a procedure to derandomize the application of Reduction
Rule 2.

D
ow

nl
oa

de
d

03
/0

5/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPRESSION VIA RANK VERTEX COVER 1287

that DR,I(x) = 0 is at most 1
p by the Schwartz–Zippel lemma. The number of inde-

pendent sets in M which do not span F is at most 2n. Applying the union bound,
the probability that DR,I(x) = 0 for some I ∈ I(M) is at most 2n

p . Therefore, the

success probability is at least 1− 2n

p .
Suppose each entry in M has absolute value at most m. The procedure of finding

a point in general position takes polynomial time, and the longest entry in the column
which replaces v has absolute value at most mnp, as at most n of the columns are
added together after multiplying them by a factor of at most p. Combining the pre-
vious statement with Observation 4 gives us the claimed entry sizes and the running
time.

In the very first application of Reduction Rule 2 (when the input matrix is In), the
lemma above tells us that the numbers may become O(n2p2). On applying the rule
again and again, the bit length of entries could become exponential due to Gaussian
elimination performed for contracting the elements in the matroid. The combined
effect of contracting several elements can make the numbers very large. To circumvent
this, suppose we are given a linear matroid (U, I) of low rank and where the ground
set U is small, along with a representation matrix M over the field R. We show that
for a randomly chosen small prime q, the matrix M mod q, obtained by replacing
each entry of M by its remainder on division by q, is also a linear representation of
M (see Lemma 3.13). To prove this result, we first observe that for any number n,
the number of distinct prime factors is bounded by O(log n).

Observation 5. The number of distinct prime factors of any number n is at most
log2n.

The well-known prime number theorem implies the following.

Proposition 3.10. There is a constant c such that the number of distinct prime
numbers smaller than or equal to n, denoted by π(n), is at least c n

logn .

Moreover, we can generate a prime number in polynomial time with a good success
probability as shown by the following.

Proposition 3.11 (folklore). Given a number N and a real number ζ ∈ (0, 1],
there is a randomized polynomial-time algorithm which generates a prime number at
most N uniformly at random with failure probability less than ζ.

Proof. The probability that a randomly generated number less than N is a prime

is at least π(N)
N ≥ c

logN by Proposition 3.10. To decrease the probability of failure

to less than ζ, we generate at most O(log 1
ζ logN) random numbers and test each of

them for primality using the AKS algorithm [1]. If one of the generated numbers is a
prime, we return it; otherwise, we return failure after exhausting the allowed number
of trials.

In what follows, we also need the following general lemma about linear matroids.

Lemma 3.12 (see [15]). Let M be an a× b matrix representing some matroid. If
M ′ is a matrix consisting of a row basis of M , then M ′ represents the same matroid
as M .

Assume that a given matroid representation M has size r′×s, but the rank of the
matroid is some integer r < r′. By Lemma 3.12, we can simply keep a row basis of
the representation matrix and discard the other rows to get a representation matrix
of size r × s. A row basis can be easily identified by row reducing the matrix M
into a matrix Mrred in polynomial time [3] and then keeping the rows in M which

D
ow

nl
oa

de
d

03
/0

5/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1288 MEESUM, PANOLAN, SAURABH, AND ZEHAVI

correspond to nonzero rows in Mrred. Note that this operation does not increase the
size of new representation of M .

We also state the following inequality to be used in the next lemma.

Observation 6. For a, b ∈ R with a ≥ 0 and b ≥ 1, we have a+ b ≤ 2(a+ 1)b.

Lemma 3.13. Let X = (U, I) be a rank r linear matroid representable by an

r × n matrix M over R with each entry an integer between −nc′n
δ and nc′n

δ for some
constants c′ and δ, where δ ∈ (0, 1]. For every ε ∈ (0, 1], there is a number c ∈
O(1+ log 1

ε) such that for a prime number q chosen uniformly at random from the set

of prime numbers smaller than or equal to cn
2r+3(n logn+log(1/δ))2

ε , the matrix Mq = M
mod q over R represents the matroid X with probability at least 1− ε

n .

Proof. To prove that Mq is a representation of X (with high probability), it is
enough to show that for any basis B ∈ B(X), the corresponding columns in Mq

are linearly independent. For this purpose, consider some basis B ∈ B(X). Since
B is an independent set in M , we have that the determinant of the square matrix
M [�,B], denoted by det(M [�,B]), is nonzero. The determinant of Mq[�,B] is equal
to det(M [�,B]) mod q. Let a = det(M [�,B]), and let b = a mod q. The value of b is
equal to zero only if q is a prime factor of a. Since the absolute value of each entry in
M is at most nc′n(1/δ), the absolute value of a is upper bounded by r!nc′nr(1/δ)r. By
Observation 5, the number of prime factors of a is at most log(r!)+c′nr logn+r log 1

δ .
As the rank of X is r, the number of bases in X is at most nr. Hence, the cardinality
of the set

F = {z : z is a prime factor of det(M [�,B]) for some B ∈ B(X)}
is at most nr · (log(r!) + c′nr logn+ r log(1/δ)) ≤ c1n

r+1(n logn+ log(1/δ)) for some
constant c1.

