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Abstract. The family of judicious partitioning problems, introduced by Bollobás and Scott to
the field of extremal combinatorics, has been extensively studied from a structural point of view for
over two decades. This rich realm of problems aims to counterbalance the objectives of classical
partitioning problems such as Min Cut, Min Bisection, and Max Cut. While these classical
problems focus solely on the minimization/maximization of the number of edges crossing the cut,
judicious (bi)partitioning problems ask the natural question of the minimization/maximization of
the number of edges lying in the (two) sides of the cut. In particular, Judicious Bipartition (JB)
seeks a bipartition that is “judicious” in the sense that neither side is burdened by too many edges,
and Balanced JB (BJB) also requires that the sizes of the sides themselves are “balanced” in the
sense that neither of them is too large. Both of these problems were defined in the work by Bollobás
and Scott and have received notable scientific attention since then. In this paper, we shed light on
the study of judicious partitioning problems from the viewpoint of algorithm design. Specifically, we
prove that BJB is fixed parameter tractable (FPT) (which also proves that JB is FPT).
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1. Introduction. More than twenty years ago, Bollobás and Scott [3] defined
the notion of judicious partitioning problems. Since then, the family of judicious
partitioning problems has been extensively studied in the field of extremal combi-
natorics, as can be evidenced by the abundance of structural results described in
surveys such as [7, 36]. This rich realm of problems aims to counterbalance the ob-
jectives of classical partitioning problems such as Min Cut, Min Bisection, Max
Cut, and Max Bisection. While these classical problems focus solely on the min-
imization/maximization of the number of edges crossing the cut (or alternately, the
total number of edges inside the parts of the partition), judicious (bi)partitioning
problems ask the natural questions of the minimization/maximization of the number
of edges lying inside each part of the partition simultaneously. Another significant
feature of judicious partitioning problems that also distinguishes them from other
classical partitioning problems is that they inherently and naturally encompass sev-
eral objectives, aiming to minimize (or maximize) the number of edges in several sets
simultaneously.
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BJB IS FPT 1879

In this paper, we shed light on properties of judicious partitioning problems from
the viewpoint of the design of algorithms. Up until now, the study of such problems
has essentially been overlooked at the algorithmic front, where one of the underly-
ing reasons for this discrepancy might be that standard machinery does not seem to
handle them effectively. Specifically, we focus on the Judicious Bipartition (JB)
problem, where we seek a bipartition that is “judicious” in the sense that neither
side has too many edges that lie entirely inside it, and on the Balanced Judicious
Bipartition (BJB) problem, where we also require that the sizes of the sides them-
selves are “balanced” in the sense that the number of vertices in both the parts are
almost same. Both of these problems were defined in the work by Bollobás and Scott
and have received notable scientific attention since then. Formally, BJB is defined
as follows.

Balanced Judicious Bipartition (BJB) Parameter: k1 + k2

Input: A multigraph G, and integers µ, k1, and k2

Question: Does there exist a partition (V1, V2) of V (G) such that |V1| = µ and
for all i ∈ {1, 2}, it holds that |E(G[Vi])| ≤ ki?

We note that in the literature, the term BJB refers to the case where µ = d |V (G)|
2 e,

and hence it is more restricted then the definition above. By dropping the requirement
that |V1| = µ, we get the JB problem. By using new crucial insights into these
problems on top of the most advanced machinery in parameterized complexity to
handle partitioning problems,1 we are able to resolve the question of the parameterized
complexity of BJB (and hence also of JB). In particular, we prove the following
theorem.

Theorem 1.1. BJB can be solved in time 2k
O(1) · |V (G)|O(1).

Structural results. Denote n = |V (G)| and m = |E(G)|. To survey several
structural results about judicious partitioning problems, we first define the notions of
t-cut and max (min) t-judicious partitioning. Given a partition of V (G) into t parts,
a t-cut is the number of edges going across the parts, while a max (min) judicious
t-partitioning is the maximum (minimum) number of edges in any of the parts. When
t = 2, we use the standard terms bipartite-cut and judicious bipartitioning, respec-
tively. Furthermore, by t-judicious partitioning we mean max t-judicious partitioning.
As stated earlier, Bollobás and Scott [3] defined the notion of judicious partitioning
problems in 1993. In that paper, they showed that for any positive integer t and graph
G, we can partition V (G) into t sets, V1, . . . , Vt, so that |E(G[Vi])| ≤ t

t+1m for all
i ∈ {1, . . . , t}. Bollobás and Scott also studied this problem on graphs of maximum
degree ∆ and showed that there exists a partition of V (G) into t sets V1, . . . , Vt so
that it simultaneously satisfies an upper bound and a lower bound on the number
of edges in each part as well as on edges between every pair of parts. Later, Bol-
lobás and Scott [7] gave several new results concerning the extremal bounds of the
k-judicious partitioning problem, leaving open other new questions concerning the
tightness of their bounds in general and special cases. In [8] they showed an optimal
bound for the number of edges inside a part for the judicious partitioning problem
on bounded-degree graphs. These problems have also been studied on general hyper-
graphs [4], uniform hypergraphs [24], 3-uniform hypergraphs [6], and directed graphs
[26].

1To the best of our knowledge, up until now, this machinery has actually only been proven useful
to solve one natural problem which could not have been tackled using earlier tools.
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1880 D. LOKSHTANOV, S. SAURABH, R. SHARMA, AND M. ZEHAVI

The special cases of judicious partitioning problems called judicious bipartitioning
and balanced judicious bipartitioning problems have also been studied intensively.
Bollobás and Scott [5] proved an upper bound on judicious bipartitioning and proved
that every graph that achieves the essentially best known lower bound on bipartite-
cut, given by Edwards in [18] and [19], also achieves this upper bound for judicious
bipartitioning. In fact, they showed that this is exact for complete graphs of odd order,
which are the only extremal graphs without isolated vertices. Alon et al. [1] gave a
nontrivial connection between the size of a bipartite-cut in a graph and judicious
partitioning into two sets. In particular, they showed that if a graph has a bipartite-
cut of size at least m

2 + δ, where δ ≤ m/30, then there exists a bipartition (V1, V2) of

V (G) such that |E(G[Vi])| ≤ m
4 − δ

2 + 10δ2

m + 3
√
m for i ∈ {1, 2}. They complemented

these results by showing an upper bound on the number of edges in each part when
δ > m/30. Bollobás and Scott [9] studied similar relations between t-cuts and t-
judicious partitionings for t ≥ 3. Recently, these results were further refined [39, 28].
Xu, Yan, and Yu [38] and Xu and Yu [40] studied balanced judicious bipartitioning
where both parts are of almost equal size (that is, one of the sizes is dn2 e). Both
of these papers concern the following conjecture of Bollobás and Scott [7]: if G is a
graph with minimum degree of at least 2, then V (G) admits a balanced bipartition
(V1, V2) such that for each i ∈ {1, 2}, |E(G[Vi])| ≤ m

3 . For further results on judicious
partitioning, we refer to the surveys [7, 36].

Algorithmic results. While classical partitioning problems such as Min Cut,
Min Bisection, Max Cut, and Max Bisection have been studied extensively al-
gorithmically, the same is not true about judicious partitioning problems. Apart from
Min Cut, all the above-mentioned partitioning problems are NP-complete. These
NP-complete partitioning problems were investigated by all algorithmic paradigms
meant for coping with NP-completeness, including approximation algorithms and pa-
rameterized complexity. In what follows, we discuss known results related to these
problems in the realm of parameterized complexity.

First, note that for every graph G, there always exists a bipartition of the ver-
tex set into two parts (in fact equal parts [22, Corollary 1]) such that at least m/2
edges are going across. This immediately implies that Max Cut and Max Bi-
section are fixed-parameter tractable (FPT) when parameterized by the cut size
(the number of edges going across the partition). This led Mahajan and Raman
[29] to introduce the notion of above-guarantee parameterization. In particular, they
showed that one can decide whether a graph has a bipartite-cut of size m

2 + k in
time O(m+ n+ k4k). However, Edwards [18] showed that every connected graph G
has a bipartite-cut of size m

2 + n−1
4 . Thus, a more interesting question asks whether

finding a bipartite-cut of size at least m
2 + n−1

4 + k is FPT. Crowston, Jones, and
Mnich [16] showed that indeed this is the case as they design an algorithm with run-
ning time O(8kn4). Recently, Etscheid and Mnich [20] discovered a kernel with a
linear number of vertices (improving upon a kernel by Crowston et al. [15]), and the
aforementioned algorithm was sped up to run in time O(8km) [20]. Gutin and Yeo
studied an above-guarantee version of Max Bisection [22], proving that finding a
balanced bipartition such that it has at least m

2 + k edges is FPT (also see [33]).2 In
this context Max Bisection, it is also relevant to mention the (k, n− k)-Max Cut,
which asks for a bipartite-cut of size at least p where one of the sides is of size exactly
k. Parameterized by k, this problem is W[1]-hard [11], but parameterized by p, this

2We refer to the surveys [30, 23] for details regarding above-guarantee parameterizations.
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problem is solvable in time O∗(2p) [35]. (This result improved upon algorithms given
in [10, 37].)

Until recently, the parameterized complexity of Min Bisection was open. Ap-
proaches to tackle this problem materialized when the parameterized complexity of
`-Way Cut was resolved. Here, given a graph G and positive integers k and `, the
objective is to delete at most k edges from G such that it has at least ` components.
Kawarabayashi and Thorup [25] showed that this problem is FPT (parameterized by
k). Later, Chitnis et al. [13] developed a completely new tool based on this, called
randomized contractions, to deal with a plethora of cut problems. Other cut problems
that have been shown to be FPT include the generalization of Min Cut to Multi-
way Cut and Multicut [12, 31, 32]. Eventually, Cygan et al. [17], combining ideas
underlying the algorithms developed for Multiway Cut, Multicut, `-Way Cut,
and randomized contractions together with a new kind of decomposition, showed Min
Bisection to be FPT. Finally, let us also mention the min c-judicious partitioning
(which is a maximization problem), called c-Load Coloring, where given a graph
G and a positive integer k, the goal is to decide whether V (G) can be partitioned
into c parts so that each part has at least k edges. Barbero et al. [2] showed that this
problem is FPT (also see [21]).

Despite the abundance of work described above, the parameterized complexity of
JB and BJB has not yet been considered. We fill this gap in our studies by showing
that both of these problems are FPT. It is noteworthy to remark that one can show
that the generalization of Min Bisection to c-Min Bisection, where the objective
is to find a partition into c-parts such that each of the parts are of almost the same
size and there are at most k edges going across different parts, is FPT [17]. However,
such a generalization is not possible for either JB or BJB. Indeed, even the existence
of an algorithm with running time nf(k), for any arbitrary function f , would imply a
polynomial-time algorithm for 3-Coloring, where k is set to 0.

Our approach. For the sake of readability, our strategy of presentation of our
proof consists of the definition of a series of problems, each more “specialized” (in
some sense) than the previous one, where each section shows that to eventually solve
BJB, it is sufficient to focus on some such problem rather than the previous one. We
start by showing that we can focus on the solution of the case of BJB where the
input graph is bipartite at the cost of the addition of annotations. For this purpose,
we present a (not complicated) Turing reduction that employs a known algorithm for
the OCT problem (see section 3). The usefulness of the ability to assume that the
input graph is bipartite is a key insight in our approach. In particular, the technical
parts of our proof crucially rely on the observation that a connected bipartite graph
has only two bipartitions. (Here, we consider bipartitions as ordered pairs.) Keeping
this intuition in mind, our next step is to reduce the current annotated problem to
one where the input graph is also assumed to be connected. (This specific argument
relies on a simple application of dynamic programming.)

Having at hand an (annotated) problem where the input graph is assumed to
be a connected bipartite graph, we proceed to the technical part of our proof, which
employs the (heavy) machinery developed by Cygan et al. [17]. While this machinery
primarily aims to tackle problems where one seeks small cuts in addition to some
size constraint, our problem involves a priori seemingly different type of constraints.
Nevertheless, we observe that once we handle a connected graph, the removal of any
set of k edges (to deal with the size constraint and annotations) would not break the
graph into more than k + 1 connected components, and each of these components
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would clearly be a bipartite graph. Hence, we can view (in some sense) our problem
as a cut problem. In practice, the relation between our problem and a cut problem
is quite more intricate, and to realize our idea, we crucially rely on the fact that the
connected components are bipartite graphs, which allows us to “guess” a binary vector
specifying the biparition of their vertex sets in the final solution. This operation entails
the employment of coloring functions (employing k + 1 colors) and their translation
into bipartitions (which at a certain point in our paper, we would start viewing as
colorings employing two colors). Let us remark that the machinery introduced by [17]
is the computation of a special type of tree decomposition. Accordingly, our approach
would eventually involve the introduction of a specialization of BJB that aims to
capture the work to perform when handling a bag of the tree decomposition. The
definition of this specific problem is very technical, and hence we defer the description
of related intuitive explanations to the appropriate locations in section 5, where we
have already set up the required notation to discuss it.

2. Preliminaries.

General notation. For two sets A,B, A ] B denotes the disjoint union of A
and B. Let f : A → B be some function. Given X ⊆ A, the notation f(X) = b
indicates that for all a ∈ X, it holds that f(a) = b. The restriction f |X of f is a
function from X to B such that for any a ∈ X, f |X(a) = f(a). An extension f ′ of
the function f is a function whose domain, Y , is a superset of A and whose range is
B, such that for all a ∈ A, it holds that f ′(a) = f(a). Bold face lowercase letters are
used to denote tuples (vectors). For any tuple v, we let v[i] denote the ith coordinate
of v. Given some condition ψ, we define [ψ] = 1 if ψ is true and [ψ] = 0 otherwise.
For any positive integer x, we denote by [x] the set {1, 2, . . . , x} and by [x]0 the set
{0, 1, . . . , x}.

Graph theory. Given a graph G, we let V (G) and E(G) denote the vertex-set
and the edge-set of G, respectively. For any u ∈ V (G), N(u) denotes the set of
neighbors of u in G, that is, N(u) = {v : {u, v} ∈ E(G)}. For a subset A ⊆ V (G),
N(A) = ∪v∈AN(v) \ A. We denote by δ(A) the set of boundary vertices of A, that
is, δ(A) = {v ∈ A : there exists u ∈ V (G) \ A such that {u, v} ∈ E(G)}. We let
G \A denote the subgraph of G induced by V (G) \A. A bipartite graph is a graph G
such that there exists a bipartition (X,Y ) of V (G) where X and Y are independent
sets. In this paper, we treat such bipartitions as ordered pairs. That is, if (X,Y )
is a bipartition of some bipartite graph G, then (Y,X) is assumed to be a different
bipartition of the graph G. For connected bipartite graphs, we have the following
simple yet powerful insight.

Proposition 2.1 (folklore). Any connected bipartite graph G has exactly two
bipartitions, (X,Y ) and (Y,X).

The treewidth of a graph aims to measure how close the graph is to a tree. For-
mally, this notion is defined as follows.

