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Outline

This thesis consists of an introductory part and three scientific papers. Chapter 1 con-
tains an introduction to monitoring of CCS sites and describes challenges associated
to monitoring. Chapter 2 addresses basic concepts of deep learning. In Chapter 3
we introduce Bayesian Neural Networks and Variational Inference as tools for assess-
ing uncertainty. The last chapter of the introductory part is Chapter 4 and presents
how dropout in a neural network can approximate Variational Inference and different
variational auto-encoder models. A brief summary of the papers is given in Chapter 5.
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Part I

Background





Chapter 1

Monitoring of Carbon Capture and Stor-
age (CCS)

The purpose of this section is to briefely introduce CCS and discuss the importance
and difficulties of designing monitoring programs for both a marine and a subsurface
environment. The focus is on providing a deeper insight into CCS to better enable
understanding of the papers presented in Part II. The methods and models developed in
this thesis are general and can be used in various contexts. However, the applications
we base our methods on are related to CCS monitoring. Therefore, it is appropriate to
introduce the CCS technology and important aspects related to monitoring.

1.1 Introduction to CCS

CCS is a technology that captures CO2 at the source to inhibit increased levels of CO2 in
the atmosphere, with the ultimate the purpose of mitigating climate change. Important
industries such as cement production are huge point source emitters of CO2, and there
are no real alternatives other than CCS for reducing the release of CO2 into the atmo-
sphere. According to International Energy Agency and The Intergovernmental Panel
on Climate Change be a key factor in reaching the sub-1.5◦C goal and should consists
of 14% of the total CO2 reduction [2, 21]. Utilizing the huge offshore storage capaci-
ties is a necessity.

CCS involves three steps: capture, transport and storage of the CO2. The capture
phase can be simple or difficult depending on the emitters, however, in most cases it is
necessary to mix flue gas with a liquid solvent that reacts, either physically or chemi-
cally with the CO2. From the mixed solution it is possible to extract only the CO2 by
either adding heat (chemical absorption) or by lowering the pressure (Physically ab-
sorption). After separation, the CO2 is purified and compressed, and then transported
to a storage site for permanent storage. The transport is preferably by pipelines, how-
ever, transport with large cargo/LNG ships, trains or trailers are feasible alternatives. In
fact, the Langskip project [53] in Norway intends to capture CO2 from different emitters
on the East coast of Norway and transport it by large ships to the west coast of Norway,
where suitable storage formations are available. Chemical absorption involves adding
liquid solvent that reacts with the CO2, thus capturing the CO2 in this new output. The
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CO2 can be extracted from the new solution, for instance, by increasing the temperature
of the resulting fluid. Physical absorption is the process of adding a fluid to the flue gas
that separates the CO2 without a chemical reaction. Other techniques such as absorp-
tion with solids, membranes or cryogenic separation are under development.

The only feasible alternatives of storing captured CO2 on a large scale is in geological
formation at least 800 metres below the surface of the earth. This depth requirement is
important since the CO2 under high pressure will remain in a liquid state and, as a result,
will be less mobile than it would be in a gaseous state. Storage sites should preferably
be high permeable reservoirs that are confined with a cap rock. The CO2 will migrate
upwards, and without a proper cap-rock to confine the CO2 it will eventually leak into
the atmosphere. This is the same principles that has confined oil and gas for millions of
years. In time large portions of the CO2 mineralize and the risk of substantial release
from the reservoir will be significantly reduced. A schematic overview of these steps is
presented in Figure 1.1. For a review of the CCS technology we refer the reader to e.g.
[25, 56]

Figure 1.1: The figure illus traits the CCS process. Fuel is mines and delivered to a power plant that in
addition to energey, produces CO2. The CO2 is catched, and transported to a injection site. From the
injection site, the CO2 is injected into a reservoir, thus avoiding the CO2 from the power plant to reach
the atmosphere.

1.2 Marine CCS Monitoring
Monitoring is the procedure of observing and supervising/checking the progress of a
process over a period of time and keeping the process under systematic review. Envi-
ronmental monitoring involves collecting data from sensors, taking samples or remote
sensing (e.g. satellite data), that can provide information about changes from the base-
line. In general a proper marine monitoring program consists of three important aspects,
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detection, quantification and localization.

Monitoring of the marine environment is a part of the ecosystem based Marine Spa-
tial Planning [18] and Life under Water is one of UN’s Sustainable Development Goals.
Ensuring safe and secure offshore storage requires extensive marine monitoring pro-
grams over a long period of time. CCS projects will be designed to keep the stored
CO2 within the intended formations, and the injection wells and the formation will be
monitored by standard technologies to ensure detection of unanticipated events [61].
However, due to the large amount of CO2 that needs to be stored and, as a result, the
large area that needs to be monitored, there is always a possibility that CO2 may migrate
toward the sea floor undetected. As a precaution, the marine environment will have to
be monitored for indications of a leak. Monitoring of the seabed is also necessary to
comply with the regulations 1.

The marine component of the monitoring program assures that a storage project can
coexist with other offshore activities. The associated environmental monitoring can
also be beneficial for other purposes. For instance, tools are under development for as-
sessing the total environmental stress imposed on the oceans, e.g. Cumulative Effects
Assessments (CEA), in view of Marine Spatial Planning and ecosystem services frame-
work [35, 47, 63], and the potential stress added from CO2 storage projects needs to be
documented. The marine monitoring program also precludes unjustified allegations of
having adverse environmental effects [12], but will impose additional costs and chal-
lenges to the storage project [6, 7, 54]

Environmental changes, e.g. changes in bottom fauna or in the pelagic ecosystem
[8, 70], detection of bubbles from ship sonars [13, 52], or elevated concentration of
dissolved gases [4, 10, 19, 68], can be used as indicators of marine gas releases [16].
However, the real challenge is the high variability of the marine environment, both in
current conditions [3] and in biochemical activities [10]. Monitoring an unsteady ma-
rine environment for changes in variables that are naturally present can be considered
as a classification problem: data streams need to be categorized as leak or non-leak. A
false positive, i.e. indications of a leak that is not present, can become costly. The mon-
itoring program will enter a mode to initiate actions to locate and confirm the leakage.
This might include relatively cheap analyses of existing data or costly cruises and sur-
veys for confirmation. Another aspect is undetected seepage, so called false negatives.
A monitoring program has to be designed to minimize such incidents as they may im-
pose undetected additional stress on the environment.

In this thesis we focus on two distinct topics related to marine monitoring, namely
anomaly or leakage detection and impact assessment or quantification. If we are unaware
that an abnormal event has occurred, it is impossible to initiate counter measures.
Furthermore, it is important to assess how the leak will impact the environment, i.e.
how the CO2 spreads trough the water column to ascertain what measures to implement.

1https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32009L0031&from=EN
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Anomaly detection

To confirm a CCS leakage in a marine environment we must first have a system that de-
tects, and clearly signals that the leak is present. Blowouts will be easily detected due to
the natural extent and severity of the incident. However, if the CO2 seeps out through
cracks and faults, the task becomes much more difficult. In this context, machine learn-
ing algorithms may increase the ability to detect a leakage.

A sub-field of machine learning called anomaly detection is devoted to detecting
rare events. To distinguish data that stands out from the bulk of the data as whole is
referred to as anomaly detection or outlier detection. There are different algorithms
developed for anomaly detection and that are applied to fraud detection in insurance,
detecting ecosystem disturbances, detection of deceases in medical applications and ap-
plications related to network intrusion and network attacks.

In general there are three main approaches for detecting anomalies in data, unsu-
pervised, supervised and semi-supervised anomaly detection. In supervised anomaly
detection, we have knowledge of whether or not this particular instance is abnormal
or normal. Given this information, it is possible to train a model to classify new data
without labels as either abnormal or normal. This is a typical binary classification
problem. Unsupervised anomaly detection uses unlabelled data to identify anomalies.
Here instances that fit least can be viewed as anomalies. Training a model, and subse-
quently testing whether a new instance arises from this model is called semi-supervised
anomaly detection.

Marine monitoring with geochemical sensors can be conducted with either under
water vehicles or by fixed installations on the seafloor. In this thesis the focus is on fixed
installations. Fixed sensors can produce data of the CO2 concentration at specific, but
sparse locations over time. While we can obtain the data that corresponds to naturally
variable CO2 concentration, a leakage from a CCS confinement has never occurred.
Therefore, models are needed to create a dataset for credible leakage scenarios that can
be used to represent the abnormal situation, i.e. where a leakage has occurred. This
is in fact what we investigated in Paper A, where we use a probabilistic deep learning
model to detect CCS leakages.

Quantification and localization

To initiate appropriate action after a leakage is confirmed, it is of crucial importance to
quantify and localize the leakage. The transport of CO2 in the water column is governed
by two important principles, advection and diffusion. The main driver of the transport
is advection, i.e. mechanical transportation due to the current’s conditions. Under the
assumption that the excess CO2 does not alter the density of the water, it is possible
to model the CO2 transport as a passive tracer. The advection-diffusion model for a
passive tracer transport can be given as

∂c(x, t)
∂t

= D∆c(x, t) − W(x, t) · ∇c + f (x, t), x ∈ Ω, t ∈ [t0, t0 + T] (1.1)
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with some appropriate boundary and initial conditions. Here Ω is a bounded connected
domain in Rd , d = 2,3, c(x, t) is the concentration of CO2, D(x, t) ≥ 0 is the diffusion
coefficient, W(x, t) ∈ Rd is the velocity field and f (x, t) is the source term. Oleynik et.
al [55] used advection-diffusion model to optimize sensor layout in a CCS monitoring
setting.

The advection diffusion model requires velocity fields often obtained by running
ocean models such as FVCOM [14] or Bergen Ocean Model (BOM) [5]. With the
advection-diffusion model it is possible to estimate the transport of CO2 in the water
column; however, this tool requires that velocity fields be defined over the entire mon-
itoring domain. With only sparse measurements available, one of the key challenges
is to go from the observations to a representation across the entire monitoring domain.
Due to the probabilistic nature of the forcing of the ocean models (e.g. weather condi-
tions), the generated velocity fields are factors of uncertainty. To reflect this uncertainty
we want to obtain probabilistic velocity fields. It is possible to simulate currents with
different forcing to obtain different velocity field under different conditions. This is
a typical Monte Carlo estimator (see Section 3.2) for modelling the velocity field un-
certainty. The problem is that these simulations are extremely costly, and the possible
configurations of the forcing are vast. A data assimilation technique such as Ensemble
Kalman Filters (EnKF) [20] combines models, observations and Monte Carlo simula-
tions to obtain probabilistic representation of the entire domain. However, they suffers
from the above-mentioned issues.

Data driven methods is another approach to create velocity field given sparse ob-
servations. From existing data, it is possible to estimate parameters of a statistical
model that outputs velocity fields given the measurements. A conventional approach
for this purpose is, e.g. the Gappy Proper Orthogonal Decomposition (GPOD) method.
The challenge for the GPOD-method is that is does not scale well towards large data
sets. Traditional auto-encoders have been used for this purpose [1]; however neither the
GPOD nor the Auto-encoder generates probabilistic velocity fields. We have developed
a method for probabilistic reconstruction dependent only on the measurements. After
the model is trained, it is possible to input new unseen measurements to generate prob-
abilistic velocity fields for the entire monitoring domain. Although optimization of the
parameters of the model is time consuming, the prediction is not.

With the computationally low-cost advection-diffusion and probabilistic reconstruc-
tion model we have a framework that can be valuable in quantification and localization
of leakages. The absence of directly dependence on the governing forcing makes this
framework suitable for fast determination of the severity and extent of an incident. This
will be of crucial importance to limit the negative impact from a possible CCS leakage
and to provide input for proper support for decision makers.
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1.3 Subsurface CCS Monitoring
We also address monitoring of CCS site from a subsurface perspective. The Above
Zone Monitoring Interval (AZMI) [46] is the area above the cap rock of a CCS injec-
tion reservoir, see Fig. 1.2.

Figure 1.2: Illustration of the AZMI, the confining and injection layer, at a CCS injection site with one
injection well 31F-1, and two observation wells 31F-2 and 31F-3. Figure is taken from [38].

Monitoring in the above zone is a method by which properties in the AZMI are
recorded with a limited number of AZMI-wells to look for changes as an indicator of
potential migration of CO2 from the storage formation. CO2 is buoyant and will rise
towards the seafloor, and possibly affect the AZMI. In case of a leak from the reser-
voir, for example, we anticipate the pressure will increase. By analysing the pressure, it
is possible to both detect and quantify leakages from the CCS reservoir with measure-
ments in the AZMI.

The pressure in the AZMI is stable, even with injection of CO2. In contrast to ma-
rine monitoring, the natural variability in the AZMI is low. Hence, detecting anomalies
is easy. To quantify and pinpoint where a leakage however, is a much more difficult
task, and presents the same challenges as in the case of marine monitoring.

It is possible to simulate leaks in the injection zone and how it affect the pressure in
AZMI. As for the marine monitoring case, observations or AZMI-wells are sparse. If
we were able to use these measurements, and reconstruct the pressure field in the en-
tire reservoir, it is possible to pinpoint the location of the leak by identifying where the
pressure is the greatest. Simulations of different leakage scenarios, with different fluxes
can be input for a deep learning model that recreates the pressure and classifies the flux
of the leakage. In-situ data can then be given as input during prediction, classifying the
flux and recreating the pressure field.



Chapter 2

Deep Learning

The models we have developed for monitoring purposes rely on deep neural network
models. Hence, we introduce the core concepts of deep learning. This includes, but is
not limited to, the definition of a 2-layer feed forward neural network, cost and objective
functions, regularization and the manner in which a network can be trained to produce
desired output. The main references for this chapter are the textbook "Deep Learning"
by Goodfellow et. al [29] and the work of Gal [22].

2.1 Artificial Neural Network

Let x(i) be an instance of data which is input to a deep learning model, with associated
target values y(i). A target value can be a class or as we will use later the data x(i) itself.
All the instances of x(i), i = 1, . . . N, constitute the data set X, and all the target values
y(i), i = 1, . . . N, comprise the data set Y.

