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Abstract

In this thesis we take an in-depth look at the process of renormalization. Important
details such as regularization and renormalizability is also discussed. Renormalization
of QED is used as a starting point to explore three schemes: on-shell, momentum sub-
traction and minimal subtraction. We then extend QED to include a complex scalar
field that gives the photon mass through the Higgs mechanism, and apply the minimal
subtraction scheme to find the renormalization constants and [, and [, functions.
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1 Introduction

In the search for extensions of the standard model, many exotic and interesting theories
have been proposed. A hidden sector: particles and forces that remain hidden to us
for one reason or another is a popular field of study. Particles that interact too weakly
with standard model matter, or are so massive that their mediated force becomes too
short range to detect are theorized in this sector. The simplest case would be a massive
photon, interacting so weakly that it has avoided detection [1]. Nothing in the standard
model prevents such a particle. In fact the Brout-Englert-Higgs (BEH)-mechanism pro-
vides the answer for how it might be created. The concept may be taken further; This
hidden photon could mix with the massless photon, in a process known as kinetic mixing.

In contrast to these proposed extensions, another part of the standard model, renor-
malization, is quite well established at this point. This procedure provides the solution
to the complication of divergences in loop integrals and allows us to extract observable
quantities. A natural question is whether such a theory as kinetic mixing between a
massless and a hidden photon can be renormalized, and what could be learned from
this. The kinetic mixing parameter is a parameter that describes the strength of the
interaction between these two photons. A S-function is a function that describes how
a parameter changes with a change in renormalization scale. A classic example is the
B-function of the electric charge e. This function determines the running coupling of e.
Such a function should exist for the kinetic mixing parameter as well.

In this thesis we aim to explore the framework of renormalization and apply it to a
photon that gains mass through the BEH mechanism. We explore this through QED
and a complex scalar that acquires a non-zero vacuum expectation value. An in-depth
discussion on the renormalization of QED is also included. In sections[2]and [3] we develop
the tools necessary for renormalization, and in section [4| these tools are applied to QED.
The minimal subtraction scheme is developed in section [ along the Passarino-Veltman
(P.V) functions. In section [6] we explore the renormalization of spontaneously broken
QED. Topics in this section also include the R¢-gauge, which is useful for renormalization.

1.2 Conventions and tools

All Feynman diagrams are made using the TikZ-Feynman latex package|2|. For the
heavier loop calculations we have used Mathematica, with the package FeynCalc (3],
[4], [5]). This allows for vastly more efficient calculations and is also a convenient way
to double check results.

In the first part of this thesis (sections 4| and , Feynman gauge is exclusively used,
meaning ¢ = 1. This allows for easier to use propagators and simplifies results. This
simplification is unable to be applied to the spontaneously broken theory, covered in
section [6

We use the covariant derivative

DF = 0F —ieAr.



For constructing Feynman rules for terms in the Lagrangian, the convention of simply
multiplying by ¢ has been chosen.

2 Regularization

2.1 Justification

First order corrections to QED appear in the form of diagrams such as

(a) (b)

Figure 1: Examples of first order corrections to QED.

Corresponding to corrections to pair annihilation into pair creation, and Compton scat-
tering, respectively. At each loop there is an integral over loop momenta k. These
integrals are best studied without the external legs present, and from now on, we shall
study the amputated diagrams. Figure has the amputated amplitude

= 2(p). (2.1.1)

L+ p )Amputated

The scalar X function has the form

2(]o)=(—z'eo)2f(d4k7 ik+prmg) g

2m)4 " (k +p)2 —md + ie RNt

(2.1.2)

A standard method of calculating loop integrals is a Wick rotation, which is a change of
variables defined as |6, p. 17]

kO = Zk%? ,l;? = Z?E
k2= kL =~k — (kL)

As an example we can consider the integral

ik 1 _Lf“ B
(2m)4 (k2 -m2+ie)?  8m2 Jo (k% +m?2)2 g

1 1 2 k?
S L T ]
8m2 2\ m?+k% m?
where the divergence is now made clear. In order to obtain this form, it is helpful to use

Feynman parametrization, summarized in appendix [B.2] This is just a convenient way
of rewriting the denominator. Applying this to (2.1.2)) would result in |7, p. 21]

S(p) ~Inlgl; . (2.1.4)

o0

, (2.1.3)




Hence the fermion self-energy is logarithmically divergent. The process of regulariza-
tion aims to rewrite loop expressions into a limit of a convergent integral [8, p. 104].
Making the divergences explicit in this way allows us to subtract them, rendering the
renormalized theory finite, this next step is the subject of section [3]

2.2 Cut-off

Perhaps the most intuitive method of regularization is introducing an upper limit A for
the integration region, to remove the divergent high momentum region [8, p. 106], [9].
For the fermion self-energy

Y(p) ~InA, (2.2.1)

where it is understood that A tends to infinity. As long as this limit is not taken, the
amplitude remains finite. This method has the problem of breaking gauge symmetry.
The vacuum polarization amplitude is defined as

v

( p

where, with a UV-cutoff, the loop amplitude has the form

A ik [ i(F+mo) i(k+g+m0) |

o (2m)* ' P k2-mE " (k+q)?-m?

) 11,,(g). (222
Amputated

k+q
SN
\k/

I1,,, = —(ieo)? (2.2.3)

Going through a normal loop calculation with a Wick rotation would result in a leading
term [10, p. 248].

[0, o< e*A%g,,, (2.2.4)

and no ¢,q, term, resulting in an infinite photon mass, and ruining gauge invariance.
This is a common problem for cut-off regularization, and it is not suitable for gauge
theories.

2.3 Pauli-Villars regulator

Pauli-Villars regularization [11] is based on the concept of introducing ghost particles
that cancel physical particle loop momenta at high energies. For each particle in the
theory, the propagator is modified by [12, p. 12]

i i i i(m? - A?)

P —m? _)pQ—mQ _pz_Az T -md) (- A2)

The modified propagator approaches the original as M — oo. The behavior of the integral
is improved at large energies due to the higher power of & [6, p. 18]. Pauli-Villars ghosts
either have the opposing sign in the kinetic term, for example the ghost photon in QED
would have +%}7’ Wﬁ’ mv - or the opposing statistic, such as fermion ghosts being bosonic
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[13, p. 832]. The divergent integral (2.1.3) can be made finite with this. Adding a
fictitious particle, the integral becomes
d*k 1 1 1 | A?
— n_
2m)A\(K2-m2+ie)?  (k2-A2+1ig)?

T16n2 m2

QED can be regularized using this method, as it preserves gauge invariance in both QED
and QCD [8] p. 107]. However, the method is not simple as several sets of Pauli-Villars
fermions are required in order to regularize the vacuum polarization (4.3.3)) |10, p. 248].

2.4 Dimensional regularization

The final method we will discuss, and the one which will be used from this point, is
dimensional regularization [14]. Dimensional regularization directly modifies the space-
time dimension d, inspired by the observation that by reducing the number of multiple
integrals, an integral could be made convergent. In this way, all symmetries are preserved
[8, p. 108]. The space-time dimension d is redefined a]

d=4-c¢. (2.4.1)

In the limit € — 0, the original theory is restored. The space-time dimension d is treated
as a continuous variable, and in this sense, € acts as a regulator [12, p. 14]. In this
new dimension, standard formulae for Wick rotations are modified [13, p. 825], one such
example is

(2.4.2)

k1 (D) T(n-9) (l)”‘g
(2r)? (k2 -A)n  “(4m)42 T'(n) \ A '

Properties of the I'-function are given in appendix B.4 Most importantly, it can be
expanded around zero and at negative values

1
I'(e) ===~ + O(e). (2.4.3)
€
The divergent term ~ % is now isolated from the finite terms.

A redefinition of the space-time dimension d has the consequence of changing the di-
mensions of fields and parameters. The Lagrangian density still has mass dimension d,
in order to keep the action dimensionless [13, p. 828]. The fields and parameter therefore
have the mass dimension [15]

_d-1 3 ¢ d-2 € 4-d

€
_— = A'u :—:1—— :]_ = = -,
To have a dimensionless coupling constant, the dimension can be extracted
e pse, (2.4.4)

where p is a auxiliary mass scale with mass dimension 1, and e is dimensionless [13].

!Some authors use the definition d = 4 — 2¢, this has the advantage of getting rid of factors of 2 in
some results.



Propagators in QED will always have a factor of e?. The auxiliary mass scale has a
dependency on €, which in turn will slightly modify the result of an expansion around
e = 0. Integrals which involve parameters such as e are slightly modified |13, p. 828].
Looking at for n = 2, this is modified by a factor u¢

d’k e i d 1 3
f (2m)d (k2 - A)? —(47T)d/21—‘(2 - 5) ( A ) (2.4.5)

Expanding around e = 0 yields

.S d 1 23 47 p?
Z(4w)d/2r(2‘5)(ﬁ) ~lin >2”( )

(42 B (2 vE + Indnm + In g2 lnA+O(e)).
T

[\

Similar analysis on the integrals gives the same result. The pole is unaffected, and the
scale p is absorbed into the finite terms. Other useful d-dimensional integrals are given
in appendix |B.3|

As a final note, altering the space-time dimension has a second effect, namely alter-
ing the Clifford algebra of the y-matrices. This is summarized in appendix [B.I There
is an issue on how to handle the ~vs-matrix, however as we do not encounter =y in this
work, we choose to skip over this.

All the necessary tools are now in place. We present a shortened version of the reg-
ularization of the fermion self-energy using dimensional regularization. The full
derivation can be found in appendix [B.5.1] Note that the full calculation is done in
renormalized theory, meaning we use e instead of eg. We will discuss this in more detail
in section 4l

dik i(f+prme) —igm
(2 )4 u(k+p)2 2’7”k2_)\2'

3(p) = (—ieg)? (2.4.6)
The mass A is a fictitious photon mass, which is to be taken to the limit A\ - 0. This is a
regulator for infrared divergence, which is another type of divergence that occur at low
energies. In QED this does not violate gauge invariance [16, p, 265]. Using the Feynman
parametrization (B.2.1a)) some terms cancel. Completing the square, substituting [ =
k + xp and ignoring linear terms in [, which will vanish, yields

, [ d ) v ((=z)p+me)n
Z(p):_eofW/o dx -0 : (2.4.7)

where A = m2x + (x — 1)(p?x — A2). These steps can be found in other regularization
procedures as well. Since we want to use dimensional regularization now, the dimension

is redefined to d =4 — €, and using the modified Clifford algebra (B.1.4)

2-d)(1-z)p+ dmo
X(p) = —ueg / / (jil)d ( )( A);i . (2.4.8)




Using the integral (B.3.1a)) and d = 4 — € we arrive at the final result

2
€o

2(0) = iy fol ((c-2)(1=a)p+ (1= m) T() (4%“2) de, (2.4.9)

The limit € - 0 now restores the divergent amplitude; however the divergence is now
isolated in the term § the expansion of I gives. The rest of the terms are finite.

3 Renormalization

3.1 Concept of renormalization

Regularization allows us to rewrite loop integrals into more manageable forms dependent
on a regulator. Taking the limit of this regulator once again causes the amplitude to
diverge. Renormalization is the process of isolating the divergences to unphysical quan-
tities, removing divergences from physically measurable quantities [17].

Loop corrections arising from higher order perturbation theory alters the parameters
of the theory. Original parameters are called bare parameters, denoted as ey. These are
unphysical, and can be divergent without issues [18, p. 188]. Bare parameters are related
to their finite counterpart by one of two simple definitions.

eo=Z.-e. (3.1.1)

This is known as multiplicative renormalization; the other definition is named additive
renormalization and is given by

eo = e+ de. (3.1.2)

Z. and de are known as renormalization constants. They are divergent, allowing the
renormalized quantity e to be finite.

The counter-term method consists of using the split of bare quantity into renormaliza-
tion constant and renormalized quantity to construct a counter-term Lagrangian. These
counter-terms contain the renormalization constants, and absorb terms from the diver-
gent amplitudes, rendering observable quantities finite in the end. A renormalization
scheme is a prescription of what the counter-terms absorb, which leads to a scheme de-
pendence for the renormalization constants. This will be shown more in-depth in section

Ml

3.2 Renormalizability

A renormalizable theory means a theory whose divergences can be removed by a finite
number of renormalization constants and interaction parameters. This has to apply to
all orders of perturbation theory, thus in order to determine if a theory is renormalizable,

we first need to know what diagrams are divergent, and what interactions are renormal-
izable [§].



To determine what amplitudes are divergent, the method of power-counting is often
used. As an example, consider the diagrams

K v 4 1 2
~dkﬁ-k,

iz f L v 4, 1
Ndkﬁk.

We can define s to be the resulting momenta power. Generally, the diagram is power-
divergent for s > 0, logarithmically divergent for s = 0 and finite for s < 0. The number s
is called the superficial degree of divergence and can, to 1-loop order, be generalized in
dimension d as |8, p. 126]

s=d-1+2X,0, - 2n, —ny, (3.2.1)

where [ is the number of loops, 9, is the number of momentum factors at vertex v and
ny,ny are the number of boson and fermion internal lines respectively.

The next question is what interactions are renormalizable. To this end, we need to
rewrite (3.2.1) in terms of external fields and define the index of divergence of the inter-
action.

d-1

d-2
=Ny - —==Np - ———Np +d
S irn 5 B 5 Ft

d-2 d-1
:_bi+— i+6i_d7 3.2.2
e (322)
where §; is the number of number of space-time derivatives, n is the number of vertices
corresponding to .77, b;, f; are the number of boson or fermion fields in .2}, and Ny, Ny

are the number of external boson or fermion fields.

Ty

The index of divergence r has a key role in determining renormalizability. The value of
r; is only dependent on the interaction term .Z;. An interaction can be grouped into
three categories based on these values [8, p. 131].

e 7> 0: the theory is non-renormalizable, as for higher orders, an unlimited amount
of new divergences appear, which cannot be removed by a finite number of renor-
malization coefficients.

e r =0: the theory is renormalizable, the types of divergences are finite, and there is
a chance that they can be removed by a finite number of coefficients.

e r < 0: the theory is super renormalizable, the number of divergent diagrams also
becomes finite.

For QED in four dimensions, where the only interaction term is
g[ = efy,u,@/;AMwa
the index of divergence takes the value
r=b+;f+5—4:1+3—4:0

QED is thereby renormalizable.



4 Renormalization of QED

In this section we summarize the renormalization of QED in two schemes, the on-shell
scheme and momentum subtraction scheme. Renormalization constants Z; can be de-
termined in two ways, using Green functions or the counter-term method [19, p. 119].
Here we use the counter-term method to determine the renormalization constants in the
momentum subtraction scheme. Furthermore, the S-function of QED is derived in the
momentum-subtraction scheme.