Definition 2.2. A tree decomposition of a graph G is a pair (T, β) such that T
is a rooted tree, β : V (T )→ 2V (G), and the following conditions are satisfied.

1. For all {u, v} ∈ E(G), there exists t ∈ V (T ) such that u, v ∈ β(t).
2. For all v ∈ V (G), the subgraph of T induced by Xv = {t : v ∈ β(t)} is a

(connected) subtree of T on at least one node.
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Given t, t̂ ∈ V (G), the notation t̂ � t indicates that t̂ is a descendant of t in T .
Note that t is a descendant of itself. For any t ∈ V (T ), let t′ denote the unique parent
of t in T . We also need the standard notation σ(t) = β(t)∩β(t′) and γ(t) =

⋃
t̂�t β(t̂).

Proposition 2.3 (folklore). Let (T, β) be a tree decomposition of a graph G.
Given a node t ∈ V (T ), let t1, . . . , ts denote the children of t in T , and for all i ∈ [s],
define Vti = γ(ti) \ β(t). Let Vt′ = V (G) \ (β(t) ∪⋃si=1 Vti). Then, the vertex-set of
each connected component of G \ β(t) is a subset of one of Vt1 , . . . , Vts , Vt′ .

Let H be some hypergraph. A spanning forest of H is a subset E′ ⊆ E(H) of
minimum size such that the hypergraph induced on E′ has the same components as
H.

Unbreakability. A separation of a graph G is a pair (X,Y ) such that X,Y ⊆
V (G), X ∪ Y = V (G) and there is no edge with one endpoint in X \ Y and the other
in Y \X. The order of a separation (X,Y ) is equal to |X ∩ Y |.

Definition 2.4. Let G be a graph, A ⊆ V (G), and q, k ∈ N. The set A is said
to be (q, k)-unbreakable in G if for every separation (X,Y ) of G of order at most k,
either |(X \ Y ) ∩A| ≤ q or |(Y \X) ∩A| ≤ q.

We also define a notion of unbreakability in the context of functions.

Definition 2.5. A function g : U → [k]0 is called (q, k)-unbreakable if there
exists i ∈ [k]0 such that

∑
j∈[k]0\{i} |g−1(j)| ≤ q.

Let us now claim that there do no exist “too many” (q, k)-unbreakable functions.

Lemma 2.6. For all q, k ∈ N, the number of (q, k)-unbreakable functions from a

universe U to [k]0 is upper bounded by
∑q
l=0

(|U |
l

)
· qk · (k + 1).

Proof. Let g : U → [k]0 be some (q, k)-unbreakable function. By the definition
of a (q, k)-unbreakable function, there exists i ∈ [k]0 such that

∑
j∈[k]0\i |g−1(j)| ≤ q.

There are (k + 1) ways of choosing such an index i,
∑q
l=0

(|U |
l

)
ways of choosing at

most q elements that are not mapped to i, and at most qk ways of partitioning this
set of at most q elements into k parts. Thus, the total number of such functions g is
upper bounded by

∑q
l=0

(|U |
l

)
qk(k + 1).

3. Solving Balanced Judicious Bipartition. In this section, we prove The-
orem 1.1 under the assumption that we are given an algorithm for an annotated, yet
restricted, variant of BJB. Throughout this section, an instance of BJB is denoted by
BJB(G,µ, k1, k2), and we define k = k1 +k2. Given a partition (V1, V2) that witnesses
that an instance BJB(G,µ, k1, k2) is a YES-instance, we think of the vertices in V1

as colored 1 and the vertices in V2 as colored 2; hence, we call such a partition a wit-
nessing coloring of BJB(G,µ, k1, k2). To prove Theorem 1.1, we first define the OCT
problem. Here, given a graph G, a set S ⊆ V (G) is called an odd cycle transversal if
G \ S is a bipartite graph.

Odd Cycle Transversal (OCT) Parameter: k
Input: An undirected multigraph G, and an integer k.
Output: An odd cycle transversal of G of size at most k, if it exists; otherwise
report NO.
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An instance of Odd Cycle Transversal is denoted by OCT(G, k). We say
OCT(G, k) is a NO-instance if there is no odd cycle transversal of G of size at most
k. The algorithm given by the result below shall be a central component in the design
of our algorithm for BJB.

Proposition 3.1 (see [27]). OCT can be solved in time 2.3146knO(1).

Apart from OCT, we also need to define an auxiliary problem that we call Anno-
tated Bipartite-BJB (AB-BJB). As we proceed with our proofs, we shall continue
defining auxiliary problems, where each problem captures a task more specific and
technically more challenging than the previous one. The choice of this structure aims
to ease the readability of our paper. Intuitively, AB-BJB is basically the BJB prob-
lem on bipartite graphs, with an extra constraint that demands that certain vertices
are assigned a particular color by the witnessing coloring. We remark that the ne-
cessity of the reduction to bipartite graphs stems from the fact that we would like to
employ Proposition 2.1 later. The formal definition of AB-BJB is given below.

Annotated Bipartite-BJB (AB-BJB) Parameter: k1 + k2

Input: A bipartite multigraph G with bipartition (P,Q), A,B ⊆ V (G) such that
A ∩B = ∅, and integers µ, k1, and k2.
Question: Does there exist a partition (V1, V2) of V (G) such that A ⊆ V1,
B ⊆ V2, |V1| = µ and for i ∈ {1, 2}, |E(G[Vi])| ≤ ki?

An instance of AB-BJB is denoted by AB-BJB(G,A,B, µ, k1, k2). A partition
(V1, V2) satisfying the above properties is called a witnessing coloring of AB-BJB
(G,A,B, µ, k1, k2). Furthermore, we need the following theorem, proven later in this
paper.

Theorem 3.2. AB-BJB can be solved in time 2k
O(1) · nO(1).

Let us now turn to focus on the proof of Theorem 1.1.

Proof of Theorem 1.1. Given an instance BJB(G,µ, k1, k2), call the algorithm
given by Proposition 3.1 with the instance OCT(G, k) as input (recall that k =
k1 + k2).

Claim 1. If OCT(G, k) is a NO-instance, then BJB(G,µ, k1, k2) is a NO-
instance.

Proof. Suppose BJB(G,µ, k1, k2) is a YES-instance. Let (V1, V2) be a witnessing
coloring for this instance. Let E′ = E(G[V1])∪E(G[V2]). Then, observe that G\E′ is
a bipartite graph. Let V ′ be a set of vertices of minimum size such that every edge in
E′ has at least one endpoint in V ′. Since |E′| ≤ k, it holds that |V ′| ≤ k. Moreover,
G \ V ′ is bipartite. Therefore, V ′ is an odd cycle transversal of G of size at most k.
Thus, OCT(G, k) is a YES-instance.

Henceforth, let S be an odd cycle transversal of G of size at most k. Then, G \S
is a bipartite graph. Fix some bipartition (P,Q) of G \ S. Let F be the family
of all subsets of S, that is, F = 2S . For any F ∈ F , denote lF1 = |E(G[F ])| and
lF2 = |E(G[S \ F ])|, and let GF be the graph constructed as follows (see Figure 1).

• V (GF ) = V (G \S)∪{wF , xF , yF , zF }, where wF , xF , yF , zF are new distinct
vertices.

• E(GF ) = E(G\S)∪EwF
∪ExF

∪EyF∪EzF , where the multisets EwF
, ExF

, EyF ,
and EzF are defined as follows.
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P

G

F

S \ F

P
wF

xF

yF

zF

ExF

EyF

EwF

EzF

GF

QQ

Fig. 1. The construction in the proof of Theorem 1.1.

– for each edge (u, v) ∈ E(G), such that u ∈ F and v ∈ P , there is an
edge (wF , v) ∈ EwF

,
– for each edge (u, v) ∈ E(G), such that u ∈ F and v ∈ Q, there is an

edge (xF , v) ∈ ExF
,

– for each edge (u, v) ∈ E(G), such that u ∈ S and v ∈ Q, there is an edge
(yF , v) ∈ EyF ,

– for each edge (u, v) ∈ E(G), such that u ∈ S and v ∈ P , there is an edge
(zF , v) ∈ EzF .

Observe that GF is a bipartite graph with (P ∪ {xF , yF }, Q ∪ {wF , zF }) as a
bipartition.

Claim 2. BJB(G,µ, k1, k2) is a YES-instance if and only if there exists F ∈ F
such that AB-BJB(GF , {wF , xF }, {yF , zF }, µ − |F | + 2, k1 − lF1 , k2 − lF2 ) is a YES-
instance.

Proof. In the forward direction, suppose that BJB(G,µ, k1, k2) is a YES-instance,
and let (V1, V2) be a witnessing coloring for BJB(G,µ, k1, k2). Moreover, let F = V1∩
S. Now, we define a partition (V ′1 , V

′
2) of V (GF ) as follows: V ′1 = (V1 \S)∪{wF , xF }

and V ′2 = (V2 \ S)∪ {yF , zF }. Let us now argue that (V ′1 , V
′
2) is a witnessing coloring

for AB-BJB(GF , {wF , xF }, {yF , zF }, µ − |F | + 2, k1 − lF1 , k2 − lF2 ). First, by the
construction of (V ′1 , V

′
2), we have that {wF , xF } ⊆ V ′1 and {yF , zF } ⊆ V ′2 . Second,

as V ′1 = (V1 \ S) ∪ {wF , xF }, we also have that |V ′1 | = |V1| − |F | + 2 = µ + |F | + 2.
Third, observe that for any |E(G[V ′1 ])| = |E(G[V1])| − |E(G[F ])| and |E(G[V ′2 ])| =
|E(G[V2])| − |E(G[S \ F ])|. Thus, for i ∈ [2], |E(G[Vi])| ≤ ki − lFi .

In the backward direction, suppose that there exists an F ∈ F such that AB-BJB
(GF , {wF , xF }, {yF , zF }, µ−|F |+2, k1−lF1 , k2−lF2 ) is a YES-instance, and let (V ′1 , V

′
2)

be a witnessing coloring for this instance. We now define a partition (V1, V2) of V (G)
as follows: V1 = (V ′1 ∩ V (G)) ∪ F and V2 = (V ′2 ∩ V (G)) ∪ (S \ F ). Let us now argue
that (V1, V2) is a witnessing coloring for BJB(G,µ, k1, k2). From the definition of
V1, and since V (G) = (V (GF ) \ {wF , xF , yF , zF }) ∪ S and S ∩ V (GF ) = ∅, we have
that |V1| = |V ′1 | − |{xF , yF }| + |F | = µ − |F | + 2 − 2 + |F | = µ. Moreover, observe
that |E(G[V1])| = |E(G[V ′1 ])| + |E(G[F ])| ≤ k1 + lF1 and |E(G[V2])| = |E(G[V ′2 ])| +
|E(G[S \ F ])| ≤ k2 + lF2 . This concludes the proof of the claim.

Thus, to solve an instance of BJB, it is enough to solve 2|S| ≤ 2k instances of

AB-BJB. Hence, by Theorem 3.2, BJB can be solved in time 2k
O(1)

nO(1).

4. Solving Annotated Bipartite-BJB. Recall the problem definition of AB-
BJB from section 3. In this section, we prove Theorem 3.2. For this purpose, let us de-
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fine another auxiliary problem, which we call Annotated Bipartite Connected-
BJB (ABC-BJB). Intuitively, ABC-BJB is exactly the same problem as AB-BJB,
where we are interested in an answer for every choice of µ ∈ [n]0, l1 ∈ [k1]0 and
l2 ∈ [k2]0, and additionally we demand the input graph to be connected.

Annotated Bipartite Connected-BJB (ABC-BJB) Parameter: k1 + k2

Input: A connected bipartite multigraph G = (P,Q), A,B ⊆ V (G) such that
A ∩B = ∅, and integers k1 and k2.
Output: For all µ ∈ [n]0, l1 ∈ [k1]0 and l2 ∈ [k2]0, output a binary value,
aJP[µ, l1, l2], which is 1 if and only if there exists a partition (V1, V2) of V (G)
such that

• A ⊆ V1 and B ⊆ V2,
• |V1| = µ, and
• for i ∈ {1, 2}, |E(G[Vi])| ≤ li.

For any µ ∈ [n]0, l1 ∈ [k1]0, l2 ∈ [k2]0, a partition witnessing that aJP[µ, l1, l2] = 1
is called a witnessing coloring for aJP[µ, l1, l2] = 1. Moreover, an instance of ABC-
BJB is denoted by ABC-BJB(G,A,B, k1, k2). In the rest of this paper, we prove
the following theorem.

Theorem 4.1. ABC-BJB can be solved in time 2k
O(1) · nO(1).

Having Theorem 4.1 at hand, a simple application of the method of dynamic
programming results in the proof of Theorem 3.2.

Proof of Theorem 3.2. Let AB-BJB(G,A,B, µ, k1, k2) be an instance of AB-
BJB. Let C1, . . . , Cr be the connected components of G. For all i ∈ [r], let Ai = A∩Ci
and Bi = B∩Ci. Let Ii = ABC-BJB(Ci, Ai, Bi, k1, k2). Let aJPi be the output table
for the instance Ii, returned by the algorithm of Theorem 4.1. For any j ∈ [r], let
Gj = G[

⋃
i∈[j] Ci]. Note that G = Gr. Let us define a four-dimensional binary table

M in the following way. For all i ∈ [r], µ′ ∈ [|V (G)|]0, l1 ∈ [k1]0, and l2 ∈ [k2]0,
M[i, µ′, l1, l2] = 1 if and only if there exists a partition (V1, V2) of V (Gi) such that
(A ∩Gi) ⊆ V1, (B ∩Gi) ⊆ V2, |V1| = µ′ and for j ∈ {1, 2}, |E(G[Vj ])| ≤ lj . Observe
that AB-BJB(G,A,B, µ, k1, k2) is a YES-instance if and only if M[r, µ, k1, k2] = 1.
We now compute M[r, µ, k1, k2] recursively using the following recurrences.

M[1, µ′, l1, l2] = aJP1(µ′, l1, l2)

For all i ∈ {2, . . . , r}, µ′ ∈ [|V (G)|]0, l1 ∈ [k1]0 and l2 ∈ [k2]0,

M[i, µ′, l1, l2] =
∨

µ′=µ1+µ2

l1=l11+l21
l2=l12+l22

(M[i− 1, µ1, l11, l
1
2] ∧ aJPi[µ2, l21, l

2
2]),

where for all j ∈ {1, 2}, µj , lj1, and lj2 are nonnegative integers.
Note that the time taken to compute M[r, µ, k1, k2] is at most (r · n2 · k2

1 · k2
2 · τ),

where τ is the time taken to solve an instance of ABC-BJB. Since from Theorem 4.1,

an instance of ABC-BJB can be solved in time 2k
O(1) · nO(1) and r ≤ n, AB-BJB

can be solved in time 2k
O(1) · nO(1).
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5. Solving Annotated Bipartite Connected-BJB. Recall the problem def-
inition of ABC-BJB from section 4. In this section, we prove Theorem 4.1. Let us
start by stating a known result that is a crucial component of our proof. By this result,
we would have an algorithm that efficiently computes a special type of tree decompo-
sition, which we call a highly connected tree decomposition, where every bag is “highly
connected” rather than “small” as in the case of standard tree decompositions. While
this property is the main feature of this decomposition, it is also equipped with other
beneficial properties, such as a (nontrivial) upper bound on the size of its adhesions,
which are all exploited by our algorithm.