A feed forward neural network is a hierarchical model that consists of nodes or com-
putational units divided into subsequent layers. For each node, a non-linear activation
function is applied. The nodes between each layer are connected, so that the input to a
node is totally dependent on the output from the nodes of the previous layer. The model
is called a deep learning model if there are multiple hidden layers; see Section 2.1. The
simplest deep learning model has at least one hidden layer: an input layer and an output
layer. This structure makes it possible to formulate the deep learning model as a linear
system of equations.

The model input to a neural network is here defined as vector x(i) with Q elements.
The input is transformed linearly by W1 and b such that f(x(i)) =W1x(i) + b. W1 trans-
forms the input to a vector of K elements and is often called the weight matrix, while
the translation b is referred to as the bias. The bias can be interpreted as a threshold for
when the neuron activates.

A nonlinear activation function is applied elementwise to the transformed data.
The activation function is typically given as a rectified linear unit (ReLU) [48] or tanh
function. This activation introduces non-linearity to the other linear operations. The
superposition of the linear and nonlinear transformation is in combination with the ac-
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Input
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Figure 2.1: Illustration of a deep neural network with three hidden layers.

tivation function and is what we refer to as a hidden layer.

Applying another linear transformation W2 to the hidden layer results in this case
to the model output or output layer. The size of the output layer is a row vector with D
elements. Generally, many transformations and activations can be applied consecutively
which will result in a more complex hierarchical model. A generalization to a network
with several hidden layers is straightforward; to make this clear we here limit the notation
to a single hidden layer. We note that x(i) is vector of size Q, W1 is a K ×Q matrix that
transform sthe input to K elements, W2 is a D × K matrix, transforming the vector into
D elements and b consists of K elements. We write this as linear system of equations
transformed with the activation function σ

ŷ(i) =W2(σ(W1x(i) + b)) := fω, ω = {W1,W2,b} (2.1)

Depending on how the output layer is defined, we can use the network for classifica-
tion or regression tasks. For classification purposes, the number of nodes in the output
layer equals the number of classes, and typically transformed with a softmax function
[26]. The softmax function is a generalization of the logistic map that normalizes the
output relative to the different classes. In regression problems we want to estimate re-
lations between variables; we want to predict a continuous output based on some input
(variables). To use a linear activation function on the output layer will serve this purpose.

It has been shown that ANN is a universal approximation [33]; thus, our goal is to
find the weights of the given network to best approximate the map from the input to
the output. This means that we want to estimate the weights of the ANN ω, given the
input data x(i), the target y(i) such that the predictions ŷ(i) is minimized towards the true
target values y(i). This is a typical optimization problem, which can be minimized with
an objective function and optimization procedure.

2.2 Objective functions and optimization
An objective function for use in deep learning typically contains two terms: cost function
and regularization. The cost function takes the predicted and the true values as input.
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Depending on the task and what one wants to minimize, the cost function maximizes a
likelihood. In classification problems this is can be the negative cross entropy

C
W1,W2,b
1 (X,Y) = −

1
N

N∑
j=1

y(i)j log(̂y(i)j ) = − log p(Y|fω(X)), (2.2)

and in regression problems the Mean Squared Error (MSE)

C
W1,W2,b
2 (X,Y) =

1
N

N∑
i=1

(y(i) − ŷ(i))2 = − log p(Y|fω(X)), (2.3)

Minimization of the negative cross entropy and the MSE is well known to be equiva-
lent to minimize the negative log likelihood of the parameter estimation [66] for neural
networks. Depending on the task, minimizing Eq. (2.2) or Eq. (2.3) with respect to the
parameters ω = {W1,W2,b} maximizes the likelihood of these parameters. The choice
of the cost function is not restricted to those given above, and depend on the data, the
model structure and what one wants to predict with the model.

One of the key problems in deep learning is a phenomenon called overfitting. Over-
fitting occurs if the optimized model performs poorly on new unseen data, i.e. it does
not generalize well. To address this problem, regularization is added to the cost function.

Regularization is a general technique, where the goal is to make an ill posed prob-
lem well-posed. Overfitting is basically one example of an ill-posed problem. For
optimization problems, you could add a penalizing functional: L2 or L1 norm for the
parameters; or use dropout.

Regularization in ANNs work by penalizing the cost function, e.g. forcing the
weights to become small. The idea behind a specific regularization term could be
to minimize the weights of the ANN to generate a simpler model that helps against
overfitting. L2 regularization multiplied with some penalizing factor λi is one of the
most common regularization techniques. The cost function with regularization is called
the objective function. Adding L2 regularization to equation Eq. (2.2) or Eq. (2.3) result
in the objective function

L(W1,W2,b) = CW1,W2,b(X,Y) + λ1 | |W1 | |
2 + λ2 | |W2 | |

2 + λ3 | |b| |2 (2.4)

Another way of regularizing the cost function is through dropout, which is a stochastic
regularization technique. In Section 4.1 we will elaborate on dropout as a regulariza-
tion method and how we can use it to quantify uncertainty in predictions.

Minimizing the objective in (2.4) with respect to the weights ω with an objective
function and a gradient descent optimization method has proven to give good results in
a wide range of applications.

The gradient descent method [15] updates the parameter ω using the entire data set

ωt = ωt−1 − η∇L(ωt−1). (2.5)
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Here ωt represents the current configuration of the weights, while ωt−1 represents the
previous one. The parameter η is referred to as the learning rate, i.e. how large the step
in the negative gradient direction the update of the weights should be. Too small steps
can lead to poor convergence, while to large steps can lead to overshooting, i.e. missing
local/global minimums. Usually it is too expensive to calculate the gradient over the
entire dataset. This is solved by a technique called stochastic gradient descent [57].
Stochastic gradient descent performs a parameter update for each training example. A
natural extension and a more cost-efficient approach is the mini-batch gradient descent
approach. In mini-batch optimization, the gradient is approximated by calculating the
mean of the gradients on sub-sets or batches of the entire data set,

ωt = ωt−1 −
η

n

n∑
i=1

∇Li(ωt−1). (2.6)

The mini-batch gradient descent iterative process can be implemented in the neural net-
work with the back-propagation algorithm [58]. In back-propagation, the weights are
updated through a forward and backward pass. In the forward pass, we predict with the
current weight configuration and compare towards the target values. In the backward
pass, we use the chain rule successively from the output to the input to calculate the
gradient of ω. Based on the gradient direction and the learning rate, the configuration
of the weights is updated.

One of the disadvantages of the vanilla gradient descent approach to the ANN opti-
mization problem, is that it has a fixed leaning rate η. In line with the development of
ANN, methods dedicated to deep learning and adaptive adjustment of the learning rate
have been developed. Besides SGD with momentum [62], the two most used optimiza-
tion methods for ANNs are ADAM [39] and Root Mean Square Propagation (RMSProp)
[65]. RMSProp adaptively adjusts the learning rate of the gradients based on a run-
ning average for each of the individual parameters. The ADAM-algorithm individually
adjusts the weights in terms of both the running average, but also with respect to the
running variance.

The use of back-propagation together with a stochastic gradient descent method,
increase in available data and hardware have been the successes of deep learning during
the past decade.

2.3 Validation of ANNs
To validate and ensure that the predictions of the deep learning model also performs
well on new unseen instances, the data is split into three independent sub-data sets: a
training, a validation and a test data set. The training data set is directly used to optimize
the parameters of the model. The validation data set is indirectly used to optimize the
model, that is, we monitor the performance on the validation dataset after each epoch.
An epoch is one pass in the optimization over the entire training dataset. During train-
ing, the model sees the same training data multiple times, however, the instances are
usually randomly shuffled before a new epoch starts.
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After each epoch, we predict with this temporally model on the validation data set.
Usually we put criteria on the performance on the validation data set for when to stop
the optimization. We can use a so called early stopping regime, where the model stops
training if it does not see improvement on the validation score after a certain number of
epochs without improvement.

The purpose of the test data set is to validate on new unseen data that has not been
part of the training or the continuous validation of the model.

Outputs from simulations or monitoring sensors, i.e. time series data can be used as
input to a deep learning model. The temporal domain can be used to obtain instances.
For splitting of training, validation and test data sets in time dependent processes, we
distinguish between two splitting strategies. The data can either be split randomly or
dependent in time. Splitting randomly in time will lead to instances that are similar in
both the train, validation and test data, due to the autoregressive properties of the data.
This might lead to overfitting of the deep learning model. Splitting the data time depen-
dent procedure, means that the data is divided into subsets where the data in the each
data set is a closed interval with respect to the temporal domain. E.g. we can use the
first 80% of the data as train, the next 10% as validation, and the last 10% as test data
set. An issue with this approach is that if the process governing the data is complex,
e.g. shifts between different stochastic processes, this splitting might lead to a model
that is out of test distribution. That is, the test and training data is to different from each
to generate meaningfull predictions on the test data set. One the other hand, with in-
creasing amount of data, the out of test data problem could be resolved.

In all papers we have utilized convolutional neural networks. The next section
describes the principle of CNNs and the mechanism behind their success.

2.4 Convolutional Neural Networks(CNN)
CNNs [44] utilize the grid structures in the data to be analysed, i.e. in 1-D the regular
sampling in time series data, or in 2-D the fixed structure of pixels in an image, and use
convolutions instead of matrix multiplication in at least one of its layers. The discrete
convolution operation in 2D is defined as

s(m,n) = (x ∗ h)(m,n) =
∑
i,j

x(i, j) · h(m − i,n − j) (2.7)

where x is a M × N matrix, h(m,n) is a K × L matrix, and i, j range over all legal
subscripts. The resulting convolution s is a (M + K − 1) × (N + L − 1) matrix. The ob-
servation x is averaged with the kernel h(k,n), to produce a generally less noisy output
s(m,n). The output of a convolution operation is often referred to as features.

Normally implementations of CNNs do not actually use regular convolution, but
cross correlation operation. Cross-correlation and convolutions are very alike, and the
major difference in definition is that the kernel h(m− i,n− j) is altered to h(m+ i,n+ j).
During a convolution operation we have to reverse the order of either the input or the
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kernel, while this is not necessary in the cross-correlation operation. Using cross-
correlation simply reduces the computational cost during optimization of the CNN.

There are three main mechanisms for why convolutions and CNNs are successful;
sparse interactions between nodes, parameter sharing and equivariant representation
[27, 44].

1) In feed forward neural networks (matrix multiplication neural networks), every
output unit interacts with every input. CNNs is different in terms of often having
sparse interactions. Sparse interaction means that the output is dependent on a
limited number of inputs. However, with multiple consecutive CNN layers, the
units become indirectly connected. Due to the indirectly connected units or sparse
interactions the CNNs can efficiently describe complicated interactions between
several variables. Sparse interaction is a result of the convolutional operation and
occur when |h| < |x | [27].

2) If a parameter is used by several functions in a neural network model, this is
referred to as parameter sharing. Instead of learning a separate set of parameters
for every location, CNNs learn one set that can be utilized everywhere. Sharing
parameters limits the architecture of the model, reduces memory requirements
and improves the quality of the model/estimator.

3) The convolutional operation is eqvivariant to translation [27]. Eqvivariant means
that if the input changes, the output changes in the same way. Translation means
shifting the input. Eqvivariant to translation simply means that shifting the input
will not alter the output. The CNN generates a record of different features and the
features will be represented similarly regardless of where they appear.

The architecture of a full CNN consists in general of three important steps that
are repeated: the convolution operation, a non-linear transformation via the activation
function and a pooling operation. Pooling is a down-sampling technique to extract
important features from the convolutional operations. The step size which the kernel
slides over the input is called stride. If the stride is larger than one, the dimension of
the output decreases. Hence, using strides with a step size of two or more is often used
instead of pooling operation.

2.5 Autoencoders

A vanilla autoencoder is a neural network that basically copies the input to the output.
The autoencoder consists of an encoder h = f (x(i)) and a reconstructor or decoder
g = h(x(i)). A successful autoencoder can recreate the input such that g( f (x(i))) = x(i).
To be able to copy and recreate the exact same input is not particularly useful, and
usually the architecture of autoencoders is built so that it is not able to map the input to
the output perfectly. Let X be the input space, and Z be a range space of f , which is
commonly referred to as a feature space. The encoder f maps the input to the feature
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space, while the decoder g maps the features space back to X . i.e.,

f : X → Z
g : Z → X .

Often the feature space Z has a lower dimension than X which forces the autoencoder to
withdraw the most important characteristics in the data. These autoencoders, which are
called undercomplete autoencoders, have been used for dimensionality reduction and
feature extraction. In fact, the decoder of an undercomplete autoencoder with linear
activation functions is equivalent to PCA. The autoencoder with nonlinear activation
functions has the ability to learn nonlinear relationships in the data and thus learn more
valuable generalizations than the PCA [28].

If the dimension of X is equal to Z , we say that the autoencoder is overcomplete.
Overcomplete autoencoders use regularization as a tool to learn important representa-
tions Z . (e.g. sparse autoencoder, denoising autoencoders, contractive autoencoders).
The concept by which we seek to find a stochastic representation of z such that we can
represent the encoder as a distribution p(z|x(i)), and conversely the decoder p(x(i) |z) and
use variational inference to approximate p(z|x(i)), is called Variational Autoencoders
(VAE) [40]. VAEs are discussed in detail in Section 4.2.
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Chapter 3

Uncertainty quantification in Deep Learn-
ing

There are several methods for uncertainty quantification in deep learing. The delta
method [67] is a classical method for uncertainty quantification in statistical models. It
can be used to quantify uncertainty in deep learning by estimate the variance of a ran-
dom variable trough a Taylor expansions of the objective function. By calculating the
inverse of the hessian matrix it is possible to approximate the uncertainty of the param-
eters. The delta method have been applied in ANNs [37, 51], however, due the high
cost of calculating the Hessian for high dimensional parameter spaces, other methods
has been preferred. Nilsen et. al. [51] recently proposed a new cost efficient procedure
of approximating the Hessian in deep neural networks, which may increase the popu-
larity of delta method in ANNs in the future.

Another approach to obtain uncertainty estimates is so-called Deep Ensembles (DE)
[43]. In DE many models are trained with different initialization of the weights. To-
gether with the random nature of the mini-batch optimization, this leads to an ensemble
of models with different configurations and predictive outcome. The process resembles
bagging or bootstrapping. By assessing the variance over model ensemble predictions,
uncertainty estimates can be obtained. The simplicity of DE is the key advantage, while
the disadvantage is the high computational cost.