4.1 Counter-terms

The counter-term method is based on using the relation between bare and renormal-
ized variables to obtain counter-terms. These terms give Feynman rules containing the
constants Z;, which then can be determined when combined with an renormalization
scheme. The bare QED Lagrangian is given by

1

L= 1 L0 8+ 1o (10 = mo) o — eo Al hoy,uibo (4.1.1)

All possible counter-terms are already contained inside, and thus multiplicative renor-
malization can be used [18| p. 200]. Fields can be multiplicatively renormalized without
any complications; The masses require more consideration. In a massless theory, multi-
plicative renormalization of the mass mgy = Z,,m would result in the bare mass always
being equal to zero since m, the observable mass, is zero. Authors often use additive
renormalization for masses, to relieve any potential problems. For QED this is not an
issue, and the mass is renormalized multiplicatively.

o = Z,%0, Al = ZPAF, eq = Zopte, mo = Zm. (4.1.2)

In the spirit of perturbation theory, the renormalization constants can be rewritten as
Zzp =1+ 521/,

1 = < -

&L == F P () = ) - e AV
1 - - < -
= OZAF W " + 82y pidp = (Zy Zon = 1)ioma) - (2.2 Z, - 1) pse APy, b,
(4.1.3)

This splits the Lagrangian into two parts, the familiar, but now renormalized QED

Lagrangian £, and counter-terms Zcr. Amplitudes are now calculated using %%, and
from .Zor one obtains the explicit forms of the counter-terms [10, p. 332].

— R ArAAAAANNIANANN
(a) i(0Zyp— (ZypZm = 1)m)  (b) =i(g"'¢* - ¢"¢")0Za
(c) —(ZeZilme - l)p,%e’y“

Figure 2: The counter-terms of QED.



In order to properly write down the renormalized propagators and vertex function, an
additional definition is needed; I1-Particle irreducible diagrams. These diagrams have the
property that they have no lines which can be removed or cut in order to construct two
new viable diagrams. As an example |10} p. 219

%W

) Irreducible diagram. ) Reducible diagram.

Figure 3: Irreducible and reducible diagram examples.

Reducible diagrams can always be deconstructed into subdiagrams. Irreducible diagrams
represent the fundamental loop diagrams of perturbation theory, and to each order there
several irreducible diagrams. Therefore 1-PI diagrams allow for easier grouping of the
divergent loop diagrams of any order of a. Following [10], they are denoted ¥, IT and I'
for the fermion, photon and vertex, respectively.

X(p) = @

S (? +é(;:}—\uk

(a)

Figure 4: Notation for 1-PI diagrams, and some contributions.

Note that if one restricts perturbation expansion to the one loop order, these definitions

simplify to
>(p) : R . (4.1.4)
My (g) =~ {IPrnnn = (4.1.5)

Lu(p.q) = @ = (4.1.6)

Using this new notation, the full propagators and QED vertex can be diagrammatically



deconstructed as |10, p. 330]

g O

IS
§
I
Il I
+

_Zlef}/“ + F‘u = = >— +
= >— —+ %
To make the shift into renormalized perturbation theory, the 1-Particle-Irreducible

expressions (4.1.4) and (4.1.5)), and the vertex function (4.1.6)) are redefined, to include

counter-terms.
Y(p) = @
(4. 1 .8)

Lu(p.q) = >"—“ >%— (4.1.9)

4.2 Renormalization schemes

(4.1.7)

In order to properly determine the renormalization constants Z;, one needs to specify
conditions on the renormalized propagators and vertex functions. This is equivalent with
choosing a renormalization scheme. A key difference of schemes is the way they treat
the finite terms. Renormalization constants varies depending on the chosen scheme. Ob-
servables do not, however, and any scheme must produce the same values for observable
quantities.

10



4.2.1 On-shell scheme

The on-shell scheme for QED is defined by associating the divergent poles with the physi-
cal mass of the fermions. This means that the renormalized mass m is the actual physical
mass which can be observed through experiments. This relates the renormalization pro-
cess nicely to the physical world, but it is a luxury few theories provide. Expanding
¥(p) around p = m shows it is ill-defined, possessing an infrared divergence as well as
ultraviolet. This infrared divergence can be remedied by introducing a fictitious photon
mass A. This normally breaks the gauge-invariance of the theory. QED is, on the other
hand, special in that the gauge invariance of the calculation is not affected [16, p. 265].

In the on-shell scheme, the conditions imposed on the 1-PI diagrams can be summa-
rized as follows |10, p. 332]

S(p=m)=0, (4.2.1a) (g2 =0)=0, (4.2.1¢)

d%bz(p)b):m =0, (4.2.1b) I'.,(p'-p=0)=0. (4.2.1d)

Or diagrammatically as

-0, ()2=0,
w0 (o)

Note that the condition on the vertex can equivalently be written

( ® ) = —iey,.
p=p’

It is important to keep in mind the new definition of these diagrams, meaning the
inclusion of the counter-terms. Using these conditions, one can obtain expressions for
the renormalization constants. Using the explicit forms of the counter-terms, seen in

figure

S(p = m) + (8 Zyp — (ZyZom — 1)m) =0, (4.2.2a)
%(Eg(p=m) i Zup— (ZoZo — 1)m)) =0, (4.2.2b)
(9 0” = 4ug)TI(g* = 0) = i(9uq” = 44 )0 74 = 0, (4.2.2¢)
TP =p) = i(Z 24 Zy = V)pten, = 0. (4.2.2d)

11



Solving these leads to the renormalization constants

Zy(1+ Zy)m=-%(m)  (42.3a) Zs=1+T11(0) (4.2.3¢)
Zy=1- di;)z(m) (4.2.3b) (2.2 Zy - piey, =T,(p =p)  (4.2.3d)

All four renormalization constants are now determined, the renormalization of QED
is complete; the divergences which occur at 1 loop order are properly canceled by the
counter-terms.

Using these expressions, or alternatively the Ward Identity of QED [18, p. 201], it can
be shown that for all orders of perturbation theory, the following holds |10, p. 334]

Zo= 7, (4.2.4)

4.2.2 Momentum subtraction scheme

As mentioned earlier, multiplicative renormalization for the mass is fine in QED, since
m # 0, and in a massless theory, one would have to use additive renormalization for the
mass. There are, however, more steps required if one were to use a massless theory. In
massless QED, the on-shell scheme would be vague, at least in the form discussed in the
previous section. Equations would not make much sense, and there are potential
infrared divergences to worry about.

For QED, the on-shell scheme is enough to renormalize the theory, however there are
some caveats. While this scheme immediately provides an intuitive understanding of
the mechanism behind renormalization, several interesting phenomena, for example the
B-function are more intricate to calculate. This can be seen by the generic form of the
p-function[15} p. 13]

B(e) = uj—; - —ce(p).

In taking the limit € — 0 and restoring regular QED, the renormalized coupling constant
becomes a scale independent constant. The on-shell scheme still has a S-function [20]
but we will not focus on this issue here.

A convenient way around this is the closely related Momentum subtraction scheme,
in which the counter-terms cancel at an arbitrary renormalization scale M. In regard
to the [-function this means the renormalized parameters are no longer the physical
parameters e # €pnysicat; and they can inhibit a scale dependence.

12



p2:—M2 q2:—M2
(] ( )
— =0, =0
7 wy—) Wl )
Z(p)p2:,M2 = 0, (4.2.5&) H(Q)|q2:—M2 = 0, (4.2.5C)
d
d—pz(pn,,z:_w =0, (4.2.5b) L (pi)lp2-—ns2 = 0. (4.2.5d)

In the same way as in the on-shell scheme, including the counter-terms leads to equations
for the renormalization constants

S(P)peeniz + i(8Zyp ~ (ZpZm — 1)m) = 0,

d .
%(E(p)h@:_MQ +i(6Zyp — (ZyZm - 1)m)) =0,
(g;qu - QMQV)H(QZNqQ}MQ - i(guqu ~uqy)0Za =0,
Tu(pi)lyeniz — ((Ze 2 Zy - V)5 ey, = 0.

This leads to the following expressions for the renormalization constants

(Opp = (ZyZm = 1)m) = 5(p)lp2-—nr2 (4.2.6a)
d

Zy=1- %z(p)w:_w (4.2.6b)

ZA =1+ H(q)|q2:_M2 (4.2.60)

(2.2 Zy - D pzey, = Tu(p)pri2, (4.2.6d)

which concludes the renormalization in the momentum subtraction scheme.

4.3 Amplitude calculations

Now that the conditions on each of the 1-PI diagrams and vertex function has been set, it
is time to find explicit expressions for the loop amplitudes. Regularization was covered
in section [2] and a shortened version of the fermion self-energy regularization using
dimensional regularization was shown for the bare theory. The split of the Lagrangian
into a renormalized Lagrangian and a counter-term Lagrangian (4.1.3) means that the
calculated amplitudes are now functions of the renormalized parameters, e and m in this
case, instead of the bare parameters.

13



4.3.1 Electron self-energy

For the example of fermion self-energy already shown in section [2) nothing changes except
for the swapping ey — e, and we simply list the result here

S() =iy )2[ ((e-2)(1-2)p+ (4-)m) T( )(4“‘) da, (4.3.1)
where A = m?x + (x - 1)(px - A2).

4.3.2 Vacuum polarization

This section and the following are shortened versions of the full calculations shown in

appendices [B.5.2] and [B.5.3]

( p

TN
\k/

k+q

14
) =11,.(q). (4.3.2)
Amputated

The second rank tensor II,,, has the form

Ak i(f+m) i(k+g+m)
@y l”’* K2—m? " (k+q)2-m?

Using the trace relations (B.1.6), odd numbered ~-matrix terms vanish. Feynman
parametrization, completing the square and substituting [ = k£ + gx gives

I, = ~(ie)?

(4.3.3)

4 /‘ d:vf(d4l 20,0, - 22(1 - 2)quqy — 9 l® + g (M? + ¢?x(1 - x))’ (4.3.4)

(12-A)

where A = m? - ¢?z(1 - z) and terms linear in [ have been removed. Since there are
terms proportional to both g,,[? and [,[,, and some with no I-dependency, there are
three different d-dimensional integrals after generalizing to d = 4 — € dimensions. These

can be grouped together using and -
. 47
= - i - g0 o [ - T () ar (a35)

4.3.3 Vertex correction

Ikzmmm, (4.3.6)



where I',(p, p) is calculated using the Feynman rules as usual

o A4k ,_gpcf z(p+;é+m) i(%+g+p+m)
Lup. ) =(=i€) )t PR 2kt p)—m2 P (k+ptq)2—m2 ”

Though somewhat more complicated, this can be evaluated in the same way. Once again
using Feynman parametrization, completing the square and substituting [ = k + pry —

Py +p+qry

Lu(p,q) =-2¢° o )4f dx - ydy

TPl —pry+ py - p— oy +m)yu( - pry + py - p- gwy+¢+p+m)%
[12 - AT?

where

A= y(pz(x ~D)((z-1)y+1)+2pg(z - Dy + ¢*z(xy - 1) - \2(z - 1)) -m2(~zy+y-1).

Following [16, p. 254], I, is split into two parts, one proportional to [? and one indepen-
dent of [. Generalizing to d = 4 - € and evaluating the integral for I'}, yields

2

! 2 ATpe |5
L, = "9 (47r)2/~0 f dr-ydy(4-4e+¢€”)v, I (2)( A ) : (4.3.7)
The terms not proportional to [ take the form
. P(L-5) o
L= (47r)2“ f dz - ydyy° (m = pzy + py - dzy)vu(m = pry + py - gzy + §) %0 _; (4mp?)®.

(4.3.8)
The total amplitude for the vertex correction is the sum of these two expressions
I, = F}L + FZ (4.3.9)

The reason for this split is that when € — 0, only I'; is divergent, and is the expression of
most interest. I does however provide a correction to the anomalous magnetic moment
of the fermion [16, p. 269], but for our purposes is not particularly important.

4.4 Determination of Z; in the momentum subtraction scheme

Following |10], we go back to the two first conditions in the momentum subtraction
scheme (4.2.6), with the calculated fermion self-energy amplitude (4.3.1). These two
equations determine the photon renormalization constant and the mass renormalization
constant.

e2

(Oup = (ZyZom — 1)m) = - (4@2[ ((e-2)(1-2)p+ (4-ym) T(E )(4m) dz

Zy =1 ”(4 )2 flr(g) (422)2

-((5—2)(1—35)—%((6—2)(1—33)35+(4—e)m)-

9
p2=—M?2

2p(z - 1)
—A1 )d:c

p2=—M?2

(4.4.1)
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The first equation gives, after a Taylor expansion.
o2 1
Zm =1+ ZW fo dx ( m(z - 5)e-2m(x -9) - 5p(z - 1)e+ 10p(x - 1)

) 2¢<x—1>xe<mA—1¢><2m+x— 1) ) o )(m )

, (4.4.2)

p2=—M2

where Ay = m?z + (z - 1)(p?z — \2)

The third condition, along with (4.2.6c)), gives the photon renormalization constant

ZA=1—(4€_7:)2/1 (2 __)(47T,u) -8x(1 - x)dx

where Ay =m? —x(1 - 1z)q>.

, (4.4.3)

q2:—M2

Combining this with the result from the Ward identity (4.2.4]), determines the last renor-
malization constant

Z, = (42)2f (2 __)(47W) Ax(l-x)dz

Ignoring terms which goes to zero as € — 0 yields the results, summarized in table [} To
ease notation, it needs to be stressed that any momentum invariant is equal to —M?2.

(4.4.4)

p2=—M2

Constant 1-loop expression
Fermions Ly, 1+i% f;F(g)(i’f)% (1-x) <6—2 (4m 2@) 2 l)x)da:
Gauge boson Za 1—%/012(;—_)%)(%); -8x(1 - x)dz
Parameter Ze 1+ & fol F((fw—_)g; (Z_Z)g Ax(l-2x)dz

Table 1: Momentum subtraction scheme renormalization constants for QED at the 1-
loop order in Feynman gauge.

4.5 [-function

In order to calculate S-functions, which determine how the gauge coupling of the inter-
action A changes with a variation in the energy scale M, the Callan-Symanzik equation
is needed [10} p. 411]

Mo B0 S+ )]G () M, Y) =0, (45.1)
Or, the equivalent expression for QED

[M o+ () - +manle) +ms(e)]GO) () M, e) =0 (452)

This equation stems from the fact that observables are independent of the chosen renor-
malization scheme [13| p. 417]. It states that any shift in renormalization scale M —
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M + dM is compensated by a shift in the functions 8 and v [10].

In order to explicitly calculate the S-function, one has to use the 2- and 3-point Green
functions, which has the diagrammatic forms

G(@} +>— +>X>;A (4.5.3)

The Green functions involve loops of external legs and counter-terms for these. Rather
than delving into this, we quote the result for the QED p-function [10, p. 416], [21} p. 8]
adopted to the defined renormalization constants .

B(e) = eM 17 (-(Ze ZNZy 1)+ 07y + 5ZA)
Using the established identity Z6 =7 Al/ 2 - the g-function reduces to
p(e) = eM ( (5ZA) (4.5.4)

Normally, the three constants (Zy, Z., Z A) would be needed in order to calculate the
B-function. QED, which is an Abelian group, provided a simplification due to the Ward
identity, and as such, only the photon field renormalization coefficient Z, is needed.
Now that the [-function is expressed in terms of a renormalization constant, a scheme
needs to be chosen in order to express the constant explicitly. As mentioned earlier, the
on-shell scheme poses a Complication when calculating the S-function. Therefore, the
momentum subtraction scheme is used.