Theorem 5.1 (see [17]). There exists an 2O(k2)n2m-time algorithm that, given
a connected graph G together with an integer k, computes a tree decomposition (T, β)
of G with at most n nodes such that the following conditions hold, where η = 2O(k).

1. For each t ∈ V (T ), the graph G[γ(t) \σ(t)] is connected and N(γ(t) \σ(t)) =
σ(t).

2. For each t ∈ V (T ), the set β(t) is (η, k)-unbreakable in G[γ(t)].
3. For each nonroot t ∈ V (T ), we have that |σ(t)| ≤ η and σ(t) is (2k, k)-

unbreakable in G[γ(parent(t))].

In order to process such a tree decomposition in a bottom-up fashion, relying on
the method of dynamic programming, we need to address a specific problem associated
with every bag, called Hypergraph Painting (HP). We chose the name HP to be
consistent with the choice of problem name in [17], yet we stress that our problem
is more general than the one in [17] (since the handling of a bag in our case is more
intricate than the one in [17]).

Roughly speaking, an input of HP would consist of the following components.
First, we are given “budget” parameters k1 and k2 as in an instance of ABC-BJB.
Second, we are given an argument b which would simply be n (to upper bound |γ(t)|)
when we construct an instance of HP while processing some node t in the tree decom-
position. Third, we are given a hypergraph H which would essentially be the graph
G[β(t)] to which we add hyperedges. Each hyperedge F of H is supposed to represent
the sets σ(t̂) for each child t̂ of t. Fourth, we are given an integer q whose purpose is
clarified in the discussion below the definition of HP (in Definition 5.4). Finally, for
every hyperedge F , we are given a function fF : [k]F0 × [b]0 × [k1]0 × [k2]0 → {0, 1}.
To roughly understand the meaning of this function, first recall that F is supposed
to represent σ(t̂) for some child t̂ of t. Now, the function fF aims to capture all
information obtained while we processed the child t̂ of t that might be relevant to the
node t. In particular, let us give an informal, intuitive interpretation of an element
(Γ, µ, l1, l2) in the domain of fF . For this purpose, note that when we remove at
most k edges from the (connected) graph G[γ(t̂)], we obtain at most k+ 1 connected
components. The function Γ can be thought of as a method to assign to each vertex
in σ(t̂) the connected component in which it should lie. Such information is extremely
useful since each such connected component is in particular a bipartite graph, and
hence by relying on Proposition 2.1 and an exhaustive search, we would be able to
use it to extract a witnessing coloring for an instance of ABC-BJB. The arguments
µ, l1, and l2 can be thought of as those in the definition of an output of ABC-BJB.
Now, the value fF (Γ, µ, l1, l2) aims to indicate whether Γ, µ, l1, and l2 are “realizable”
in the context of the child t̂. (The precise meaning of this value will become clearer
later, once we establish additional necessary definitions.)

Let us now give the formal definition of HP. In this definition, we denote k =
k1 + k2.
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Hypergraph Painting (HP)
Input: Integers k1, k2, b, d, and q, a multihypergraph H with hyperedges of size
at most d, and for all F ∈ E(H), a function fF : [k]F0 × [b]0× [k1]0× [k2]0 → {0, 1}.
Output: For all 0 ≤ µ ≤ b, 0 ≤ l1 ≤ k1, 0 ≤ l2 ≤ k2, output the binary value

aHP[µ, l1, l2] =
∨

Υ:V (H)→[k]0

∨
{µF }|F∈E(H)

{lF1 }|F∈E(H)

{lF2 }|F∈E(H)

∧
F∈E(H)

fF (Υ|F , µF , lF1 , lF2 ),

where
∑
F∈E(H) µ

F = µ,
∑
F∈E(H) l

F
1 ≤ l1,

∑
F∈E(H) l

F
2 ≤ l2, and each of µF ,

lF1 , and lF2 is a nonnegative integer.

For a particular choice of µ, l1, and l2, a function Υ witnessing that aHP[µ, l1, l2] =
1 is called a witnessing coloring for aHP[µ, l1, l2]. An instance of HP is denoted by
HP(k1, k2, b, d, q,H, {fF }|F∈E(H)). Observe that q is part of the input to an instance
of HP, but does not appear in the problem definition. The reason for putting q in
the input will become clear when we define favorable instances of HP. These are
the instances that will be of interest to us throughout this article. Although we are
not able to tackle HP efficiently at its full generality, we are still able to solve those
instances that are constructed when we would like to “handle” a single bag in a highly
connected tree decomposition. Such instances are formalized as favorable instances.
For the sake of clarity, let us now address the beneficial properties that these instances
satisfy individually, where each of them ultimately aims to ease our search for a
witnessing coloring. The first property, called local unbreakability, unconditionally
restricts the way a function Γ : F → [k]0, to be thought of as a restriction of the
witnessing coloring we seek, can color a hyperedge F so that the value of fF is 1.3

Definition 5.2 (local unbreakability). An instance

HP(k1, k2, b, d, q,H, {fF }|F∈E(H))

is locally unbreakable if every F ∈ E(H) satisfies the following property: for any
Γ : F → [k]0 that is not (3k2, k)-unbreakable, fF (Γ, µ, l1, l2) = 0 for all 0 ≤ µ ≤ b,
0 ≤ l1 ≤ k1, and 0 ≤ l2 ≤ k2.

The second property, called connectivity, implies that if we would like to use a
function Γ : F → [k]0 to color a hyperedge (as a restriction of a witnessing coloring)
with more than one color, then we would have to “pay” at least 1 from our budget
l1 + l2.

Definition 5.3 (connectivity). An instance HP(k1, k2, b, d, q,H, {fF }|F∈E(H)) is
connected if every F ∈ E(H) satisfies the following property: for any Γ : F → [k]0
for which there exist distinct i, j ∈ [k]0 such that |Γ−1(i)|, |Γ−1(j)| > 0, it holds that
fF (Γ, µ, l1, l2) = 1 only if l1 + l2 ≥ 1.

The third property, called global unbreakability, directly restricts our “solution
space” by implying that we only need to determine whether there exists a (q, k)-
unbreakable witnessing coloring.

Definition 5.4 (global unbreakability). An instance

HP(k1, k2, b, d, q,H, {fF }|F∈E(H))

3In this context, it may be insightful to recall Lemma 2.6.
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is globally unbreakable if for all 0 ≤ µ ≤ b, 0 ≤ l1 ≤ k1, 0 ≤ l2 ≤ k2: if aHP[µ, l1, l2] =
1, there exists a witnessing coloring Υ : V (H)→ [k]0 that is (q, k)-unbreakable.

An instance HP (k1, k2, b, d, q,H, {fF }|F∈E(H)) is called a favorable instance of
HP if it is locally unbreakable, connected, and globally unbreakable. For such in-
stances we have the following theorem.

Theorem 5.5. HP on favorable instances is solvable in time

2O(min(k,q) log(k+q))dO(k3)|E(H)|O(1).

The proof of this theorem is very technical, involving nontrivial analysis of a very
“messy” picture obtained by guessing part of a hypothetical witnessing coloring via
the method of color coding. We defer the proof of Theorem 5.5 to section 6.

From now onward, to simplify the presentation of arguments ahead with respect
to ABC-BJB, we would abuse notation and directly define a witnessing coloring as
a function rather than a partition. More precisely, the term witnessing coloring for
aJP[µ, l1, l2] = 1 would refer to a function col : V (G) → {V1, V2} such that A ⊆ V1,
B ⊆ V2, |V1| = µ, and for i ∈ {1, 2}, |E(G[Vi])| ≤ li. To proceed to our proof of
Theorem 4.1, we first need to introduce an additional notation. Roughly speaking,
this notation translates a coloring Υ of the form that witnesses some aHP[µ, l1, l2] = 1

to a coloring of the form that witnesses aJP[µ, l1, l2] = 1 via some tuple v ∈ {0, 1}k+1
.

Formally, we have the following.

Definition 5.6. For a tuple v ∈ {0, 1}k+1
, bipartite graph G with bipartition

(P,Q), X ⊆ V (G), and Υ : X → [k]0, define Υ̂v : X → {V1, V2} as follows.

• For all v ∈ P ∩X, Υ̂v(v) = V1 if and only if v[Υ(v)] = 0.

• For all v ∈ Q ∩X, Υ̂v(v) = V1 if and only if v[Υ(v)] = 1.

Suppose we are given an instance ABC-BJB(G,A,B, k1, k2). Fix some biparti-
tion (P,Q) of G. Let (T, β) be the highly connected tree decomposition computed by
the algorithm of Theorem 5.1, and let r be the root of T . In what follows, η = 2O(k)

as in Theorem 5.1, and q = (η+k)k. We now proceed to define a binary variable that
is supposed to represent the answer we would like to compute when we process the
bag of a specific node of the tree. Hence, one of the arguments is a node t, and three
additional arguments are µ ∈ [n]0, l1 ∈ [k1]0, and l2 ∈ [k2]0. However, we cannot be
satisfied with one answer, but need an answer for every possible “interaction” between
the bag of t and the bag of its parent t′. Thus, the definition also includes a coloring
of σ(t). The tuple v ∈ {0, 1}k+1 is necessary for the translation process described in
Definition 5.6. (The way in which we shall obtain such a “right” tuple later in the
proof would essentially rely on brute-force.)

Definition 5.7. Given t ∈ V (T ), a (3k2, k)-unbreakable function Υσ : σ(t) →
[k]0, a tuple v ∈ {0, 1}k+1, and integers µ ∈ [n]0, l1 ∈ [k1]0, and l2 ∈ [k2]0, the binary
variable y[t,Υσ,v, µ, l1, l2] is 1 if and only if there exists Υ : γ(t) → [k]0 extending
Υσ such that the following hold.

1. The translation Υ̂v maps to V1 exactly µ vertices, that is, |Υ̂−1
v (V1)| = µ.

2. The translation Υ̂v maps A∩γ(t) to V1 and B∩γ(t) to V2, that is, A∩γ(t) ⊆
Υ̂−1

v (V1) and B ∩ γ(t) ⊆ Υ̂−1
v (V2).

3. For all i ∈ {1, 2}, it holds that |E(G[Υ̂−1
v (Vi)])| ≤ li.

4. The set of edges between vertices receiving different colors by Υ is exactly
the set of edges between vertices that are mapped to the same side by the
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translation Υ̂v, that is,

⋃
i,j∈[k]0,i6=j

E(Υ−1(i),Υ−1(j)) = E(G[Υ̂−1
v (V1)]) ∪ E(G[Υ̂−1

v (V2)]).

A function Υ as above is called a witnessing coloring for y[t,Υσ,v, µ, l1, l2]. Recall
that r refers to the root of the tree decomposition (T, β).

Lemma 5.8. For any µ ∈ [n]0, l1 ∈ [k1]0, and l2 ∈ [k2]0, aJP[µ, l1, l2] = 1 if and
only if there exists v ∈ {0, 1}k+1 such that y[r, ∅,v, µ, l1, l2] = 1.

Proof. Let us prove the backward direction first. Let v ∈ {0, 1}k+1 be such that
y[r, ∅,v, µ, l1, l2] = 1 and let Υ : V (G)→ [k]0 be one of its witnessing colorings. Then,

Definition 5.7 directly implies that Υ̂v is a witnessing coloring for aJP[µ, l1, l2] = 1.
For the forward direction, let col : V (G) → {V1, V2} be a witnessing coloring

for aJP[µ, l1, l2]. Let X = E(G[col−1(V1)]) ∪ E(G[col−1(V2)]). Let C0, . . . , Cs be the
connected components of G \X. Since X ⊆ E(G) and |X| ≤ l1 + l2 ≤ k1 + k2 = k,
G \X has at most k+ 1 connected components, and therefore s ≤ k. For any i ∈ [s]0,
let (Pi = (P ∩Ci), Qi = (Q∩Ci)) be a bipartition of Ci. (Recall that G is a connected
bipartite graph with fixed bipartition (P,Q).)

Claim 3. For any i ∈ [s]0, either both Pi ⊆ col−1(V1) and Qi ⊆ col−1(V2) or
both Pi ⊆ col−1(V2) and Qi ⊆ col−1(V1).

Proof. Consider a bipartition (P ′i, Q
′
i) of Ci, where P ′i = col−1(V1) ∩ Ci and

Q′i = col−1(V2) ∩ Ci. Since Ci is connected, from Proposition 2.1, either Pi = P ′i
and Qi = Q′i, or Pi = Q′i and Qi = P ′i. Hence the claim follows.

Let us now construct a k-length binary string, v, as follows. For any i ∈ [s]0,
v[i] = 0 if and only if Pi ⊆ col−1(V1) and Qi ⊆ col−1(V2). For i ∈ {s + 1, . . . , k},
v[i] = 0.

Define Υ : V (G) → [k]0 as follows. For any v ∈ V (G), Υ(v) = i if and only if
v ∈ Ci.

Claim 4. Υ̂v = col.

Proof. Consider some vertex v ∈ V (G). Denote Vj = col(v), i = Υ(v) and
b = v[i], and note that j ∈ {1, 2}, i ∈ [k]0, and b ∈ {0, 1}. We divide the argument
into two cases corresponding to whether v ∈ Pi or v ∈ Qi. Since v ∈ col−1(Vj),
if v ∈ Pi, then by Claim 3, Pi ⊆ col−1(Vj) and Qi ⊆ col−1(V3−j). Thus, by the

construction of v, b = j − 1. Hence, by the definition of Υ̂v, Υ̂v(v) = Vj . Similarly,
if v ∈ Qi, then by Claim 3, Qi ⊆ col−1(Vj) and Pi ⊆ col−1(V3−j). Thus, by the

construction of v, b = 2− j. Hence, by the definition of Υ̂v, Υ̂v(v) = Vj .

Since the choice of v was arbitrary, by the definition of Υ̂v, we have that Υ̂v(v) =
Vj .

Claim 5. For the binary string v constructed as above, the function Υ constructed
above is a witnessing coloring for y[r, ∅,v, µ, l1, l2] = 1.

Proof. Since Υ̂v = col, from the definition of col, we have that |Υ̂−1
v (V1)| = µ,

A ⊆ Υ̂−1
v (V1), B ⊆ Υ̂−1

v (V2), and for all i ∈ {1, 2}, |E(G[Υ̂−1
v (Vi)])| ≤ li. Observe that⋃

i,j∈[k]0,i6=j E(Υ−1(i),Υ−1(j)) = X. Therefore,
⋃
i,j∈[k]0,i6=j E(Υ−1(i),Υ−1(j)) =
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E(G[Υ̂−1
v (V1)]) ∪ E(G[Υ̂−1

v (V2)]). Thus, Υ is a witnessing coloring for

y[r, ∅,v, µ, l1, l2] = 1.