By Proposition 3.10, there is a constant c2 such that the number of prime numbers

less than or equal to cn
2r+3(n logn+log(1/δ))2

ε is at least

t = c2c
n2r+3(n logn+ log(1/δ))2

ε log(cn
2r+3(n log n+log(1/δ))2

ε)
.

The probability that Mq is not a representation of X (denote it by Mq �≡ M) is

Pr[Mq �≡ M] = Pr[q ∈ F] ≤ |F |
t

≤ c1
c2c

· log(c
n2r+3(n logn+log(1/δ))2

ε)

nr+1(n logn+ log(1/δ))
· ε
n

=
c1
c2c

· log(c
nv2

n,δ,r

ε)

vn,δ,r
· ε
n

where vn,δ,r = nr+1(n logn+ log(1/δ))

≤ 2c1(1 + log 1
ε)

c2c
· log(cnv

2
n,δ,r)

vn,δ,r
· ε
n

using Observation 6.

For any ε ∈ (0, 1] and r ≥ 0, there is a number c ∈ O(1 + log 1
ε) such that the above

probability is at most ε
2n . To complete the proof, we use Proposition 3.11 to generate

a prime number of required size with failure probability at most ε
2n . If the algorithm

in Proposition 3.11 fails to return a prime, then we output a small fixed matrix and
exit. The overall failure probability is at most ε

n . This completes the proof of the
lemma.

D
ow

nl
oa

de
d

03
/0

5/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPRESSION VIA RANK VERTEX COVER 1289

By combining Lemmas 3.9, 3.12, and 3.13, we can apply Reduction Rule 2 such
that each entry in the output representation matrix has bounded value.

Lemma 3.14. Given ε ∈ (0, 1], Reduction Rule 2 can be applied in polynomial
time with success probability at least 1− ε

n . Moreover, each entry in the output repre-

sentation matrix of rank r is at most cn
2r+3(n logn+log(1/ε8))2

ε , where c ∈ O(1 + log 1
ε).

Proof. Let M be the input representation matrix. The proof is by induction on
the steps performed for Reduction Rule 2. Each step consists of an application of
Lemma 3.9, Lemma 3.12, and then Lemma 3.13 in order. The invariant at the end
of the steps is that the absolute values of matrix entries are bounded by the value of
q as given in Lemma 3.13 for δ = ε8. Before the application of first step, the matrix
consists of In; therefore, the sizes are bounded as claimed. Let ε′ = ε/(2n). We apply
Lemma 3.9 with p = � 2n

ε′ � to a co-loop. Let M ′ be the output representation matrix
of Lemma 3.9. By Lemma 3.9, Reduction Rule 2 succeeds with probability at least
1− ε′, and the absolute values of individual entries are at most

2(qnp)2 ≤ q2
1

ε2
n422n+5 using p ≤ 2n+2n

ε

≤ c2
22n+5n4r+10(n logn+ log(1/ε8))4

ε4

≤ c2
22n+6n4r+18(1 + 8 log(1/ε))4

ε4
using Observation 6 and logn ≤ n

≤ (1 + log(1/ε))4

ε4
nc′n for some constant c′

≤ nc′n

ε8
using 1 + log

1

ε
≤ 1

ε
.

So, the invariant holds, and if there is a co-loop, we can apply Lemma 3.13 for
Reduction Rule 2 again, as we have the bit sizes in the required form.

We would like to apply Reduction Rule 2 as many times as possible in order to
obtain a “good” bound on the rank of the matroid. However, for this purpose, after
applying Reduction Rule 2 with respect to some co-loop of the matroid, (i) some other
co-loops need to remain co-loops, and (ii) Reduction Rule 2 should be applicable on
them. To achieve the first goal, instead of applying Reduction Rule 2 arbitrarily, we
choose vectors vM whose vertices belong to a predetermined independent set of the
graph. To understand the advantage behind a more careful choice of the vectors vM ,
suppose that we are given an independent set U in the graph G such that every vertex
in it is a co-loop in the matroid. Then, after we apply Reduction Rule 2 with one of
the vertices in U , it holds that every other vertex in U is still a co-loop (by Lemma 2.4
and Observation 3).

To achieve the second goal stated above, we need to ensure that neighborhoods of
remaining co-loops are nonzero. This property is not true for all graphs. For example,
in a complete bipartite graph G = (A ∪ B,E), with partite sets A and B satisfying
|A| > |B|, we cannot apply Reduction Rule 2 on all the elements in A, as the rank of
B will become zero before all the elements have been processed. We next show that
the second goal is achievable in our case, as our graph is crown reduced.