Dropout neural networks [60] can be used for uncertainty quantification if dropout
is kept on during prediction. This is referred to as MC-dropout [22]. In Paper A we
used MC-dropout for uncertainty quantification in time series classification. It turns
out that there is a close connection between MC dropout and BNN approximated with
VI. MC-dropout and how it approximates VI is reviewed in detail in Section 4.1. In the
remainder of this section we will review the concepts of Bayesian parameter estimation
and Bayesian Neural Networks, and two important approximating methods for estimat-
ing the intractable integral that arise in a Bayesian framework.
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3.1 Bayesian Neural Networks (BNN)

Bayesian approaches are methods for assessing uncertainty in a model output. In
contrast with only obtaining point estimates, these approaches approximate a general
distribution over the model parameters. With information about the uncertainty of the
models parameters, it is possible to obtain uncertainty estimates of the models pre-
dictive performance. In general we distinguish between two types of contribution to
uncertainty in Bayesian modelling: epistemic and aleatoric uncertainty [17]. Epistemic
or model uncertainty is related to the how well a model can explain the data, i.e. un-
certainty in the model parameters. Model uncertainty usually diminishes when data
increase. Aleatoric or measurement uncertainty is related to the data, e.g. uncertainty
introduced by noisy input or labels. BNNs allow for capturing the predictive uncer-
tainty, that is not only the aleatoric uncertainty but also the epistemic uncertainty by
estimating the posterior distributions. Here, we will briefly describe the concepts of
Bayesian parameter estimation and Bayesian Neural Networks, and two approximating
methods for estimating the intractable integral that often arises in a Bayesian framework.

Here we assume that optimal weights of the network are described by a probability
description p(ω), that is needed to be estimated. We view the input data X = {x(i)}N

i=1
and a target values data Y = {y(i)}N

i=1, as realizations of some random variables x and
y. For simplicity we assume that X and Y contains i.i.d. samples.

Any knowledge we have on the weights beforehand are referred to as the prior and
denoted p(ω). In neural networks we usually have no prior information about weights
and p(ω) is often chosen to be Gaussian or Laplacian distribution. It can be shown that
these priors result in different regularization effects. In particular, if we assume that both
the BNN model error and the prior have Gaussian distributions, it can be shown that the
Gaussian priors have a regularizing effect similar to L2-regularization. If the prior is
Laplacian distributed, it can be shown that this is equivalent to L1-regularization. We
will not go in details on the priors here, but we emphasizes the importance of the prior
in BNNs and how it can potentially affect the estimation of the model parameters.

The prior is updated trough Bayes rule after observing the data (X,Y):

p(ω |X,Y) =
p(ω)p(Y|X,ω)

p(Y|X)
(3.1)

p(ω |X,Y) is called the posterior distribution of ω, while p(Y|X,ω) is referred to as
the model (here the neural network architecture) or likelihood function. Under the
assumption that the instances in (X,Y) are independent, we can estimate the likelihood
as the product of probabilities

p(Y|X,ω) =

N∏
n=1

p(y(i) |x(i),ω) (3.2)

The denominator p(Y|X) is referred to as the model evidence and is the marginal
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likelihood with respect to the parameters ω;

p(Y|X) =

∫
p(Y|X,ω)p(ω)dω. (3.3)

In BNNs it is the model evidence that is usually intractable and needs to be approximated.
The posterior predictive distribution is defined as

p(y∗ |x∗,X,Y) =

∫
p(y∗ |x∗,ω)p(ω |X,Y)dω, (3.4)

where x∗ represents a new observation with unknown target y∗. By varying ω, equation
Eq. (3.4) can be viewed as an ensemble of models generated from p(ω |X,Y). It is dif-
ficult and sometimes impossible to solve equation 3.4 analytically; thus we often resort
to Monte Carlo sampling (See Section 3.2). If the Monte Carlo sampling becomes too
computationally costly, we can turn to other approximation methods. These includes,
but not limited to Laplace approximation [49], Stochastic expectation propagation [45]
and Langevin diffusion methods [71].

In this thesis we use Variational Inference [36, 69] to approximate the intractable
integrals that arise in BNNs. In the next sections we will briefly review both the standard
Monte Carlo method and the basics of variational inference.

3.2 Monte Carlo (MC) Estimators
The most common way to estimate the posterior and the marginal likelihoods is with
MC Estimators. The MC method [41] is a technique that uses random sampling to
approximate the intractable posterior or integrals. The posterior can be considered as
the expectation under the probability distribution p(ω |X,Y)

E[p(y∗ |x∗,X,Y)] =

∫
p(y∗ |x∗,ω)p(ω |X,Y)dω. (3.5)

Thus we can approximate p(y∗ |x∗,X,Y) as

E[p(y∗ |x∗,X,Y)] ≈
1
J

J∑
j=1

p(y∗ |x∗,ω j), ω j ∼ p(ω |X,Y). (3.6)

where J is the number of samples in the estimator. Under the assumption that the
samples are i.i.d. and that the second order moment of p(y∗ |x∗,X,Y) is bounded, the
MC-estimator converges towards the true expectation for large enough J. In fact, the
MC estimator in Eq. (3.6) is an unbiased estimator. Uncertainty quantification is possi-
ble by evaluating the empirical variance of p(y∗ |x∗,X,Y).

A major drawback with the MC-estimator presented above is that if the sampling
involves many parameters, the method has poor convergent properties. Sampling meth-
ods to solve this exist, e.g. Metropolis Hasting, Gibbs sampling, Hamiltonian Monte
Carlo (HMC) [50]. These methods might improve the convergence properties com-
pared to a random sampling MC-estimator, but usually not sufficiently for optimization
of ANNs. In such cases variational inference may be a viable alternative.
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3.3 Variational Inference (VI)
Ifω has high dimension, and the posterior probability distribution over the parameters is
too complex, estimating p(ω |X,Y) based on sampling methods may be impractical and
difficult, or at best have poor convergence properties. Variational inference addresses
this issue by approximating the complex posterior p(ω |X,Y), with a much simpler
distribution qφ(ω) with variational parameters φ. See [9] for a full review of the
Variational Inference method. VI makes use of the Kullback-Leibler (KL) divergence
or relative entropy. KL divergence can be viewed as a measure of similarity between
two distributions, and is defined as [42]:

KL[qφ(ω)| |p(ω |X,Y)] =

∫
qφ(ω) log

qφ(ω)

p(ω |X,Y)
dω (3.7)

Minimizing the KL divergence with respect to the variational parameters will thus
approximate the true posterior density. Let q∗

φ(ω) be a local or global minimum of the
KL divergence in equation Eq. (3.7). We want to minimize the KL divergence with
respect to the variational parameters to obtain qφ∗(ω) where

φ∗ = arg min
φ

KL[qφ(ω)| |p(ω |X,Y)] (3.8)

We can rewrite the KL divergence in terms of the prior p(ω), marginal p(Y|X) and like-
lihood function p(ω |X,Y), by combining equation (3.1) and (3.7) and some rearranging.
We can express the KL-divergence as

KL[qφ(ω)| |p(ω |X,Y)] =

∫
qφ(ω) log p(Y|X,ω)dω−

KL[qφ(ω)| |p(ω)] + log p(Y|X).

(3.9)

Moving log p(Y|X) to the left-hand side and changing signs defines the ELBO (or VI
objective function)

LV I(φ) ≤ log p(Y|X)−KL[qφ(ω)| |p(ω |X,Y)] (3.10)

where
LV I(φ) = −

∫
qφ(ω) log p(Y|X,ω)dω + KL[qφ(ω)| |p(ω)] (3.11)

Since KL[qφ(ω)| |p(ω |X,Y)] ≥ 0, we have that LV I(φ) is a lower bound of
log p(X|Y). Later, we will derive the ELBO for the specific variational auto-encoder
model, which in essence has the same derivation as for Eq. (3.11). We refer the reader
to Section 4.2 for a more detailed derivation of the ELBO. Maximization of the ELBO
with respect to the variational parameters defining qφ(ω), are in fact equivalent to maxi-
mization of the log-likelihood log p(Y|X). By maximizing the VI objective we can find
the best approximating density qφ∗(ω) by

φ∗ = arg max
φ

LV I(φ) (3.12)

Optimizing LV I(φ) and finding qφ∗(ω) is a compromise between fitting the observed
data properly by maximizing the likelihood, and minimizing the "distance" of prior
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distribution p(ω) vs the variational distribution qφ(ω). By substituting the true posterior
with the variational distribution q∗

φ(ω), we can obtain an approximation of the true
posterior distribution

p(y∗ |x∗,X,Y) =

∫
p(y∗ |x∗,ω)p(ω |X,Y)dω

≈

∫
p(y∗ |x∗,ω)q∗

φ(ω)dω

≈ q∗
φ(y

∗ |x∗).

(3.13)

In even small BNNs, the posterior is either difficult or intractable to calculate.

3.3.1 Reparametrization of the VI Objective
An iteration during training of an ANN with VI, consists of a forward and backward
pass for updating of the model parameters. A sample is drawn from the variational
posterior distribution during the forward pass to evaluate Eq. (3.11), i.e. a stochastic
sampling step. In the backward pass we need to calculate the gradients of φ. How-
ever, since φ is stochastic sampled in the forward pass it is not possible to directly
calculate the gradient with the chain rule and backpropegation. To solve this issue
we can reparametrize Eq. (3.11) with the so-called reparametrization trick introduced
by Kingma and Welling [40]. The reparametrization trick samples from a parameter-
free distribution and maps it to a deterministic function, where a gradient can be defined.

We can rewrite the VI objective function Eq. (3.11) in terms of the model output
fω(x(i)) of the neural network with respect to the input x(i)

LV I(φ) = −

N∑
i=1

∫
qφ(ω) log p(y(i) |fω(x(i)))dω + KL[qφ(ω)| |p(ω)] (3.14)

A key issue optimizing the objective above is that if the dataset is large, we have
to calculate the cost function for each instance, rapidly increasing the computational
cost. In a gradient descent setting, this is solved with mini-batch optimization. An
approximation to the cost function 3.14 can thus be expressed in terms of the sub-
samples:

L̂V I(φ) = −
N
M

∑
i∈S

∫
qφ(ω) log p(y(i) |fω(x(i)))dw + KL[qφ(ω)| |p(ω)], (3.15)

with a random index set S of size M . The approximation above is an unbiased stochas-
tic estimator of 3.14, i.e. E[L̂V I(φ)] = LV I(φ). Finding a local minimum of Eq. (3.14)
is an approximation to the same local minimum of Eq. (3.15) [57]. This is a classical
technique in deep learning optimization. The main challenge is that for Bayesian Neu-
ral Networks with more than one single hidden layer, calculation of the expected log
likelihood in 3.14 is generally not tractable. This integral can be solved by Monte Carlo
integration, and here we use Kingmas and Welling’s reparamerization trick [40] to deal
with the problem.
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The reparametrization trick introduces a new independent random variable ε used to
reparametrize the weights. In each weight matrix Wl,i Kingma and Welling factorize the
distribution of the rows wl,i. Reparametrization takes place by collecting q∗

φl,i
(wl,i) so

that wl,i = g(φl,i, εl,i). The distribution over εl,i is often the standard normal distribution,
however, any distribution p(εl,i) can be specified. For short we write p(ε ) =

∏
l,i p(εl,i)

and ω = g(φ, ε ). We apply this trick to equation 3.15 and obtain

L̂V I(φ) = −
N
M

∑
i∈S

∫
p(ε ) log p(y(i) |fg(φ,ε )(x(i)))dε − KL[qφ(ω)| |p(ω)] (3.16)

Applying the estimator that Kingma and Welling derived in [40] (Section 2.4) gives us
the following Monte Carlo estimator:

L̂MC(φ) = −
N
M

∑
i∈S

log p(y(i) |fg(φ,ε )(x(i))) + KL[qφ(ω)| |p(ω)], (3.17)

where ES,ε [L̂MC(φ)] = LV I(φ), i.e. an unbiased estimator. The log-likelihood integral
can then be approximated with Monte Carlo integration to obtain an approximate
posterior distribution as shown in Eq. (3.13).
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Variational Methods in Deep Learning

Here we presents preliminaries regarding the variational methods used in the papers. In
Paper A we use dropout as a variational technique to classify time series and approxi-
mate associated uncertainty to the classification. We summarize the work of Gal [22]
and outline how dropout in fact approximates variational inference. Further, we show
details on how to derive the ELBO in a traditional and conditional VAE. We present
the novel semi-conditional variational autoencoder (SCVAE) ELBO and show results
on the MNIST data set.

Gal and Ghahramani [22, 24] showed that a neural network with arbitrary depth
and non-linearities, with dropout applied before every weight layer, is mathematically
equivalent to an approximation to the probabilistic deep Gaussian process. Later they
extended their work [23] to convolutional neural networks, showing that CNNs regular-
ized with dropout are equivalent VI under certain conditions (Gaussian priors and large
enough hidden units). Here we outline the main steps of why and how general dropout
neural networks approximate variational inference. First, we explain how dropout in
neural networks operates, and secondly we provide an outline of how dropout neural
networks approximate VI and thus BNNs.

4.1 Dropout Neural Networks

Stochastic regularization is the process of inducing stochastic noise in a model so that
this variation efficiently functions as regularization. There are different methods by
which to add stochastic noise, however, dropout [32, 60] is indisputably the most popu-
lar.

Dropout introduces noise by randomly forcing a proportion of the nodes in the
model to have zero output. The nodes that are set to zero are determined by a Bernoulli
distribution. During prediction, dropout is turned off, resulting in a point estimate
of class probabilities. MC dropout is basically the same; however, during prediction,
dropout is still turned on, randomly shutting a proportion of the nodes off. In this
way, dropout generates a distribution over the model parameters by repeating the nodes
sampling several times and predicting for each configuration. The process is similar to a
bootstrap procedure [64]. The procedure of dropping out nodes is illustrated in Fig. 4.1.
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Figure 4.1: Illustration of the dropout procedure from [60].