This concludes the proof of the lemma.

By Lemma 5.8, it is sufficient to compute y[r, ∅,v, µ, l1, l2] for all µ ∈ [n], l1 ∈
[k1]0 and l2 ∈ [k2]0. To this end, we need to compute y[t,Υσ,v, µ, l1, l2] for every
node t ∈ V (T ), function Υσ : σ(t) → [k]0 that is (3k2, k)-unbreakable, tuple v ∈
{0, 1}k+1, and integers µ ∈ [n]0, l1 ∈ [k1]0 and l2 ∈ [k2]0. Here, we employ bottom-
up dynamic programming over the tree decomposition (T, β). Let us now zoom into
the computation of y[t,Υσ,v, µ, l1, l2] for all µ ∈ [n], l1 ∈ [k1]0 and l2 ∈ [k2]0, for
some specific t,Υσ and v. Note that we now assume that values corresponding to the
children of t (if such children exist) have been already computed correctly. Moreover,
note that |σ(t)| ≤ η, the number of (3k2, k)-unbreakable functions Υσ : σ(t) → [k]0
is at most |η|kO(1)

= 2k
O(1)

(by Lemma 2.6), and the number of binary vectors of size
k+ 1 is at most 2k+1. Thus, the total running time would consist of the computation

time of (T, β), and at most 2k
O(1) · n2 times the computation time for a set of values

as the one we examine now. Hence, it remains to show how to compute the current

set of values in time 2k
O(1) · nO(1).

To compute our current set of values, let us construct an instance

HP(k1, k2, n, η, q,H, {fF }|F∈E(H))

of HP where V (H) = β(t), and E(H) and {fF }|F∈E(H) are defined as follows.
1. Type-1 Hyperedges. For all v ∈ β(t), insert F = {v} into E(H). Define
fF : [k]F0 × [n]0 × [k1]0 × [k2]0 → {0, 1} as

fF (Γ, µ, l1, l2) =



0 if v ∈ σ(t) and Γ(v) 6= Υσ(v),

1 if v ∈ A, Γ̂v(F ) = V1, l1 = l2 = 0, and µ = 1,

1 if v ∈ B, Γ̂v(F ) = V2, l1 = l2 = 0, and µ = 0,

1 if v 6∈ A ∪B, l1 = l2 = 0, and µ = [Γ̂v(F ) = V1],

0 otherwise.

Informally speaking, we introduce this kind of hyperedges to account for the
number of vertices in β(t) that go to V1 (and hence contribute to µ).

2. Type-2 Hyperedges. For all (u, v) ∈ E(G[β(t)]), add F = {u, v} in E(H).
Define fF : [k]F0 × [n]0 × [k1]0 × [k2]0 → {0, 1} as

fF (Γ, µ, l1, l2) =



0 if µ 6= 0,

1 if Γ̂v(u) 6= Γ̂v(v) and Γ(u) = Γ(v),

1 if Γ̂v(u) = Γ̂v(v) = V1, l1 ≥ 1, and Γ(u) 6= Γ(v),

1 if Γ̂v(u) = Γ̂v(v) = V2, l2 ≥ 1, and Γ(u) 6= Γ(v),

0 otherwise.

We introduce this kind of hyperedges to account for the number of edges in
G[β(t)] that contribute toward the budget k1 and k2.

3. Type-3 Hyperedges. For all t̂ ∈ V (T ) that are a child of t in the tree T , insert
F = σ(t̂) into E(H). Define fF : [k]F0 × [n]0 × [k1]0 × [k2]0 → {0, 1} as

fF (Γ, µ, l1, l2) =


0 if Γ is not (3k2, k)-unbreakable or

y[t̂,Γ,v, µ+ µ′, l1 + l′1, l2 + l′2] = 0,

1 otherwise,

D
ow

nl
oa

de
d 

03
/0

5/
20

 to
 1

29
.1

77
.9

4.
75

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1892 D. LOKSHTANOV, S. SAURABH, R. SHARMA, AND M. ZEHAVI

where µ′ = |Γ̂−1
v (V1)|, and l′i = |{{u, v} ∈ E(G[σ(t̂)]) : Γ̂v(u) = Γ̂v(v) = Vi}|

for i ∈ [2].
This kind of hyperedge encapsulates the partial partitions of the graphs in-
duced by γ(t̂), where t̂ is a child of t.

Let us first claim that witnessing colorings related to HP(k1, k2, n, η, q,H,
{fF }|F∈E(H)) are useful in the sense that they can be extended to witnessing col-
orings for the binary values in which we are interested.

Lemma 5.9. For all µ ∈ [n], l1 ∈ [k1]0, and l2 ∈ [k2]0, if aHP[µ, l1, l2] = 1, then
y[t,Υσ,v, µ, l1, l2] = 1. In fact, for any witness Υ : β(t) → [k]0 of aHP[µ, l1, l2] =
1, there exists a function Υ′ : γ(t) → [k]0 that extends Υ and witnesses y[t,v,
Υσ, µ, l1, l2] = 1.

Proof. If aHP[µ, l1, l2] = 1, let Υ : β(t) → [k]0 be a witnessing coloring for
aHP[µ, l1, l2] = 1. Then, there exist

∑
F∈E(H) µ

F = µ,
∑
F∈E(H) l

F
1 ≤ l1 and∑

F∈E(H) l
F
2 ≤ l2, such that for all F ∈ E(H), fF (Υ|F , µF , lF1 , lF2 ) = 1. In particular,

the following holds.
1. Since for any type-1 hyperedge F , it holds that fF (Υ|F , µF , lF1 , lF2 ) = 1, we

overall have that Υσ ⊆ Υ, A ∩ β(t) ⊆ Υ̂−1
v (V1), B ∩ β(t) ⊆ Υ̂−1

v (V2), and∑
F is a type-1 hyperedge

µF = |Υ̂−1
v (V1) ∩ β(t)|.

2. Since for any type-2 hyperedge F and i ∈ {1, 2}, it holds that
fF (Υ|F , µF , lF1 , lF2 ) = 1, we overall have that

|E(G[Υ̂−1
v (Vi) ∩ β(t)])| ≤

∑
F is a type-2 hyperedge

lFi .

3. For any type-3 hyperedge F = σ(ti), since fF (Υ|F , µF , lF1 , lF2 ) = 1, we have
that Υ|F is (3k2, k)-unbreakable and y[ti,Υ|F ,v, µF +µ′, lF1 + l′1, l

F
2 + l′2] = 1,

where µ′ = |Υ̂−1
v (V1)∩F |, l′1 = |{(u, v) ∈ E(G[σ(ti)])|Υ̂v(u) = Υ̂v(v) = V1}|,

and l′2 = |{(u, v) ∈ E(G[σ(ti)])|Υ̂v(u) = Υ̂v(v) = V2}|.
We thus derive that there exists a witnessing coloring Υi : γ(ti)→ [k]0 for the
condition y[ti,Υ|F ,v, µF + µ′, lF1 + l′1, l

F
2 + l′2] = 1. Specifically, the following

conditions are satisfied.
(a) Υi extends Υ|F .

(b) |Υ̂i
−1

v (V1)| = µF + µ′.

(c) A ∩ γ(ti) ⊆ Υ̂i
−1

v (V1) and B ∩ γ(ti) ⊆ Υ̂i
−1

v (V2).

(d) |E(G[Υ̂i
−1

v (V1)])| ≤ lF1 + l′1, and |E(G[Υ̂−1
v (V2)])| ≤ lF2 + l′2.

(e)
⋃
`,j∈[k]0, 6̀=j E(Υi−1

(`),Υi−1
(j)) = E(G[Υ̂i

−1

v (V1)]) ∪ E(G[Υ̂i
−1

v (V2)]).
Keeping the above items in mind, we proceed to identify a witnessing coloring for
y[t,Υσ,v, µ, l1, l2] = 1. We construct such a coloring Υ′ : γ(t)→ [k]0 as follows. For
all v ∈ γ(t), if v ∈ β(t), then define Υ′(v) = Υ(v), and otherwise there exists a unique
child ti of t such that v ∈ γ(ti), in which case we define Υ′(v) = Υi(v). For the sake
of clarity, let us extract the required argument to the proof of a separate claim.

Claim 6. The aforementioned Υ′ is a witnessing coloring for y[t,Υσ,v, µ, l1, l2] =
1.
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Proof. First, note that by item 1 in the proof of Lemma 5.9, we have that
Υσ ⊆ Υ and therefore Υσ ⊆ Υ′. Let us now verify that all the conditions specified in
Definition 5.7 are satisfied.

• Let us first prove condition 1. To this end, we observe that by items 1, 3(a)
and 3(b), we have that the three following equalities hold.

– |Υ̂′−1

v (V1)| = |Υ̂′−1

v (V1)∩ β(t)|+∑ti is a child of t in T |Υ̂′
−1

v (V1)∩ (γ(ti) \
σ(ti))|.

– |Υ̂′−1

v (V1) ∩ β(t)| = |Υ̂−1
v (V1) ∩ β(t)| = ∑F is a type-1 hyperedge µ

F .

– For every child ti of t, |Υ̂′−1

v (V1) ∩ (γ(ti) \ F )| = µF , where F = σ(ti).

Thus, since
∑
F is a type-2 hyperedge µ

F = 0, we conclude that |Υ̂′−1

v (V1)| =∑
F∈E(H) µ

F = µ.

• Next, we prove condition 2. However, by items 1 and 3(c), we directly deduce

that both A ∩ γ(t) ⊆ Υ̂′
−1

v (V1) and B ∩ γ(t) ⊆ Υ̂′
−1

v (V2) as required.
• We now turn to prove condition 3. First observe that there are no edges

between a vertex of β(t) \ σ(ti) and a vertex of γ(ti) \ σ(ti). In light of item
3(a), note that

|E(G[Υ̂′
−1

v (V1)])| = |E(G[Υ̂′
−1

v (V1) ∩ β(t)])|
+

∑
ti is a child of t in T

|E(G[Υ̂′
−1

v (V1) ∩ γ(ti)])|

−
∑

ti is a child of t in T

|E(G[Υ̂′
−1

v (V1) ∩ σ(ti)])|.

Now, observe that by items 2, 3(a), and 3(d), the two following equations hold.

– |E(G[Υ̂′
−1

v (V1)∩β(t)])|= |E(G[Υ̂−1
v (V1)∩β(t)])|≤∑F is a type-2 hyperedge l

F
1 .

– For every child ti of t, |E(G[Υ̂′
−1

v (V1) ∩ γ(ti)])| = lF1 + |E(G[Υ̂′
−1

v (V1) ∩
σ(ti)])|, where F = σ(ti).

Since
∑
F is a type-1 hyperedge l

F
1 = 0, we conclude that

|E(G[Υ̂′
−1

v (V1)])| ≤
∑

F∈E(H)

lF1 ≤ l1.

Similarly, we derive that |E(G[Υ̂′
−1

v (V2)])| ≤∑F∈E(H) l
F
2 ≤ l2.

• Finally, we prove condition 4. In the first direction, consider some edge

e ∈ E(G[Υ̂′
−1

v (V1)]) ∪E(G[Υ̂′
−1

v (V2)]). Let us denote e = {u, v}, and observe

that Υ̂′v(v) = Υ̂′v(u). If u, v ∈ γ(ti) for some child ti of t, then by item

3(e), we have that e ∈ ⋃i,j∈[k]0,
i 6=j

E(Υ′
−1

(i),Υ′
−1

(j)). Otherwise, from point

1 of Theorem 5.1, u, v ∈ β(t), and thus e is some type-2 hyperedge F . Since
fF (Υ|F , µF , lF1 , lF2 ) = 1, the definition of fF (Υ|F , µF , lF1 , lF2 ) directly implies

that Υ(u) 6= Υ(v), and therefore again e ∈ ⋃i,j∈[k]0,
i6=j

E(Υ′
−1

(i),Υ′
−1

(j)).

In the other direction, consider some edge e ∈ ⋃i,j∈[k]0,
i 6=j

E(Υ′
−1

(i),Υ′
−1

(j)).

Let us denote e = {u, v}, and observe that Υ′(v) 6= Υ′(u). If u, v ∈ γ(ti)

for some child ti of t, then by item 3(e), we have that e ∈ E(G[Υ̂′
−1

v (V1)]) ∪
E(G[Υ̂′

−1

v (V2)]). Otherwise, from point 1 of Theorem 5.1, u, v ∈ β(t), and
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thus e is some type-2 hyperedge F . Since fF (Υ|F , µF , lF1 , lF2 ) = 1, the defini-

tion of fF (Υ|F , µF , lF1 , lF2 ) directly implies that Υ̂′v(v) = Υ̂′v(u), and there-

fore again e ∈ E(G[Υ̂′
−1

v (V1)]) ∪ E(G[Υ̂′
−1

v (V2)]).
Thus, we have proved that Υ′ is a witnessing coloring for y[t,Υσ,v, µ, l1, l2]. Moreover,
Υ′, which extends Υ, is the desired function for the second part of the lemma.

This concludes the proof of the lemma.

In light of Lemma 5.9, we now turn to verify that HP(k1, k2, n, η, q,H, {fF }|F∈E(H))
is of the form that we are actually able to solve.

Lemma 5.10. HP(k1, k2, n, η, q,H, {fF }|F∈E(H)) is a favorable instance of HP.

Proof. First note that HP(k1, k2, n, η, q,H, {fF }|F∈E(H)) is indeed a favorable
instance of HP. This is clear from the construction of {fF }|F∈E(H) and the fact that
each edge of F ∈ E(H) has size at most η because of point 3 of Theorem 5.1. Let us
now verify that each of the three properties of a favorable instance is satisfied.

• Local unbreakability. Let us choose an arbitrary F ∈ E(H). If F is a type-1
or a type-2 hyperedge, then since |F | ≤ 2, we have that local unbreakability is
trivially satisfied. Otherwise, if F is a type-3 hyperedge, then the satisfaction
of local unbreakability directly follows from the construction of fF .

• Connectivity. Choose an arbitrary F ∈ E(H) along with a tuple (Γ, µ, l1, l2)
in the domain of fF such that fF (Γ, µ, l1, l2) = 1. If F is a type-1 hyperedge,
then connectivity trivially holds. If F is a type-2 hyperedge, then connectivity
follows from the construction of fF . Indeed, to see this, let us denote F =
{u, v}. Then, if Γ(u) 6= Γ(v), by the second through last case in the definition

of fF , we deduce that Γ̂v(u) = Γ̂v(v), else we contradict the supposition that
fF (Γ, µ, l1, l2) = 1. Then, connectivity directly follows from the third and
fourth cases.
Now, suppose that F = σ(t̂) is a type-3 hyperedge, and, say, Γ : F →
[k]0 is such that there exist i, j ∈ [k]0, i 6= j, satisfying |Γ−1(i)| > 0 and
|Γ−1(j)| > 0. We need to show that l1 + l2 ≥ 1. Since fF (Γ, µ, l1, l2) = 1,
it holds that y[t̂,Γ,v, µ + µ′, l1 + l′1, l2 + l′2] = 1, where µ′, l′1 and l′2 are
as defined at the construction of fF . Let Υ : γ(t̂) → [k]0 denote some
witnessing coloring for this condition. Since (T, β) is a highly connected tree
decomposition, property 1 of such a decomposition implies that G∗ = G[γ(t̂)]\
E(G[σ(t̂)]) is connected and that every vertex in σ(t̂) is adjacent in G to some
vertex in γ(t̂) \ σ(t̂). Since only the edges internal to σ(t̂) were removed in
forming G∗, it follows that every two vertices in σ(t̂) are connected by a path
in G∗. Let u ∈ Γ−1(i) and v ∈ Γ−1(j). Note that u 6= v and i 6= j. Since u
and v are connected by a path in G∗, we derive that G∗ has an edge e such
that

e ∈

 ⋃
c,d∈[k]0,c 6=d

E(Υ−1(c),Υ−1(d))

 \ E(G[σ(t′)]).