As discussed earlier, in the momentum subtraction scheme renormalization is performed
for space-like momenta ¢2 = —M? [18, p. 229]. The [S-function is a high energy phe-
nomenon. We calculated Z 4 in the previous section

02 1 d Ar 2 3
Z =1————:/ re-2 82(1 - z)d
A (47)2 Jo ( 2)(m2—x(1—x)q2) Bu(1-z)du

For high energies the mass is negligible, and the denominator can be set to M? [10,
p. 527]. This allows for easy integration of the Feynman parameter, and the photon
renormalization coefficient becomes

e? 4F(2——)
Zis1- s (4@ (M?)' (4.5.6)

From this, the -function, with the use of ({ , becomes

B
8AI(25A)

0 1 e2 T'(2- ) ) 3
_QAJEEZ'(Q”{ 1272 (47)3 (EZ_) })
:eAJ{-—l( —e ) e? F(2—§)M€}

2 ]\4“r1 1272 (47)2

_ e T2 (u2 :
" Un? (4w)2 ) '

(4.5.5)

q2=—M2

p(e)=eM
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Expanding around € =0
ple) =e

o3
2472

2
{_—7E+ln47r+lnu2—lnA+O(€)}'
€

Finally, ignoring terms which vanish for ¢ - 0

o3
1272°

B(e) = (4.5.7)

5 Minimal subtraction scheme

Different schemes mean different conditions set on the propagators and vertex function,
leading to various finite terms. The renormalization constants calculated in the momen-
tum subtraction scheme, shown in table (1] consist of multiple terms after an expansion
around € = 0. All but one of these terms are finite. Yet in the schemes discussed previ-
ously, the finite terms must be accounted for. The idea behind the Minimal subtraction
scheme is that only the divergent terms of the amplitudes are subtracted by the counter-
terms. In this section we will perform the renormalization of QED with the minimal
subtraction scheme. A helpful tool in extracting the divergent terms of Feynman am-
plitudes is Passarino-Veltman (P.V) functions [22]. The P.V functions are standardized
loop momenta integrals, with their divergent terms tabulated. Many loop integrals can
therefore simply be defined in terms of these functions, and the divergent term can be
extracted. These functions are also integrated into FeynCalc, which we will use in sec-
tion [0l An overview of the P.V functions and an application to the divergent QED loop
amplitudes are given in section [5.2]

5.1 Definition of the minimal subtraction scheme

As mentioned, in minimal subtraction only divergent terms are subtracted by the counter-
terms. For some divergent amplitude X this means that all finite terms are ignored.

PO (% +Indr + ln'MK2 + other finite terms) b % (5.1.1)
Naturally, this affects the renormalization constants Z; as well. By removing the p? term
in , the explicit pu-dependence is removed for the constants. Of course, there is
a p-dependence, otherwise the renormalization group equations such as the S-function
would not make much sense. However, the dependence is only implicit through the
renormalized charge e, which has a scale dependence 19} p. 118]. We have already seen
this dependence in . Additionally, the renormalization constants have no mass
dependence. All the constants have the form [23]

1
Zi=1+Y —Z(e) (5.1.2)
k=1¢€
The S-function can easily be found in the MS scheme by using the generic form

u— = B(e), (5.1.3)



and the property that the renormalization constants only have a p-dependency through
e. Following [24, p. 222] and [13|, p. 424], the renormalized charge is

eo = u*Z.e. (5.1.4)

1/2

Using the result Z, = Z,"", the definition of -function becomes

d
— (w2 ).

de
B(e) Mo

One of the core concepts of the renormalization group equations is the fact that bare
parameters are independent of the scale p. Using this fact and some chain rule yields

1/2
B(e) = - Eeoﬂ_smziﬂ L, dZz (e(,u))
2

dp
€ e 1/2 —e/2+ 1, 1/2dZ4
e e dZy
= —_— 5.1.5
BTV N (5:.15)

5.2 Passarino-Veltman functions

The P.V functions are an extension of dimensional regularization. In section [2| the loop
integral (2.4.6)) was discussed

) dAk 1
Y(p) ece 2m)* (B2 - X)) [(k+p)2-m?]’

for simplicity, the numerator has been set to 1. After a Feynman parametrization and a
substitution [ = k£ + px we found

, [ di ! 1

After generalizing the space-time dimension d =4 —¢

S(p) o< ¢ foldx (;Z;l)d T f‘EA)Q, (5.2.3)

(5.2.1)

the following result was obtained

Sr) iy )Qflr( )(41“) da. (5.2.4)

The expansion around € = 0 yielded the terms

(= )(47W ):%—7E+ln47r+ln,u2—lnA+O(e).

If we generalize the space-time dimension d = 4 —e immediately in , one can simply
write
d?k e i
(2m)d (k2 = 22)[(k+p)2-m?] ~ (47)?

2
( + Finite terms) (5.2.5)
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The divergent term in the loop integral can now be easily extracted. (5.2.1) is one of
the two-point functions, these are denoted with the letter B. This corresponds to the
number of particles in the loop integral. The P.V functions can be found in appendix [C]

Lastly, we define a symbol in order to signify that all finite terms are ignored. For
the expression above we can write

4k e Div_ 1 2
Cmd (2= ) [(k+p)2-m?] (4m)2¢ (5.2.6)

5.2.1 Electron self-energy

) = X(p),
Amputated

k+p
dik i(f+prm) g
S(p) = (-ie)u [ , .
(p) ( Ze) lu’ (27_‘_)6[7#(]{: +p)2 _meY kg _ /\2
The d-dimensional contraction identities gives
dik  2-d)(k+p)+dm
S(p) = e d (12 _ \2 / 2 2
(2m)? (k2 = A?)[(k +p)? - m?]
) . dik (2-d)f+2-d)p+dm
- <2w>d<k2—v>[<k+p>2—m2]'
The two point P.V functions are now easily applied

(0) = =iy (2= D)8 (2= ) dm) Bo),

where the arguments for B#(p?, A2, m?) and By(p?, A2, m?) are hidden. Using the tensor

decompositions (C.2.1)

2
Y(p) = _i(47r)2 [ (2- d) P (Ao()\Q) Ag(m?) = (p? + N2 —mQ)Bo) + ((2 - d)p+ dm) By ] )
By removing terms whlch contain A%, which vanish in the limit A - 0, subsequently also
A(X) |18 p. 222], and using d =4 —¢

—Ao(m2)_(pQ_mQ)BO(pZ’m’A)+ €— +am
e = (-2 v dm) 1 |.

(5.2.7)

Y(p) =

Then using the divergent part of Ag and BO from table

(Zhw=—%®;2 Ple—2)—=< g; m’)e «6_n¢+dm)§]
__%535 pk—2)(—g)+(&—2m+dm)§]
- _i(;—;)Q p(e—Q)% + (4—e)m§ :|,
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Finally, keeping only the terms which are divergent
‘ 1 1
(E)div = —ZW [ —2])— + 8mz :|

(4 )2(315 m)— (5.2.8)

5.2.2 Vacuum polarization
Remembering the previous diagram

k+q

/N
(et o) e
\/ Amputated
k

ddk . [ i(f+m) i(f+g+m) ]

Cod | 2 k) - m2

Keeping the d-dimensional trace relations (B.1.6) in mind, we can immediately ignore
terms that has an odd number of y-matrices

= —(—ie)2u5 (529)

d’k Vb (F +¢) + 57.m?
My = - T 5.2.10
= | | s (5:210)
The other trace relations gives
Ak 2k, Ky + k,qy + kuQy = 0w GookPk = G0 oo kPG + Gum?
H”:‘“ef - - b wpe w5211
SR O (k2 —m2)[(k + q)F —m?] (5211)

Transforming into P.V functions with the use of (C.1.2)

e?

H,ul/ (471')2 (QB;W + tu + tu guungBPU _ gw/gpganp + g,uzzm2Bo) 7 (5212)

where the arguments of the P.V functions are B, (¢%, m?,m?). Using table [5| to extract
the divergent terms

2
I v = -4 2 v~ 4 -6 + v,y |~ v
. Z(47T)2 ( [g“ ( 6e (47 = 6m7) ) + a4 3¢ |

1 2 1 2
— Guwlpe | 977 | —— (q2 - 6m2) +q° " — | 49w 90 ?°q"~ + gwm>=). (5.2.13)
€ €

6e 3€

Simplifying with the d-dimensional algebra, found in appendix and ignoring finite
terms causes the mass terms to cancel. After some more algebra we get

e2 2 2
H v =T 4 v 2 - v )
. Z(47T)2 (g“ 13~ Iy
e2 1

=— z@ (gw,q2 - quql,) - (5.2.14)
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5.2.3 Vertex correction

Tk =u(p,q), (5.2.15)

' 5 dik —gee i(prE+rmy (kg +prm)
F =\ — 3 56 g
u(paQ) ( Ze) 1% (2 )d% L2 \2 (k‘+p)2 mQ’y”(kerJrq)Q—mQ’Y

Both Cy and C), are finite integrals and does not contribute to the divergent amplitude.
Therefore, the only term contributing to the divergent amplitude is the one proportional

to kMke.

(F (p Q)) —,1[663 d’k 76%%%75/6’\]6“
p\Ps (2m) (k2 = X)[(k +p)? - m2][(k +p + q)% - m?]
3

. e € .
= —ipz W(—2%%% + (4= d)ny,70)C (P2, 6%, A2, m?, m?),

using (B.1.4) and (C.1.3)). Ignoring the finite second term, decomposing C*?, and using
that only Cyy is divergent yields

. € e? -
(Tu(r, Q))Div =i W(—2’Yo%ﬁ>\)g/\ v
NCE 1
i (<2(2- d),) —
(2 (47_[_)2( ( )7#)26
e’ 2
(47T)2%6'

(N1

——ip (5.2.16)

5.3 Extracting UV-Divergent terms

For completeness sake, the calculations of the divergent terms using Feynman parametriza-
tion and the d-dimensional integrals are shown below. These follow from the amplitudes
calculated in section 4l

Following the same structure, we start with the fermion self-energy (4.3.1))

e2

(4 )2f ((e=2)(1-2)p+(4-e)m)T (5 )(47TM)

¥(p) =
Using (B.4.5)

X(p)=- 5 ((e—2)(1—m)p+(4—e)m) dx 2+ﬁnite terms
(4 ) €
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Some terms become finite when expanding, these are also ignored.

S(0) % i O [ (21— )+ am) 2
(4m)% Jo €

We are now free to evaluate the Feynman parameter integral, with the result

YX(p)=-+——@m- p)— (5.3.1)

(4 )2
Moving on to the vacuum polarization (4.3.5))

M, () = (¢ G — 4,9,)T1()- (5.3.2)
This is evaluated in the same way

(I1(q) ) aiv :ﬁfldxx(l_x)%

—8¢2

- )2 [ z(1- x)d:v( + finite terms)

w821, 1.]2
Di 862 —p2 3| 2
(4m)2 | 2 3 €

1

E

0
8 e2
3 (4r)?

(5.3.3)

with the use of (B.4.5). For the vertex function we start with (4.3.9) and look only for

divergent terms.

Lu(p.q) =TL(p,q) +T5(p. q), (5.3.4)
where the factors are given by (4.3.7)) and (4.3.8) respectively

‘ 2-3)
= Ly / o ydy(4— de + 2y, 2= 2)
M 2 Y (471')2 €T - y y( EtE€ )7,; A _g )

[l

r(3-9)

T2 =i (4@2 fo dx - ydyy” (m — pry + py — qzy) v, (m - pay + py — ey + ¢) 70 I

For d = 4 — € only I'}, is divergent, since I'(3 - g) is finite, and any potential infrared
divergence in A has been remedied by the fictitious photon mass A. In addition, since
A% 5 1ase - 0, the Feynman parameter integrals can be evaluated without any
complications.

(Fu(paQ))Div =- 3(4 g (4-4e+ 62)7M

~ e3 2

=—1uz2 W’YME (535)
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5.4 Renormalization constants

Following the procedure from [23], the appropriate counter-term is added to each of the
1-particle irreducible diagrams for the propagators and vertex function, and the result
is required to be zero. Diagrammatically illustrated with

R

Div

The only terms the counter-terms are absorbing are the divergent ones, unlike the on-
shell or momentum subtraction schemes, where there would also be some finite terms.
All of the renormalization constants be determined by using the divergent amplitudes
and corresponding counter-terms. We start with the fermion self-energy (/5.2.8)) and the
counter-term in figure 2(a)]

lan )2(3” 4m) +i((Zy = D)p = (ZypZm = 1)m) = 0. (5.4.1)

p and m are independent variables; therefore, these are two equations that are fulfilled
separately.

ez 2 e?
————p—-=(Zy -1 5.4.2 Ly —1)m. 5.4.2b
(47T)2p6 ( Y )P’ ( a> (47‘(‘)2 ( P )m ( )
The first equation readily gives
2
Zy=1- 5.4.3
v 52 (5.4.3)
and the second leads to
1-4-652 1-4-2
Loy = 2(4”) L C DY (5.4.4)
¥ 1- (@n)? e
We can use a Taylor expansion to simplify; the result at the 1-loop order is
3e?
I =1- . 5.4.5
8m2e ( )

Similarly, the photon renormalization constant Z, is determined from the divergent
vacuum polarization amplitude ([5.2.14)) and the photon counter-term in figure

() + A @ s = 0,

Div

~i(9ud” - ququ)ﬁe—; % ~ (g q* = 4.q")04 = 0, (5.4.6)
which is solved with the use of Z; =1+ §;
2
Za=1- 5. (5.4.7)
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Finally, the divergent vertex amplitude (5.2.16]) and the corresponding counter-term seen
in figure gives a relation between the other renormalization constants.

Ry
Div

63 € 2 . 1/2 €
T = i(ZZ " Zy—1)epzy, =0. (5.4.8)

i

This can be solved for the coupling renormalization constant Z,
82
1-Gmee
Z2\*7,
ez 1
1272 €’
where we have used ([5.4.3]) and a Taylor expansion. This result provides a confirmation
_1
of the previously established identity Z. = Z,* (4.2.4). Therefore, for the purpose of
calculating the S-function ([5.1.5)), the only needed renormalization constant is Z4.

7, =

=1+

(5.4.9)

Constant | 1-loop expression

2

Zy 1-5

Fermions 8“;
3e

Zm 1- 8m2e
2

Gauge boson Z A 1 -5
2
€

Parameter L I+ 5

Table 2: Renormalization constants for QED at the 1-loop order in Feynman gauge.

Now that all the constants have been determined, we can move on to the S-function.
Following [24] again, we use the derived expression for the S-function (5.1.5), and the
photon renormalization constant (5.4.7)).

€ e dZy
6(6)__56+MEW
2
ey ;i(l_(du)) )
2 'uz(l_%)du 6m2e

——Ee+ E(1+ ¢ )(— 2 @)
PR 672 6m2e du/

At the one-loop order we can ignore the term of order e*. The remaining terms together
with the generic definition of the g-function (5.1.3) gives

o)

ple) == ge— 6T
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This yields the equation

te
B(e) =- 12—627
+ Brze
which, to the first order, gives
€ et o €

=——e+ = :
Ble)=-5¢+ 153 = 1o

In the last step the limit € - 0 is taken.