For purpose of analysis, we want to consider dropout as a function of the parameters.
We introduce two vectors z1 and z2 that have the same number of elements as the input
and hidden layer, i.e. K and Q, respectively. The vector zi has elements that are either
1 or 0. Whether an element of the vector is 0 or 1 follows from a Bernoulli distribution
such that zi is 1 is 0 ≤ 1 − pi ≤ 1 for i = 1,2 and we write x̂ = z1 � x. We can thus
write the output of the first layer so that h = σ(W1x̂ + b). The same procedure can be
done with the hidden layer h but with a percentage p2 instead so that ĥ = z2 � h. As
for the regular neural network without dropout in Eq. (2.1) we linearly transform the
output such that the output of the model becomes ŷ = ĥ = W2ĥ. The procedure of
dropping out nodes in the fashion above can be done for as many layers as necessary.
During training of the network, we simply sample from the Bernoulli distribution for
each vector z1 and z2 in each forward propagation and use the same samples in the
backpropagation. In the next pair of forward and backward passes we sample a new
distribution over z1 and z2. We note that:

ŷ =W2ĥ
=W2(z2 � h)
=W2(diag(z2)h)
= Ŵ2(σ(W1(z1 � x) + b))
= Ŵ2(σ(W1 diag(z1) x + b))

= Ŵ2(σ(Ŵ1x + b)) = fŴ1,̂W2,b (4.1)

where Ŵ1 = W1diag(z1) and Ŵ2 = W2diag(z2) and ω = {Ŵ1,Ŵ2,b}. We therefore
can write the objective function for the dropout neural network in a similar way as in
Eq. (2.4); however, here we represents mini-batches of index set S and size M:

L̂Dropout(W1,W2,b) =
1
M

∑
i∈S

CŴ1,̂W2,b(x(i),y(i))

+ λ1 | |W1 | |
2 + λ2 | |W2 | |

2 + λ3 | |b| |2 (4.2)
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We can express the cost function in terms of the negative log likelihood (for classification
tasks) [66]; thus we can obtain the following expression for the dropout objective
function

L̂Dropout(W1,W2,b) = −
1
M

∑
i∈S

log p(y(i) |fŴ1,̂W2,b(x(i)))

+ λ1 | |W1 | |
2 + λ2 | |W2 | |

2 + λ3 | |b| |2 (4.3)

where p(y|fŴ1,̂W2,b(x(i))) = N(y; fŴ1,̂W2,b, I). We write the dropout operation in terms
of the function

ω̂i =
{
Ŵi

1,Ŵ
i
2,b

}
=

{
W1 diag(ε̂ i

1),W2 diag(ε̂ i
2),b

}
= g(ψ, ε̂ i) (4.4)

Here ε̂ i
1 ∼ p(ε1), and ε̂ i

2 ∼ p(ε2) where 1 ≤ i ≤ N , and p(ε̂ l) is a vector of zeros and
ones, i.e. realizations from a Bernoulli distribution with a probability pl , with same size
as the columns of the Wl . The index l is refers to the lth layer of the neural network, in
this particular example l = {1,2}. For each column of weights of the different neural
network layer weights Wl , there is a probability pl that a particular column will be
multiplied with zero, and thus be "dropped out". We write the dropout neural network
cost function in terms of g(ψ, ε̂ i) and get:

L̂Dropout(W1,W2,b) = −
1
M

∑
i∈S

log p(y(i) |fg(ψ,̂ε i)(x(i)))

+ λ1 | |W1 | |
2 + λ2 | |W2 | |

2 + λ3 | |b| |2 (4.5)

We will later see that this is a convenient notation when comparing dropout neural
networks towards the VI objective function.

4.1.1 Dropout Neural Network approximates VI
Gal [24] showed that optimizing the neural network cost function with dropout regular-
ization is equivalent VI. Since we are using a stochastic gradient descent method, we
define the derivatives of the dropout objective with respect to the parameters ψ. The
derivative of the dropout objective can be expressed as:

∂

∂ψ
L̂Dropout(ψ) = −

1
M

∑
i∈S

∂

∂ψ
log p(y(i) |fg(ψ,̂εi))(x(i)) + . . .

∂

∂ψ
(λ1 | |W1 | |

2 + λ2 | |W2 | |
2 + λ3 | |b| |2), (4.6)

and the derivative of the variational objective can be expressed as:

∂

∂φ
L̂V I(φ) = −

N
M

∑
i∈S

∂

∂φ
log p(y(i) |fg(φ,ε)(x(i)))dε +

∂

∂φ
KL[qφ(ω)| |p(ω)] (4.7)

We see that these two objective functions are very similar to one another. The
difference is the regularization term, and a different scaling of the log-likelihood term.
We define the prior p(ω) so that the following condition holds:
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∂

∂ψ
N(λ1 | |W1 | |

2 + λ2 | |W2 | |
2 + λ3 | |b| |2) =

∂

∂φ
KL(qφ(ω)| |p(ω)) (4.8)

This condition is referred to as the KL-condition. Assuming that this condition holds,
we have the following relation between the objective function of dropout NN and VI:

∂

∂ψ
L̂Dropout(ψ) =

1
N

∂

∂φ
L̂V I(φ), (4.9)

Gal [24] (Appendix A) proved that the KL-condition holds for a large enough number of
hidden units in the case where the model priors p(ω) is a product of uncorrelated Gaus-
sian distributions over each weight. Under the constraint mentioned above, optimizing
dropout neural network is equivalent to variational inference.

4.2 Variational Autoencoders (VAE)

The main difference between a classical autoencoder Section 2.5 and the variational
version is that VAE approximates probability densities instead of a point estimate of the
parameters.

As earlier let x(i) be an instance of data X that arise from a continuous or discrete
random variable x. An unobserved continuous random variable z is assumed to govern
the random variable x, i.e. x(i) ∼ pθ(x|z). Values of z(i) are generated from a prior dis-
tribution pθ(z), that is z(i) ∼ pθ(z). Furthermore, the two probability density functions
pθ(z) and pθ(x|z) are assumed parametric and differentiable with respect to the genera-
tive parameters θ and the latent representation z.

We seek to find the parameters θ that in a best possible manner estimates the
probability distribution pθ(x(i) |z). From the the law of probability we have that

pθ(x) =
∫

pθ(x,z)dz =
∫

pθ(x|z)pθ(z)dz. (4.10)

Thus, we can calculate pθ(x) if we know pθ(x|z) and pθ(z). We do not know the "true"
distribution pθ(z); however, we can estimate it based on the data X. We thus infer
the probability distribution of the latent variable pθ(z) conditioned on the data, i.e.
pθ(z|x(i)). The problem is that it is not trivial to approximate pθ(z|x(i)) as well. In many
contexts we turn to MC methods, however, in VAEs as the title indicates, VI is used
to infer pθ(z|x(i)). The main idea is that we can define a new probability distribution
qφ(z|x(i)) that is easy to evaluate and use this to approximate pθ(z|x(i)). qφ(z|x(i)) is
often referred to as the recognition model. Typically qθ(z|x(i)) is parameterized as a
Gaussian, but in principle any parameterizable distribution can be used. Introduction of
the recognition model is effectively turning the sampling problem into an optimization
problem. We can derive the ELBO of the VAE by taking the KL-divergence between
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the recognition model qφ(z|x(i)) and the true distribution pθ(z|x(i))

KL[qφ(z|x(i)) | | p(z|x(i))] =
∑

z

qφ(z|x(i)) log
qφ(z|x(i))
p(z|x(i))

= Eqφ(z|x(i))

[
log

qφ(z|x(i))
pθ(z|x(i))

]
(4.11)

From Bayes theorem we have the posterior distribution that can be expressed as a product
of the prior distribution pθ(z) and the likelihood pθ(x(i) |z) divided by the probability
distribution of the data. Using Bayes’ rule in equation 4.11 yields

KL[qφ(z|x(i))| |pθ(z|x(i))]

= Eqφ(z|x(i))

[
log qφ(z|x(i)) − log

pθ(x(i) |z)pθ(z)
pθ(x(i))

]
= Eqφ(z|x(i))

[
log qφ(z|x(i)) − (log pθ(x(i) |z) + log pθ(z) − log pθ(x(i)))

]
= Eqφ(z|x(i))

[
log qφ(z|x(i)) − log pθ(x(i) |z) − log pθ(z) + log pθ(x(i)))

] (4.12)

The last term of 4.12 is thus independent of z and can be moved outside the expectation
so that:

KL[qφ(z|x(i))| |pθ(z|x(i))]

=Eqφ(z|x(i))

[
log qφ(z|x(i)) − log pθ(x(i) |z) − log pθ(z)

]
+ log pθ(x(i))

(4.13)

Moving log pθ(x(i)) to the left-hand side, we know that this will be smaller or equal to
the right-hand side, since the KL-divergence is positive per definition

KL[qφ(z|x(i))| |pθ(z|x(i))] − log pθ(x(i)) ≤

Eqφ(z|x(i))

[
log qφ(z|x(i)) − log pθ(x(i) |z) − log pθ(z)

] (4.14)

If we change the sign of equation 4.14 we observe that with some rearranging we
can express the right-hand side as a maximum likelihood estimate regularized with a
KL-divergence term:

log pθ(x(i)) − KL[qφ(z|x(i))| |pθ(z|x(i))]

≥ Eqφ(z|x(i))

[
log pθ(x(i) |z) − (log qφ(z|x(i)) − log pθ(z))

]
(4.15)

≥ Eqφ(z|x(i))

[
log pθ(x(i) |z)

]
− E

[
log qφ(z|x(i)) − log pθ(z)

]
(4.16)

≥ Eqφ(z|x(i))

[
log pθ(x(i) |z)

]
− KL[qφ(z|x(i))| |pθ(z)] (4.17)

The right hand side is the VAE ELBO and is our objective function, i.e.

LV AE(θ, φ,x(i)) = Eqφ(z|x(i))

[
log pθ(x(i) |z)

]
− KL[qφ(z|x(i))| |pθ(z)]. (4.18)
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The first term in Eq. (4.18) is called the reconstruction term because it is a measure of
the likelihood of the reconstructed data output. The K-L term can be interpreted as a
regularization term, as it is a constraint on the shape of the approximate posterior.

We can choose the parameter family qφ(z|x(i)) and pθ(z). For convenience, pθ(z) =
N(0, I) and qφ(z|x(i)) = N(µ(i),diag(Σ(i))). The reason for this choice is that it is possible
to express KL[qφ(z|x(i))| |pθ(z)] in closed form,

KL[qφ(z|x(i))| |pθ(z)] =KL[N(µ(x(i)), Σ(x(i)))| |N(0,1)]

=
1
2

(
tr( Σ(x(i))) + µ(x(i))T µ(X) − k − log det( Σ(x(i)))

)
, (4.19)

where tr and det denote the trace and the determinant of the covariance matrix. This
simplifies Eq. (4.19):

KL[N(µk(x(i)),Σk,k(x(i)))| |N(0, I)] =

1
2

(∑
k

Σk,k(x(i)) +
∑

k

µk(x(i))2 −
∑

k

1 − log
∏

k

(Σk,k(x(i)))

)
=

1
2

(∑
k

Σk,k(x(i)) +
∑

k

µk(x(i))2 −
∑

k

1 −
∑

k

log(Σk,k(x(i)))

)
=

1
2

∑
k

(
Σk,k(x(i)) + µk(x(i))2 − 1 − log(Σk,k(x(i)))

)
. (4.20)

In practice we optimize the log-variance for numerical stability.

4.3 Conditional Variational Autoencoders (CVAE)

CVAEs [59] are similar to VAEs but are different by the conditioning of the output
variable on some variable, here denoted c. This can be a label or some other feature
of interest. Here we want to find the generative parameter θ, that maximizes the log-
likelihood log pθ(x(i) |c). Following the same procedure as for the VAE, i.e. introducing
a recognition model qφ(z|x(i),c) (with variational parameters φ) as an approximation to
the distribution pθ(z|x(i),c), we can obtain the CVAE ELBO. We use the definition of
the Kullback-Leibler divergence and Bayes’ theorem to obtain

log pθ(x(i) |c) − KL(qφ(z|x(i),c)| |pθ(z|x(i),c))

≥ Eqφ(z|x(i),c)

[
− log qφ(z|x(i),c) + log pθ(x(i),z|c))

]
≥ Eqφ(z|x(i),c)

[
− log qφ(z|x(i),c) + log pθ(z|x(i)))

]
+ Eqφ(z|x(i),c)

[
log pθ(x(i) |c,z)

]
≥ KL

[
qφ(z|x(i),c)| |pθ(z|c)

]
+ Eqφ(z|x(i),c)

[
log pθ(x(i) |c,z)

]
= LCV AE(θ, φ,x(i),c) (4.21)
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Generative modeling of data with known labels by conditioning a certain class have been
successful in multiple applications, e.g. [11, 30, 31, 34]. In the prediction phase, this
allows probabilistic reconstruction of a class. Sampling randomly in the latent space
together with the label information will produce different versions of this particular
class. The CVAE introduces a framework that generates distribution over each class
and thus permits sampling from the conditional distribution pθ(z|c).

4.4 Semi Conditional Variational Autoencoders (SCVAE)
In Paper B, we introduce a modification or special case of a classical CVAE for proba-
bilistic reconstruction of data. In the paper we have focused on reconstruction related to
a time-dependent process and fluid flow. Here we want to highlight that the framework
can be used in a more general setting. The SCVAE aims to reconstruct data, condi-
tioned on sparse observation of the data itself.

Let w ∈ Rd, d ∈ N, represent some data, e.g. pixel values. Further, let P =
{p1, ..., pN} be a mesh that consist of N grid points pn, n = 1, ...,N . The data w
evaluated on P can be represented as a vector x(i) ∈ RN,

x(i) = (w(p1), ...,w(pN))
T . (4.22)

The collection of x(i), i = 1, . . . ,K, constitutes the data set X. Further, we assume that the
information is only available only at specific points in P, that is, at Q = {q1, ...,qM} ⊂ P
where M is less than N . Hence, there is M = {m(i) ∈ RM : m(i) = C x(i), ∀x(i) ∈ X},
where C ∈ RM×N is a sampling matrix. That is, C is

(C)i j =

{
1, if qi = s j
0, otherwise , i = 1, ...,N j = 1, ...,M . (4.23)

The problem of reconstructing the x(i) ∈ X from m(i) ∈ M, is presented in a schematic
plot in Fig. 4.2. Here, we address the mentioned problem from a probabilistic point of

Figure 4.2: Sketch of reconstruction of x(i) from m(i). The dots on the right side represent the grid P,
and those on the left side represent the measurement locations Q.

view. Let x : P → RN and m : Q → RM be two multivariate random variables as-
sociated data on P and on Q, respectively. Then the data sets X and M consist of the
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realizations of x and m, respectively. Using X and M, we intend to approximate the
probability distribution p(x|m). This would not only allow to predict x(i) given m(i), but
also for a probabilistic reconstruction of x(i). We can interpret the variation as an esti-
mate for the uncertainty. A special version of a variational auto-encoder can be used to
approximate p(x|m).