Recall that
⋃
c,d∈[k]0,
c 6=d

E(Υ−1(c),Υ−1(d)) = E(G[Υ̂−1
v (V1)]) ∪ E(G[Υ̂−1

v (V2)]).

Therefore, we have that e ∈ (E(G[Υ̂−1
v (V1)]) ∪ E(G[Υ̂−1

v (V2)])) \ E(G[σ(t̂)]).
Thus, l1 + l2 ≥ 1.

• Global unbreakability. Suppose that aHP[µ, l1, l2] = 1. Then, by Lemma 5.9,
there exists Υ′ : γ(t) → [k]0 satisfying the properties listed in that lemma.
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From here, we get that
∑
i,j∈[k]0,i<j

|E(Υ′
−1

(i),Υ′
−1

(j))| ≤ l1+l2 ≤ k1+k2 ≤
k. We argue that Υ′|β(t) is a witnessing coloring for global unbreakability,
that is, this function is (q, k)-unbreakable. In this context, we remind the
reader that q = (η+k)k. To prove our argument, we first prove the following
claim.

Claim 7. Suppose that there exists i ∈ [k]0 such that |Υ′−1
(i)∩β(t)| > η+k.

Then,
∑
j∈[k]0,i6=j |Υ′

−1
(j) ∩ β(t)| ≤ η + k.

Proof. Suppose that the claim is false. Then, both |Υ′−1
(i) ∩ β(t)| > η + k

and
∑
j∈[k]0,i6=j |Υ′

−1
(j) ∩β(t)| > η + k. Thus,(

X = Υ′
−1

(i) ∩ β(t), Y =

( ⋃
j∈[k]0,i6=j

Υ′
−1

(j) ∩ β(t)

)
∪ δ(Υ′−1

(i) ∩ β(t))

)

is a separation of order at most k of G[γ(t)] as we have already shown that∑
i,j∈[k]0,i≤j

|E(Υ′
−1

(i),Υ′
−1

(j))| ≤ l1 + l2 ≤ k1 + k2 ≤ k.

Moreover, |(X \ Y ) ∩ β(t)| > η and |(Y \ X) ∩ β(t)| > η, which contradicts
point 2 of Theorem 5.1, that β(t) is (η, k)-unbreakable in G[γ(t)].

Thus, if there exist i ∈ [k]0 as defined in Claim 7, then we are done. That is,
we conclude that Υ′|β(t) is (q, k)-unbreakable. Otherwise, for all i ∈ [k]0, it

holds that |Υ′−1
(i)|≤η+k. In particular, for any i∈ [k]0,

∑
j∈[k]0,i6=j |Υ′

−1
(j)|

≤ (η + k)k = q. Thus, we again conclude that Υ′|β(t) is (q, k)-unbreakable.

Finally, we turn to address the statement complementary to the one of Lemma 5.9.

Lemma 5.11. For all µ ∈ [n], l1 ∈ [k1]0, and l2 ∈ [k2]0, if y[t,Υσ,v, µ, l1, l2] = 1,
then aHP[µ, l1, l2] = 1.

Proof. Fix some µ ∈ [n], l1 ∈ [k1]0, and l2 ∈ [k2]0 such that y[t,Υσ,v, µ, l1, l2] = 1.
Our objective is to show that aHP[µ, l1, l2] = 1. To this end, let Υ be a witnessing
coloring for y[t,Υσ,v, µ, l1, l2] = 1. We would like to prove that Υ|β(t) is a witnessing
coloring for aHP[µ, l1, l2] = 1, which would complete the proof of the lemma. To do
so, we proceed as follows.

First, for any hyperedge F ∈ E(H), let us define µF , l1
F , and l2

F as follows.

• If F is a type-1 hyperedge. Set µF = 1 if Υ̂v(F ) = V1, and µF = 0 otherwise.
Set lF1 = 0 and lF2 = 0.

• If F = {u, v} is a type-2 hyperedge. Set µF = 0. If Υ̂v(u) 6= Υ̂v(v) and

Υ(u) = Υ(v), set l1
F = l2

F = 0. Otherwise, if Υ̂v(u) = Υ̂v(v) = V1, set

l1
F = 1 and l2

F = 0, and if Υ̂v(u) = Υ̂v(v) = V2, set l1
F = 0 and l2

F = 1.
The other cases cannot arise. Indeed, since Υ is a witnessing coloring for
y[t,Υσ,v, µ, l1, l2] = 1, we have that⋃

i,j∈[k]0,i6=j

E(Υ−1(i),Υ−1(j)) = E(G[Υ̂−1
v (V1)]) ∪ E(G[Υ̂−1

v (V2)]).

• If F is a type-3 hyperedge. Denote F = σ(t̂), where t̂ is a child of t in T. Set

µF = |Υ̂−1
v (V1)∩ (γ(t̂)\σ(t̂))|, lF1 = |E(G[Υ̂−1

v (V1)∩γ(t̂)])|− |E(G[Υ̂−1
v (V1)∩

σ(t̂)])|, and lF2 = |E(G[Υ̂−1
v (V2) ∩ γ(t̂)])| − |E(G[Υ̂−1

v (V2) ∩ σ(t̂)])|.
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Let us proceed by proving three claims that would together imply that Υ|β(t) is a
witnessing coloring for aHP[µ, l1, l2] = 1.

Claim 8. Let t̂ be a child of t in T , and let i ∈ [k]0 be such that |Υ−1(i)∩σ(t̂)| >
3k. Then,

∑
j∈[k]0,i6=j |Υ−1(j) ∩ σ(t̂)| ≤ 3k.

Proof. Suppose, by way of contradiction, that the claim is false. That is, we
have that both |Υ−1(i) ∩ σ(t̂)| > 3k and

∑
j∈[k]0,i6=j |Υ−1(j) ∩ σ(t̂)| > 3k. Consider

the separation (X,Y ) of G[γ(t)], where X = Υ−1(i) and Y = (γ(t) \ Υ−1(i)) ∪
δ(Υ−1(i)). Observe that X ∩ Y = δ(Υ−1(i)). Since Υ is a witnessing coloring for
y[t,Υσ,v, µ, l1, l2], we have that⋃

i,j∈[k]0,i6=j

E(Υ−1(i),Υ−1(j)) = E(G[Υ̂−1
v (V1)]) ∪ E(G[Υ̂−1

v (V2)])

and |E(G[Υ̂−1
v (V1)])∪E(G[Υ̂−1

v (V2)])| ≤ l1+l2 ≤ k1+k2 ≤ k. Therefore, |δ(Υ−1(i))| ≤
k, and thus the order of the separation (X,Y ) is at most k. Moreover, since |Υ−1(i)∩
σ(t̂)| > 3k, we have that |(X\Y )∩σ(t̂)| > 3k−k = 2k, and since

∑
j∈[k]0,i6=j |Υ−1(j)∩

σ(t̂)| > 3k, we also have that |(Y \ X) ∩ σ(t̂)| > 3k. This implies that σ(t̂) is not
(2k, k)-unbreakable in G[γ(t)], which means that σ(t̂) is not (2k, k)-unbreakable in
G[γ(parent(t̂))]. This is a contradiction to the fact that (T, β) is a highly connected
tree decomposition—specifically, it should satisfy Property 3 in Theorem 5.1.

Having Claim 8 at hand, we now verify that each function fF assigns 1 to the
required tuple.

Claim 9. For any F ∈ E(H), fF (Υ|F , µF , lF1 , lF2 ) = 1.

Proof. First, noting that since Υ is a witnessing coloring for y[t,Υσ,v, µ, l1, l2] =

1, we have that Υ ⊆ Υσ, A ∩ γ(t) ⊆ Υ̂−1
v (V1), and B ∩ γ(t) ⊆ Υ̂−1

v (V2). Thus, from
the construction of a type-1 hyperedge F and the corresponding function fF with
respect to HP (k1, k2, n, η, q,H, {fF }F∈E(H)), it is clear that fF (Υ|F , µF , lF1 , lF2 ) = 1.
Second, suppose F is a type-2 hyperedge. The specifications of fF , together with our
definition of µF , lF1 , and lF2 , directly imply that fF (Υ|F , µF , lF1 , lF2 ) = 1.

Third, suppose that F is a type-3 hyperedge, and denote F = σ(ti) for some
ti that is a child of t in T . Note that y[ti,Υ|F ,v, µF + µ′, lF1 + l′1, l

F
2 + l′2] = 1

because Υ|γ(ti) is a witnessing coloring for this equality, where µ′ = |Υ̂−1
v (V1)∩ σ(t̂)|,

l′1 = |E(G[Υ̂−1
v (V1) ∩ σ(t̂)])|, and l′2 = |E(G[Υ̂−1

v (V2) ∩ σ(t̂)])|. We now need to
show that Υ|F is (3k2, k)-unbreakable, as then we would be able to conclude that
fF (Υ|F , µF , lF1 , lF2 ) = 1. By Claim 8, if there exists i ∈ [k]0 such that |Υ−1(i)∩σ(t̂)| >
3k, then we deduce that Υ|σ(t̂) is (3k2, k)-unbreakable. Otherwise, for all i ∈ [k]0,

|Υ−1(i)∩σ(t̂)| ≤ 3k. Hence, for any i ∈ [k]0,
∑
j∈[k]0,i6=j |Υ−1(j)∩σ(t̂)| ≤ 3k2. Thus,

we have proved that Υ|F is (3k2, k)-unbreakable.

Finally, we present our third claim.

Claim 10. µ =
∑
F∈E(H) µ

F ,
∑
F∈E(H) l

F
1 ≤ l1, and

∑
F∈E(H) l

F
2 ≤ l2.

By the property of (T, β) being a tree decomposition, for any two children ti and
tj of t in T , γ(ti) ∩ γ(tj) ⊆ β(t), and also by the definition, σ(ti) ⊆ β(t) for any

child ti of t. Now, note that µ = |Υ̂−1
v (V1)|. Thus, to show that µ =

∑
F∈E(H) µ

F ,

it is sufficient to show that |Υ̂−1
v (V1)| =

∑
F∈E(H) µ

F . However, keeping the above

argument in mind, the claim that |Υ̂−1
v (V1)| = ∑F∈E(H) µ

F directly follows from the
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satisfaction of the three following conditions. We remark that the satisfaction of these
conditions is a direct consequence of the supposition that Υ is a witnessing coloring
for y[t,Υσ,v, µ, l1, l2] = 1, together with our definition of the values µF , lF1 , and lF2 .

1. For any type-1 hyperedge F , we have that µF = 1 only if Υ̂v(F ) = V1. In

particular,
∑
F∈E(H) of type-1 µ

F = |Υ̂−1
v (V1) ∩ β(t)|.

2. For any type-2 hyperedge F , µF = 0. Thus,
∑
F∈E(H) of type-2 µ

F = 0.

3. For any type-3 hyperedge F = σ(ti), µ
F = |Υ̂−1

v (V1) ∩ (γ(ti) \ σ(ti))|.
Similarly, let us observe that |E(G[Υ̂−1

v (V1)])| ≤ l1. Thus, to show that
∑
F∈E(H) l

F
1 ≤

l1, it is sufficient to show that
∑
F∈E(H) l

F
1 ≤ |E(G[Υ̂−1

v (V1)])|. However, the latter
inequality directly follows from the satisfaction of all of the following conditions.

1. For any type-1 hyperedge F , lF1 = 0. Thus,
∑
F∈E(H) of type-1 l

F
1 = 0.

2. For any type-2 hyperedge F = {u, v}, l1F = 1 only if Υ̂v(u) = Υ̂v(v) = V1.

In particular,
∑
F∈E(H) of type-2 l

F
1 = |E(G[Υ̂−1

v (V1)]) ∩ E(G[β(t)])|.
3. For any type-3 hyperedge F = σ(ti), |E(G[Υ̂−1

v (V1) ∩ (γ(ti) \ σ(ti))])| ≤ lF1 .
Symmetrically,

∑
F∈E(H) l

F
2 ≤ l2. This concludes the proof of the claim.

As we have proved Claims 9 and 10, we derive that Υ|β(t) is a witnessing coloring
for aHP[µ, l1, l2] = 1. This concludes the proof of the lemma.

Recall that we have argued that to prove Theorem 4.1, it is sufficient to show

that the current set of values y[t,Υσ,v, µ, l1, l2] can be computed in time 2k
O(1)

nO(1).
Here, n refers to |V (G)|. By Lemmas 5.9 and 5.11, this set of values can be derived
from the solution of HP(k1, k2, n, η, q,H, {fF }|F∈E(H)). Since HP(k1, k2, n, η, q,H,
{fF }|F∈E(H)) is a favorable instance of HP (by Lemma 5.10), it can be solved in time

2O(min(k,q) log(k+q))ηO(k3)|E(H)|O(1) = 2k
O(1)

nO(1), using Theorem 5.5.

6. Solving favorable instances of HP. Recall the problem statement of HP
and the definition of a favorable instance of HP from section 5. In this section,
we prove Theorem 5.5. We prove this theorem in two steps. In the first step we
prove Lemma 6.1. In the second step, we perform a dynamic programming procedure
exploiting the structure given in Lemma 6.1.

6.1. Color coding the instance. Again, recall that our goal is to solve the HP
problem on a favorable instance. In this section, given a hypergraph, our goal is to
somehow partition the vertex set of the hypergraph such that, if the given instance
of HP is a YES instance, then the witnessing coloring for it does not color the parts
of this partition in a very “unpredictable” way. This is formally captured in the
conditions of Lemma 6.1. Before stating the lemma, we first define what we mean by
a sets-colorings tuple.

A sets-colorings tuple of a hypergraph H is a tuple consisting of a partition of
V (H), V (H) = C0]C11] . . .]C1a]C21] . . .]C2b (C0, C11, . . . , C1a, C21, . . . , C2b are
called the sets of this tuple), and coloring functions Φi : C1i → [k]0 for all i ∈ [a], such
that for each F ∈ E(H), either F is contained in some set of this tuple or intersects
at most two sets of this tuple, one of which necessarily being C0 and the other being
one of {C11, . . . , C1a}. A sets-colorings tuple looks like (C0 ] C11 ] . . . ] C1a ] C21 ]
. . . ] C2b,Φ1, . . . ,Φa).