Lemma 3.15. For a matroid X = (U, I), let C ⊆ U and A,B ⊆ U \ C. If
spanX(A) ⊆ spanX(B), then spanX/C(A) ⊆ spanX/C(B).

D
ow

nl
oa

de
d

03
/0

5/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1290 MEESUM, PANOLAN, SAURABH, AND ZEHAVI

Proof. It suffices to prove the lemma for one element c ∈ C; the general state-
ment follows from induction on |C|. Let A′ ⊆ A be a basis of A in X/{c}. By
Observation 2, A′ ∪ {c} is independent in X . From the statement of the lemma, we
get A′ ⊆ spanX(B). By Lemma 2.7, we have spanX/{c}(B) = spanX(B ∪ {c}) \ {c};
therefore, A′ is contained in spanX/{c}(B).

It is possible to compute all the points in general position on their neighborhood
before any matroid contraction. Next we show that matroid contraction does not
affect the status of a point in general position.

Lemma 3.16. For P = (G,M), let u, v ∈ G be two distinct vertices. If u, v are in
general position on NG(u) and NG(v), respectively, in M , then u is in general position
on NG(u) in M/{v}.

Proof. Suppose u is not in general position on spanM/{v}(N(u)); then there ex-
ists F ⊆ E(M) \ {u, v} such that u ∈ spanM/{v}(F) and spanM/{v}(NG(u)) �⊆
spanM/{v}(F). Since spanM/{v}(F) = spanM (F ∪ {v}) \ {v} (by Lemma 2.7), we
get u ∈ spanM (F ∪ {v}) \ {v}, which implies that u ∈ spanM (F ∪ {v}). Sim-
ilarly, by Lemma 2.7 and spanM/{v}(NG(u)) �⊆ spanM/{v}(F), we also have that
(i) spanM (NG(u) ∪ {v}) \ {v} �⊆ spanM (F ∪ {v}) \ {v}. In what follows, we show
that spanM (F ∪ {v}) is a flat for which u fails the general position condition. We
have already proved that u ∈ spanM (F ∪ {v}). From the statement (i), we have
spanM (NG(u) ∪ {v}) �⊆ spanM (F ∪ {v}). If spanM (NG(u)) ⊆ spanM (F ∪ {v}), then
we have spanM (NG(u) ∪ {v}) ⊆ spanM (F ∪ {v}). Therefore, it must be the case
that spanM (NG(u)) �⊆ spanM (F ∪ {v}). This contradicts the assumption that u is in
general position on NG(u) in M .

Lemma 3.17. Let (P, �) with P = (G,M) be an instance of Rank Vertex

Cover, and let S be any independent set of G. If G is crown reduced, then Re-
duction Rule 2 is applicable on every s ∈ S.

Proof. The matroid before any contraction is M = In. Let D ⊆ S be an ordered
sequence of elements such that the rank of J ⊆ V (G)\S becomes zero after application
of Reduction Rule 2 on the elements of D. If there is some other element s ∈ S \
D with NG(s) ⊆ J , then we would not be able to apply Reduction Rule 2 on it.
To simplify the discussion, we assume that elements in D refer to corresponding
points in the flat of their neighborhoods; moreover, the points in general position
can all be computed initially before any matroid contraction by Lemma 3.16. Due
to commutativity of matroid contraction, the order of contraction of elements in D
does not affect the final matroid. Therefore, any permutation of elements in D will
result in the same final matroid upon contraction. Let C = {c1, c2, . . . , cp} ⊆ D be a
shortest length subsequence which results in rank of a subset of V (G) \ S becoming
zero upon contraction. Let H ⊆ V (G) \ S be the largest cardinality set whose rank
became zero after the contraction of C. Given a permutation Π of {1, . . . , p}, let Mi

denote the matroid obtained after contraction of the elements in C indexed by the
first i indices in Π({1, . . . , p}), and let ranki and spani denote the rank and span in
Mi, respectively.

Claim 3.18. For any ci ∈ C, if there exists a permutation Π of C such that
rankΠ(i)(H) = rankΠ(i)−1(H)− 1, then NG(ci) ⊆ H.

Proof. Assume NG(ci) �⊆ H , and let j = Π(i). As rankj(H) = rankj−1(H) −
1, we have ci ∈ spanj−1(H) by Lemma 2.5. Also, as ci is in general position on
spanj−1(NG(ci)) in Mj−1, we have spanj−1(NG(ci)) ⊆ spanj−1(H). By Lemma 3.15,

D
ow

nl
oa

de
d

03
/0

5/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPRESSION VIA RANK VERTEX COVER 1291

spanp(NG(ci)) ⊆ spanp(H), which implies that NG(ci) ∪H is a larger cardinality set
with rank equal to zero in Mp, a contradiction to our choice of H .