(5.4.10)

6 Spontaneously broken QED

In the presence of a complex scalar that acquires a non-zero vacuum expectation value
v, the gauge boson or bosons of a theory gains mass. This is the Brout-Englert Higgs
mechanism and the gauge boson mass is proportional to v. This section aims to develop
a spontaneously broken QED theory, check for renormalizability, and calculate all the
renormalization constants. In addition we want to see how the S-function changes. Con-
sequently, the structure is different from a standard renormalization procedure. Before
proof of renormalizability, renormalization constants and counter-terms can be estab-
lished, the Lagrangian must be modified.

The concept and procedure of spontaneous symmetry breaking are well understood, and
therefore the discussion here is limited to a shortened version in the case of an Abelian
U(1) symmetry breaking, up until the point where one usually chooses a gauge

6.1 BEH mechanism

We start with a Lagrangian describing regular QED and a complex scalar field coupled
to the photon.

. 1 ,
L =p(ilp —m) - TR (Dud) (DF¢) + p*6Tp — M(¢10)?
=Zqep + (D'9) (Do) - V(9), (6.1.1)
where D# is the covariant derivative defined as D# = O* — jeA* and ¢ is the complex
scalar field. For u? <0, the potential V' (¢) in minimized at some value ¢y = v. We adopt

the procedure described in [24} p. 246]. Parametrizing the scalar field ¢, into a real part
n and a complex part y

iy
o= NG . (6.1.2)

The n will now become the Higgs boson, and y will become a Goldstone boson. We
denote the full Lagrangian as

A =$QED+$¢7 (613)
where .7}, is given by
Zs = (D'¢)(Dpg) = V().
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After some calculations, see appendix for the full derivation, %} takes the form
1 2 2 2 A 2
Ly = 5((8,m + eA“X) + (ayx - eA“n) ) + %( 2+ XQ) - 1(772 + Xz) . (6.1.4)

In order for the 7-field to attain a non-zero vev, one can use the shift [24, p. 248]

n- v,
X = X- (6.1.5)

The QED Lagrangian Zqgp is of course unchanged for this transformation, while .Z,
takes the form

% :%MiAi - evA*O,x + %(@1”)2 + %(aux)z
Aw 2 AW ?
+ Oume At x - OuxeArn + G QX) ’ = 277) +eAfvedun

112

A
+ ?(UQ +2un+ 0%+ x?) - Z(UQ +2un + n? +X2)2,

(6.1.6)
where the full calculation is given in appendix The first term in ((6.1.6]) corresponds
to the now massive gauge boson. The same line also includes a term mixing the gauge
boson and the Goldstone field and kinetic terms for the Higgs boson and Goldstone
boson. The term mixing the gauge boson and Goldstone boson can be dealt with by
choosing a appropriate gauge, this will be postponed until section [6.3] For now, we

move on to examine the new interactions and contributions to the 1-particle irreducible
diagrams for the Higgs boson and Goldstone boson.

6.2 Higgs and Goldstone boson diagrams

The terms on the second and third line of (6.1.6|) are new interaction terms. By rewriting
some of the terms we obtain

2 2
g] = (Xaun — n@ux)eA:u’ + %AHAVX2 + %AMAVTF + gW«SZUA”A”n
2 A 2
+?(v2+2vn+n2+x2)—Z(v2+2vn+n2+x2) . (6.2.1)

We start by looking at the terms on the second line. These can be simplified by expanding

and using the identity v? = “72 Several terms cancel, leaving behind the terms

Mot A
Ly 25 = ot = 5 4oy + dom? + 2+t ). (6.2.2)

These terms are a contribution to the vacuum energy, a mass term for the Higgs boson
and interaction terms. Explicitly, the mass of the Higgs boson is given by

M =202, (6.2.3)

Equation (6.2.2)) contains self-interactions for the Higgs boson and the Goldstone boson,
and a interaction between them. Combining this with the rest of the terms from (6.2.1))
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gives the final interaction Lagrangian.
gu,,e2 2 glw€2 2 2
L= (XOun = n0uX)e A" + FE— ARAYXE + S A AT + g Pu AR AT

A
- 1(41)773 +dony® + 2072+t + xY). (6.2.4)
All but one of these new interactions are easily made into new Feynman diagrams and

rules with the usual rule of taking the constants of each term, multiply with ¢, and
account for symmetry factors. The first term of (6.2.4))

(X0un =0, x)eA*,

leads to a momentum dependent vertex, which depend on how the particles flow in time
[13]. The scalar fields are proportional to their creation and annihilation operators in
the usual way

+al(p)e™”,

1pT

+al (p)e™”.

—ipx

n o< ap(p)e
X o< ax(p)e

—ipx

For a vertex where both scalars are destroyed there is an overall factor of —i, with inwards
momenta

Meanwhile, a vertex where both scalars are created has a factor of ¢, with outgoing
momenta

va: n :ie(pn—px)_

Defining the momenta to always be pointing inwards accounts for both vertices and we
have the Feynman rule shown in figure . This is the only real Feynman rule, due
to the derivative which gave a factor of 7. Fortunately, atleast at the one-loop level this
does not cause any complications; in propagators this vertex appears in pairs. In section
we show that the divergent amplitudes of vertex corrections also has two vertices
of this type.

As mentioned, the rest of the Feynman rules for the terms in are obtained by
adding a factor ¢ and accounting for symmetry. All diagrams with repeating fields receive
a numerical factor due to the symmetry in the S-matrix element, given by [].n.! where
n. is the power of the repeating field [25]. The result is listed in figure

28



\\\\A n / X ) . 77 ) ,
X \\7\/\/\/\/\/\/\/ AM /// A/" ‘ AM ‘
A Av X o
’ pn Al/ N Al/ N
(a) €(p77 _px)lt (b) 2ie2vg/w (C> 2i€29;4u (d) 2ie2guy
n «on X - X
T] // fr] N // ’r] // 77 \\ 4
******* < X -------X X
\\ /’7 // \\ /r] \\ X // \\ X
. SN om0
(e) —6iAv (f) —6iA (g) —2i\v (h) —2iA
\\\ X / 7
X \\ ///
X
/// \\\ X
7’ ’ X A
(i) —6i\

Figure 5: Feynman rules for additional interactions.

In addition to the fermion, photon and their interaction from QED, there are now two
new particles and nine new interactions. Fermions do not interact with these new parti-
cles. The photon is now massive and receives contributions to the divergent amplitude
from new one-particle irreducible diagrams. However, before we move on to renormal-
ization, we should choose an appropriate gauge.

6.3 Rc-gauge

The R, gauges are the set of gauges for which £ is a possible, finite value. The Feynman
gauge (£ =1) we have used in the previous sections is one of them. A general R¢-gauge
should produce physical quantities regardless of the choice of £ [10, p. 738]. As we saw
in the Lagrangian there is a unfamiliar term mixing the Goldstone boson and
photon

Z > —evAt0,x. (6.3.1)

In the Re-gauge this term can be dealt with by choosing the gauge-fixing term such
that this term cancels, up to irrelevant total derivatives [18, p. 585]. Following [24}
pp. 247-249], this is done by modifying the gauge-fixing term in the Lagrangian

1 1 2
Lt = —2—502 = —%(@A“) )
to include the Goldstone boson x
G = 0,A" - Eevy = 0. (6.3.2)
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In the Lagrangian this means that there are two additional terms
1 1
Ly = —i(au,aw)2 #evd, 0 - SE(ev)*x . (6.3.3)

The Goldstone boson £ has now acquired a gauge-dependent mass, which is reflected in
the propagator, shown in section [6.4] This propagator is unphysical, since it depends on
&. It must be canceled by a ghost, which can be introduced by including the terms

Z, = —é[ o+&e*v(v + n)]c = (8“6)(8,&) — EM3éce - e*onec. (6.3.4)

6.4 Propagators and vertices in R.-gauge

The full Lagrangian is now given by
L =ZLapp + Ly + Ly + L,
where £, Ly, £ are given by (6.1.6), (6.3.3) and (6.3.4) respectively. After some

reordering and using the results from section the full Lagrangian takes the form

- 1 1
L = w(llp - m)w - ZF,U,VFMV + QMEXAZ

1 1

+ 5[(3;#7)2 - M) + 5(3u><)2 - %5(60)2X2

2 2
+ (x0un —noux)eA" + %A"A”Xz + %A“A”?f + gue?v AP Ay
vt
+ e 1(41)773 + 4oy + 2022+t + X4)
1
2€
The propagators are directly obtained from the Lagrangian, and can be summarized as
such [24] p. 249]

(8“14“)2 + ((?“é) (0uc) — EM3cc - Eetunce. (6.4.1)

I ~mnnnn U »m[—guua—@%], (6.4.2)
RN m (6.4.3)
X m (6.4.4)
_________ Co m (6.4.5)

The last term in (6.4.1)) determines how the ghost couple to the Higgs, and gives the
diagram

e - —ifev (6.4.6)
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In the Re-gauge, there is a new particle, a new interaction term and new 1-loop diagrams.
Firstly, there are two new self-energy type diagrams, shown below.

R L S R
(a)
(b)

Figure 6: New self-energy type diagrams in R¢-gauge.

Secondly, the new vertex (6.4.6) has its own 1-loop diagrams.

n C C
¢ - .-".. c IS ¢ P
E ' C ‘\:..‘ ‘. ./, R
| @ c c:i- €
n, i i
i ] K
(a) (b) (c)

Figure 7: 1-loop contributions to the ncc-vertex.

The Higgs boson propagator will therefore receive an additional contribution from figure
. All the particles and interactions for spontanously broken QED in Re-gauge have
now been determined, and are contained in the full Lagrangian . We will first check
the renormalizability of the theory. In sections[6.6| and [6.7] we will show the contributing
diagrams and their divergent amplitude for each propagator and a couple of the vertices.
After that we calculate the renormalization constants and the g-function.

6.5 Renormalizability

In order to check the renormalizability of this theory, we go back to the index of diver-

gence (3.2.2)), repeated here.

d-2 d-1
i = —bi+— i+5i_d'
2 2 I
The QED interaction term evM@Z_JA“@/J is unchanged, and so is the corresponding index of
divergence; r = 0. It remains to determine all the other indices for the new interactions,
summarized in table [3l
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Zr T Z Ty
exounAr 0 end,x A* 0

GG ARAYXE | 0| guetvArAm | -1

—-Avn3 -1 —-Avnx? -1
_ %UQXQ 0 _%774 0
-2x! 0 =Eetvnee | -1

Table 3: Indices of divergence for broken QED interactions.

Some of the interaction terms are super-renormalizable. The theory, however, is just
renormalizable, since not all indices are less than 0. [8, p. 131].

Extracting the mass dimension of the parameters is necessary for calculating the S-
functions. As before, this is done with dimensional analysis. The quartic coupling
parameter A can be obtained from one of many terms in the Lagrangian . We
chose the quartic self-interaction term

A
Lo -t
> =41
The mass dimension of 7 is the same as any scalar field
d-2 €
=——=1--.
[l =— 5

In order for the term as a whole to have dimension 4 — ¢, the dimension of A must be
[Al=e. (6.5.1)
For the vacuum expectation value parameter v, we use
L o= vn?.
The newly acquired value for [A] determines the dimension for v

[ﬂzl—%, (6.5.2)

the same as for any scalar field, such as n. This would of course have to be the case,
as the field shift (6.1.5) would not make sense otherwise, but it serves as a simple check
that the terms in the Lagrangian are correct.

Mass dimensions for the coupling constants e and \ are extracted, so that the parameters
appearing in the amplitudes are dimensionless.

e— e, (6.5.3)
A = peN. (6.5.4)

Although v appears as a parameter, the mass dimension is not extracted. As noted
above, the mass dimension is equal to that of 1, which has to hold both before and after
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renormalization.

The gauge-fixing parameter ¢ is dimensionless. This can be seen by inspecting the
mass term for the Goldstone boson

XD%SMQ 2

Renormalizability of the theory has now been proven and the necessary parameters have
been made dimensionless. We are now ready to calculate the 1-loop diagrams.

6.6 Propagator amplitudes
In section [4 and [l we used Feynman-gauge, where the photon propagator has the simple
form

Ny

Yo —1

e (6.6.1)

This had the advantage of making generalization to P.V functions straightforward. In
R¢-gauge the photon propagator (6 includes the mass the photon has acquired and
is written in a gauge-invariant form As a consequence, some amplitude > can how have

the form
5 2 / dik ket kv
) @I (R - ME) (R - M3

In dimensional regularization these can be dealt with by splitting the denominator

) f ddk; kR ) kR
1) e\ @E @ -—an)  @E-an @)

Evaluating these two integrals with the help of (B.3.1d|) yields
2 2\ -§ -5
v 5
:ie_g_p(_% E) (4rp?)> Ly (L
a2 \relane(\\ar) g

e g (4mp?)? (ﬁMﬁ)Q_(MA)“)
"an) 2 F( o )fox— ((gMj)S (M)

Expanding I'(-2 + §) with the use of (B.4.7), and ignoring all higher order terms leaves

2
D1v €

'(M) (fMA +M3). (6.6.2)

From now on, we will use Mathematica for the more complex of the divergent amplitude
calculations. We use the notation X2 to signify the sum of the divergent amplitudes for
the propagator of particle a.
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6.6.1 Fermion

As in the unbroken theory, there is only one contributing diagram at 1-loop level, however
the amplitude is changed, due to the change in the photon propagator.

k
‘/@ ey [ pem) L, R
e SO ) ey e pyrmm2 o | Y k2= M2

_e%/ dik; [_7 (F+p+m) .
@m)® [ (k2= MOk +p)? - m?]
+(1-8) (k4 p+ )y hk
(k2 = MZ)[(k +p)? - m?][k? - EMF]
The first term in the brackets is the familiar term from the unbroken theory, calculated

in section p.2.1} These integrals are evaluated with the methods covered previously, with
the result

p+k
m

. Div. € [ _1
Amplitude ZZW -Qdm"‘(Q—d)JPJf(l_f)(lb"‘p_Zm) ] d—4
ez [ 1
—/LW_8m_2¢+(1_§)(2¢_2m)](_z)

e2

. 2
=y -Zﬁ—4m—(1—§)(;¢—m)]z, (6.6.3)

where we have used d =4 — ¢, and ignored finite terms.

There are no new couplings for the fermions, and therefore this is the only contributing
diagram.

e2

i ¢ im0 |

2
—. 6.6.4
: (6.6.4)
6.6.2 Photon

Two diagrams are particularly important, and their amplitude calculation is explicitly
shown.

o [ % i(f+m) ilk+grm)
= —(-ie)*u /WTT[% 2 _m2 %(]Hq)Q—m?

This diagram is unchanged from the unbroken theory ([5.2.14)), so its amplitude is un-
changed, and the result is simply listed here.