Lemma 6.1. Let H = (V (H), E(H)) be a hypergraph and k, d, x, y, q be positive
integers. For each F ∈ E(H), let |F | ≤ d. Let Υ : V (H) → [k]0 be a coloring of
V (H) satisfying the following conditions.
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1. The number of hyperedges F ∈ E(H), such that F is not monochromatic
under Υ, is at most x.

2. For each F ∈ E(H), Υ|F is (y, k)-unbreakable. This condition is called the
local unbreakabilty condition of Υ.

3. Υ is (q, k)-unbreakable. This condition is called the global unbreakability
condition of Υ. Let 0 be the globally dominant color of Υ with respect to this
global unbreakability.

Then, given H, k, d, x, y, q, one can, in time O(2O(min(x,q) log(x+q))

max{d, y}O(max{xy,xk}) · |E(H)|O(1)), find a family of size O(2O(min(x,q) log(x+q))

max{d, y}O(max{xy,xk}) · logO(1)|E(H)|), consisting of sets-colorings tuples of H, such
that there exists a tuple t = (C0, C11 ] . . . ] C1a ] C21 ] . . . ] C2b,Φ1, . . . ,Φa) in the
family where

1. Υ|C0
= 0,

2. for each i ∈ [b], Υ|C2i is monochromatic in Υ,
3. for each i ∈ [a], either Υ|C1i = 0, or Υ|C1i = Φi,

A sets-colorings tuple satisfying the properties mentioned in Lemma 6.1 is called
a good sets-colorings tuple for Υ. The rest of the section is devoted to the proof of
Lemma 6.1.

Outline of the proof of Lemma 6.1. We begin by classifying the hyperedges of H
based on Υ. The algorithm highlights a set of hyperedges and the colorings of them
as given by Υ using color coding. In the next phase, based on this highlighting, an
auxiliary graph is constructed and later tweaked to clean the unwanted highlighting—
the side effect of color coding. Eventually another auxiliary graph is constructed which
is finally exploited to give the desired output.

6.1.1. Classifying hyperedges. By the global unbreakability of Υ : V (H) →
[k]0,

∑
j∈[k]0,j 6=i |Υ−1(j)| ≤ q for some index i ∈ [k]0. Without loss of generality,

suppose that i = 0 is such an index, that is,
∑
j∈[k] |Υ−1(j)| ≤ q. We first categorize

the hyperedges of H into the following types, based on the coloring Υ. In this context,
we recall that the notation f(A′) = b indicates that for all a ∈ A′, it holds that
f(a) = b (see section 2).

• Let Eb = {F ∈ E(H) : Υ(F ) = 0}. Here, “b” stands for big.
• For each i ∈ [k], let Esi = {F ∈ E(H) : Υ(F ) = i}. Here, “s” stands for

small.
• Let Em = {F ∈ E(H) : there exist u, v ∈ F such that Υ(u) 6= Υ(v)}. Here,

“m” stands for multichromatic.
Observe that each hyperedge F ∈ E(H) belongs to exactly one of the sets

Eb, Em, Es1 , . . . , Esk . Furthermore, let E′si denote the edge set of some arbitrary
spanning forest of the hypergraph on the vertex set V (H) and the edge set Esi .
Let Es =

⋃
i∈[k]E

′
si denote the union of these edge sets. From the properties of Υ,

|Em| ≤ x. Also, as we will see in Lemma 6.2, |Es| ≤ q. We exploit these bounds
to highlight the hyperedges in Em and Es (Lemma 6.8) efficiently. In addition to
this, as we shall see in Lemma 6.3, the total number of possible restrictions of Υ
on any hyperedge can also be bounded effectively. Thus, we cannot only highlight
the hyperedges in Em and Es, but we can also guess the restrictions of Υ to these
hyperedges. The proof of Lemma 6.8 would capture the idea of the performance of
highlighting and guessing. As one would expect, this highlighting does not conclude
our arguments, as it does not just highlight the hyperedges in Em and Es, but also
some hyperedges from Eb. We deal with the inherent challenges of handling such a
“messy picture” in our proof.
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Lemma 6.2. |Es| ≤ q.
Proof. Recall that for each i ∈ [k], we defined E′si as the edge set of a spanning

forest of the hypergraph with the vertex set V (H) and the edge set Esi . Hence,
by this definition, |E′si | ≤ |Υ−1(i)|. Now, recall that since Υ is (q, k)-unbreakable,
we assumed without loss of generality that

∑
i∈[k] |Υ−1(i)| ≤ q. We thus have that∑

i∈[k] |E′si | ≤ q. Therefore, |Es| ≤ q.

6.1.2. Introducing good assignments. Let us first note that by Lemma 2.6,
for any hyperedge F ∈ E(H), the number of (y, k)-unbreakable functions (that we
call (y, k)-unbreakable colorings) from F (recall |F | ≤ d) to [k]0 is at most α =∑y
l=1

(
d
l

)
·yk · (k+1) = max{d, y}O(max{y,k})

. For each hyperedge F , let us arbitrarily
order all possible (y, k)-unbreakable colorings. For each i ∈ [α], let λF,i denote the ith
such coloring. If for an hyperedge F , the number of such colorings is strictly smaller
than α, then we extend its list of possible colorings to be of size α by letting some
colorings be present multiple times. Thus, for each F ∈ E(H) and i ∈ [α], we ensure
λF,i is well-defined.

Lemma 6.3. For any F ∈ E(H), there exists i ∈ [α] such that Υ|F = λF,i.

Proof. This follows from the fact that Υ|F is (y, k)-unbreakable.

Here, we are interested in assignments that are functions associating each hyper-
edge F ∈ E(H) with a coloring λF,i. Let us proceed by defining which assignments
would be useful for us to have at hand.

Definition 6.4. An assignment p : E(H)→ [α]0 is said to be a good assignment
if the following conditions hold.

1. For all F ∈ Es, p(F ) = 0.
2. For all F ∈ Em, p(F ) = i > 0 and Υ|F = λF,i.

To employ color coding, we first mention the required derandomization tools.

Proposition 6.5 (see [14, Lemma 1.1]). Given a set U of size n and c, d ∈
[n]0, we can construct in time O(2O(min(c,d) log(c+d))n log n) a family F of at most
O(2O(min(c,d) log(c+d)) log n) subsets of U , such that the following holds: for all sets
C,D ⊆ U such that C ∩D = ∅, |C| ≤ c, and |D| ≤ d, there exists a set S ∈ F with
C ⊆ S and D ∩ S = ∅.

Definition 6.6 ((N, r)-perfect family). For any universe N , an (N, r)-perfect
family is a family of functions from N to [r], such that for any subset X ⊆ N of size
r, there exists a function in the family that is injective on X.

Proposition 6.7 (see [34]). An (N, r)-perfect family of size O(errO(log r) log |N |)
can be computed in time O(errO(log r)|N | log |N |).

We are now ready to present our color coding phases.

Lemma 6.8. There exists a set A of assignments from E(H) to [α]0, such that

|A| ≤ 2O(min(x,q) log(x+q)) ·max{d, y}O(max{xy,xk}) · log2|E(H)| and there exists a good
assignment in A. Moreover, such a set A is computable in time O(2O(min(x,q) log(x+q))

max{d, y}O(max{xy,xk}) · |E(H)|O(1)).

Proof. We start by defining three families, which would guide us through the
construction of A. For U = E(H), c = x, and d = q, let F = {S1, . . . , Sν} be the
family of size ν = 2O(min(x,q) log(x+q)) log |E(H)| obtained by calling the algorithm of
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Proposition 6.5. For each j ∈ [ν], let Pj be a (E(H) \ Sj , x)-perfect family of size at
most ζ ≤ exxO(log x) log |E(H)| computed by the algorithm of Proposition 6.7. Let Q
be the family of all possible functions from [x] to [α]. Observe that |Q| = αx.

For each set Sj ∈ F , function κ ∈ Pj , and function κ0 ∈ Q, let p[Sj , κ, κ0] :
E(H)→ [α]0 be defined as follows.

p[Sj , κ, κ0](F ) =

{
0 if F ∈ Sj ,
κ0(κ(F )) otherwise.

Let A = {p[Sj , κ, κ0] : Sj ∈ F , κ ∈ Pj , κ0 ∈ Q}. We claim that there exists a good
assignment in A. Since |Em| ≤ x (from the preconditions of Lemma 6.1) and |Es| ≤ q
(from Lemma 6.2), from Proposition 6.5 there exists Sj ∈ F such that Es ⊆ Sj and
Em ∩ Sj = ∅. By Proposition 6.7, there exists a function κ ∈ Pj which is injective
on Em. Let Em = {F1, . . . , Fc}, where c ≤ x. Without loss of generality, κ(Fy) = y
for all y ∈ [c]. Since Q contains all possible functions from [x] to [α], and for each
F ∈ Em there exists i ∈ [α] such that Υ|F = λF,i (from Lemma 6.3), there exists
κ0 ∈ Q such that for each F ∈ Em, Υ|F = λF,κ0(κ(F )). Moreover, since Es ⊆ Sj , we
have that p[Sj , κ, κ0](Es) = 0. Thus, p[Sj , κ, κ0] ∈ A is a good assignment.

Recall that α = max{d, y}O(max{y,k})
. Now, as we have upper bounded ν and

ζ, we observe that |A| ≤ νζαx = 2O(min(x,q) log(x+q))exxO(log x)max{d, y}O(max{xy,xk})

log2|E(H)|. This proves the desired bound on the size of A.
The time taken to compute A is proportional to the time taken to compute

F ,Pj for each j ∈ {ν} and Q. By Propositions 6.5 and 6.7, we thus derive that

the running time is upper bounded by O(2O(min(x,q) log(x+q)) ·max{d, y}O(max{xy,xk}) ·
|E(H)|O(1)).

In the next section, we work with a fixed assignment p ∈ A. For each such as-
signment, we eventually compute a sets-colorings tuple of H. The family as described
in Lemma 6.1 is then the union of these tuples for each p ∈ A. We also prove that
if p is a good assignment, then the sets-colorings tuple corresponding to it is a good
sets-colorings tuple for Υ. Since, from Lemma 6.8, there exists a p ∈ A such that
p is good, the family of sets-colorings tuples obtained in the end contains a good
sets-colorings tuple for Υ.

6.1.3. Associating the graph Lp with an assignment p. For our assignment
p : E(H) → [α]0, let us now construct an undirected simple graph Lp with V (Lp) =
V (H). For each F ∈ E(H) such that p(F ) = 0, make F a clique in Lp. We say that
the edges of this clique are the edges that correspond to the hyperedge F . For any
F ∈ E(H) such that p(F ) = i > 0, for each j ∈ [k]0, make the set λF,i

−1(j) a clique
in Lp. We say that the edges of all such cliques are the edges that correspond to the
hyperedge F . Since we want Lp to be a simple graph, between any two vertices of Lp
we retain at most one copy of the edge between them (if one exists). If a deleted copy
of some edge e in Lp corresponds to some hyperedge F , then in the simple graph the
retained copy of that edge e is the one that is said to correspond to that hyperedge F
(even if we originally added the retained copy of e due to a different hyperedge). Note
that it may thus be the case that one edge in Lp corresponds to several hyperedges
in E(H).

We proceed by analyzing the connected components of Lp. Informally, we first
argue that if p is a good assignment, then every connected component of Lp behaves
as a single unit with respect to Υ.
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Lemma 6.9. Let p be a good assignment and let D be any connected component
of Lp. Then, Υ(D) = i for some i ∈ [k]0, that is, all the vertices in D are assigned
the same color by Υ.

Proof. For any F ⊆ E(H), let Lp[F ] be the simple graph on the same vertex
set as Lp, whose edge set contains only those edges of Lp that correspond to some
hyperedge in F . Observe that Lp[E(H)] = Lp. Moreover, observe that if a set of
vertices is connected in Lp[F ], then it is also connected in Lp[F ′] for any F ′ ⊇ F .

Let E(H) = {F1, . . . , Fr}. Moreover, for any j ∈ [r], denote Fj =
⋃j
c=1 Fc. Let us

prove by induction on j that for each component D of Lp[Fj ], we have that Υ(D) = i
for some i ∈ [k]0. The proof of this claim would conclude the proof of the lemma, as
by setting j = r, we thus derive that for each component D of Lp[Fr] = Lp, we have
that Υ(D) = i for some i ∈ [k]0. Hence, we next focus only on the proof of the claim.

To prove the base case, where j = 1, consider the graph Lp[F1]. If F1 6∈ Em,
then Υ(F1) = i for some i ∈ [k]0 (by the definition of Em). Hence, for each connected
component D of Lp[F1], Υ(D) = i for some i ∈ [k]0. Otherwise, F1 ∈ Em. In this
case, let p(F1) = s > 0. Since p is a good assignment, λF1,s = Υ|F1

. Since each
component D of Lp[F1] is either an isolated vertex or λ−1

F1,s
(i) for some i ∈ [k]0, we

conclude that Υ(D) = i for some i ∈ [k]0.
We now suppose that j ≥ 2. By induction hypothesis, for each connected com-

ponent D of Lp[Fj−1], we have that Υ(D) = i for some i ∈ [k]0. Let us now examine
the graph Lp[Fj ] and the hyperedge Fj . Note that Fj = Fj \ Fj−1. If Fj 6∈ Em, then
Υ(Fj) = i for some i ∈ [k]0 (from the definition of Em). Let D be the collection of ev-
ery connected components of Lp[Fj−1] which intersects Fj . Then, the definition of Lp
and the inductive hypothesis directly imply that Υ(

⋃D) = i for some i ∈ [k]0. Thus,
by the inductive hypothesis, for each connected component D of Lp[Fj ], we have that
Υ(D) = i for some i ∈ [k]0. Otherwise, Fj ∈ Em. Then, denote p(F1) = s > 0. Since
p is a good assignment, λF1,s = Υ|F1

. For each i ∈ [k]0, let Di be the collection of
all connected components of Lp[Fj−1] that intersect λ−1

Fj ,s
(i). Then, the definition of

Lp and the inductive hypothesis directly imply Υ(Di) = i. Hence, by the inductive
hypothesis, for each connected component D of Lp[Fj ], we have that Υ(D) = i for
some i ∈ [k]0.

Roughly speaking, we now show that given a good assignment p, if a hyperedge
F of H intersects multiple components of Lp and Υ assigns a color i > 0 to at least
one of the components, then F ∈ Em.

Lemma 6.10. Let p be a good assignment and let D be any connected component
of Lp such that Υ(D) = i > 0 for some i ∈ [k]. For any F ∈ E(H) such that F∩D 6= ∅
and F \D 6= ∅, F ∈ Em.

Proof. Suppose that the statement is false, that is, there exists F ∈ E(H) \ Em
such that F ∩ D 6= ∅ and F \ D 6= ∅. Since F /∈ Em, F ∩ D 6= ∅ and Υ(D) > 0,
there exists j ∈ [k] such that F ∈ Esj . Since F ∩ D 6= ∅ and Υ(D) = i, we have
that j = i, that is, F ∈ Esi . Recall that E′si is a spanning forest of the hypergraph
with vertex set V (H) and edge set Esi . Observe that, since p is a good assignment,
by the definition of Lp, for any spanning forest E′si , all vertices of F lie in the same
component of Lp, which contradicts that F \D 6= ∅.