Claim 3.19. N(C) ⊆ H.

Proof. For any ci ∈ C, pick a Π with Π(i) = p. If ci does not change the rank
of H in this order, then C \ {ci} is a shorter sequence. Hence, Claim 3.18 gives us
NG(ci) ⊆ H .

Clearly, C does not have any edges to vertices in V (G)\(C∪H). Therefore, there
cannot be any matching from H to C of size |H |, as G is crown reduced. Consider
the bipartite graph B with bipartition H � C and E(B) is the set of edges in G
between C and H . By Hall’s theorem, there is a nonempty set H∗ ⊆ H such that
|H∗| > |NB(H

∗)|. Let C∗ = NB(H
∗). We first contract the elements in C \ C∗.

These do not decrease the rank of the set H∗ upon contraction due to Lemma 2.4 and
Observation 3 along with the fact that NB(C \C∗) ∩H∗ = ∅; in particular, elements
of H∗ remain co-loops. By Lemma 2.5, the rank of H∗ after contraction by C∗ is at
least |H∗| − |NB(H

∗)| > 0. This is not possible, as H∗ is a subset of a rank zero set
H in the matroid Mp = M/C.

In order to find a large independent set (in order to apply Reduction Rule 2 many
times), we use the following two known algorithmic results about Vertex Cover

Above MM.

Lemma 3.20 (see [23]). There is a 2.3146k · nO(1)-time deterministic algorithm
for Vertex Cover Above MM.

Recall that for a graph G, we let β(G) denote the vertex cover number of G.

Lemma 3.21 (see [25]). For any ε > 0, there is a randomized polynomial-time
approximation algorithm that, given a graph G, outputs a vertex cover of G of cardi-
nality at most μ(G) +O(

√
logn)(β(G) − μ(G)) with probability at least 1− ε.

We are now ready to give the main lemma of this subsection.

Lemma 3.22. There is a polynomial-time randomized algorithm that, given an
instance (G,M = In, μ(G) + k) of Rank Vertex Cover and ε̂ > 0 with probability
at least 1 − ε̂, outputs an equivalent instance (G′,M ′, �) of Rank Vertex Cover

such that � and the number of rows in M ′ are both at most O(k3/2). Here, M ′ is an
integer matrix over the field R, where each entry is O(k5/2 + log(1/ε̂)) bits long.

Proof. On the input instance, apply crown reduction exhaustively. Recall that
n = |V (G)|. If k ≤ logn, then we use Lemma 3.20 to solve the problem in polynomial
time. Next, we assume that logn < k. Let δ = ε̂/2.

Now, by Lemma 3.21, we know that there exists an algorithm which in polynomial
time outputs a vertex cover of G of cardinality at most μ(G)+O(

√
logn)(β(G)−μ(G))

with probability at least 1 − δ, where c′ is some constant. Run this algorithm on G.
If the algorithm signals failure or outputs a vertex cover Y of G such that |Y | >
μ(G) + c′

√
logn · k, then output an arbitrary constant-sized No-instance of Rank

Vertex Cover (the probability of this happening despite the input instance being a
Yes-instance is at most δ). Therefore, we can assume that |Y | ≤ μ(G)+c′

√
logn ·k ≤

μ(G) + c′ · k3/2; let S = V (G) \ Y . Since Y is a vertex cover of G, we have that S is
an independent set of G. Clearly, |S| ≥ n− (μ(G) + c′ · k3/2). Since M = In, all the
elements of M , including the ones in S, are co-loops in M . Now, we apply Reduction

D
ow

nl
oa

de
d

03
/0

5/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1292 MEESUM, PANOLAN, SAURABH, AND ZEHAVI

Rule 2 with the elements of S (one by one). By Lemma 2.4 and Observation 3,
after each application of Reduction Rule 2, the remaining elements in S are still co-
loops. In particular, Reduction Rule 2 is applied |S| times. Let (G′,M ′, �) be the
instance obtained after these |S| applications of Reduction Rule 2 using Lemma 3.14
(substituting ε = δ in Lemma 3.14).

By Lemmas 3.8 and 3.17, application of Reduction Rule 2 reduces the rank by 2
for each vertex in S. Hence,

rank(M ′) = rank(M)− 2|S|
≤ n− 2

(
n− (μ(G) + c′ · k3/2)

)
= −n+ 2μ(G) + 2c′ · k3/2 ≤ 2c′ · k3/2 (because 2μ(G) ≤ n).

During each application of Reduction Rule 2, by Lemma 3.12, we can assume
that the number of rows in the representation matrix is exactly same as the rank of
the matrix. Now, we return (G′,M ′, �) as the output. Notice that the number of
rows in M ′ is at most O(k3/2). By Lemma 3.5, the rank of vertex cover falls by |S|.
Therefore, � = μ(G) + k − |S| ≤ k + c′ · k3/2.