In the SCVAE we use the measurement m(i) as the conditioning to estimate the
probability function pθ(x|z,m). Since m(i) = Cx(i), where C is non-stochastic we can
simplify the encoder and recognition model to

pθ(z|x(i),m(i)) = pθ(z|x(i)) and qφ(z|x(i),m(i)) = qφ(z|x(i)) (4.24)

Hence, the CVAE ELBO can be updated and we can obtain the SCVAE ELBO as follows

LSCV AE(θ, φ,x(i),m(i)) =KL
[
qφ(z|x(i))| |pθ(z|m(i))

]
+ Eqφ(z|x(i)

[
log pθ(x(i) |m(i),z)

] (4.25)

Maximizing the SCVAE ELBO Eq. (4.25), will maximize log pθ(x(i) |m(i)), that is re-
constructing x(i) given the measurements m(i). The SCVAE structure allows for a sim-
plification of the auto-encoder structure. This means that we do not need to consider the
measurements in the encoding phase. With assumptions that pθ(z|m) is normally dis-
tributed and that qθ(z|x(i)) is Gaussian (as in Section 4.2), we can estimate the KL-term
as given in Eq. (4.20). The reconstruction term can be estimated with a MC estimator
and the reparametrization trick as [40]

Eqφ(z|x(i)
[
log pθ(x(i) |z,m(i))

]
≈

1
L

L∑
l=1

log pθ(x(i) |z(i,l),m(i)), (4.26)

where z(i,l) = gφ(ε
(i,l),x(i),m(i)), ε l ∼ p(ε ). (4.27)

Here ε l is an auxiliary (noise) variable with independent marginal p(ε ), L is the number
of samples and gφ(·) is a differentiable transformation of ε, parametrized by φ, for details
see [40].

4.4.1 SCVAE on MNIST Dataset
We illustrate the SCAE performance on the classical MNIST (Modified National In-
stitute of Standards and Technology) dataset. The MNIST data set consists of 60000
digital grey scale images of handwritten digits with dimension (28 × 28), that are used
for training and validation. The test dataset consists of 10000 images, so that in to-
tal there are 70000 images. The 60000 instances were split randomly, such that 30%
constitute a validation data set, and the remainder the training data set. This implies
training data and a validation dataset consisting of 42000 and 18000 instances, respec-
tively.

We generate the data set M as described in Eq. (4.23) by uniformly withdraw obser-
vations from X. We create four different data sets, with 64,36,25 and 16 observations
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in each image. We normalize the pixel values in both M and X to improve the condi-
tioning of the optimization problem for each of the test, train and validation data sets.
Four different models are trained, dependent on the number of measurements in the im-
ages. As a dimension reduction technique we use two convolutional layers with strides
and kernel sizes of two. The reparametrization trick is applied in the decoder after the
convolutional layers. The output of the reparametrization operation produces the out-
put of the encoder, i.e. the latent representation z with latent dimension of two. The
decoder takes the measurements m(i) and the latent representation z as input. The two
inputs are concatenated and reshaped to the original structure by using transposed con-
volutional layers with strides and kernel sizes two.

For optimization of the models we use mini-batch optimization with batch sizes of
64 and the RMSProp algorithm. We run all models to 60 epoch and predict on random
samples in the test data set to illustrate the reconstruction and associated uncertainty.
We want to emphasize that in this operation, we have not spent much time on opti-
mizing hyperparameters. With a more structured optimization of the hyperparameters,
results could be improved.

Fig. 4.3 shows column-wise the true label, the observations, the mean prediction
and prediction with uniform sampling over z. From first to last row in Fig. 4.3 results
are shown with 64,36,25 and 16 pixels as measurements, respectively. With 64,36 and
25 pixels as measurements, we observe that the mean prediction is quite good for this
particular instance in the test data. The last row shows reconstruction with only 16 mea-
surements. The reconstruction can be mistaken as an eight instead of a five.

We input the test data X to the encoder, and predict the latent distribution for all
instances in the test dataset. Fig. 4.4 shows the prediction for the different models. We
observe that the latent representation with 64 and 36 observations have a distribution
that better resembles a 2D normal distribution, than to the models with 25 and 16
observations. To compare the different models, we calculate the relative mean L2-error
of the reconstructed images. That is,

E =
1
n

n∑
i=1

| |̂x(i) − x(i) | |2
| |x(i) | |2

(4.28)

where x̂(i) is the mean prediction. From Fig. 4.5 we observe that the relative L2 er-
ror increases with a corresponding decrease in the number of measurements. With
64,36,25 and 16 measurements, the relative L2-error (See, Eq. (4.28)) for all samples
in the test data is 0.123,0.241,0.403 and 0.516, respectively. The spread or variance of
the error also increases with decreasing measurements, that is the standard deviations
are 0.085,0.144,0.184 and 0.241, for the different models. This is according to expec-
tations, as the model is conditioned on less information with a decreasing number of
observations.
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Figure 4.3: First Column: The true label/instance. Second Column: From first to last row; 64,36,25
and 16 uniformly sampled observations used as conditioning in the SCVAE Third Column: Mean
prediction, i.e. z = [0,0] Fourth Column: Uniformly sampling over the latent representation with
predictions.
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Figure 4.4: The latent representation for the test data set for the different model, i.e. trained with 64,
36, 25, and 16 fixed observations. The different colours shows the different numbers in the data set.
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Figure 4.5: Relative L2 error (See Eq. (4.28)) for the models trained with 64,36,25 and 16 uniform
fixed observations.



Chapter 5

Introduction to the papers

Paper A: Binary Time Series Classification with Bayesian Convolutional Neural
Networks when Monitoring for Marine Gas Discharges

Kristian Gundersen∗, Anna Oleynik, Nello Blaser, Guttorm Alendal (2020), Algorithms,
volume(13/145)

Paper A investigates detection of abnormal time series and CO2 levels on the seafloor
from an unwanted discharge from CCS sites that the leak into the marine environment
from subsurface storage sites. In a marine monitoring situation, expensive cruises to
confirm potential leakages has to be minimized. Traditional time series classification
techniques and deep learning approaches to the problem usually produce a deterministic
outcome if there is a leak or non leak. In Paper A we use a BNN for binary classification
of time series. The predicted labels represents either a leak or no-leak situation. We use
a BCNN for the classification, that is a classical CNN where we have applied the MC
dropout technique for uncertainty quantification. This ensures probabilistic predictions
of what class the time series belongs to, and provides valuable information for decision-
makers. We present an algorithm that uses the posterior predictive distribution from
the BCNN framework to make informed and optimal decisions under a specific cost
attributed to the different actions and outcomes.

Paper B: Semi Conditional Variational Auto-Encoder for Flow Reconstruction and
Uncertainty Quantification from Limited Observations

Kristian Gundersen∗, Anna Oleynik, Nello Blaser, Guttorm Alendal, Submitted to
Physics of Fluids, August 2020, published on arxiv.org

Paper B addresses the issue of reconstruction of flow fields based on sparse observations
with associated uncertainty quantification. We use a variational auto-encoder to solve
the problem. The approach is tested on two different data sets, flow around a 2D
cylinder and currents from the ocean model BOM. The results shows good performance
in comparison with the more traditional Gappy Proper Orthogonal Decomposition
approach. This method can be used to quantify the impact of a leakage in a probabilistic
manner.
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Paper C: A Variational Auto-encoder for Reservoir Monitoring

Kristian Gundersen∗, Seyyed Hossini, Anna Oleynik, Guttorm Alendal, To be submitted
to Machine Learining, published on arxiv.org

Paper C focus on subsurface monitoring through observations wells in the AZMI. We
simulate leakages in a CO2 storage reservoir and record the impact on the pressure
in the AZMI. A model that both reconstructs the pressure fields and classifies the
flux of the leakage is presented. The approach quantifies not only the uncertainty of
the reconstructed pressure, but also the uncertainty of classification of the flux of the
leakages. In this case we optimize two tasks simultaneously, hence, the proposed model
is a so-called multitask learning (MTL) framework. With a full dense pressure field, it
is possible to estimate the location of the leakage. The estimation of the flux makes it
possible to draw conclusions about the severity of the event.



Chapter 6

Contribution and Outlook

Over the last decade there have been several projects, e.g., QICS (Quantifying and Mon-
itoring Potential Ecosystem Impacts of Geological Carbon Storage), ETI MMV (Energy
Technologies Institute Measurement, Monitoring and Verification of CO2 Storage), and
STEMM-CCS (Strategies for Environmental Monitoring of Marine CCS) , dedicated to
monitoring of CCS sites. One of the remaining challenges in implementation of CCS
monitoring program is how to treat the large amounts of data generated by such a pro-
gram. A recently published paper by Dean et. al. [16], pinpoints the need for research
for dealing with missed/false alerts due to large variations in the background signal as
well as methods for real time decision making are needed. One of the advantages with
deep learning approaches is that they can detect sophisticated patterns masked by the
natural variability, thus increasing the detectability over more conventional methods.
The proposed algorithm in Paper A is an approach that deals with the false/positive
issue through uncertainty quantification, and use this information for making optimal
decision. An potential extension of the work presented in Paper A is to include mul-
tivariate time series data, e.g. pH, alkalinity, pressure or temperature to improve the
classification. Another possible extension is to use transfer learning, i.e. first train the
classifier on model data and then fix the weights of the first layers and train the last lay-
ers on limited in-situ data. In the experiment presented in Paper A, the BCNN-model
is optimized with data based on a limited number of simulations for a limited time pe-
riod. This biases the BCNN-model towards the simulated conditions. The model can
still be used in a general scenario, but its predictive power will decrease. That’s why
more simulations with different forcing, leak locations and fluxes are necessary to gen-
erate a predictive model that is more robust.

One of the major issues in design of monitoring programs is ascertaining where to
place sensors. In combination with an advection-diffusion model, we can use the SC-
VAE presented in Paper B to create statistical sound velocity fields, that in turn can be
used to create statistical sound footprints of marine leakages. An MC estimator can
be developed for this purpose, that is, we can use the advection-diffusion model and
run it multiple times and integrate over the possible release locations, the velocity field
distribution and leakage flux. The numerical ocean models are well suited to generate
velocity fields, they rely on multiple inputs, including weather conditions. Even if these
inputs are readily available, which frequently is not the case, data assimilation meth-
ods must be used to produce reliable results and avoid a systematic bias. Training the
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SCVAE model might be time consuming; however, the prediction is not. This allows
for fast production of probabilistic velocity fields without the need of running compu-
tationally demanding ocean models. We want to emphasize that the SCVAE could be
used in a wide range of applications, where the target is to go from sparse observations
to representation over an entire domain, and where uncertainty quantification is impor-
tant. In Section 4.4 we showed that the method can be applied in computer vision as
well. A natural extension of the SCVAE is to add time-dependency to the model. This
could be done by introducing a Markov assumption. Then instead of approximating
pθ(x(i) |m(i)) we approximate pθ(x(i) |m(i),x(i−1)).

Governments and legislation demand that operators of CCS sites have proper subsur-
face monitoring program. The MTL framework proposed in Paper C can be a valuable
tool to quickly obtain information about where the leak is located and the severity of
it. If CO2 leaks to the subsurface environment and subsequently to the atmosphere,
operators will be held accountable. The MTL-model can be used to determine the envi-
ronmental and financial consequences of a leakage. The proposed MTL-model can be
used to optimizing the placement of the AZMI-wells. Training multiple MTL-models
with different locations of the well placement, and choose the model that minimizes the
error of both the quantification of flux and best possible recreate the pressure may serve
this purpose. In Paper C we simulated leaks with the same porosity and permeability
for all leakage scenarios. A natural extension of our work is to alter the porosity and
permeability during generation of input to the model, since these parameters are uncer-
tain. Ideally, many more simulations should be included in a in-situ monitoring situation.

Through out the papers we have relied on output from models (e.g. ocean models
and reservoir simulators) as input for our data driven methods. These models are inher-
ently inaccurate, as they depend on numerical schemes, discretization, and assumptions
related to the forcing of the model. It is possible to hindcast or history match with his-
torical observations to improve the model’s performance. Methods such as EnKF can
be used to improve the fit between the model and measurements. One of the major
problems with model data that it is smoother than in-situ data. Prediction using in-situ
data, that is trained on data from models that are not hindcast or history matched may
yield poor results. We have not used history matched or hindcasted data, which would
be needed if the model to be used for site monitoring.

To use data driven methods and ANNs to explain physical phenomena can be
controversial. The crown argument against artificial neural network is that they are
so called black boxes, meaning that models is highly complex, and an understanding
the mechanism behind the model prediction is elusive. ANN yields exceptional results
in many cases but at the expense of low interpretability of the model and outcome.
Improvement of interpretability of the deep learning model is currently a field of
research.
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Abstract: The world’s oceans are under stress from climate change, acidification and other human
activities, and the UN has declared 2021–2030 as the decade for marine science. To monitor the marine
waters, with the purpose of detecting discharges of tracers from unknown locations, large areas will
need to be covered with limited resources. To increase the detectability of marine gas seepage we
propose a deep probabilistic learning algorithm, a Bayesian Convolutional Neural Network (BCNN),
to classify time series of measurements. The BCNN will classify time series to belong to a leak/no-leak
situation, including classification uncertainty. The latter is important for decision makers who must
decide to initiate costly confirmation surveys and, hence, would like to avoid false positives. Results
from a transport model are used for the learning process of the BCNN and the task is to distinguish
the signal from a leak hidden within the natural variability. We show that the BCNN classifies time
series arising from leaks with high accuracy and estimates its associated uncertainty. We combine
the output of the BCNN model, the posterior predictive distribution, with a Bayesian decision rule
showcasing how the framework can be used in practice to make optimal decisions based on a given
cost function.