Amplitude = —i——— [ £} (90d® - gua) - (6.6.5)
mplitude = ~is | 5 ] (90" - 00) - 6.
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ST SO Il f Ak 2k + qu][2h + 4]
(2m) (k2 = M7)[(k +q)* - EM]
dk 4k,k, + 2k,q, + 2k,q, + 4,00
(2m)d (k2 - M2)[(k +q)? - EM2]

—— 4B, +2¢,B,, + 2q, B, + q,q,Bo],

:62/1/6

(4 )?

where all the tensor integrals are functions of ¢2, M%,M?%. Using the divergent parts of
the integrals (C.2.1} , the amplitude becomes

e? 1 2 1 | 2
i T4 g (——(q? = 3MZ = 3EM?)) + quty—) = 200Gy~ — 2000~ + Gl
- 2(4702[ (9 (~5-(a fr = 3EM2)) + Gutuz-) = 200~ = 20000 + Gut -]

¢ 1 4 2 2 1 2 M? M? 1
(4 )2[ g,uu‘]( 6€)+ Q,uqyi_ Q,quyz-'_ g/w( H+€ A)g]

2

( Amplitude )

These are singled out due to their amplitude. They both exhibit the tensor structure
9wq* — quqy, and therefore are the contributing factors to Z4, as will be shown in section
6.9] The rest of the diagrams contributing to the photon propagator are shown in figure
B and their calculations can be found in appendix [E.2.1]

[ g(g,wf ~ Qulv) = 29, (M7 + EM3) ] % (6.6.6)

Figure 8: Other contributions to the photon propagator.

These do not exhibit the tensor structure and contribute only to M?%. The sum of these
diagrams is

2

A __ . e 118 2 2 2 2 2
E“V——Z(M)zg{g(gwq —quqy)+§(gwq = Quqv) = 29, (M + EM})

+ Zlgw,f]\ﬁ1 + 4gm,M§I + 2M319;w(3 +£) } .

Reordering yields the result

2

e 110
Efu == Z(4—7T)22 { E(guuf_ﬁ ~ Q) + G (2ME + 6M3 + AEM3) } . (6.6.7)

6.6.3 Higgs boson

All the contributions are summarized in figure [9] their calculation can be found in ap-

pendix
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Figure 9: Contributions to the Higgs boson propagator.

The amplitudes sum up to

€ QEME - (E-3)p) e (EME+3M13)

n__
X 8m2e 472¢
+i62Mi (£2+3) _Z,eQMf@Q . ANEME .\ BAME i5/\2v2
472¢ 8m2¢ 472¢ 4m2e 2m2e
~ i(eQ(g = 3)p? +e? (§2M3 + 12M3) + 2X (EM3 +8ME)) (6.6.8)
8m2¢ . o

6.6.4 Goldstone boson

All the contributions are summarized in figure [10] their calculation can be found in

appendix [E.2.2]
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Figure 10: Contributions to the Goldstone boson propagator.

The amplitudes sum up to

s e (E(EME+ My) ~ (£-3)p?)  ie? (M} + 3M7)

8m2e 472e
BINEME AAME %2
+
4A72e 4A72e 272
_i(e2(E-3)p*+e? (E(EMA + ME) +6M3) +6AEME +4AME) (6.6.9)
- m2e ' e

6.6.5 Ghost

At the one-loop order there is only one diagram contributing to the ghost propagator.

O dik { {
............... I Vviieeeiii = (—G£0201)2,2€
R ) oy Gy 1)

e (g

=1
(4m)?
2
Div. € 291 12

=1——E°M3. 6.6.10

LM (6.6.10)

Notice the factor of u¢ here. The coupling constants e in this equation are the dimen-
sionless ones, as defined when we extracted the mass dimension in (6.5.3). In section

the photon mass was found to be

:U’EBO(Z)ZJ gMi? MI2-I)

M = (ev)?,

where the coupling constant e had its original mass dimension. This is necessary for the
photon mass to have mass dimension 1. In expressions such as the mass dimen-
sion p€ is therefore absorbed back into the mass. Since this was the only contribution to
the ghost propagator, the sum of divergent amplitudes is simply given by

e2

e =
Z87T26

M2 (6.6.11)
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6.7 Vertex amplitudes

We use the notation I'®* to signify the divergent amplitudes of each vertex. a,b and ¢
represent the external particles in each vertex.

6.7.1 P Arp-vertex

o p (iey b dik g+ E+rm)  i(p+f+m) i e
K - a (27T)dﬁy’o(q+k;)2—m2%(p+k:)2—mQ%k:?—Mfl g
kPke
+(1—5)m ]>

the first term corresponds to the regular expression from QED, calculated in section

5.2.3, with the result for the divergent term (/5.2.16))

e3 2

reas - s o 2
K He (471')27“6

(6.7.1)

The remaining term takes the form

dik g+ F+m) i(p+E+m) koo

i
o 1-
) g —m? e ez Y e an

Amplitude =(—ie)3¢

5 Ak
=41—§kﬂﬂ€/hCﬁyﬂmﬂmwmf+m4%%%g+mﬂmmm@

+ Yok Vu Vo + Yok VukVe + Vo kVums
krke

e e e e G Rl R ]

The tensor decomposition of this expression is lengthy. Luckily, there is only one term
that is divergent, namely the 4-point P.V function, with the general form

ddk k(Sk)\kpkU v i(ﬂ-2g6ag/\p+ﬂ-2gépg)\a+7T295Agp0)

(2m)? [k? = M3][k? - €M3][(q + k)2 -m?][(p + k)? = m?] 12(d - 4)
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Thus, explicitly the term takes the form
kPke

1 = =02 [ o e G T
. 2 400 4\ 2 40p qAo 2 40X fp0
o1 —5)63;/,;—(2711_)4’7/)'767;{7)\'70 ( Hrgy v+ gy T+ Tgg") )

12(d - 4)
y 3
~lin )QM 5(1- )12 (7YY %0 + 4777 Ve + 1 VYT

(4 )2,u 2(1- 5) ( Ay, = dPy, + 6dry, + dPy, + Ay, + Py, — Adry,)

e )QM( 5) ((d+2)dw), (6.7.2)

using the contraction identities (B.1.5)). The entire divergent expression is obtained by
including the other divergent term (6.7.1])

YA D _ _ 6_3/57 2, L/ﬁ(l _ §)€—3((d+ 2)dn,)
# (4m)a2™ e (47)2 12¢ a
e3 2

(47r)2%e (6.7.3)

d—4 .
=" —ipsg

6.7.2 Divergence of three-point vertices

For the rest of the three-point vertices, power counting can be used to quickly filter out
finite amplitudes in loops with three propagators. Referring to figure |5 the momentum-
dependent vertex given first adds a power of integration momentum k, therefore some
of the amplitudes may be divergent. As an example, imagine the diagram

dk 111
(2m)d k2 k2 k2

= UV-finite, (6.7.4)

the second term in the photon propagator does not change the powers of k£ in
either the numerator or denominator, and the analysis is unchanged. From this we see
that the only divergent diagrams are the ones containing two vertices of the type from
figure ??. In addition, there are diagrams with two particles in the loop

!

!

|
L

neoan (6.7.5)

where we have slightly adjusted the external lines for readability. These are all divergent,
and need to be considered as well. To obtain the renormalization constants not all of
the vertices are needed, and we show only those that are used later.
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6.7.3 T A"

s

/ " (6.7.6)

All the divergent loops containing three propagators are listed in figure L1 For the
calculation of each individual diagram see appendix [E.3.1]

no, no, no, n.

s s s ’

X //‘( T’ //‘( W/‘HJ X g
R R | e
ANNNNNNKL ANNNANNNKL ANNNNNNL
X ) X N
| |
| |

|
N | N
1

Ui

N

Figure 11: Divergent contributions to (6.7.6)) with three propagators.

The sum of the contributions in figure [11] is

4 2
Aiare\ - €8V Gu . €2Aug,
(F;w ’7)1 =iy . (6.7.7)

As mentioned, there are several contributing diagrams with two propagators in the loop.
These are shown in figure [77]

Figure 12: Two-point loop contributions to (/6.7.6])

These diagrams have the combined amplitude

) 4 3
ArAv\ . (ETAVG € (£ +3)vgum
Adding (6.7.7)) and (6.7.8)) causes some terms to cancel, leaving
m Y . efvgu, 64(£+3)U9 v
FA A¥n _ € |G [
w e ! 472e
3etvg,,
=—iuc . 6.7.9
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6.7.4 TI'mm

77/ ! (6.7.10)

Following the same structure as above, all the divergent loop contributions with three
propagators in the loop are listed in figure [I3] Loop contributions with two propagators
in the loop are shown in figure (14l For the calculation of each individual diagram see

appendix [E.3.2]

Figure 13: Three-point divergent contributions to (6.7.10)

The three-point loops have the combined divergent amplitude

Bet?u o 3eX\év

Ty = '
( )1 o 472e H 472e

(6.7.11)
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Figure 14: Two-point loop contributions to (|6.7.10))

The two-point loops shown above have the combined divergent amplitude

C.3et(2+3)v . _15\%w
Y. = € € '
( )> = in 472e " 2m%e

Once again adding the two contributions (6.7.11)) and (6.7.12))

3¢ty 3et (2+43)v . 3e2Aév . 15\

T — iy e e e
e T 4m2e e T Tone

3 (3et —e2 X + 10A2)

472e

:Z/J,

6.7.5 I'mee

UN

(6.7.12)

(6.7.13)

(6.7.14)

This vertex is special in the sense that all contributions are finite. They are listed in

figure [15]
. c ¢
...'. .‘... ?\ n K ’ E . 77 ,/’
E ’..'. [ . \\..~ . .:,,
e giic
: 1 71

Figure 15: Finite contributions to (??)
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As an example, we consider the first diagram

' =( —i§e2v)3 a i : i

: (2m)? k2 - M2, (k +q)% - EM3 (k+p)2 - EM3
0|

| _(ger)”

: (4m)?

All the diagrams in figure [15] give the same result for the divergent part, and the sum is
0

—~———Co(¢* p*, M7, EM A?).

[ = 0. (6.7.15)

6.8 Rescaling and counter-terms

The full Lagrangian (6.4.1)) adequately describes the interactions between all the neces-
sary particles, and we able to move forward with the standard renormalization procedure.
The renormalization constants for the fields, electric charge and fermion mass are defined
in the same way as previously (section

Ap=ZA=(1+ %52,4)14,

1
o =2y’ = (1+50Z,)n.

o =2, " = (1+ %m)w, (6.8.1)

€o zZe;ﬁe = (1 + (5Ze)e,

Meo =4mm,

In the previous constructions of counter-terms (section multiplicative renormaliza-
tion of the fermion mass was used. In the current theory, which consists of both fermion
fields, and multiple scalar fields (7, x, ¢), additive renormalization of the masses is useful
[26].

M3 =23 (M3 +6M3),

Mo =Z, (M} + 6ME). (6.8.2)
It is worth noting that this would be sufficient in order to render physical S-matrix
elements finite |18 p. 658]. For a complete renormalization, the field renormalization

of the Goldstone boson and ghost field, and the renormalization of the gauge fixing
parameter & are needed

X0 Zipx (1+%(5ZX)X,
co =2 ¢ = (1+ %5Zc)c, (6.8.3)

§o =Ze€.
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In addition, renormalization of the fundamental parameters of the theory (A, p,v) is
needed. There exist methods that do not renormalize the vev [18] p. 580], however this
approach yields non-finite vertex functions, and is not used here.

Vo = Zvva
Lo = Zypt, (6.8.4)
)\0 = Z)\ILLG)\.

Counter-terms are constructed in the same was as before. Interactions between fermions
and the photon are unchanged, therefore the fermion propagator counter-term

@ =i((Zy - )P~ (ZyZm ~ 1)m), (6.8.5)

and interaction counter-term

= —ip5(Z.2* Zy - 1)er, (6.8.6)

are unchanged from the unbroken theory. The photon counter-term is modified, since it
is now a massive particle

1 1 1 1
_ZF;LV,OFE)LLV + §Mi,0A3 = _ZZAF;WFMV + éMg,OZAA2
1 1 1 1
=~ Fw P + SMEA? = 202,y P + SOM3A®,

The kintetic terms —iFWF m-are equal to —%Au( - 0%gm + 8“8”)Al, by integration of

parts [10] p. 331. The only terms relevant for the counter-term are
1 1 1 1
~10Za B F + 551\43,/12 = —EazAAM( — 0%gu + 0,0,) A + §5M39WAMAV
1
- —§A“(( = %G + 0u0,)0 24 ~ gudM3 ) A”
This gives the photon counter-term

~rrnmnn@rrnron = =i (P = 4,6 )0 74 + gud M3 ) (6.8.7)

Counter-terms for the Higgs boson, Goldstone Boson and Ghost are constructed likewise.
The derivation can be found in appendix |E.1f and the results are listed in figure (16|

NG X g X
(a) ~i((¢*0w — Gu )02 + g6 M3 ) (b) (6202 ~ (2625 2, - 1)EM3 - Ze 2, 6M3¢)
g ol
(¢) i(8Zyp7 - 50%) (d) ~i(30Zep2 + (2222 23" ~1)eM? + 2222 23 €13,

Figure 16: Propagator counter-terms.
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Now that the counter-terms for the propagators and fermion interaction are defined,
we simply list the remaining counter-terms from the Lagrangian. These are the counter-
terms for the interactions shown in figure [l They come naturally from the Lagrangian
(6.4.1) and are listed in figure .

i(py = px) comAlxo = i(py—py) [enAix + (2.2, 22 2% = 1)enAry],
%gweﬁfléf Abxs = %QMVGQAMAVXQ + %(ZSZAZX —1)gue* AF AV,
Guegvo AL Ao = g v AP Ay + (ZSZT,ZAZ,%/2 - 1)gWeQUA“A”77,
—“dvms = = - (Z,\ZUZ,?’/2 - 1))\1)773,
“Xumox§ = -Avnx® = (22,2, Z, = 1) o,

A A A
=510X6 = =51 = (232, 2y = 1) 5P
A, A . A
ey —(ZAZn—l)ZTﬁ
A, A, . A
“Xo =X = (42 - 1)

—6(2)1)07]0600 = —e%unéc - (ZEZUZ%/QZCU2 - 1)6207760
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PHq N
. (b) 21'9#1/#6;3/22”‘ (c) 2igup‘e*(Z2ZaZy - 1)
(a) _Nae(pn _px),u : (ZgZUZAZn - l)
(22257 )
. n . N
A . . . N
fffffff & X
N 7 RN
PO . PR
() 2igupeX(Z2ZaZy-1)  (e) ~6ipAo(20Zu 23" ~1) (f) ~6ip\(2,22 - 1)
X X X
. . N AN
® N X //@\\ X 7 @ N X
N L, 17 \\ /// X N
(2) 2iu (1 - 22,2 Z,) (h) ~2ip N2\ ZyZy, ~ 1) (i) ~6iu (2,22 -1)
c.
,,,,,, @
noT
¢

() =i(222, 25 2} 1) pce?v

Figure 17: Feynman rules for the additional counter-terms.

6.9 Determination of renormalization constants
Z't/an

Although the fermion counter-term is the same as in the unbroken theory, the fermion
and mass renormalization constants (5.4.3] [5.4.5) are changed due to changed fermion

self-energy term
: |:p—4m—(1—§)(p—m)]§+i((Zw—1)p—(Zme—1)m) - 0.

"y

In order to isolate for the two coefficients, some reordering is convenient

e2

2
(4 )Qlézb 3m — fm:|—+z((Zw 1)31) (ZyZm —1)m) = 0.
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This leads to the two independent equations

(43)2 P = ((Zw 1)?)

¢ (3+§)m%-z(2¢ m— L)m.

"y
The first equation readily gives the first fermion renormalization coefficient
ez 2
Zy=1-
v S(47r)2

and the second one can be rewritten as
2 2
-G+ 1-B+ g
m Zw 1- 5(4702

Taylor expanding leads to the result

3e2 1

I =1—
872 ¢

(6.9.1)

(6.9.2)

where higher order terms have been omitted since they are not relevant at 1-loop order.
It is interesting to note that while the fermion renormalization constant Z, has a gauge
dependence, the mass renormalization constant Z,, has not, at least not at the 1-loop

level.