6.1.4. Rules to modify a good assignment. We now modify the assignment
p by applying the following rule exhaustively. Note that whenever we change p, we
update Lp accordingly.
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Rule 1. If there exist a connected component D of Lp and a hyperedge
F ∈ E(H) such that F ⊆ D and p(F ) > 0, then update p(F ) = 0.

Lemma 6.11. If p was a good assignment, then after any application of Rule 1, it
remains a good assignment.

Proof. From Lemma 6.9, Υ(D) = i for some i ∈ [k]0. Thus, if F ⊆ D, then
F 6∈ Em. Hence, when we redefine p(F ) = 0, p remains a good assignment. for the
sake of contradiction, that F1 ∈ Em. Since p is a good assignment, λF1,i = Υ|F .
Denote λF1,i(v1) = c, where c ∈ [k]. Since v1 ∈ D and λF1,i(v1) = c > 0, from Lemma
6.9, Υ(D) = c > 0. From Lemma 6.10, F2 ∈ Em. Again, since p is a good assignment,
λF2,j = Υ|F . Since λF2,j(v2) = 0 and v2 ∈ D, this implies that Υ(D) = 0, which is a
contradiction.

For each connected component D of Lp, let us now define a label set L(D) ⊆ [k]0
as follows. For any i ∈ [k]0, we insert i into L(D) if and only if there exists F ∈ E(H)
such that F ∩D 6= ∅, p(F ) = j > 0 and λF,j(F ∩D) = i. Observe that L(D) could
be empty.

Let us now turn to analyze the label sets we have just defined.

Lemma 6.12. For any assignment p, let D be a connected component of Lp such
that L(D) = ∅. Then, for any F ∈ E(H) such that F ∩D 6= ∅, F \D = ∅.

Proof. Observe that if there exists F ∈ E(H) such that p(F ) > 0 and F ∩D 6= ∅,
then |L(D)| ≥ 1. Therefore, if L(D) = ∅, then for all F ∈ E(H) such that F ∩D 6= ∅,
we have that p(F ) = 0. Thus, from the construction of Lp, we have that F \D = ∅.

Lemma 6.13. Let p be a good assignment such that Rule 1 is no longer applicable
to Lp. Then, for any connected component D of Lp, if Υ(D) = i > 0, then either
L(D) = ∅ or L(D) = {i}.

Proof. Suppose that L(D) 6= ∅. Then, there exists F ∈ E(H) such that F ∩D 6= ∅
and p(F ) = j > 0. Let λF,j(F ∩D) = s. We will now show that s = i. First, let us
argue that F \D 6= ∅. Indeed, if F \D = ∅, then F ⊆ D. In this case, since p is a
good assignment, where Rule 1 has been exhaustively applied, p(F ) should be equal
to 0, which is a contradiction. Thus, since Υ(D) = i > 0, F ∩D 6= ∅, and F \D 6= ∅,
from Lemma 6.10, we have that F ∈ Em. Then, since p is a good assignment,
λF,j(F ∩D) = Υ|F∩D. Since Υ(D) = i, we derive that indeed λF,j(F ∩D) = i. Thus,
L(D) = {i}.

By Lemma 6.13, we have that if p is a good assignment and D is a connected
component of Lp such that either L(D) = {0} or |L(D)| ≥ 2, then Υ(D) = 0.

Lemma 6.14. If p is a good assignment such that Rule 1 is no longer applicable
to Lp, and D is a connected component of Lp such that L(D) = {ld}, then either
Υ(D) = ld or Υ(D) = 0.

Proof. Since L(D) = {ld}, there exists F ∈ E(H) such that p(F ) = i > 0,
F ∩ D 6= ∅, and λF,i(F ∩ D) = ld. Since Rule 1 has been applied exhaustively,
F \ D 6= ∅. Denote Υ(D) = j, and suppose that j 6= 0, else we are done. Since
j 6= 0, from Lemma 6.10 we have that F ∈ Em. Then, since p is a good assignment,
λF,i = Υ|F . Finally, since all the vertices of D are assigned the same color by Υ (by
Lemma 6.9), we have that Υ(D) = ld.
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For a connected component D of Lp such that |L(D)| ≥ 2, let us redefine the
label set of D to be L(D) = {0}. Now, for any connected component D of Lp,
|L(D)| ≤ 1. Moreover, if p is a good assignment and L(D) = {0}, then Υ(D) = 0
(by Lemma 6.13). We call a connected component D of Lp such that L(D) = {0}
is a 0-component. Thus, from Lemma 6.13, if p is a good assignment and D is a
0-component of Lp, then Υ(D) = 0.

Let us continue modifying the assignment p, now with the following rule. Again,
whenever we modify p, we update Lp accordingly.

Rule 2. If there exist F ∈ E(H) and two distinct 0-components of Lp, D1

and D2, such that F ∩D1 6= ∅ and F ∩D2 6= ∅, then update p(F ) = 0.

Lemma 6.15. If p is a good assignment, then after the application of Rule 2, it
remains good.

Proof. To prove the lemma, it is sufficient to show that F /∈ Em. Suppose that this
claim is false, that is, F ∈ Em and hence after the update, we obtain an assignment
that is not good. Since (the original) p is a good assignment, we have that p(F ) = i > 0
such that λF,i = Υ|F . Since D1 and D2 are different connected components of Lp,
(F ∩ D1) ⊆ λ−1

F,i(j1), (F ∩ D2) ⊆ λ−1
F,i(j2), and j1 6= j2. However, since D1 and D2

are 0-components of Lp, Υ(D1) = 0 and Υ(D2) = 0. Hence, λF,i(F ∩ (D1 ∪D2)) = 0,
and so, F ∩ (D1 ∪ D2) is a clique in Lp. This contradicts that D1 and D2 are two
different components of Lp.

To further analyze 0-components, define B as the set containing every vertex
v ∈ V (H) such that Υ(v) = 0 and there exists F ∈ Em that is incident to v.

Lemma 6.16. Let p be a good assignment and let D be a connected component of
Lp containing a vertex v ∈ B. Then, D is a 0-component.

Proof. From the definition of the set B, there exists F ∈ Em such that v ∈ F .
Since p is a good assignment, p(F ) = i > 0 such that λF,i = Υ|F . Since Υ(v) = 0,
v ∈ F , and v ∈ D, we have that λF,i(F ∩D) = 0. Hence, 0 ∈ L(D). Therefore, by
Lemma 6.13, we conclude that D is a 0-component of Lp.

6.1.5. Constructing a supergraph L∗
p of Lp. Let us now construct another

simple undirected graph L∗p, which is a supergraph of Lp with the same vertex set as
of Lp and the following additional edges. If there exists F ∈ E(H) and two distinct
connected components of Lp, D1, and D2, such that F ∩ D1 6= ∅, F ∩ D2 6= ∅,
L(D1) 6= {0} and L(D2) 6= {0}, then insert an edge between some vertex of D1 and
some vertex of D2 into L∗p. Clearly, any connected component D of Lp is contained
in some connected component of L∗p. This leads us to the following definition.

Definition 6.17. Given a connected component D∗ of L∗p, we say that a con-
nected component D of Lp is a constituent of D∗ if D ⊆ D∗.

A component D∗ of L∗p is called a 0-component of L∗p if it has only one constituent
component and that constituent component is a 0-component in Lp. We now proceed
to analyze the new graph L∗p.

Lemma 6.18. Let D∗ be some connected component of L∗p that has a constituent
component D such that L(D) = ∅ or L(D) = {0}. Then, D is the only constituent
component of D∗, that is, D∗ = D.
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Proof. When L(D) = {0}, the lemma follows from the construction of L∗p. When
L(D) = ∅, by Lemma 6.12, for any F ∈ E(H) such that F ∩ D 6= ∅, we have that
F \D = ∅. Thus, by the construction of L∗p, it holds that D∗ = D.

From Lemma 6.18, we have that a component of L∗p is a 0-component of L∗p if and
only if it is a 0-component of Lp.

Lemma 6.19. Let D∗ be a connected component of L∗p. Let D be some constituent
component of D∗. If Υ(D) = 0, then Υ(D∗) = 0.

Proof. If D∗ = D, then we are done. Otherwise, for the sake of contradiction,
suppose that Υ(D∗) 6= 0. Then there exists a constituent component D̃ of D∗ such
that Υ(D̃) 6= 0. Since Υ(D) = 0 and D∗ is connected, there exist constituent com-
ponents D′, D′′ of D∗, D′ 6= D′′, such that there is an edge between D′ and D′′ in
D∗ and Υ(D′) = 0 and Υ(D′′) 6= 0. is an edge between D′ and D′′ in D∗, from the
construction of L∗p, there exists F ∈ E(H) such that F ∩ D′ 6= ∅ and F ∩ D′′ 6= ∅.
Since Υ(D′) = 0, Υ(D′′) 6= 0, F ∩D′ 6= ∅, and F ∩D′′ 6= ∅, F ∈ Em. Since p is a good
assignment, from the construction of Lp and the assigning of label sets, L(D′) = {0}.
From Lemma 6.18, this implies that D′ is the only constituent component of D∗,
which is a contradiction.

Lemma 6.20. For any F ∈ E(H), F intersects exactly one non 0-component of
L∗p.

Proof. If there exists F ∈ E(H) which intersects two non 0-components of L∗p,
then from the construction of L∗p, those two components are joined by an edge in L∗p
and hence are the same component in L∗p. If there exists F ∈ E(H) which intersects
two 0-components of L∗p, then this violates that Rule 2 has been applied.

We are now ready to output the sets-colorings tuple tp = (C0]C11]. . .]C1a]C21]
. . . ] C2b,Φ1, . . . ,Φa) corresponding to the assignment p. The sets of tp correspond
to the connected components of L∗p. C0 is the collection of the 0-components of
L∗p. {C11, . . . , C1a} are the components of L∗p whose constituents have a nonempty
label set. {C21, . . . , C2b} are the components of L∗p whose unique constituent has an
empty label set. For any i ∈ [a], Φi : C1i → [k]0 is defined as follows. Since C1i

is a connected component of L∗p, let C1
1i, C

2
1i, . . . , C

j
1i be its constituent components.

Then for any r ∈ [j], Φi(C
r
1i) = L(Cr1i) (recall L(Cr1i) has a unique label for the

constituent component Cr1i). From Lemma 6.20, each hyperedge intersects at most
one of {C11, . . . C1a, C21, . . . , C2b}. Also, from Lemmas 6.13 and 6.12, if F ∩ C2i 6= ∅,
then F \C2i = ∅. This proves that the tuple tp is indeed a sets-colorings tuple for H.

We will now prove that if p is a good assignment, then tp is the tuple with the
properties desired in Lemma 6.1.

Lemma 6.21. If p is a good assignment, then the sets-colorings tuple tp corre-
sponding to it is a good tuple for Υ.

Proof. We show that tp satisfies all the properties described in Lemma 6.1.
1. By the definition of C0, 0-component of L∗p, 0-component of Lp, and Lemma

6.13, Υ|C0
= 0.

2. From Lemma 6.18 and the definition of C2i, C2i is some connected component
of Lp. Thus, from Lemma 6.9, Υ|C2i

is monochromatic in Υ.
3. Consider any C1i. From the construction of C1i, C1i is a connected component

of L∗p each of whose constituent components have a nonempty label set. Thus,
from Lemmas 6.14 and 6.19, either Υ|C1i

= 0 or Υ|C1i
= Φi.
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Thus, the algorithm for Lemma 6.1, for each p ∈ A, constructs L∗p and computes
a corresponding sets-colorings tuple as discussed before. Here, A is the family in
Lemma 6.8. It then outputs the family containing these sets-colorings tuples for each
p ∈ A. From Lemma 6.8, there exists a p ∈ A, such that p is a good assignment. Also,
from Lemma 6.21, if p is a good assignment, then tp is a good tuple for Υ. Thus, the
output family of sets-colorings tuples contains a good tuple for tp. We are now left
to analyze the running time of the algorithm.

Running time analysis. The algorithm begins by computing a family A of assign-
ments from E(H) to [α]0 using Lemma 6.8. Then for each assignment p ∈ A, the algo-
rithm constructs the graph Lp (in polynomial time), modifies it using Rules 1 and 2 (in
polynomial time), assigns it labels (in polynomial time), constructs L∗p (in polynomial
time) and finally constructs the sets-colorings tuple for it (in polynomial time). Since,

from Lemma 6.8, |A| = O(2O(min(x,q) log(x+q))max{d, y}O(max{xy,xk}) ·log2|E(H)|) and
the time taken to compute |A| is

O(2O(min(x,q) log(x+q))max{d, y}O(max{xy,xk}) · |E(H)|O(1)),

the total time taken by the algorithm is O(2O(min(x,q) log(x+q)) ·max{d, y}O(max{xy,xk}) ·
|E(H)|O(1)).

6.2. Dynamic programming. Recall that our aim is to prove Theorem 5.5,
that is, we need to design an algorithm to solve favorable instances of HP. To do
so, we will use Lemma 6.1 followed by a dynamic programming procedure for each
sets-colorings tuple in the family returned by the algorithm of Lemma 6.1. Recall
a favorable instance of HP, I = (k1, k2, b, d, q,H, {fF }|F∈E(H)). If aHP[µ, l1, l2] = 1,
then there exists a witnessing coloring Υ : V (H)→ [k]0 for aHP[µ, l1, l2]. We will show
that since I is a favorable instance of HP, Υ satisfies the prerequisites of Lemma 6.1.
Then, for each sets-colorings tuple in the family returned by Lemma 6.1, we define
k+1 coloring functions for each hyperedge of H. These coloring functions are defined
in such a way that when we later compute aHP[µ, l1, l2] using dynamic programming,
these coloring functions together give a coloring for V (H). Moreover, if aHP[µ, l1, l2] =
1, then since there exists a witnessing coloring Υ for aHP[µ, l1, l2] that satisfies the
preconditions of Lemma 6.1, the dynamic programming procedure corresponding to
the sets-colorings tuple that satisfies the conditions of Lemma 6.1 will return 1 (or
Yes).

Proof of Theorem 5.5. Given a favorable instance

I = (k1, k2, b, d, q,H, {fF }|F∈E(H))

of HP, our algorithm proceeds by calling the algorithm of Lemma 6.1 on the instance
(H, k, d, x, y, q), where k = k1 + k2, x = k, and y = 3k2. The output is a family, say,
T , of sets-colorings tuples of H.