Now, we analyze the probability of success. As finding the approximate vertex
cover Y using Lemma 3.21 fails with probability at most δ = ε̂

2 , in order to get the
required success probability of 1 − ε̂, |S| applications of Reduction Rule 2 should
succeed with probability at least 1 − ε̂

2 . We suppose that the matrix M = In is over
the field R. Recall that the instance (G′,M ′, �) is obtained after |S| applications of
Reduction Rule 2. The failure probability of each application of Reduction Rule 2 is at
most δ

n . Hence, by union bound, the probability of failure in at least one application
of Reduction Rule 2 is at most δ. Hence, the total probability of success is at least
1− (δ + δ) = 1− ε̂. By Lemma 3.14, each entry in the output representation matrix

is at most cn
2r+3(n logn+8 log(2/ε̂))2

ε̂/2 . Hence, the number of bits required to represent

an entry in M ′ is at most O(r logn+ log(2/ε̂)) = O(k5/2 + log(1/ε̂)).

The rank reduction of the input matroid reduces the number of rows to a function
of parameter, but the number of vertices and the number of columns in the matroid
is |V (G′)| = n− |S| ≤ μ(G) + c′ · k3/2. This is not sufficient for a compression. The
next section shows how to reduce the number of edges to a function of k using the
matroid.

3.3. Graph reduction. In the previous subsection, we have seen how to reduce
the number of rows in the matroid. In this subsection, we move to the second step
of our compression algorithm, that is, to reduce the size of the graph. The value of
k in the following is the same as in the previous sections; it is the above-guarantee
parameter. Formally, we want to solve the following problem.

Graph Reduction

Input : An instance (G′,M, �) of Rank Vertex Cover such that � and the

number of rows in M are both at most O(k
3
2).

Output : An equivalent instance (G′′,M ′, �) such that |V (G′′)|, |E(G′′)| ≤ O(k3).

Here, we give an algorithm to reduce the number of edges in the graph. Having reduced
the number of edges, we also obtain the desired bound on the number of vertices (as
isolated vertices are discarded). Towards this, we first give some definitions and
notations. In this section, we use F to denote either a finite field or R.

D
ow

nl
oa

de
d

03
/0

5/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPRESSION VIA RANK VERTEX COVER 1293

Definition 3.23 (symmetric square). For a set of column vectors S over a field
F, the symmetric square, denoted by S(2), is defined as S(2) = {uvT +vuT : u, v ∈ S},
where the operation is matrix multiplication. The elements of S(2) are matrices. We

can define the rank function r(2) : 2S
(2) → N by treating the matrices as “long” vectors

over the field F.

With a rank function r(2), the pair (S(2), r(2)) forms a matroid. For details we
refer the reader to [24].

The dot product of two column vectors a, b ∈ F
n is the scalar aT b and is denoted

by 〈a, b〉. Two properties of dot product are (i) 〈a, b〉 = 〈b, a〉 and (ii) 〈a, b + c〉 =
〈a, b〉+ 〈a, c〉.

Definition 3.24. Given a vector space Fd and a subspace F of Fd, the orthogonal
space of F is defined as F⊥ = {x ∈ F

d : 〈y, x〉 = 0 for all y ∈ F}.
To avoid confusion later, we state the following observation, which follows from

the fact that the dot product of two column vectors v and w is equal to the scalar
vTw.

Observation 7. Let u, v, w be three column vectors. Then uvTw = 〈v, w〉u.
Definition 3.25 (2-tuples meeting a flat). For a flat F in a linear matroid S

(here S is a set of vectors), the set of 2-tuples meeting F is defined as F2 := {uvT +
vuT : v ∈ F, u ∈ S}.

For the sake of completeness, we prove the following lemmas using elementary
techniques from linear algebra.

Lemma 3.26 (see [24, Proposition 2.8]). For any flat F in a linear matroid S with
rank function r, it holds that F2 (the set of 2-tuples meeting F) forms a flat in the
matroid (S(2), r(2)).

Proof. Suppose, by way of contradiction, that F2 is not a flat. Then there exist
a, b ∈ S such that e = abT + baT ∈ S(2) is not in F2 and

r(2)(F2 ∪ {e}) = r(2)(F2).