Za,6M?2

The only change in wave function constants from the unbroken theory, apart from the
new ones, is Z4, which now obeys a modified version of (5.4.6), due to all the added
contributions from new diagrams (section [6.6.2). The divergent contributions to the

photon propagator can be summarized by equation

e2

! (4m)2 €
Adding the photon counter-term [16(a)| and requiring the result to be zero

- Z.<(g,uz/q2 - QMQV)dzA + gMVdMi)
2

A _
Y=

e

e N

1 (10
{ (9 d® ququ)+gw(2M2+6MA+4€MA)}

110
- { = (Gt = au) + G (2M; + 6 M3 + 46M7 ) } :

The same observation as for the fermion self-energy can be made, ¢ and the different

mass terms are independent quantities, and must evolve independently

10 e 1
6Zp=—— "~
4773 (47r)2
) 1
SM? = e )2(2MH+4§MA+6MA)

from which follows
10 e2 1
A=l-—-—"-
3 (4m)2 e

47

(6.9.3)



Ze

The divergent amplitude of the vertex function (6 gives a relation between the other
constants

e3

(4 )2’7# Z(Z Zl/sz 1)€7M - 0

e 2

7.2\ 7y =1 -
b1,

(6.9.4)

Using equation (|6 is the straightforward way to calculate the charge renormalization
constant Z,

e2 2
7 _1_5(471’)22_2—1/2
A
YA

and an expression for the 1-loop level can be found with Taylor expansion

= (6.9.5)

We note that the relation Z, = Z;‘l/ ? derived from the Ward identity in regular QED
still holds. Earlier in this section, and in section [6.6] there are multiple examples?| of
gauge-dependent amplitudes and constants that return to their unbroken values if the
gauge parameter ¢ is equal to 1 (Feynman gauge). The charge renormalization constant
Z. does not share this propertyf], which will be reflected in the 3-function.

Continuing the same way, we solve for the rest of the renormalization constants. Some of
these are straightforward, mainly Z,, Z, and 0 M%, while others require us to solve more
complicated equations. The calculations are split into small sections for readability.

Z,,0M%

These follow easily from a similar calculation to that of the photon. The counter-term
is given in figure [16(c)|, with the divergent amplitude (6.6.8)).

(e2(-3)p* + e (&2 M3 + 12M3) + 2X (EM3 +8ME))

i(6Z,p* - OME) +i Srie =0
Solving for the two variables yields the two constants
Zy=1- (6.9.6)
2 2M2 12M%) + 2\ (§M?2 + 8M3
5MH _ (6 (5 + A) + (5 + H)) (697)

m2e

2See for example equations (6.6.4)) or (6.9.1)).

3See equation ([5.4.9) for the unbroken case.
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Zy

The Goldstone boson counter-term, found in figure , does not have the convenient
Z; — Zi m structure seen in so far in propagator counter-terms. There is however, only
one term dependent on p. The divergent amplitude has a similar structure to
that of the Higgs boson, with two p-dependent terms.

i(02p% - (ZeZ3' 2y~ 1)EM3 - ZeZ3'0M3¢)
. i(e2(€-3)p*+ e (E(EM3E + M%) +6M3) + 6AEM3 + ANM3) ~

8m2e

0 (6.9.8)

As before the terms proportional to p? must evolve separately from the rest

2
. 2 _ € 2
Z(sZXp =1 87T26(§ - 3)p )
62
Zy=1- 20 (6-9) (6.9.9)

The rest of the constants are more complicated in form, as they also exhibit a A-
dependence in the same way as the higher order e-dependence, for which we have previ-
ously used a Taylor series to simplify to the 1-loop order. For these last constants there
is therefore used a Taylor series in both e and .

Zy

The rest of the terms from (/6.9.8]) must obey

ZeZy, ) . SM3AEZ, _ i(e? (E(EME + M%) +6M?3%) + 6AEME + 4)\M12{).

(-
§ A ZA ZA 871'26

This can then be solved for another coefficient, allowing another to be determined.
_ Za(e22M3 +6e2 M7 — 2 MEE + 6AEME + 826 M7e + ANMF,)

- 8m2e (OM32E +EM3Z,)

_ (247%e - 5e?) (e? (M3 (&2 +6) — MEE) +2M3AE (3N +4m2e) + ANME)

- 24m2€e (8m2M32e — €2 (3M3E + M3})) '

Ze

Taking the Taylor series in both e and A, as discussed above, yields

MN(6M2E +4M?
Zg =1+ ( A£ i H)
8m2M3ice
Lo [1262-5€ 418 (2T€2M4 ~ 15¢M4 — 10MF M3 + 2TMREMS + 6)0}) A
2472 96 M qmieE '

Terms which contain both A and e? are associated with higher order diagrams; in order
to construct a diagram with this factor, one would need to go to at least 2-loop order.
These terms can therefore be ignored.

Ze =1

6A  AAMZ 2(1252-55+18) (69.10)

+ + +
8m2e  8m2M3ge ‘ 2472
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In order to determine the rest of the parameter renormalization constants (Z,, Zy), and
the ghost constant Z., we use several three-point vertices, though the choice of which
ones is quite arbitrary, and one could choose others. The charge renormalization constant
is universal due to the Slavnov-Taylor identity [8]. This applies to the other parameter
renormalization constants as well, no matter how a constant is calculated, it will be the
same.

Zy

Now that universality of renormalization constants has been established, and we are free
to choose a convenient counter-term. The A*A¥n-vertex counter-term in figure [17(b)
with the divergent amplitude (6.7.9)) is a straightforward choice.

o 3etvg,
—if 47r2: +2ip ezvgw, (ZAZEQ\/ZUZU - 1) =0,
which gives the relation
3e? + 82e

T2 L L2 T
138247°¢€? (3e2 + 8m2e)

(24m2e - 5¢2) (5e2 + 482€)” | [4n? - CE2)

Once again using the Taylor series

e2
Zy=l+— (£+3). 6.9.11

Z)
For the last parameter constant Z,, we chose the triple Higgs self-interaction vertex,

found in figure [L7(e). The divergent amplitude is given by (6.7.13]).

. 63’[) (364 - 62)\6 + 10/\2) - 3/2
i oy - 6utAv (Zn/ AV 1) =0,

which gives the relation

3et — e2NE + 2) (B + 472¢)

87r2/\Z$’/2Zve
(24n2%¢ - 5e?) (5e? + 4872€)? (3et — €2M\E + 2X (BA + 4m2¢))
6912714 \e? (3e? + 8m2¢) (8m2e — e2(€ - 3)) ’

Zy =

Taylor expanding as usual gives

5\ e?

Zy =1+ - .
A A2 Arm2e

(6.9.12)
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Zc

The only missing constant is Z., which can be found from the ghost propagator counter-
term in figure together with the amplitude (6.6.11]). This leads to a rather compli-
cated equation. A simple workaround is the ncé-vertex. From section [6.7.5| we know that
all contributions are finite. Therefore the counter-term in figure gives the relation

~i(222,2,2 72 ~1)e*v =0
1 (5e?- 2472¢)?
© ZZ2Z, 9(3e2+8m2)?

A Taylor expansion in e yields

Te?

All of the constants have now been determined and are summarized in table 4]
Constant 1-loop expression
. Zy 1 - &5
Fermions )
Zm 1- g%
62
Gauge Za 1- % 16m2¢
boson oM} ~ o (M3, + 26M3 + 3M3)
62
Higgs Zy 1- m(f -3)
Boson SM2 (e*(&2 M3 +12M7 ) +2\(EMF +8 M)
H 8m2¢
Goldstone boson Zy, 1- 8;—226(5 -3)
762
Ghost Zc 1- m
5e? 1
Ze 1+ 4872 ¢
Zy 1+ 7 (£ +3)
Parameters )
Z)‘ 1+ 4?’(')2\6 - 47erze
6A AAMF, 1262-56+18
Zf L+ gr2e t 87r2M§IEe +e? ( 247r2<52r )

Table 4: Renormalization constants for broken QED at the 1-loop order.

6.10 (-functions

As noted in the last section, Z, = Z;ll/ ? still holds, and we able to still use (5.1.5) to
calculate [,

€ e 024
S e T
€ 5 €2 Oe
———e——._ —_—
221 7, op
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Solving this equation yields
ee

582 ) 9
2 (247r2eZA +1

Be(e) = -

and we get the result by Taylor expanding

e 5e3 o bed
(e)=-% 2 . 6.10.1
fele) == 5% 15z = Iz ( )

The other coupling constant A has a S-function as well. The derivation is similar to
S(e), which now is denoted f,.

d\

=p——, A= XAgp 7
B W o2y
0Z1
=\ U —E/L_E_IZ_I‘F,LL_E A
0 ( A 8H )
0Z1roz
=)\ _ —6—1Z—1 —€ A Yer
on( —ep 1 Z3 + N 8u)
ISR 2
- IULZ)\ du
A (dZyde dZyd\
z—e)\—u—(——+——)
ZyNde dp dX dup
A 2e D
¢ Z,\( 47?266 +47T2€6)\)
solving this for () yields
; —ex+%(4;25)5€
A= ’
1+%4§T

which, with a Taylor expansion in both e and A\ becomes

2 2

Ba(\,e) = —eX + i—; - 2—72 2 4%2 (5A—€?). (6.10.2)
We have finally arrived at the 8, function. In the R¢-gauge gauge independence for
physical quantities is guaranteed if the corresponding [-function is gauge-independent
[27]. The calculated B, function is gauge-independent as it has no dependency on the
gauge-fixing parameter £. We can therefore conclude that A is a gauge-independent
quantity.

6.10.1 The Higgs contribution to the (.-function

The B.-function provides an interesting method of comparing spontaneously broken QED
with the unbroken theory. The (.-function is a function of Z, only, which in turn depends
on Zy and Z4. The change in Z., compared to the unbroken coefficient, comes solely

52



from the extra contributions to Z4. Looking back at , one can see that the only
term modifying Z 4 is
e 2 5 1
15 17 - v )
(47)2 3 I = Gl )2

while the rest of the terms contribute to dM3%. This term was a part of the amplitude
from the diagram

This can be used in order to calculate the contribution the Higgs boson has on the
B.-function.

: . e? 2\1
i( 9 = 4u0)0 2 = ~i(g00” - Ue) gy ( 3 ) o

with the result

2 e? 1
(Z4)iges =17 3 (47)2 €

Using this in gives Z,:

ez 1
(Ze) iy = 1+ s (6.10.3)
which, using , yields the S-function contribution from the Higgs
ghises () = (6.10.4)
© 4872

Removing this contribution from the g-function also restores the QED S-function

. 5e3
QED Higgs _
B+ B =
ﬁQED e?
1272

as expected. The result of this is that adding a scalar particle to the theory of QED
increases the value of the S-function.

6.10.2 (-function from Dynkin indices and particle content

Utilizing the renormalization group equations, it is possible to derive a form for the (-
function that depends on different parameters of the groups and representations within
the theory [28]. To the one-loop order

Bl9)=- 73 (4 E Cz(G)— %SQ(F) S2(5) + (ir )2Y4(F) (6.10.5)
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where C is the quadratic Casimir of the gauge group G , S3(F), S2(S) are the Dynkin
indices for the fermion and scalar representations, the factor x is equal to % or 1 for two
component fermions and four component fermions respectively and Y, (F') is an invariant
defined from the Yukawa couplings, which can be ignored in the current theory.

For QED with a complex scalar, both the fermions and complex scalar transform under a
fundamental representation of an Abelian U(1) gauge group, this means that Co(G) =0
[29, p. 5]. The Dynkin indices for an irreducible representation has the general form

Trp(TAT) = S(R)34%, (6.10.6)

which reduces to S5 = 1 for both the fermions and the scalar, since there is only one
generator for the U(1) transformation.

(6.10.7)

From this comparison we can draw the conclusion that for that the g.-function of a
spontaneously broken theory is the same as in the unbroken theory. This is not a
surprising result. At high energies, masses are negligible. The [.-function, which is
sensitive to UV-divergences, is therefore unaffected by whether the photon has a mass.

7 Conclusions and future work

In this thesis, we have discussed renormalization, the techniques within, and whether a
theory can be renormalized. We have looked at different renormalization schemes for
QED and investigated the S-function in the on-shell scheme and momentum subtraction
scheme. The renormalization constants and [g-function were calculated in the momen-
tum subtraction scheme. After this we looked at the very useful minimal subtraction
scheme, along with the P.V functions and applied the scheme to QED. We then looked
at spontaneously broken QED. First we determined all the interactions between the real
scalars and photon. We then used an R¢-gauge to eliminate a complicating term and in
the process introduced a gauge-dependent mass for the Goldstone boson. To cancel this
unphysical degree of freedom a Faddeev-Popov ghost was used. Interactions between all
particles, including the unphysical Goldstone boson and ghost were studied. We tested
the renormalizability of such a theory, and applied minimal subtraction to find all the
renormalization constants and S-functions. It was shown that the f.-function has the
expected form based on particle content, and that it behaves as one would expect. We
also found the () function. Both of the derived g-functions had the expected property
of being gauge-independent. This is important as is it an essential condition for guaran-
teeing that observables are gauge-independent.

Moving forward, further analysis on the gj-function would be a first priority. The [,-
function has told us much about the behavior of QED at high energies and investigating
the behavior of the ) could potentially tell us more about the spontaneously broken
QED theory. Finding the S-functions for other parameters could be interesting as well.
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¢ is dimensionless and v has an unusual mass dimension that would be an intriguing
complication to handle. This would also help to check if the procedure is consistent at
every level. Continuing this analysis into more exotic theories incorporating kinetic mix-
ing would be the next logical step after this. The renormalization of the kinetic mixing
parameter would be of particular interest. Finding a S-function for such a parameter
could be invaluable to help us understand the phenomenon.

Appendices

A QED Feynman rules

In the Feynman gauge £ = 1, the Feynman rules are

) p+m
> s 2_
p?—m? + ¢
1% v . gt
— —1 -
q? + i€

i > —iey,

B Dimensional regularization

B.1 D-Dimensional Clifford algebra

The d-dimensional Clifford algebra satisfies the same basic anti-commutation as the
4-dimensional

{v",7"} = 29" (B.1.1)

And, the metric is symmetric in the same way, and lowers and raises indices in the usual
way

g = g"+ (B.1.2a)
9" 95" = g" (B.1.2b)

However, the trace is updated, to reflect that the metric is now in a d-dimensional vector
space

gw/g,uz/ =d (Bl?))

And therefore the contractions of gamma matrices are also modified

Y =d (B.1.4a)
YAty = (2= d)y” (B.1.4b)
MY = 4G — (4= )y (B.1.4c)
VPN = =290 + (4 - Ay (B.1.4d)
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These relations can be used to construct many new identities, a few that will be useful
are

VAT = =47 = d*y7 + 6dy7, (B.1.5a)
VN = A, (B.1.5b)
VAT Y = 47 + dPy7 — ddy. (B.1.5¢)

Trace relations are unchanged, so long as they do not involve 5 [6, p. 78].