Keywords: deep learning; Bayesian convolutional neural network; uncertainty quantification; time
series classification; CO2-leak detection

1. Introduction

The world’s oceans are under tremendous stress from global warming, ocean acidification and other
human activities [1], and the UN has declared 2021–2030 as the ocean decade (https://en.unesco.
org/ocean-decade). Monitoring the marine environment is a part of the ecosystem-based Marine
Spatial Planning initiative by the IOC [2] and Life Under Water is number 14 of the UN’s Sustainable
Development Goals.

The aim here is to study how the use of machine-learning techniques, combined with physical
modeling, can assist in designing and operating a marine environmental monitoring program.
The purpose of monitoring is to detect tracer discharges from an unknown location. Examples
are accidental release of radioactive, biological, or chemical substances from industrial complexes,
e.g., organic waste from fish farms in Norwegian fjords [3] and other contaminants that might have
adverse effects on marine ecosystems [4].

As a case study, we use the monitoring of areas in which large amounts of CO2 are stored
in geological formations deep underneath the seafloor. Such storage is a part of the Carbon
Capture and Storage (CCS) technology and, according to the International Energy Agency and The
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Intergovernmental Panel on Climate Change, will be a key factor to reach the below −1.5 ◦C goal
and should account for 14% of the total CO2 reduction [5,6]. Due to the large amount of CO2 to be
stored, and as a precaution, the marine environment will have to be monitored for indications of a leak
through the seafloor to compile with regulations (https://eur-lex.europa.eu/legal-content/EN/TXT/
PDF/?uri=CELEX:32009L0031&from=EN) [7–9].

A challenge for detecting CO2 seeps to marine waters is that CO2 is naturally present in marine
environments and the concentration is highly variable due to local transport by water masses, uptake
of atmospheric CO2, temperature, biological activity, geochemistry of the sediments and other factors.
Therefore, a CO2 seep signal can be hidden within natural variability. The purpose here is to classify
noisy time series into two classes: leak vs no-leak.

Time series classification (TSC), or distinguishing of ordered sequences, is a classical problem
within the field of data mining [10,11]. The problem has been tackled with numerous different
approaches; see for instance Bagnall et al. [12].

Distance-based methods use a measure of distance, or similarity, between times series. They then
combine them with a distance-based classifier. Dynamic Time Warping (DTW) and Euclidean
distance are typical examples of metrics between time series. DTW seems to be the most successful
distance-based method, as it allows for perturbations, shifts, variations and in the temporal
domain [13,14].

Feature-based methods extract features from the time series and use traditional classification
methods on the extracted features [12]. Traditional signal-processing techniques, using various
transforms, e.g., Fast Fourier Transform or Discrete Wavelet Transform, are often used as preprocessing
steps to generate features for traditional classifiers.

Model-based TSC uses time series generated by some underlying process model, and new time
series can be assigned to the model class that fits best. Typical models used for model-based time series
classification are auto-regressive models [15] and hidden Markov models [16].

There are also many other techniques, such as Gaussian processes [17] and functional data
analysis [18,19] that can be successfully applied to the TSC problem.

According to Bagnall et al. [12], the state-of-the-art TSC algorithms are the Collective of Transformation
Based Ensembles (COTE) [20] and Dynamic Time Warping (DTW) [13,14] in combination with some
classifier, e.g., k-nearest-neighbor or decision tree. More recently, COTE has been extended to use a
hierarchical vote system, resulting in the HIVE-COTE algorithm, a significant improvement over the COTE
algorithm [21]. HIVE-COTE is a hierarchical method combining different classifiers into ensembles to
increase the performance of the classification capabilities. It combines 37 different classifiers that use all the
above-mentioned techniques, including frequency, and shapelet transformation domains. HIVE-COTE is
currently the classifier that performs best on the UCR-datasets [12], and it is considered state of the art in
TSC. The major drawback with both COTE and DTW methods is the high computational cost.

Lately, the hegemony of COTE and DTW has been challenged by several efforts of using artificial
neural networks for TSC [22]. For example Zheng et al. [23] applied Multi-Channel Deep Convolutional
Neural Networks (MC-CNN) on data for human activity as well as on congestive hearing failure data.
They found that MC-CNN is more efficient, and competitive in accuracy, compared to state-of-the-art
traditional TSC algorithms (1-NN DTW). A fully Convolutional Neural Network (CNN), deep
multilayer perceptions network (Dense Neural Network, DNN) and a deep Residual Neural Network
architecture was tested in a univariate TSC setting in [24]. They found that both their fully connected
Convolutional Neural Network and the deep Residual Neural Network architectures achieve better
performance compared to other state-of-the-art approaches.

Both Recurrent Neural Networks (RNN) [25] and Convolutional Neural Networks (CNN) for
TSC are showing state-of-the-art performance, outperforming other techniques on some datasets,
but not on others [22–24]. Due to their nature, RNNs are a natural choice when dealing with time
series; however, one of their drawbacks is that they use more time on optimization. In a review of
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TSC methods, Fawaz et al. [22] found that CNNs outperform RNNs not only in training time, but also
in accuracy.

An important issue that many TSC techniques cannot achieve is to quantify prediction uncertainty.
One way to overcome this limitation, and retain state-of-the-art predictive power, is to use Bayesian
Neural Networks [26], e.g., Bayesian Convolutional Neural Networks (BCNNs) or Bayesian Recurrent
Neural Networks (BRNNs). These have the same advantages as the standard neural networks, but have
the have the additional benefit of providing posterior predictive distributions.

When dealing with a binary classification problem, such as the leak vs. no-leak classification used
here, the output from a Bayesian Neural Network is a probability estimate, or level of uncertainty,
of the class that a given time series belongs to. This uncertainty is important information when
making decisions based on the classification, such as to mobilize a costly confirmation and localization
survey [27].

The major drawback with classical Bayesian Neural Networks is their failure to up-scale to
large data sets. Gal and Ghahramani [28] have recently proposed to use Bernoulli dropout during
both the training and the testing stages. This can be viewed as an approximate variational inference
technique [28]. Blundell et al. [29] presented an algorithm called Bayes by backprop and showed that
it can efficiently estimate the distributions over the model parameters. Shridhar et al. [30] applied
the Bayes by backprop algorithm in different CNNs and for different data sets, and compared it with
the Gal and Ghahramani approach. They found that the two approaches are comparable. The simple
and applicable nature of the method by Gal and Ghahramani has made it popular in a wide range of
applications where quantification of uncertainty is important, e.g., [31–33].

In their review of the status and future of deep-learning approaches in oceanography,
Malde et al. [34] argues that deep learning is still an infant method within marine science. Neural
network models have been applied to various environmental data, e.g., [35,36], and there have been
some efforts regarding classification of environmental time series, e.g., [37,38]. To our knowledge, using
a probabilistic deep-learning approach, such as BCNN, has yet to be explored on the environmental
time series. This is the motivation for the present work.

We use Gal and Gahrmani’s BCNN on the classical statistical problem of TSC and show that it can
be a valuable tool for environmental time series analysis. Our aim is to contribute to the community of
TSC, here focusing on the CCS, geo-science and oceanography applications.

A recent technique for gas seep detection is based on relatively simple threshold techniques of the
difference between time lags in time series [39], and we are certain that our study can be a contribution
to increase detectability and thus optimization of monitoring programs in future CCS projects.

We present a solution to the binary classification problem of detecting CO2 seeps in the marine
environment using the Scottish Goldeneye area as the case study.

Classifying time series requires data for all the classes, i.e., time series of the variables in
question for no-leak and leak conditions. The no-leak situation represents natural environmental
statistics, i.e., the environmental baseline, and should be based on in situ measurements, preferably
supplemented with model simulations [40]. Time series for the seep situations must rely on process
modelling, simulating the different processes involved during a seep [41–44], preferably supported
by in situ and laboratory experiments [45]. The use of modeling data in this case is a necessity since
the data corresponding to the leak scenarios are difficult, expensive, and, in some cases, impossible
to obtain.

Moreover, the trained deep neural network can be used in a transfer learning setting [46], i.e., we
can pre-train a neural network on the model data, fix the parameter weights in the first few layers,
and then train the network with the limited in situ measurement data as input. The conjecture is that
the first few layers adequately represent the core feature characteristics of the time series, and thus
reduce the need for in situ data.

Here we use model data from the Goldeneye area, in the Scottish sector of the North Sea, obtained
through the STEMM-CCS project (http://www.stemm-ccs.eu). The simulations are performed with the
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Finite-Volume Coastal Ocean Model (FVCOM) [47] coupled with European Regional Seas Ecosystem
Model (ERSEM) [48]. Different scenarios have been created in a statistically sound manner to train
the BCNN. Deep learning can be used as surrogate models to extend the results from PDE simulators;
see e.g., Hähnel et al. [49] and Ruthotto and Haber [50]. Here instead we simulate data with a
computational fluid dynamics model, and use neural networks to estimate model parameters.

This manuscript is outlined in the following manner: In Section 2 we present the underlying
framework for Monte Carlo dropout (MC dropout) and BCNN in a binary TSC context. We present
a general deep-learning framework, Bayesian Neural Networks, how the stochastic regularization
technique MC dropout can produce predictive distributions, Bayesian decision theory and presents an
algorithm for decision support in environmental monitoring under uncertainty. In Section 3, we apply
the MC dropout for the case study at the Goldeneye area. Here we describe the data and how it is
pre-processed, present the model, architecture and hyper-parameter settings. We use the output of the
classifier in a Bayesian decision rule setting with varying cost function and demonstrates our proposed
algorithm. Section 4 summarize our findings, compare our approach with relevant literature, discuss
strengths and weaknesses and proposes potential extensions and further work.

2. Methods

MC dropout and BCNN was introduced by Gal and Gharmani in [28,51,52] and we follow their
notation in this section.

2.1. Problem Formulation

Let x ∈ Rm be a time series of m observations. We assume that any time series x ∈ X, where X
is a large set of N time series of the length m, can be assigned to either the no-leak or the leak class.
In what follows, we label x with the vector c0 := (1, 0) if it corresponds to the no-leak class, and with
c1 := (0, 1) for the leak class. The labeled time series {x, y}, y ∈ {c0, c1} is referred to as an instance,
and the ordered set of instances (X, Y) as a data set. Time series could be pre-processed measurements
of, e.g., pH or tracer concentrations. The task of binary TSC is to design a classifier that is a function
that maps the time series x to a probability of a class p(y = ci), i = 0, 1 based on the training data (X, Y).
As p(y = c0) = 1− p(y = c1), we simply write p(y) instead of p(y = c1) further on if no clarification
is needed. The classifier can be approximated by a universal approximation such as an artificial neural
network. A traditional neural network has the disadvantage of having no knowledge of the error of
the classifier approximation. This shortcoming can be resolved by using a Bayesian framework which
allows for distributions over the model weights. Sampling randomly from the distribution of network
weights and predicting with each sampled weight results in a posterior predictive distribution of the
class p(y).

2.2. Artificial Neural Network

Here we use a single hidden layer model for the convenience of notation. The framework can be
expanded to arbitrary number of hidden layers. A single hidden layered neural network is defined as

ŷ = fW1,W2,b1,b2(x) := S2(S1(xW1 + b1)W2 + b2).

Here ŷ = (ŷ1, ŷ2) ∈ R2, S1 and S2 are activation functions and ω = {W1, W2, b1, b2} are the
parameters of network model. In particular, W1 ∈ Rm×k, W2 ∈ Rk×2, and b1 ∈ Rk, and b2 ∈ R2.
In this study we use convolutions to transform the input to the hidden layer. This means that we
restrict the structure of the weight matrix W1 to be a convolution and instead of learning the best fit
over all possible weight matrices learn the best fit over all weight matrices that are convolutions. Using
convolutions in this transformation is what is referred to as a convolutional layer.
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To obtain the probability of x being classified with a label y, we use a SoftMax activation function, i.e.,

S2(z) =
exp(z)

exp(z1) + exp(z2)
.

In classification the cross entropy loss function is the natural choice, and minimizing the cross
entropy is equivalent to minimizing the negative log likelihood

Eω(X, Y) = −
N

∑
n=1

yn log(ŷn) = − log p(Y|fω(X)).

To avoid the model overfitting on the training set, which typically results in a failure to generalize
the model, regularization is often added. One of the choices is L2 regularization, which penalize the
model parameters with squared L2 norm and gives the following objective function

C(ω) = − log p(Y|fω(X)) + λ1||W1||22 + λ2||W2||22 + λ3||b1||22 + λ4||b2||22, (1)

where λi > 0, i = 1, . . . , 4 are regularization parameters. The importance of L2 regularization will
become evident in Section 2.4. Minimizing the objective Equation (1) with respect to the parameters ω,
trough the techniques of back-propagation and stochastic gradient decent is the core task in machine
learning. This process will give a point estimate for each model parameter. In many situations, it is
important to quantify the uncertainty of the prediction outcome. In this case a Bayesian take on the
problem is suitable.

2.3. Bayesian Neural Networks and Bayesian Parameter Estimation

In a neural network for binary TSC we want to estimate parameters or weights ω that best
determine which class the time series belongs to. For a Bayesian Neural Network, any knowledge we
have on the weights before training are referred to as the prior and denoted p(ω). The prior can be
updated after observing a new time series (X, Y), to reflect the most likely values of ω

p(ω|X, Y) =
p(ω)p(Y|X, ω)

p(Y|X) .

Here, p(ω|X, Y) is called the posterior distribution of ω, while p(Y|X, ω) is referred to as the
model (here the neural network architecture) or likelihood function. The marginal likelihood p(Y|X) is
defined as the integral

p(Y|X) =
∫

p(Y|X, ω)p(ω)dω.