As e lies in the span of F2, there exist scalars λuv such that

abT + baT =
∑

u∈F,v∈S

λuv(uv
T + vuT).(3.1)

Note that neither a nor b belongs to F because if at least one of them belongs to
F , then e lies in F2 (by the definition of F2). Therefore, F �= S, and it is a proper
subspace of S, which implies that F⊥ is nonempty (follows from Proposition 13.2
in [19]). Pick an element x ∈ F⊥. By right multiplying the column matrix x with the
terms in (3.1), we get

abTx+ baTx =
∑

u∈F,v∈S

λuv(uv
Tx+ vuTx)

〈b, x〉a+ 〈a, x〉b =
∑

u∈F,v∈S

λuv〈v, x〉u + 〈u, x〉v

=
∑

u∈F,v∈S

λuv〈v, x〉u.(3.2)

The second equality follows from Observation 7, and the third equality follows
from the fact that 〈u, x〉 = 0 (because u ∈ F and x ∈ F⊥). Now, by taking dot

D
ow

nl
oa

de
d

03
/0

5/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1294 MEESUM, PANOLAN, SAURABH, AND ZEHAVI

product with x, from (3.2), we have that

2〈a, x〉〈b, x〉 =
∑

u∈F,v∈S

λuv〈v, x〉〈u, x〉 = 0.(3.3)

The last equality follows from the fact that 〈u, x〉 = 0. As the choice of x was
arbitrary, (3.2) and (3.3) hold for all x ∈ F⊥.

By (3.3), for all x ∈ F⊥, at least one of 〈b, x〉 or 〈a, x〉 is zero. If exactly one
of 〈b, x〉 or 〈a, x〉 is zero for some x ∈ F⊥, then at least one of a or b is a linear
combination of vectors from F (by (3.2)), and hence it belongs to F , which is a
contradiction (recall that we have argued that both a and b do not belong to the flat
F). Now, consider the case where both 〈b, x〉 and 〈a, x〉 are zero for all x ∈ F⊥. Then
both a and b belong to F⊥⊥. Since F⊥⊥ = F (in the case F is a finite dimensional
vector space defined over a finite field, see [17, Theorem 7.5]), again we have reached
a contradiction.

For a graph-matroid pair P = (H,M) (here, M represents a set of vectors),
define E(P) ⊆ M (2) as E(P) = {uvT + vuT : {u, v} ∈ E(H)}. Note that E(P) forms
a matroid with the same rank function as the one of M (2). Moreover, the elements
of E(P) are in correspondence with the edges of H . For simplicity, we refer to an
element of E(P) as an edge. Using Lemma 3.26, we prove the following lemma.

Lemma 3.27 (see [24, Proposition 4.7]). Let P = (H,M) be a graph-matroid
pair, and let r(2) be the rank function of E(P). For an edge e that is not a co-loop in
(E(P), r(2)), it holds that τ(P \ e) = τ(P).

Proof. The deletion of edges cannot increase the vertex cover number; thus,
τ(P \ e) ≤ τ(P). Next, we show that it also holds that τ(P \ e) ≥ τ(P).

Let T be a vertex cover of H \ e. Notice that T is a flat in M . Denote e = {u, v}
and F = T . If at least one of u or v lies in F , then F is a vertex cover of H , and
hence τ(P \ e) ≥ τ(P). Hence, to conclude the proof, it is sufficient to show that at
least one of u or v lies in F . Suppose, by way of contradiction, that u, v /∈ F . Then
the edge e = uvT + vuT does not belong to F2 (the set of 2-tuples meeting F). By
Lemma 3.26, we have that F2 is a flat in (M (2), r(2)). Since F is a vertex cover of
H \e, by the definition of F2 and E(P), we have that E(P)\{e} ⊆ F2. Recall that e is
not a co-loop in (E(P), r(2)). This implies that e belongs to the closure of E(P) \ {e},
and hence it belongs to its superset F2. We have thus reached a contradiction. This
completes the proof.

Using Lemma 3.27, we get the following bound on the number of edges analogously
to Theorem 4.6 in [24].

Lemma 3.28. Let (H,M, �) be an instance of Rank Vertex Cover and r =
rank(M). Applying the reduction given by Lemma 3.27 on (H,M) exhaustively results
in a graph with at most

(
r+1
2

)
edges.

Proof. Let {v1, . . . , vr} be a column basis of M . By construction, any element
in S(2) can be written as a linear combination of elements in B(2) = {vivTj + vjv

T
i :

i, j ∈ [r]}. The set B(2) contains r+
(
r
2

)
=

(
r+1
2

)
elements. Therefore, the rank of the

matroid (E(P), r(2)) is at most
(
r+1
2

)
.

The reduction given by Lemma 3.27 deletes any edge that is not a co-loop in this
matroid. In other words, once the reduction can no longer be applied, every edge is a
co-loop in the matroid (E(P), r(2)), and hence the graph has at most

(
r+1
2

)
edges.

D
ow

nl
oa

de
d

03
/0

5/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

COMPRESSION VIA RANK VERTEX COVER 1295

Lemma 3.28 bounds the number of edges of the graph. To bound the number of
vertices in the graph, we apply the following simple reduction rule.

Reduction Rule 3. Let (G,M, �) be an instance of Rank Vertex Cover.
For any v ∈ V (G) of degree 0 in G, output (G \ v,M \ v, �).