Tr(1) =4, (B.1.6a)
Tr(odd number of 4’s) =0, (B.1.6b)
Tr(y"97) = 49", (B.1.6¢)
Tr(fy/byvfyp,yo) — 4(9/11/9[)0 _ gﬂﬂgllo + g;wgz/p). (B16d)
B.2 Feynman parametrization
AB f Ax +(1- x)B] (B.2.1a)
- Y
ABC’ _2/0 d:Efo dy[xyA+(l—y)xB+(1_y)C]3' (B.2.1b)
L _r ._ (n-1)!
AAy A, /0 a1 da:n(E:);, 1) [11 AL + 20 Ay - 2, AT (B.2.1¢)
B.3 D-Dimensional integrals
d'k pe (= T (n-4
Cmi(2-A)y  (4m)P r(n) ( ) (B.3.1a)
d?k k2 . ( 1)n I‘(n 1— %i) p
@) (2= Ay = TS R T , (B.3.1b)
d'k Rk, i (-1)" T(n- 1_4) g
(2m)d (k2 - A)n” D) my (47 )d/z T'(n) A IS (B.3.1¢)

There are amplitudes in which we encounter terms of both [,l, and [?, in which case
there is a convenient way of transforming one into the other

(;ldlgdk b f(K°) = dg“”[ (2rr)d K f (k) (B.3.2)

B.4 Gamma functions

The above I'-function is defined as [6, p. 82]

r(z) = f S dt e, (B.A.1)
0
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and it satisfies
L(z+1) =20 (). (B.4.2)

For positive values of z this function is finite, some useful values are

ra)=r(2)=1, (B.4.3)
') =2. (B.4.4)
At negative values or zero, the function diverges, and can be expanded around the pole
1
[(e) = STE*t O(e), (B.4.5)
€ 2
D(5)=2 =7+ 0(), (B.4.6)
- | 2
r(—n+f) CEDN 2 )+ 0 |, (B.4.7)
2 n! €
for positive €. 1 satisfies
1
P(z+1)=¢(z) + o (B.4.9)

where vg = 0.5772... is Euler’s constant.

B.5 Regularization of QED

B.5.1 Fermion self-energy

k

(LT

k+p

) =Y (p). (B.5.1)
Amputated

The scalar X function has the form

d4k z’(;é+p+m) —ighv
(27r)47”(k+p)2—m27”k2—v'

Using the Feynman parametrization (B.2.1al)

%(p) = (~ie)®

= _¢2 d4_k ' x 7ﬂ(k+p+m)7#
2(p) = (27)4_/0 d [((k+p)?-m?)z+(1-x)(k%-)2)]?
o foldx[( Yulk ++m)y"

(2m)4 k2 +2pk + p?2 —m?2)x + k2 - 22— z(k? - \2) ]2

The terms k?z cancel, this makes completing the square in the denominator straight
forward

E(p)z_QQf dik fold’”[ Y+ +m)yH

(2m)" (k +px)? + p2x — m2x — A2 + N2g - 22222

o7



and making the substitution [ = k + xp

S(p) = _e? d*l [ldx[ VM(I_IP—FP—Fm)’YM

(2m)* 2+ p2x —m?x — A\ + N2x — p2a?]?

The term linear in [ vanishes, and the following is obtained for the divergent integral

Y(p) = €

d4l 1 7M((1—x)p+m)fy“
(2@4/ N (CEUN PR

where A = m?x + (x - 1)(p?x — A?). Generalizing to d = 4 — € dimensions, and using the

contraction identities (B.1.4)

_ dil (2-d)(1-z)p+dm
S =it [ Lar @ (B-A)y
Using the integral
L ; ] 5 \2-d/2
Z(p)=—62[0 dx((2—d)(1—x)¢+dm) (Wr(i) (%) )

e2

it fol ((e=2)(1-2)p+ (4= m)T(5) (ﬁl) da, (B.5.2)

where d = 4 — € has been used in the last step.

B.5.2 Vacuum polarization

( p

N
*\k/

k+q

14
) =11, (q). (B.5.3)
Amputated

The second rank tensor II,,, has the form

4 ' (F+qg+m
d*k Ty %Jz(k+m)% (k+g¢+m) |
(27m)* k2-m2 " (k+q)?-m?

Taking the trace relations (B.1.6|) into account, the terms with an odd number of gamma
matrices can immediately be removed, leaving

(B.5.4)

11, = —(ie)?

11 = —62 f d4k T 7#70’71/75]@10196 + ’Yu’ya’yy’yék;aqé + %%mz
pv (2m)* (k2 —=m?)[(k +q)? - m?]

_ —62 / d4k 4(guagu5 —GuvYos + guégau)(kjaka) + (guagué — GuvYos + guégau)(kaqé) + g,wmz
(2m)* (k? =m2)[(k +q)* - m?]

e / @ Kk = gk + Kk + Ky = gk -0+ K+ g’
(

2m)* (k* =m?)[(k +q)* - m?]
= 32/ 4k 4k“(kl’+ql/)+kl/(ku+qu)_gw(k(k+q)_mz)
(2m)* (k2 =m?)[(k +q)* - m?] '
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Using Feynman parametrization (B.2.1a))

e dik k (k: +qy) +ku(ky+qu) — g (k(k +q) —m?)
=~ f v f @r)' [((k+q)? - m?)z+ (1-a) (k- m?) ]2

Completing the square, and substituting [ = k + gz yields

Ry f da:'/(d4l 20,0, - 2x(1- a:)quqy(lzgwl )JrgW(m2+q z(1- x))’ (B.55)

where A = m? — ¢?z(1 — ) and terms linear in [ have been removed. Generalizing to
d = 4 — € dimensions, and using the transformation property (B.3.2))

1 d?l —-2x(1-12)quq, + g (m? + ¢>x(1 - 1))
= — 4e2 ¢ / 2 2
e, dr [ (2r)d (- A)?
L2 @ i
a7 ] enyd@E-a)e ) @niE-A)

.9 . 1 —2x(1—x)quqy+gﬂy(m2+q2x(l—x))F(Q—Cgl
:_42(3”/; dx[ (47 )i r'(2) (

2 41 -2y 1\
"(3’ )g“”§(47r)d/2 P (Z) ]

by changing the value of the argument of the second I'-function with (B.4.2)), this can
be grouped together.

d
)2_2

1
A

My = - die2ye )f “20(1 = 0)4udy * (M + 72 (1 2 ) = MGy
g (47r)2 A2-4

- fl -2x(1 - 2)quq + 2¢2g,x(1 - x))
(i
(m? - ¢2x(1- x))

dx

= — 4ieus

by using A = m? - ¢?z(1 — x). Lastly, it will be convenient to factor out the tensor
structure.

EF(Q—%[) 1 2x(1-1x)
(4%)% 0 (mz - x(1 - x))Z_

HIW =— 4z'(glwq2 — quqy)QQIu ] dz. (B56)

B.5.3 Vertex correction
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At one-loop order, the vertex is replaced by
iey" — el (p,p"). (B.5.7)
where I',(p, p) is calculated using the Feynman rules

N ik —gr i(¢+k+m) i(%+¢+;¢+m)
Lulp,p) =(~ie) @r) PN (kv p)—m2 " (h+p+q)2-m2 °

) oo o (P b+ )k 4+ P+ m)re
2 | oy ), Y =)y (2 =)+ ay (kv pr @) —m®) + (L) (ks p)? —m2) P

d4k
— - 2¢3 f dz - yd
e | Gyt Jy vy

7"(3&+ﬁ:+ m)yu(k+¢+¢+ m)Ye

[k2 + 2k(pxy — py + p + qry) — m2xy + m2y — m? + p>xy — p?y + p? + 2pqry + ¢>xy + N2xy — A2y)3

Defining [ = k + pxy — py + p + qxy, this becomes

dAk f . U(p+l Py +py — P — gy +m)vu (] - pay + py - p - ¢xy+¢+p+m)%
(2m)* [[2-A]?

where A =y (p?(z-1)((z - D)y +1) +2pq(z — Vzy + ¢?z(xy — 1) = XN2(x - 1)) -m?(-zy +
y —1). Following [16, p. 254], I,, is split into two parts, one proportional to [* and one
independent of [.

=—2¢8

dk volv I
Tl = - 9638 f d - ydy Lo
w= AR <2 )d INE

[ de-y ( 2%%% + (4 = d)v57,70) NP
[(12-AJP

35
=2 (27r)d

&

€ Z /J
= QWW f dx - ydy (=27 y,7s + (4 - d)%%%)—gmf@ (X
2

2-3

1
2 (47r)2'u
i

2 (47r)2 a
using (B.1.4) and (B.3.1c|). The terms not proportional to [ take the form

[ yay(-22- )+ (1-d)(2- dmr(z—d( )

[

f dx - ydy(4 - 46+62)’7#F(2——)( ) d, (B.5.8)

o o3 3. [ d%k (m = pry + py — dgry) . (m = pry + py — dzy + §) Ve
b= e (27r)d[ ey [2- A
s [ dk (m = pay + py — gry) v (m — pay + py - dxy + ¢) 70
=—2e’u2? (2r )d[ dx - ydy ERINE
. NG %l) ;
(4@2# f dx - ydyy? (m = pry + py — qzy) v (m - pry + py — gzy + ¢) 7o g
(B.5.9)

The total amplitude for the vertex correction is the sum of these two expressions

r,=r,+I" (B.5.10)
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C Passarino-Veltmann functions

C.1 Definition

The Passarino-Veltman integrals are readily tabulated, the following definitions is from
[6].

The one point function Ag

N d?k

Ap(m?) = pel) B a— (C.1.1a)

202 I
=m*(= —Inm -y +1+In—) + O(e). (C.1.1b)

€ m

The two point functions B
e d 1
By=-— [ d% C.1.2

"% ) e ) (120

2 1 2

2 2
=——ln7r—ny+lnM—2—[ ln[x(l—:t:)—(l—:c)m—;—xﬁ;]JrO(e),
€ -p 0 p p

R e (=T (42
Bu =15 [ (/c?—mf)[l?;f:p)tmg]‘ (C.1.2¢)

And lastly, the triple point functions C'
o= i3 | P T T (C1.32)
Co o ddk( Ty e e (C.1.30)
‘wﬂf L (s rrwy et (C.1.3¢)
o= i | G e (13
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C.2 Decompositions into scalar integrals

The decomposition of the tensor integrals are given by [18]

B! =By,
1

By =— ( Ao(my) = Ag(ma) — (p° + mi — m3) Bo(p*; ma, m2) )a

B =g"" Bog + pt'p” By,

1
&w%ﬁﬁ(%mawﬁ&+w+%‘@wq’
1
By, :m ( ((d=2)Ap(mz) - 277?%30 - d(P2 +mf —m%)Bl )a
L 1 L 2 2 02 02
B = a7\ 9" (Ao(ma) + 2mBy + (7 + i - m3) By ).

TP
+ pp]; (AO(mQ) —(p*+m? - mg)Bl) ] )

And the triple-point

functions can be deconstructed as follows [6]

C,u = pucl + qMC27
Cuv = 9 Coo + PuPvC11 + 446y C2 + (Ppy + qupy ) Ciz,

where only Cyq is divergent.
For the three point functions, the relations become trickier [22] appendix D, or [31]

appendix B

C.3 Divergent terms of PV-functions

(C.2.1a)
(C.2.1b)
(C.2.1c)

(C.2.1d)

(C.2.1e)

(C.2.1f)

(C.2.2a)
(C.2.2b)

The following table summarizes the divergent terms for the P.V functions, we list the
most commonly used, and a few that will be of use in our calculations.

Tensor integral Divergent term
Ap(m?) 2m?
By (p?,m3, m3) 2
B, -1
By, guu( = E(* = 3m3 = 3m3) ) + pupn
ik (2m3 (g + g+ prg)
Biuwo +4m3(p7g" + p” "7 + ptg-7)
—p*(p7g" +p¥gh? + ptg’7) + 6p“p”p")
Ch Gy 3e
Cuvo —5< (279" +2pY g7 + 2pHgT + @7 g + ¢V ghT + qPg¥)

Table 5: Divergent terms of the PV-functions
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D Momentum assignment conventions for PV-functions

For ease of use of the PV-functions, some standardization of momentum assignments are
in order. The three main categories of diagrams are self-energy, vacuum polarization and
vertex corrections diagrams, which will use the following conventions, unless otherwise
noted.

In addition, fermion and scalar momentum, photon momentum and momentum inte-
grand are usually denoted p, g and k respectively.

D.1 Self-energy types

We use the following assignment. It obeys convention of aligning momentum with the
direction of particle flow [13] p. 226] for fermions, and make the transformation into P.V
functions simple.

D.2 Polarization types
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E Diagram calculations

E.1 Constructing the counter-terms of SSB QED

E.1.1 Higgs boson counter-term

SL@am)? - 28] = S[(@m)? - M ]
_ %[@Z#Qn)? ~ (M + 6 M )n?]
- %[(a,m)Q - M)+ %[6277(3“77)2 - oM’ ]
The counter-term is then given by [24] p. 203]

,,,,,,, ®""”:i(5ZnP2‘5M12J) (E.1.1)

1 1 1 1 1
5(@0(0)2 - §§ofo,oX3 = é(auX)Z + §5Zx(auX)2 - §Z55Z21(fo +OM3) Zy X
1 1 1 1
- 5(8106)2 + §6ZX(8#X)2 - QZ@ZEIME&ZXXQ - §Z£§Z;11(5MiZXX2
1 2 1 2 1
= _(auX) + _5Zx(auX) — SEMAX?
2 2 2
1

_ 1 _
B §(ZEZA1ZX - 1)EMEX® - §Z§€ZA15ME}ZXX2

The terms relevant for the counter-term take the form

1
(020,07 = (2e2322, - 1)M3X* - 2235 M3EX)

7777777 ® -~ =02 ~ (ZeZ3 2y~ 1)EM3 - Ze Z3 6 M%) (E.1.2)
E.1.3 Ghost counter-term
(9.2)(0"co) — &oM3 yeco = (0,,€)(0"c) + %520(61#0)(8#0) ~ 222731 (M3 + 6 M3 )ec
= (9,¢)(9"c) + %520(8#5)(8%) - Ze 2P 73 eMBee - Ze 22 73 €6 Mee
=(342) (0%) + 507.(0,) (0%) - M3
(22723 -1)eM3ce - 2.2 73 €5 M e

The relevant terms take the form

1
E(§5Zc(8ué)(8“c) (2223 -1)eM3 - 222 231 €0M3 )

1
_______ C @ G = i(égchg (2273 - 1)eM3 - 2222 20 60M3)  (B.1.3)
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E.2 Spontaneously broken QED propagators
E.2.1 Photon propagator

A AN G TS v

( 77 /‘ = 2ig,,€° / A% Z
= Guv /1’ (27T)d k2 —
- Qg,u,z(4 )2AO(MH)
Div . e? 2
= — 4 2€guu H-
k+q
/;\ Ak i
iy \v _ . 92.N\2 2¢ ! - g’
W = (216 U) GupGov f (27T)d k2 - Mi( g” +
N krke ¢
3 (1-¢) ) ’
k2 - EM37 (k+q)% - M%
Div -€4U2 €
= —Zﬁﬂ g;u/(3+€)

o e?
= - ZmMiguu(?’ +£),

where we have used M3 = (ev)?.