The posterior predictive distribution is defined such that,

p(y∗|x∗, X, Y) =
∫

p(y∗|x∗, ω)p(ω|X, Y)dω, (2)

where x∗ represent a new observation with unknown target value y∗. By varying ω, Equation (2), can
be viewed as an ensemble of models weighted by p(ω|X, Y). It is difficult and sometimes impossible
to solve Equation (2) analytically, thus we often resort to Monte Carlo (MC) sampling. If we have the
distribution over the weights in the neural network we can simply sample from the distribution of
these to get the posterior predictive distribution, i.e., estimate of the uncertainty of the time series
class predicted by the neural network. If the Monte Carlo sampling becomes too computational costly,
we can turn to other approximation methods such as variational inference or MC dropout.
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2.4. Monte Carlo Dropout

Dropout [53] is a stochastic regularization technique where during training, noise in the model
is introduced by randomly setting a proportion of the nodes in the model to zero in each batch.
Which nodes that are set to zero is determined by a Bernoulli distribution. During prediction dropout
is turned off, resulting in a point estimate of class probabilities. MC dropout is basically the same;
however, during prediction dropout is still turned on, randomly shutting a proportion of the nodes
off. In this way, dropout generates a distribution over the model parameters by repeating the nodes
sampling several times and predicting for each configuration. The process is similar to a bootstrap
procedure [54]. MC dropout thus produces a posterior predictive distribution for the class probabilities.
The process of dropping out units in the feature space (i.e., dropping out nodes) can be translated to
the parameters space.

We denote the dropped out weights ω̂ = {Ŵ1, Ŵ2, b1, b2} which allow for a convenient
representation of the MC dropout objective function. Here we also use data sub-sampling
(mini-batches) with random index set S of size M and

ω̂i = {Ŵi
1, Ŵi

2, b1, b2} = {diag(ε̂i
1)W1, diag(ε̂i

2)W2, b1, b2},

with ε̂i
1 ∼ p(ε̂i

1) and ε̂i
2 ∼ p(ε̂i

2), for 1 ≤ i ≤ N where p(ε1) and p(ε2) is Bernoulli distributions with
probabilities p1 and p2 respectively. Thus, we define the objective function over the mini-batch sets
such that

L̂(ω) = − 1
M ∑

i∈S
log p(Yi|fω̂i (Xi))

+λ1‖W1‖2
2 + λ2‖W2‖2

2 + λ3‖b1‖2
2 + λ4‖b2‖2

2.
(3)

Trough back-propagation and stochastic gradient decent we find optimal parameters for the model fω as

arg min
ω

L̂(ω).

We must integrate over the weights to get the posterior predictive distribution, as shown in
Equation (2). With weights optimized we can use the model to predict new classes given some new
input x∗. To approximate the posterior predictive distribution we use a MC estimator to integrate over
the weights. The weights ω̂t ∼ p(ω|X, Y) are generated from the posterior distribution such that,

p(y∗|x∗, X, Y) =
∫

p(y∗|x∗, ω)p(ω|X, Y)dω ≈ 1
T

T

∑
t=1

fω̂t (x∗) −−−→
T→∞

E[y∗],

which is an unbiased estimator and what we referred to as MC dropout.
In [51] Gal showed that variational inference could be approximated by MC dropout. This is

the case if the derivatives of the two objective functions corresponding variational inference and MC
dropout, with respect to the model parameters, are equal. This is true if the so-called KL condition
is satisfied. In the same paper, Gal showed that Gaussian priors over the model parameters satisfy
this KL condition for large enough hidden units. So, with Gaussian priors, MC dropout approximates
variational inference. While there could be some other priors that satisfy the KL condition, MC
dropout and variational inference are not generally equivalent. For this reason we use the Gaussian
priors, which are well known to be equivalent to L2 regularization. We refer the reader to Gal and
Ghahramani [28,51] for details.

2.5. Uncertainty Estimation in MC Dropout

In regression task Gal and Ghahramani [28] derived an analytical estimate of the predictive
mean and variance. For classification, they only presented an analytical estimate for the first
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order moment. That means other measures of the uncertainty must be obtained in a classification
setting. One approach would be to model the log-probabilities instead and calculate the mean and
standard error of the log-probability. In order to keep it simple, we have adopted the strategy by
Leibig et al. [31]. They solved a binary classification problem on images with MC dropout (actually a
Bayesian Convolutional Neural Network) and used the empirical standard deviation of the positive
class as an estimate of the uncertainty in the prediction. We adopt this intuitive estimate of uncertainty
in our presentation of results. The empirical mean of the predicted leak is defined as

µ̂Leak =
1
T

T

∑
t=1

p(y∗ = c1|x∗, ω̂t),

and empirical standard deviation as

σ̂Leak =

√√√√ 1
T

T

∑
t=1

[p(y∗ = c1|x∗, ω̂t)− µ̂Leak]
2,

where T is number of forward passes.

2.6. Bayesian Decision Making

We want to use the information gained about the uncertainty of the TSC to decide about whether
or not consider the classification as a leak or no-leak situation. Bayesian decision theory [55] can
be used to make an optimal decision based on cost related to the different choices one could make.
We describe a Bayesian decision rule with loss functions and present an algorithm for probabilistic
decision support in Section 2.7. This algorithm is applied and showcased through an example in
Section 3.7.

A loss function in terms of Bayesian decision-making states how costly an action or decision is.
In a binary classification setting we have two classes c : {c1, c2} and a possible actions {α1, . . . , αa}.
The loss function λ(αi|cj) is the cost associated with taking action αi if the class is cj. By considering
the loss associated with a decision we can define the expected loss or conditional risk

R(αi|x) =
2

∑
j=1

λ(αi|cj)P(cj|x). (4)

Here, P(cj|x) is the posterior predictive probability for a given class cj, given a time series x.
Remember, the predictive posterior distribution is estimated through MC estimation from the BCNN
for each time series. Given a time series x it is possible to minimize the expected loss by choosing the
action that minimizes the conditional risk. A decision rule R is a function that takes the input time
series to a space of possible actions R : Rd → {α1, . . . , αa}. The expected loss of a decision rule can be
stated as

L =
∫

R(α(x)|x)p(x)dy.

The aim is to use the rule α(·) that minimizes R(α(y)|y) for all y. Minimize the conditional risk
based on the actions is in fact the optimal decision given our information

α∗ = arg min
αi

R(αi|x)

= arg min
αi

c

∑
j=1

λ(αi|cj)P(cj|x).
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In the case of only two possible actions and classes, the conditional risk can be expressed as

R(α1|x) = λ11P(c1|x) + λ12P(c2|x),
R(α2|x) = λ21P(c1|x) + λ22P(c2|x).

The decision rule then becomes to choose the actions which give the smallest overall risk. We
choose action α1 if

R(α1|x) < R(α2|x).

From Equation (4) we have that the risk can be expressed in terms of the loss function and the
posterior distribution. In the two class and action case, we decide action α1 if

(λ21 − λ11)P(c1|x) > (λ12 − λ22)P(c2|x).

We want to use the concepts outlined above for the classified time series and their posterior
predictive distribution. This results in a novel approach for decision support in environmental
monitoring under uncertainty.

2.7. Decision Support in Environmental Monitoring under Uncertainty

In context of decision-making, we need to define a posterior summary function Γ that summarizes
the posterior distribution. Examples of posterior summary functions are the expectation and the
maximum a posterior (MAP) of the predictive posterior distribution generated from the BCNN.
The posterior predicted expectation can be approximated as the average of the realizations

P(cj|x) = Γ({Pt(cj|x)}1≤t≤T) ≈
1
T

T

∑
t=1

Pt(cj|x). (5)

Alternatively, we can use the mode or maximum a posterior probability (MAP) of the sample
distribution, i.e., the probability that most often occur in the predictive posterior distribution.
The posterior predictive distribution do not have a uniform discretization, and each sample may be
unique. A functionH takes Pt(cj|x) as input and maps the realizations t into K bins with consecutive,
non-overlapping intervals such that H(Pt(cj|x)) = Pk(cj|x), where k = 1, . . . , K. An estimate of the
predictive posterior distribution through the mode/MAP is then to find the bin with most counts and
its associated probability

P(cj|x) = Γ({Pt(cj|x)}1≤t≤T) ≈ H(Pt(cj|x)) ≈ arg max
k∈{1,...,K}

Pk(cj|x)/K (6)

With Equations (5) and (6) in mind, we present a three-step procedure for probabilistic decision
support in environmental monitoring which is presented in pseudo-code in Algorithm 1.

Step 1 in Algorithm 1 is costly; however, this is not the case of step 2 and 3. The majority of the
time will be devoted to optimizing the weights of the BCNN. When step 1 first has been performed,
that is training of the BCNN, step 2 and step 3 can be conducted independent of step 1.
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Algorithm 1 Algorithm for decision support in environmental monitoring under uncertainty

Input:
- Training set X, y
- Unlabeled time series x∗

- Number of realizations in posterior sampling T
- Number of classes C
- CCN model fω with weights ω
- Posterior summary function Γ({Pt(cj|x)}1≤t≤T)
- λ(αi|cj) cost associated with taking action αi if the class is cj

1 Optimize CNN model weights with MC dropout algorithm
p(ω|X, y)← Optimize BCNN model

2 Generate posterior predictive distribution from optimized BCNN
ω̂t ∼ p(ω|X, y)← Simulate T samples from the posterior distribution of the weights
p(y∗|x∗, X, Y) ≈ fω̂t (x∗) ∈ RC×T ← Estimate posterior predictive distribution for all classes
Pt(cj|x∗) =

(
fω̂t (x∗)

)
j ∈ RT ← Extract the posterior distribution for class cj with T samples

P(cj|x∗) = Γ({Pt(cj|x)}1≤t≤T)← Approximate P(cj|x∗) with e.g., (5) or (6)
3. Make optimal decision based on posterior predictive distribution

α∗ = arg min
αi

C
∑

j=1
λ(αi|cj)P(cj|x∗)←Minimize the conditional risk.

return α∗ ← Optimal decision αi based on P(cj|x∗) and cost function λ(αi|cj)

3. Case Study—Goldeneye CCS Site

3.1. Data

The data used in this study has been produced with FVCOM coupled with a biochemical tracer
model, ERSEM via the framework for aquatic biogeochemical models coupler [48]. This framework
provides spatio-temporal time series (4D) for both carbon chemistry and biological processes, and can
model the natural variability of CO2 transportation in the oceans. Furthermore, it is possible to produce
artificial leaks on the seafloor that blend with the natural variation, to produce realistic simulations
of CO2-leaks. Cazenave et al. [56] produced a data set to present an approach to design marine
monitoring networks for CO2 storage, where they used a weighted greedy algorithm to identify, based
on a limited number of sample stations, spots that give best possible coverage. Here we adopt the
CO2 concentration data from Cazenave et al. simulations, after some preprocessing steps, as input
for the probabilistic deep-learning framework. The data from Cazenave et al. consist of four different
simulations, one without any leakage, i.e., only the natural variability, and three with leak at the center
of the domain with three different release rates. These different simulations are referred to as scenarios,
and are labeled 0T (or no-leak), 30T, 300T and 3000T. The labeling are based on the amount of tons
CO2 that is released per day in each simulation. We refer the reader to the paper [56] for more details
about the simulations, setup and the different scenarios in general. Figure 1 shows the depth at the
Goldeneye area where the leak simulations was conducted.

3.1.1. Description of Data Set

The simulation output consists of a 4D dataset, three spatial dimensions; latitude, longitude and
depth as well as a fourth time dimension. There are in total 1736 nodes and 24 layer that make up
an irregular triangulation in the latitude-longitude dimension and the resolution is refined near the
leak. In the depth dimension sigma layers are used that is the resolution varies with the bathymetry.
There are 1736 × 24 = 41,664 (nodes and layers) time series for each simulation and the time series
has 1345 time steps. The time between each time step is 15 min, which means the simulations last for
approximately 14 days. The data has been split in two with respect to time, where the layer closest to
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the seafloor in the second half of the data set is used for testing and the first half of the time series is
used for training and validation. The 4 simulations we received resulted in a total of 166,656 time series
of which 70% of the data in the first split have been used for training and 30% validation. After labeling
the data (see Section 3.1.2), the training and validation data consisted of 24.2% and 75.8% time series
labeled as leak and no-leak respectively. The test data consisted of 36.2% time series labeled as leak
and 69.8% time series as no-leak. See Table 1.

Figure 1. (a) FVCOM domain used in which resolution varies from 15 km at the open boundaries to
0.5 km at the release site. The black box indicates the extents of the grid shown in (b). (b) The nested
domain with resolution from 0.5 km at the boundary to 3 m at the release site (red star). The black box
in (b) indicates the extent of the Goldeneye complex [56].

Table 1. Overview of the train, validation and test data.

Leak No-Leak # Time Series Start/End

Training Data 75.8% 24.2% 116,659 Start
Validation Data 75.8% 24.2% 49,997 Start

Test Data 69.8% 36.2% 6944 End

3.1.2. Preprocessing of Data

There have been five main steps of preprocessing before the data is fed to the model: Removal
of time steps, splitting of the time series into two, labeling of data, time lag differencing and
standardization of the data. First of all we remove the first 245 time steps of the original data due to a
spin-up period of the hydrodynamic simulations, such that the data to be used further have a time
dimension of 1100. Secondly, we split the data in two, using the first 550 time steps as training and
validation and the last 550 time steps as test data. This is done so the test data becomes less correlated
with the training and validation data sets. One of the simulations are without any leakage, and by
subtracting the relevant values from the simulation with leak from the one without gives the true
footprint of the leakage. Based on the true footprint a threshold can be chosen to label time series
as either leak or no-leak. The recommended uncertainty measure from [57] on dissolved inorganic
carbon is 1 µmol/kg and corresponds to approximately 1.0236 m mol/m3 (which is the output of the
hydrodynamic simulations) with a density of seawater of 1023.6 kg/m3. The density will change with
depth and location. Here we use a threshold of 0.01 mmol/m 3 such that if the true footprint at some
point has been above this value the corresponding time series will be labeled as a leak. The two last
steps of the preprocessing is to apply the difference transform and standardize the data. Applying a
difference transform can help stabilize the mean of the time series by removing changes in the level
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of a time series and so eliminating and reducing trend and seasonality. Instead of assessing the time
series itself changes in the signal is analyzed (an approximation of the derivative). Blackford et al.
studied changes in the pH to determine if a leak was present in [39]. It makes sense to apply the
difference transform in an anomaly detection perspective, where abnormal changes and patterns in the
time series can be a good indicator if a leakage is present or not. Standardization of the data should
improve the conditioning of the optimization problem, and speed up the training process.