Reduction Rule 3 and Lemma 3.28 lead us to the main result of this subsection.

Corollary 3.29. There is a polynomial-time algorithm which, given an instance
(G′,M ′, �) of Rank Vertex Cover such that the number of rows in M is at

most O(k
3
2), outputs an equivalent instance (G′′,M ′′, �) such that |V (G′′)|, |E(G′′)|

= O(k3). Here, M ′′ is a restriction of M ′.

By combining the corollary above with Lemma 3.22, we get the following result.

Theorem 3.30. There is a polynomial-time randomized algorithm that, given an
instance (G,M = In, μ(G) + k) of Rank Vertex Cover and ε > 0 with probability
at least 1 − ε, outputs an equivalent instance (G′,M ′, �) of Rank Vertex Cover

such that � and the number of rows in M ′ are both at most O(k3/2). Moreover, M ′

is an integer matrix over the field R containing O(k7 + k4.5 log 1
ε) bits, and G′ has

at most O(k3) vertices and edges.

Theorem 3.30 also gives us a polynomial compression of size O(k7 + k4.5 log 1
ε)

for Vertex Cover Above LP.

4. Conclusion. In this paper, we presented a (randomized) polynomial compres-
sion of the Vertex Cover Above LP problem into the algebraic Rank Vertex

Cover problem. With probability at least 1− ε, the output instance is equivalent to
the original instance, and it is of bit length O(k7 + k4.5 log 1

ε) . Here, the probability
ε is part of the input. Recall that having our polynomial compression at hand, one
also obtains polynomial compressions of additional well-known problems, such as the
Odd Cycle Transversal problem, into the Rank Vertex Cover problem.

Finally, we note that we do not know how to derandomize our polynomial com-
pression, and it is also not known how to derandomize the polynomial kernelization
by Kratsch and Wahlström [21]. Thus, to conclude our paper, we would like to pose
the following intriguing open problem: Does there exist a deterministic polynomial
compression of the Vertex Cover Above LP problem?

REFERENCES

[1] M. Agrawal, N. Kayal, and N. Saxena, Primes is in P, Ann. Math., (2004), pp. 781–793.
[2] R. Balasubramanian, M. R. Fellows, and V. Raman, An improved fixed-parameter algo-

rithm for vertex cover, Inform. Process. Lett., 65 (1998), pp. 163–168.
[3] E. H. Bareiss, Sylvester’s identity and multistep integer-preserving Gaussian elimination,

Math. Comp., 22 (1968), pp. 565–578.
[4] J. F. Buss and J. Goldsmith, Nondeterminism within P, SIAM J. Comput., 22 (1993),

pp. 560–572, https://doi.org/10.1137/0222038.
[5] L. S. Chandran and F. Grandoni, Refined memorization for vertex cover, Inform. Process.

Lett., 93 (2005), pp. 125–131.
[6] J. Chen, H. Fernau, I. A. Kanj, and G. Xia, Parametric duality and kernelization: Lower

bounds and upper bounds on kernel size, SIAM J. Comput., 37 (2007), pp. 1077–1106,
https://doi.org/10.1137/050646354.

[7] J. Chen, I. A. Kanj, and W. Jia, Vertex cover: Further observations and further improve-
ments, J. Algorithms, 41 (2001), pp. 280–301, https://doi.org/10.1006/jagm.2001.1186.

[8] J. Chen, I. A. Kanj, and G. Xia, Improved upper bounds for vertex cover, Theoret. Comput.
Sci., 411 (2010), pp. 3736–3756.

[9] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,

M. Pilipczuk, and S. Saurabh, Parameterized Algorithms, Springer, Berlin, 2015.

D
ow

nl
oa

de
d

03
/0

5/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/0222038
https://doi.org/10.1137/050646354
https://doi.org/10.1006/jagm.2001.1186

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

1296 MEESUM, PANOLAN, SAURABH, AND ZEHAVI

[10] M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. O. Wojtaszczyk, On multiway cut parame-
terized above lower bounds, ACM Trans. Comput. Theory, 5 (2013), p. 3, https://doi.org/
10.1145/2462896.2462899.

[11] H. Dell and D. Van Melkebeek, Satisfiability allows no nontrivial sparsification unless the
polynomial-time hierarchy collapses, J. ACM, 61 (2014), p. 23.

[12] R. G. Downey and M. R. Fellows, Fundamentals of Parameterized Complexity, Texts Com-
put. Sci., Springer, Cham, Switzerland, 2013.

[13] R. G. Downey, M. R. Fellows, and U. Stege, Parameterized complexity: A framework
for systematically confronting computational intractability, in Contemporary Trends in
Discrete Mathematics: From DIMACS and DIMATIA to the Future, Vol. 49, 1999, pp. 49–
99.