For each sets-colorings tuple t ∈ T , for each F ∈ E(H), we define k + 1 coloring
functions from F to [k]0, Ψ1

F , . . . ,Ψ
k+1
F (defined later). Let t = (C0]C11]· · ·]C1a]

C21 ] · · · ]C2b,Φ1, . . .Φa). Rename the sets in the tuple t as {S0, S1, . . . , Sz}, where
z = a + b, such that S0 = C0, for all i ∈ [a] Si = C1i, and for all i ∈ [b] Sa+i = C2i.
For each i ∈ [z] and j ∈ [k]0, define a function Ψj

i : Si → [k]0 as follows. Ψj
0(S0) = 0

for all j ∈ [k]0. For each i ∈ [a], Ψ0
i (Si) = 0 and Ψj

i (Si) = Φi for all j ∈ [k]. For

each i ∈ {a + 1, . . . , z} and j ∈ [k]0, Ψj
i (Si) = j. Based on these coloring functions

for the sets in the tuple, we now define coloring functions for the hyperedges of H.
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For that, let us first classify the hyperedges of H based on the sets in the tuple t. For
each i ∈ {0, a+ 1, a+ 2, . . . , z}, let ESi

= {F ∈ E(H) : F ⊆ Si}. For each i ∈ [a], let
ESi

= {F ∈ E(H) : F ∩ Si 6= ∅}. Since t is a sets-colorings tuple and S0, S1, . . . , Sz
are the sets of this tuple, renamed as described above, E(H) = ]i∈[z]0ESi . We now
define the coloring functions for the hyperedges of H. For each i ∈ {0, a + 1, . . . , z},
F ∈ ESi

and j ∈ [k]0, Ψj
F = Ψj

i |F . For each i ∈ [a], for each F ∈ ESi
and j ∈ [k]0,

Ψj
F (v) = Ψj

i (v) if v ∈ Si; Ψj
F (v) = 0 if v ∈ S0.

This finishes the description of the coloring functions for the sets of the tuples
and the hyperedges of H. Observe that the colorings Ψ defined for hyperedges are
consistent with V (H), that is, for each F ∈ E(H), no matter which coloring out of
Ψj
F , j ∈ [z]0 is picked, it together colors V (H), where each vertex in V (H) gets a

unique color (assuming V (H) = ∪F∈E(H)V (F ), where V (F ) denotes the vertices in
the hyperedge F ). This is true because t is a sets-colorings tuple and ΨS0

= 0.
For each i ∈ [z], let ESi = {Fi,1, . . . , Fi,zi}. Fix a set Si and j ∈ [k]0, and define

hji [µ
′, l′1, l

′
2] =

∨
(µr)r∈[zi]

(lr1)r∈[zi]

(lr2)r∈[zi]

∧
r∈[zi]

fFi,r
(Ψj

Fi,r
, µr, l1

r, l2
r),

where
∑
r∈[zi]

µr = µ′,
∑
r∈[zi]

lr1 ≤ l′1,
∑
r∈[zi]

l2
r ≤ l′2, and each µr, lr1, lr2 is a

nonnegative integer.
Now define H[i, µ′, l′1, l

′
2] =

∨
j∈[k]0

hji [µ
′, l′1, l

′
2].

Let

computeHP[µ, l1, l2] =
∨

(µi)i∈[z]0

(li1)i∈[z]0

(li2)i∈[z]0

∧
i∈[z]0

H[i, µi, li1, l
i
2],

where
∑
i∈[z]0

µi = µ,
∑
i∈[z]0

li1 ≤ l1,
∑
i∈[z]0

li2 ≤ l2, and each µi, li1, li2 is a nonnega-

tive integer. Note that each of the functions Ψj
i ,Ψ

j
F , h

j
i ,H and computeHP are defined

with respect to a sets-colorings tuple t.

Lemma 6.22. Suppose aHP[µ, l1, l2] = 1. Then there exists a sets-colorings tuple
t ∈ T , such that, for this tuple t, computeHP[µ, l1, l2] = 1.

Proof. Recall that

aHP[µ, l1, l2] =
∨

Υ:V (H)→[k]0

∨
(µF )|F∈E(H)

(lF1 )|F∈E(H)

(lF2 )|F∈E(H)

∧
F∈E(H)

fF (Υ|F , µF , lF1 , lF2 ),

where
∑
F∈E(H) µ

F = µ,
∑
F∈E(H) l

F
1 ≤ l1,

∑
F∈E(H) l

F
2 ≤ l2, and each of µF , lF1 ,

and lF2 is a nonnegative integer.
Since E(H) = ]i∈[z]0ESi

, we have the following.

aHP[µ, l1, l2] =
∨

Υ:V (H)→[k]0
(µF )F∈E(H)

(lF1 )F∈E(H)

(lF2 )F∈E(H)

∧
i∈[z]0

∧
F∈ESi

fF (Υ|F , µF , lF1 , lF2 ),
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where
∑
F∈E(H) µ

F = µ,
∑
F∈E(H) l

F
1 ≤ l1,

∑
F∈E(H) l

F
2 ≤ l2, and for all F ∈ E(H),

µF , lF1 , and lF2 are nonnegative integers.
Since aHP[µ, l1, l2] = 1, there exists a witnessing assignment Υ : V (H) → [k]0.

Since I is a favorable instance of HP, Υ clearly satisfies the local unbreakability
and global unbreakability conditions of Lemma 6.1 (when the input to the algorithm
of Lemma 6.1 is (H, k, d, k, 3k2, q)). We first show that Υ also satisfies the first
precondition of Lemma 6.1 with x = k. That is, the number of hyperedges of H
that are nonmonochromatic under Υ is at most k. Since aHP[µ, l1, l2] = 1, for all
F ∈ E(H) there exist µF , lF1 , and lF2 such that fF (Υ|F , µ

F , lF1 , l
F
2 ) = 1. Hence, the

connectivity property of Υ (which exists because I is a favorable instance) implies
that for each F that is not monochromatic in Υ, we have that lF1 + lF2 ≥ 1. However,∑
F∈E(H) l

F
1 + lF2 ≤ l1 + l2 ≤ k1 + k2 = k. Thus, the number of nonmonochromatic

hyperedges under Υ is at most k.
Thus, from Lemma 6.1, there exists a good tuple t ∈ T for Υ. Consider

computeHP[µ, l1, l2] (and thus corresponding hji ,Ψ
j
F ,Ψ

j
i ) defined for this good tuple.

From the definition of a good tuple and Ψj
i , for each i ∈ [z]0, Υ|Si

= Ψj
i for some

j ∈ [k]0. Also, since t is a sets-colorings tuple, for each F ∈ E(H), Υ|F = Ψj
F for

some j ∈ [k]0.
Thus, if aHP[µ, l1, l2] = 1, we get the following.

aHP[µ, l1, l2] =
∨

(µi)i∈[z]0

(li1)i∈[z]0

(li2)i∈[z]0

∧
i∈[z]0

H[i, µi, li1, l
i
2] = computeHP[µ, l1, l2],

where
∑
i∈[z]0

µi = µ,
∑
i∈[z]0

li1 ≤ l1,
∑
i∈[z]0

li2 ≤ l2, and each µi, li1, li2 is a nonneg-
ative integer.

Lemma 6.23. If there exists a tuple t ∈ T , such that, for this tuple t,
computeHP[µ, l1, l2] = 1, then aHP[µ, l1, l2] = 1.

Proof. From the definition of computeHP, we have the following.

computeHP[µ, l1, l2] =
∨

(µi)i∈[z]0

(li1)i∈[z]0

(li2)i∈[z]0

∧
i∈[z]0

H[i, µi, li1, l
i
2] = 1,

where
∑
i∈[z]0

µi = µ,
∑
i∈[z]0

li1 ≤ l1,
∑
i∈[z]0

li2 ≤ l2, and each µi, li1, li2 is a nonneg-
ative integer.

SinceH[i, µ′, l′1, l
′
2] =

∨
j∈[k]0

hji [µ
′, l′1, l

′
2], we get the following for some j0, . . . , jz ∈

[k]0. ∨
(µi)i∈[z]0

(li1)i∈[z]0
.

(li2)i∈[z]0

∧
i∈[z]0

hjii [µi, li1, l
i
2] = 1.

From the definition of hjii , we get the following.∨
(µFi,r )|i∈[z]0,r∈[zi]

(l
Fi,r
1 )|i∈[z]0,r∈[zi]

(l
Fi,r
2 )|i∈[z]0,r∈[zi]

∧
i∈[z]0

∧
r∈[zi]

fFi,r
(Ψji

Fi,r
, µFi,r , l

Fi,r

1 , l
Fi,r

2 ) = 1,
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where
∑
i∈[z]0,r∈[zi]

µFi,r = µ,
∑
i∈[z]0,r∈[zi]

l
Fi,r

1 ≤ l1,
∑
i∈[z]0,r∈[zi]

l
Fi,r

2 ≤ l2, and each

of µF , lF1 , and lF2 is a nonnegative integer.
Since Ψ for hyperedges gives a consistent coloring for V (H), let this coloring be

Υ : V (H)→ [k]0. This coloring Υ then witnesses the following.∨
(µFi,r )|i∈[z]0,r∈[zi]

(l
Fi,r
1 )|i∈[z]0,r∈[zi]

(l
Fi,r
2 )|i∈[z]0,r∈[zi]

∧
i∈[z]0

∧
r∈[zi]

fFi,r (Υ|Fi,r , µ
Fi,r , l

Fi,r

1 , l
Fi,r

2 ) = 1,

where
∑
i∈[z]0,r∈[zi]

µFi,r = µ,
∑
i∈[z]0,r∈[zi]

l
Fi,r

1 ≤ l1,
∑
i∈[z]0,r∈[zi]

l
Fi,r

2 ≤ l2, and each

of µF , lF1 , and lF2 is a nonnegative integer.
Since E(H) = ]i∈[z]0ESi

, we get the following.∨
(µF )|F∈E(H)

(lF1 )|F∈E(H)

(lF2 )|F∈E(H)

∧
F∈E(H)

fF (Υ|F , µF , lF1 , lF2 ) = 1,

where
∑
F∈E(H) µ

F = µ,
∑
F∈E(H) l

F
1 ≤ l1,

∑
F∈E(H) l

F
2 ≤ l2, and for all F ∈ E(H),

µF , lF1 , and lF2 are nonnegative integers.
Thus, we conclude that aHP[µ, l1, l2] = 1.

From Lemmas 6.22 and 6.23, we conclude that, to compute aHP[µ, l1, l2], it is
enough to compute computeHP[µ, l1, l2] for each tuple t ∈ T . In the upcoming lemmas
we analyze the time taken to compute computeHP[µ, l1, l2] for any tuple t ∈ T .

Lemma 6.24. For any i ∈ [z]0, j ∈ [k]0, µ
′ ≤ µ, l′1 ≤ l1 ≤ k1, l

′
2 ≤ l2 ≤ k2,

hji [µ
′, l′1, l

′
2] can be computed in time O(zi · (µ · k1 · k2)2).

Proof. Recall

hji [µ
′, l′1, l

′
2] =

∨
(µr)r∈[zi]

(lr1)r∈[zi]

(lr2)r∈[zi]

∧
r∈[zi]

fFi,r
(Ψj

Fi,r
, µr, l1

r, l2
r),

where
∑
r∈[zi]

µr = µ′,
∑
r∈[zi]

lr1 ≤ l′1,
∑
r∈[zi]

l2
r ≤ l′2, and each µr, lr1, lr2 is a

nonnegative integer.
For any c ∈ [zi], µ

′, l′1, and l′2, let

hji [c, µ
′, l′1, l

′
2] =

∨
(µr)r∈[c]

(lr1)r∈[c]

(lr2)r∈[c]

∧
r∈[c]

fFi,r
(Ψj

Fi,r
, µr, l1

r, l2
r),

where
∑
r∈[c] µ

r = µ′,
∑
r∈[c] l

r
1 ≤ l′1,

∑
r∈[c] l2

r ≤ l′2, and each µr, lr1, lr2 is a nonneg-
ative integer.

Then hji [zi, µ
′, l′1, l

′
2] can be computed using the following recurrences in time

O(zi · (µ · k1 · k2)2)

hji [1, µ
′, l′1, l

′
2] = fFi,1(Ψj

Fi,1
, µ′, l′1, l

′
2).
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For all c ∈ {2 . . . , zi},

hji [c, µ
′, l′1, l

′
2] =

∨
µ′=µ1+µ2

l′1≥l
1
1+l21

l′2≥l
1
2+l22

hji [c− 1, µ1, l11, l
1
2] ∧ fFi,c(Ψj

Fi,c
, µ2, l21, l

2
2).

Observe that hji [µ
′, l′1, l

′
2] = hjI [zi, µ

′, l′1, l
′
2]. This concludes the proof.

Since H[i, µ′, l′1, l
′
2] =

∨
j∈[k]0

hji [µ
′, l′1, l

′
2], from Lemma 6.24, for any i, µ′, l′1, l

′
2,

H[i, µ′, l′1, l
′
2] can be computed in time O(zi · (µ)2 · (k1 + k2)3).

Lemma 6.25. For any tuple t ∈ T , for any µ′ ≤ µ, l′1 ≤ l1 ≤ k1, l′2 ≤ l2 ≤ k2,
computeHP[µ′, l′1, l

′
2] can be computed in time z · zi · (µ · (k1 + k2)O(1)).

Proof. Recall

computeHP[µ, l1, l2] =
∨

(µi)i∈[z]0

(li1)i∈[z]0

(li2)i∈[z]0

∧
i∈[z]0

H[i, µi, li1, l
i
2],

where
∑
i∈[z]0

µi = µ,
∑
i∈[z]0

li1 ≤ l1,
∑
i∈[z]0

li2 ≤ l2, and each µi, li1, li2 is a nonneg-
ative integer.

For any c ∈ [z]0, µ
′, l′1, and l′2, let

computeHP[c, µ, l1, l2] =
∨

(µi)i∈[c]0

(li1)i∈[c]0

(li2)i∈[c]0

∧
i∈[c]0

H[i, µi, li1, l
i
2],

where
∑
i∈[c] µ

i = µ,
∑
i∈[c] l

i
1 ≤ l1,

∑
i∈[c] l

i
2 ≤ l2, and each µi, li1, li2 is a nonnegative

integer.
Then computeHP[z, µ, l1, l2] can be computed using the following recurrences.

computeHP[0, µ, l1, l2] = H[0, µ, l1, l2].

For all c ∈ [z],

computeHP[c, µ, l1, l2] =
∨

µ′=µ1+µ2

l′1≥l
1
1+l21

l′2≥l
1
2+l22

computeHP[c− 1, µ1, l11, l
1
2] ∧H[c, µ2, l21, l

2
2].

Observe that computeHP[µ, l1, l2] = computeHP[z, µ, l1, l2]. From Lemma 6.24,
for any i, µ, l1, l2, H[i, µ, l1, l2] can be solved in time O(zi · (µ)2) · (k1 + k2)3. Thus,
computeHP[µ, l1, l2] can be solved in time z · zi · (µ · (k1 + k2)O(1)). This concludes the
proof.

From Lemma 6.1, the number of tuples in T is bounded and for each tuple, the
time taken to compute computeHP[µ, l1, l2] is given by Lemma 6.25. Thus, Lemmas 6.1
and 6.25 together give the desired running time bound of Theorem 5.5.
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