E.2.2 Higgs boson

(E.2.1)

(E.2.2)

(E.2.3)

2m)t (K2 = MR)[(k +p)? - EM]]

Jehkev
[ -g" + (1~ 5) —IVE

2
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k
n @ 77 ) [ dik P(-p-(k+p)) (p-(=(k+p))),
(

(E.2.4)



2 R 2 dk i i
,,,,,,, e — 6\ 2e
7 n 0 (=6ixo) r)d k2 - M2 (k+p)? -
9(\v)?
(4 2) MGBO(pZaMI?IaMJ%I)
Div, 9(\v)? .
2m2e
9\
=1 M} E.2.5
187r2€ H> ( )
where we have added a symmetry factor of % in the last step.
X
S 2 dik i i
,,,,,,, N — 2\ 2¢
7y s e | e G -an
(A\v)?
= 0 o, €005, E13)
Div; (M)?
oree
A M} (E.2.6)
87r2e o o
where we have added a symmetry factor of % in the last step.
777777 o oy [ A% i
77 no ) Gernyike -
A )
= QZWAo(fMA)
Div
E.2.7
o (E2.7)
(/7—7\‘ .
N d?k i
[ . — A s
n 77 (6N | anie i
A )
= 6@@140(]\41{)
Div . 3)\
= 147T26M12{. (E.2.8)
{;::; d?k 1 kr kv
,,,,,,,,,,,,,, = (924e2 L) e ny 1—
R R U 0L W o T e v [ 05 Tae
i (€ ). (E.2.9)
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p v o222 9 dik i g krke
P - o [ st [ 0ot

‘ vy (1 ey K+ p)(k +p)”
“(k+p)2-M l g+ {1=8) (k+p)2—st]

Dlvev
_222#’(52 )

= ¢47T2€ +3), (E.2.10)

where we have added a symmetry factor of % in the last step.

i C 7777777 ~ _(_%621})2 9 ddl€ i i
noe Soom M) @ryd k2 —eMZ (k+p)? - €M
e .
= (4 )QSQMZXMGBO(p SMA,fMA)
i € (E.2.11)

E.2.3 Goldstone boson

k
/_\
777777 B v 5 dik (—k;—2p)u(k;+2p),,‘ 1 (1 5)
O B G T AN ) X V- iy vl
k+p
. 2
D:W_Z'S;E(g(gMg + MZ) - (£-3)p%). (E.2.12)

d ~ v
i} 777777 _ (2i€2glw)/f d*k 2M2 [—g"” (1- 5) ktk ]

X X (2m)4 k2 — M2
vy © (€2 +3) M3. (E.2.13)
4A72e
A
2 Ak i
,,,,,,, s — 2\ 2e
o O | e G-
AU
(4 3 11 Bo(p*, EM3, M)
2
niv A0) (E.2.14)
2m2e
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) ki

DR AR = (=2i\)u€
X S B ey v
A
= 22@140(]\412{)
Div. A
= 247T2€M12{. (E.2.15)
(/5(\‘ )
N . . d?k 1
DS S N B Ce Ty e vz,
A
= 62@140(6]\43‘)
DIV
M? E.2.16
47T 66 A ( )

E.3 3-point vertices

E.3.1 I'/h27"

To ease notation, we define

1-¢&)krkY
o (5 )

p
P2
p+k//,( n
w0 oo [k Bprgrkr k) (-(prgrk)-(p+k)),
ANEAAK XT/{ = (=2ie* ) p - > > — ) :
\\7]; (2m)® (k2 = EMZ)[(p+ k)2 = EMZ][(p' + k)* = M ]
p+q+k3 : — (—262)\0),&26 d’k (p+q+2k),u(_p_q_p_2k)V
X @m)d (K2~ EMZ)[(p + k)2 — EMZI[(p' + k)? — ME]
b v ety [ 4k,
= /l) //l/ ;
(2m)® (k2 = EM)[(p+ k)2 = EMA][(p' + k)2 - M7]
e v
= 8Zwﬂ O'w,
DIV € AU
= 47T2 /’Lgul/ (E31)
b,
;{/
p+k  f n
9wy | dk B(2k +2p + ) (=2k - p—q)
— K, n, T _ 2 2e p+q 0 P—=q)
1 —6ie“\v)p
TS . o B @A (G ) MG+ 02— )
p/+k‘ \\HyL lv 471‘2 ,U/g,uu <E32)
N
p/

68



D+ k;/a a
Lup ﬁ’f _ (2ietug, e [ Lk ?*(p—k)o (2 +p +q), D7 (k +p)
‘ wp

[t et (2m)* (k? = €MZ)[(k + p+q)* = M ][(k +p) - M3]
p'+k3 AN v =4 87r2 M G- <E33)
p’\
p
;{/
pt+k 057
4 X . dk Bk +2p)o (=2k — 2p — ), D (k)
Lo P x T = (2ictpa )2 P)o P =D
9o
W\xn kD (e ‘o N @y @ DRk + )7~ Rk +p+ )~ D3]
Pkt = iga M G (E.3.4)
N
pl
o ik ;2

NN = (600 (it )

(2m)® (k2 = M7 )[(k +p)* - Mj]
, 2
ﬁ]}év—wﬁe )\vg,“,’ (£35)
472e

where we have added a symmetry factor of % in the last step.

i J o
‘,X = (-2i\v)(2ie* g, ) ™ I Z

(2m)¢ (k2 = EMA)[(k + p)? - EM]
2
ﬂDlv . %’ <E36)

where we have added a symmetry factor of % in the last step.

. . d'k 2D (k)
= (2ie2q,,)(2ic*vg,, 26/
L R R Ll Gy VA (R R s
‘ v M€+ 3)ugu
hiv e € W) u (E.3.7)
| | | a1 D70 (k)
| =(2 2 2 2 2 - 2e
-1 =g ) Rictge)i™ | e ST G A (e v p+ @) = 2]
Cbiv . eHE+3)vg
Div_ ., (8W—Zu (E.3.8)

E.3.2 TImm

We define the flow of momenta in the loop here, to ease notation. This is of course
arbitrary, however this definition gives straightforward applications to the P.V functions.
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i3(p-k)o(k+p+2q),Dro(k +p)

EMD)[(k +p)? = MA][(k+p+q)* - EMF]
(E.3.9)

B(-k-p+q),(k-p-q); D (k+p+q)

EMA)[(k+p)? - EMA][(k+p+q)* - M3]
(E.3.10)

dk 3(k+2p),(-k—p+q),Dro(k)D* (k+p+q)

(2m)? (k2 = M3)[(k+p)? - EMA][(k+p+q)> - M3]

(E.3.11)

dik #(k+p+2q).(-k-2p-2q),Dr (k)D" (k + p)

n s
o’
‘ dek
n eJJJ/ — (_9502 2¢
7777777 . P (=2ie“ o) @y (72
X piv .€2Av |
o= - .
\ ! 472e a
n,
dek
= (-2 2)\ 2¢
(=2ie" o) (2m)? (k2 -
D_iv_Z.ez)\fv e
- 472e o
= (2i€4U9up)M26[
Dlv_ie4£2v €
472e
= (2ietvg,, ) e

(2m)® (k= MR)[(k +p)? - MA][(k +p+q)* - EM]

(E.3.12)

dk B(p-k),(k-p-q)e D" (k+p)Dro(k+p+q)

(2m)® (k2 - EMA)[(k +p)* = MI)[(k +p+q)* - M3]

(E.3.13)

2(2p+ k) (—2p-2q - k), D (k)

4A72e
n,
v,
Ay = Qictug )
1 y Div ety
. = -3 .
T 4d72e a
U ' /f‘/’n dk
7777777 .7 = (=2i\ 2 2
< (2™ | Gy (2
XXMy i\

- TH Am2e
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= MA)[(k+p)? = EMA][(k+p+q)* - EMF]
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All of the diagrams below have a symmetry factor of %, which is added in the last step.

vip

E4D = (9520 V(2icva Ny2e [ 4% D (k)D7(k + p)
k <§:}> p = (226 gua)(%@ Ugl/p)u (27T)d (k2 _ Mi)[(k +p)2 - Mf‘]

Hoa 4y (2
K . iv. 66 v 5 +3
%@‘_éﬁ?l' (E.3.15)
| , . dk 2D (k)DoP(k + q)
| = 2 2 2 2 14 2
‘\ ( e gw)( 1e"vg p):u (27T)d (kQ _Mf‘)[(k+q)2 _Mf‘]
U piv. e (€2+3)
i k Al ) (E.3.16)
; | ‘ dik  2Dm(k)DoP(k +q +p)
! _ 2 2 ” 2 2 y 2¢e
) (2i€ g0 ) (2i€*0g,, ) 1t @2m)? (k2= M2)[(k +q+p)® - M2]
. iv. €€4U £2+3
i} [Qﬂ—ép:l- (E.3.17)
i ik 2
X1 0X = (=2i\w)(=2i\)
- ( )( )i (2m) (k2 - EM2)[(k +p)2 - EM?]
// N . . )\QU
ILZ#/4W2€' (E.3.18)
| dk i
| = (=20 v)(~20i)) p2
XL ( ) V2 | Gyt - )k + 07 - €013]
\)\_// \\\ iv. GA/U
/ x\\%w4ﬂé (E.3.19)
i Ak i2
| — (—2i\ —2i\ 2e
//‘,\\X (—2iAv) (=2i\) (27) (k2—£M§)[(k+q+p)2—5Mi]
/// l\\_(\ . . )\21)
ANy %“4ﬂg (E.3.20)

L dk i
neoan = (=6idv)(=6i\)u
. (FOAN OGN | oyt (= 3 (e = p)? = 321
S0 Div. 9NV
v N E.3.21
H 472e ( )
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d 2
= (S6in) (<6in)u [ LR !

LR (2m)? (k= ME)[(k+q)* - MF]
‘)\_// B Div . 9)\21}
% o el E.3.22
! e (E3.22)
: Aok ;2
| = (=6i\v)(=6i))p*
o T SO [ Gorsa G a0 - )
AN . 2
Sy R A (E.3.23)

4dm2e

F Example of FeynCalc calculation

Here we show an example of a loop calculation done using Mathematica with the Feyn-
Calc package. The example is the first diagram in appendix [E.2.2]

2m) (k? = MR)[(k +p)? - EMF]

2
Div . €

i (2EM 6 - - D). (F.0.1)

In2e5;= amp = -(e™2) / (2%«m) *4% (FVD[-k-2p, u] *FVD[k+2p, v]) *
FAD[ {k, mA}, {k+p, m2}] *
(=MTD[p, v] + (1 -&) «FVD[k, u] «FVD[k, v] « FAD[{k, m2}])
Print["The full PV-decomp is"]
TID[amp, k, UsePaVeBasis -+ True, ToPaVe - True]
Print["With the UV-divergent part"]
div = PaVeUVPart [TID[amp, k, UsePaVeBasis -+ True, ToPaVe - True], Dimension =+ 4 - €]
FullSimplify[div, {D =4, m2"2 == £ *+mA"2}]

Figure 18: Example input in Mathematica.
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z b Y i
e -k-2pik+2p) [‘7” gr‘}

Out[385)= — ———em
16 7* (i -mA?) ((k + p)*-m2?)
The full PV-decomp is
i€’ (1-¢)(m2? - p?F Bo(p, m2?, m2?)
Out[387]= - 1 -
16 7° (M2~ — mA=)
i &l [:m24( £ +3m2* -3 m22 mA? 4 2m22 £ p? + mA* - 2mA? p? g—'p*‘l_{_pﬂBD[:pl: m22, mAJ]
+=
16 7% (m2? - mA?)
i€ Ag(m2?) (-2m2? ¢ + 3 m2? - mA® + ¢ p* - P)
16 7% (m2? - mA?)
i€ Ag(mA?)(m2? (~£)+3m22 ~mAl s - mA2+ ¢ p? - p?)
16 7% (m2? - mA?)
With the UV -divergent part
i2e8m?¢+ed ((m2)+ P mAls S pte3el pl
Out[389]= - - "
Bre
ie(2m2e-&-377)
Qut[390]=

;
8re

Figure 19: Corresponding output in Mathematica.
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G Lengthy calculations

G.1 Finding the Spontaneously broken QED Lagrangian

G.1.1 Factorization

%:( WX)( Wx)
(LR R (R () )
=((aﬂ_iaﬁg(”zéx))T((8“—i&40(95%%))
AR () ()

=(9, + ieA”)<n\_/%X)(8“ - ieA”)(n:/%X)

. . . . 2
n—ix\nt+ux =X \(n+ux

R wveml (&7 3 50)

(8#77 — 10, X +ieA,n + eAﬂx)(ﬁ“n + 10ty —1eAFn + eA“X)

2 A
+%(772+X2)_Z(772+X2)2

1
-2

1

=5 (8u778“77 +10,notx — O mieArn + One Aty
— 10, x0"n + 0, x0"x — O, xeArn — 10, xeA'x
+ieA,not'n —eA,no"x + eA,neArn +ieA,meArx
+eA,x0"n +eA,xiOx — eA, xieAln + eAuxeA“X)

N_22 2_52 2)2
+ 5 (74 x7) = (7 + x°)

The terms containing ¢ cancel, leaving
1
Ly = 5(8,”78“77 +0,neAtx + 0, x0"x — 0, xeA*n

—eA,no"'x +eAneArn +eA,xo"n + eAuxeA“X)
2
I A 2
+ 5 (%) = (07 + x7)
By rearranging some terms, a factorization can be seen
1
Ly = 5(0un8“77 + 0, neAtx +eA,x0"n + eA,meAln

+0,x0"x — O, xeArn —eA,no'x + eAﬂxeA“X)

:“_22 2_&2 2)2
+ 5 () = 7 (7 +x7)

2

= %((8“7 + eA“X)2 +(0,x - eA“n)Z) + %(7]2 +x?) - %(nQ + X2)2
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G.1.2 Field shift in Lagrangian

2= (O m) + eA%) + (9 - A"+ )°)
+ %2((21 +1)*+x°) - 2((1} )2 x?)”

:%((a,w +0,m + eA“X)2 + (0ux — eArv - eA“n)2>

IS 2, 2y A 2., .2)2
+7((U+77) tX )—Z((Wrﬁ) +X )
v represents the new non-zero potenial minimum, and thus it’s derivate is 0; 0#v =0
1
Z, :5((8,”7 + eA“X)2 + (8,»( —eAtv - eA“n)z)
2
1 A 2
+ 7((” +1)° + XQ) - Z((U +1)* + Xz)
1

25((@77)2 +20,me Aty + (eA“)()Z

+ (8ﬂx)2 - O, xeAlv -0, xeArn
- eA*v0,x + (eA“v)2 + eAtve At'n
- eAMno, x + eAtneArv + ( - eA“n)Q)

+ %2(112 +2um+ 0%+ x?) - 2(1}2 +2un + n? +X2)2

1 1 1
=5 E‘Ai - evAtO,x + 5(8“7])2 + 5(8#)()2
Anx)’ (eArn)?
+0,meAtx — 0, xeA'n + (6 ;X) + (e ;77) + eAtveArn

A 2

2
+%(U2+2w]+772+x2)—1( 2+21177+772+X2) (G.1.2)
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