[14] S. Garg and G. Philip, Raising the bar for vertex cover: Fixed-parameter tractability above a
higher guarantee, in Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2016, SIAM, Philadelphia, 2016, pp. 1152–1166, https://
doi.org/10.1137/1.9781611974331.ch80.

[15] G. Gordon and J. McNulty, Matroids: A Geometric Introduction, Cambridge University
Press, Cambridge, 2012, https://doi.org/10.1017/CBO9781139049443.

[16] G. Gutin, E. J. Kim, M. Lampis, and V. Mitsou, Vertex cover problem parameterized above
and below tight bounds, Theory Comput. Syst., 48 (2011), pp. 402–410.

[17] R. Hill, A First Course in Coding Theory, Oxford Applied Linguistics, Clarendon Press,
Oxford, 1986, https://books.google.co.in/books?id=UTxjBX9lKoMC.

[18] R. Impagliazzo, R. Paturi, and F. Zane, Which problems have strongly exponential complex-
ity?, J. Comput. Sys. Sci., 63 (2001), pp. 512–530.

[19] S. Jukna, Extremal combinatorics: With applications in computer science, Texts Theo-
ret. Comput. Sci. EATCS Ser., Springer, Berlin, 2011, https://books.google.co.in/books?
id=NV3Y8vjWo8kC.

[20] S. Kratsch, A randomized polynomial kernelization for vertex cover with a smaller parameter,
in 24th Annual European Symposium on Algorithms, ESA 2016, Aarhuss, Denmark, 2016,
pp. 59:1–59:17, https://doi.org/10.4230/LIPIcs.ESA.2016.59.

[21] S. Kratsch and M. Wahlström, Representative sets and irrelevant vertices: New tools
for kernelization, in IEEE 53rd Annual Symposium on Foundations of Computer Sci-
ence (FOCS-12), T. Roughgarden ed., IEEE Computer Society, Los Alamitos, CA, 2012,
pp. 450–459.

[22] M. Lampis, A kernel of order 2k − c log k for vertex cover, Inform. Process. Lett., 111 (2011),
pp. 1089–1091.

[23] D. Lokshtanov, N. Narayanaswamy, V. Raman, M. Ramanujan, and S. Saurabh, Faster
parameterized algorithms using linear programming, ACM Trans. Algorithms, 11 (2014),
p. 15.

[24] L. Lovász, Flats in matroids and geometric graphs, Combinatorial Surveys, (1977), pp. 45–86.
[25] S. Mishra, V. Raman, S. Saurabh, S. Sikdar, and C. R. Subramanian, The complexity

of König subgraph problems and above-guarantee vertex cover, Algorithmica, 61 (2011),
pp. 857–881, https://doi.org/10.1007/s00453-010-9412-2.

[26] N. Narayanaswamy, V. Raman, M. Ramanujan, and S. Saurabh, LP can be a cure for pa-
rameterized problems, in STACS’12 (29th Symposium on Theoretical Aspects of Computer
Science), Vol. 14, LIPIcs, 2012, pp. 338–349.

[27] R. Niedermeier and P. Rossmanith, Upper bounds for vertex cover further improved, in
Annual Symposium on Theoretical Aspects of Computer Science, Springer, Berlin, 1999,
pp. 561–570.

[28] J. G. Oxley, Matroid Theory, Oxford Graduate Texts in Mathematics, Oxford University
Press, New York, 2006.

[29] V. Raman, M. Ramanujan, and S. Saurabh, Paths, flowers and vertex cover, in European
Symposium on Algorithms, Springer, Berlin, 2011, pp. 382–393.

[30] I. Razgon and B. O’Sullivan, Almost 2-SAT is fixed-parameter tractable, J. Comput. Sys.
Sci., 75 (2009), pp. 435–450.

[31] F. N. Abu-Khzam, M. A. Langston, and W. H. Suters, Fast, effective vertex cover kernel-
ization: a tale of two algorithms, 3rd ACS/IEEE International Conference on Computer
Systems and Applications, 2005, IEEE, Piscataway, NJ, 2005.

D
ow

nl
oa

de
d

03
/0

5/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1145/2462896.2462899
https://doi.org/10.1145/2462896.2462899
https://doi.org/10.1137/1.9781611974331.ch80
https://doi.org/10.1137/1.9781611974331.ch80
https://doi.org/10.1017/CBO9781139049443
https://books.google.co.in/books?id=UTxjBX9lKoMC
https://books.google.co.in/books?id=NV3Y8vjWo8kC
https://books.google.co.in/books?id=NV3Y8vjWo8kC
https://doi.org/10.4230/LIPIcs.ESA.2016.59
https://doi.org/10.1007/s00453-010-9412-2

	Introduction
	Preliminaries
	Matroids

	Compression
	Graph-matroid pairs
	Rank reduction
	Graph reduction

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