3.2. Model for TSC: Bayesian Convolutional Neural Networks

We use a traditional 1D Convolutional Neural Network model to classify time series. The model
has 4 convolutional layers with ReLu activation functions [58], each followed by a MC dropout and
MaxPooling layer, where MaxPooling is a down-sampling technique in convolutional neural networks.
The first and last convolutional layers have 128 filters, while the middle layers both have filter size of
256. The kernel size of the convolutional layers is {7, 5, 3, 2} from first to last and we apply a stride
of 1. We use the same dropout rate of 50% for all MC dropout layers and all MaxPooling layers have a
pool size of 2. The dropout rate of 50% gives the largest variance over the model weights. Interpreting
dropout as an ensemble of networks, a dropout rate of 50% produces most possible combinations,
and thus the largest variability over weights and posterior predictive distribution. According to
Baldi et al. [59], the 50% rate results in the strongest regularization effect, but has the disadvantage
of potentially worse convergence than other dropout rates. There may exist dropout rates that gives
better accuracy. However, to maximize the variance of the predictive posterior distribution, 50% rate is
favorable. The last part of the model is a flattening layer followed by a dense layer with two nodes and
SoftMax activation function, resulting in two SoftMax probabilities, one for each class. An illustration
of the model is presented in Figure 2.

Figure 2. Illustration of the Bayesian Convolutional Neural Network Model used.

Mathematically we can express the model in terms of the weights, bias and activation functions

ŷ = σS(σR(σR(σR(σR(xŴ1 + b)Ŵ2)Ŵ3)Ŵ4)W5.

Here the subscript S and R refer to a SoftMax and ReLu activation functions, respectively. The Ŵl
notation, indicates that nodes are dropped out with a Bernoulli distribution, and that there are in total
four layers l = {1, 2, 3, 4, 5}. It is only the first four layers that include MC dropout regularization.
The model has 435842 trainable parameters and for optimization of the we use the well-known
ADAM [60] algorithm. The goal is to find the parameters φ = {W1, W2, W3, W4, W5, b} such that
the L̂dropout(φ) is minimized; see Equation (3). A early stopping regime is also introduced to avoid
overfitting and the validation loss is monitored and the optimization stopped after 50 epochs if no
improvement is observed. We used a batch size of 256 and monitored both the accuracy and the loss.
An illustration of the convergence of the training and validation of the model is showed in Figure 3.
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Figure 3. Convergence of the BCNN. In total it ran for 334 epochs, approximately two hours of
train/validation time with a NVIDIA Titan V GPU.

3.3. Performance of the Classifier

Figure 4 shows the proportion of true positive vs. true negatives and the Area Under the Curve
(AUC). Higher the AUC indicates that the model is better at distinguishing between leak and no
leak. Given the costs associated with true positives/negatives and false negatives/positives these
characteristics will be useful for designing monitoring program and decision-making in mobilizing the
leak confirmation phase.

Figure 4. ROC-curves for the three leak scenarios. The 0T scenario is not included since it in all cases
will be classified as no-leak, i.e., there are no false positives.

In Figure 5, we show two histograms of the prediction probability and standard deviation split by
the different scenarios. If we concentrate on the edges on the prediction probability histogram we see
that the majority of the time series is classified as no-leak or leak and falls within the first and last bins,
indicating good classification capabilities. The 0T scenario is not represented on the right-hand side of
the histogram which is in line with our expectations as the classifier should not predict leaks when
there is none. Smaller leaks have also fewer time series that are classified as leaks, which is intuitively
since leaks with larger flux have a more distinct footprint that can be transported further. Assessing
the histogram of the standard deviation, it is observed that smaller leaks scenarios have more spread
than larger ones. A larger leak has a stronger signal and thus is easier to classify.
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Figure 5. (Left Panel) Prediction probability for each scenario plotted as a histogram. (Right Panel)
Standard deviation for each scenario plotted as a histogram. The central observation is that most of the
time series is classified as either leak = 0 or No-leak = 1. Minor leaks have a smaller proportion of the
time series that are classified as leaks than larger ones and smaller leaks are associated with a higher
degree of uncertainty than the larger ones.

In Figure 6 the rolling mean and standard deviations with respect to the different scenarios is
plotted against the distance from the leak location. We have used a quite high window size of 50
to catch and visualize trends in the data. 30T, 300T and 3000T scenario have a high confident in its
prediction to about 0.1, 0.3 and 1–2 km, respectively. After this the classifier becomes less confident
that there is a leakage present. For the 0T scenario a corresponding decrease in confident is observed,
until it reaches its peak around 4 km. The most uncertain area of the 0T scenario coincides with the
most uncertain area of the leak scenarios. That is the region from approximately 1 to 10 km from
the leakage.

Figure 6. (Right panel) A moving mean of the prediction probability vs. the distance from the leakage.
(Left panel) A moving standard deviation vs. the distance from the leakage. For the moving statistics,
all points are evenly weighted.

Calculating the area under the graph for each of the scenarios in Figure 6 gives us information
on the detectability of each scenario and what scenario that are associated with highest uncertainty.
The 0T scenario have the lowest area under the graph for both the prediction probability and the
standard deviation, meaning that on average this is the scenario associated with highest predictive
power but also the lowest uncertainty (For the 0T scenario the target is a prediction probability of 0
and not 1 as for the other scenarios). With increasing flux we observe increased area under the graph,
indicating that larger flux is related to detection further away from the source. It is also observed a
decrease in area under the graph for the standard deviation, indicating that smaller leaks are associated
with higher degree of uncertainty. We refer to both Table 2 and Figure 6.
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Table 2. Approximation of area under the graph for the different scenarios for both prediction and
standard deviation.

Scenario Prediction Probability Standard Deviation

0T 90.15 115.48
30T 624.25 183.54
300T 633.58 161.82

3000T 773.77 153.94

Figure 7 shows a 2D histogram of the entire test data set, i.e., all scenarios combined, where the
prediction probability is plotted against the standard deviation. Due to high density around 0 and
1 the color that represent the density has log-scale. As in showed in Figure 5 it is observed that the
majority of the time series are close to 0 and 1, i.e., the model classifies with high confident either
leak or no-leak. There are however time series that are difficult to distinguish, which have both high
standard deviation and indefinite prediction probability. Making a decision under such conditions
is difficult. The framework for how to decide what action to take under some cost is discussed and
presented in Section 3.7.

Figure 7. 2D histogram of the mean prediction and standard deviation of all the time series in the test
data set. The majority of the time series are predicted near 0 or 1 with low standard deviation. The color
pallet have log-scale to visualize the time series that are classified with high standard deviation and
low distinction in the prediction probability.

3.4. Approximated Predictive Mean and Uncertainty

In Figure 8 we see that the accuracy around the leakage is high. We also observe areas with quite
high uncertainty. Due to the nature of the deep-learning methods, it is difficult to get insight in why
some regions are more uncertain than other. We can only expect the classifier to detect leaks if traces of
the leak have reached that particular point. There may be several reasons why we see this behavior:
The training and validation data may be too different from the test data. Time series data from the two
classes may be too alike, making it very difficult to distinguish the classes, or the natural variability
and a leak behave in some regions similar. The classifier will in these cases have a hard task, and in
some cases misclassify or be uncertain about the prediction.

Figure 9 shows kernel density estimates (KDE) of the 200 forward MC realizations for the three
different locations in Figure 8. The yellow KDE is from the area south, in a region with high uncertainty.
The distribution is almost uniform, making it very difficult to say if the time series arise from a leak
situation. The blue KDE predicts that the time series arise from a leakage situation, with quite high
confidence. This is reasonable, as the measurement is quite close to the leak locations. The cyan KDE
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shows relatively little spread, with a clear indication that this arise from a no-leak situation. Because of
the distance from the leak location, this is reasonable, as traces from the leak might not reached this
region of the area. One of the key concepts here has been to show how to model uncertainty in time
series with modern deep-learning techniques. We therefore did not put a tremendous effort into
optimization of hyper-parameters of the BCNN to improve the accuracy and decrease the uncertainty.

Figure 8. Prediction from the BCNN on the 3000T test data. (Left panel) The plot shows the predictive
mean leak probability of the 1736 nodes with 200 forward MC realization on each instance. The red
line shows where the predictive mean leak probability is above a value of 0.95. (Right panel) The plot
shows the uncertainty in the prediction. Red line shows where the standard deviation is above 0.15
indicating areas where the prediction is uncertain. See Figure 9 for more details about the uncertainty
in observation locations 1, 2, and 3.

Figure 9. Kernel density estimation (KDE) of the three observations in Figure 8. We have used
the seaborn visualization library, i.e., Gaussian kernel with Scott method for estimation the kernel
bandwidth. The KDE smoothens the empirical distribution, thus exceeding the estimate beyond the
possible range of [0, 1]. We thus limit the plot to be within the bounds, which means that this KDE does
not summarize to 1.

3.5. Detectable Area vs. Detection Probability

In Figure 10, we have plotted the area covered against the detection probability. First we observe
that the detected area is greater with larger leakages. Secondly, the 30T and 300T scenario have small
difference in percentage of area detected up to approximately 80% detection probability. Thirdly, if we
demand high prediction probability the different leak scenarios can detect an area around 1–10%,
0.1–1% and 0.1–0.01% for the 3000T, 300T, and 30T leak scenario, respectively. This gives us insight
on the size of the footprint we can detect and thus some insight in how to optimize sensor layout.
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Simulated leaks have been used to predict footprints subsequently being used to optimize sensor
layout [61–65]. They used a threshold that was based on the Cseep method [66] that is dependent on
measurements of different biochemical tracers. We argue that using deep-learning methods and BCNN
can lower this threshold, increasing the detectable footprints and thus the decreasing the number of
sensors needed to monitor a specific area.

Figure 10. Mean detection probability plotted vs. the total area covered at specific threshold.

3.6. Sensitivity Analysis

We have validated the model in the bottom layer only, because this is where the sensors can be
placed. We have additionally made two sanity checks on the generalization properties of the approach.
The first is related to how sensitive the method is if we train only on the simulations with 0T, 30T and
3000T and test this new trained model on the test data set. The second address the sensitivity if we
add some stochastic Gaussian noise to the test data.

3.6.1. Reducing the Training Data Set

The model was optimized similar to as described in Section 3.2, the only difference is that the
300T simulation scenario is removed from the training data set. The ROC for the case where the
300T scenario is removed from the training data set is presented in the right panel of Figure 11,
with associated AUC values. We observe that the AUC value is relatively high in the case with 300T,
despite no training on leaks with such size. The overall AUC is high in all cases, but with an increased
uncertainty compared to AUC values in Figure 4. In general the AUC values are relatively large
compared to training with all simulated scenarios. This suggest that the model generalizes well.

3.6.2. Adding Gaussian Noise the Test Data Set

We briefly assess the classifiers sensitivity by adding Gaussian Noise, N (0, σ), to the test data set,
before we predict by using the same trained model as above. The noise was added to the pre-processed
time series of the test data set. We tested two cases, where we chose σ = 0.01 and σ = 0.1.

The general observation for a relatively low level of noise (σ = 0.01), is that time series with true
label no-leak had a higher uncertainty related to its prediction and the predicted value of it being
labeled as leak increased. That is the AUC has dropped from values near 1, see Figure 4, to values
around 0.8, see Figure 11. The prediction of true leaks were improved, however at the cost of more false
positives. With a noise level of 0.1, the majority of the time series were classified as leaks. This tells us
that this classifier is sensitive to small and rapid changes in the data, for data where the true label is
no-leak, which can lead us to two potential conclusions. Either rapid and relatively small changes is a
potential indicator of a leakage, or the classification is just comprised due to the additional noise. There
are studies using rapid changes as indicators of leaks, as described by Blackford et al. in [39]. This also
highlights major drawbacks of deep-learning methods, i.e., it is difficult to interpret the model and to
explain classification criteria. It is worth mentioning that if the noise also were added to the training
data, the classifier might cater for this and be more robust against such changes.
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Figure 11. (Left panel) ROC curve with Gaussian noise is simulated with a standard deviation of 0.01
is added to the test data set. The drop of in accuracy is quite large, even with relatively low level
of noise added to the test data. (Right Panel) ROC curve for the case where we have excluded the
300T scenario.

3.7. Making Decisions Based on BCNN Output with Varying Cost

In Section 2.7 we presented Algorithm 1 that can assist in taking difficult decisions during
environmental monitoring. The reminder of this Section exemplifies the use of Algorithm 1, given a
specific cost function. We have created T = 200 realizations as an approximation of the two posterior
distributions Pt(c1|x∗) and Pt(c2|x∗). Since we use binary classification, we have that Pt(c2|x∗) =

1− Pt(c1|x∗). The 200 realization can be viewed as distinct expert opinions of what class the time
series belongs. By applying the two summary function Equations (5) and (6) to the posterior predictive
distribution we get the following decision rule in the binary classification setting, that is, we decide
action α1 if

(λ21 − λ11)P(c1|x∗) > (λ12 − λ22)P(c2|x∗).

Since it is difficult to estimate the real cost associated with confirming a leakage, we use a simple
cost function and vary some parameters to determine the impact of the cost function on the optimal
decision. The cost associated with confirming a no-leak situation is the baseline cost, i.e., we assign a
value of 1 for this purpose. This cost can be interpreted as the operational cost with sending a cruise
or initiate a unmanned operation to check for a leakage. We assume that the cost with confirming a
leakage is dependent on the operational cost. Furthermore, the cost of not confirming a leakage is κ

times more expensive than the operational cost. The parameter γ is the factor that describes the cost
of not confirming a leakage compared to the cost of confirming a leakage. The cost associated with
not confirming if there is no leakage is assumed to be 0. Based on these assumptions we can set up a
decision rule dependent on the summary function over the posterior distribution; confirm a leak if

(γ− 1)κ >
P(c1|x∗)
P(c2|x∗)

. (7)

Table 3 shows the cost function in terms of true and false positives and true and false negatives.
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Table 3. Overview of the cost functions applied in this example. The cost function can be interpreted
as having no cost to doing the correct decision. Confirming a no-leak has some operational cost, e.g., a
ship must mobilize and search/confirm that there is no leakage. Confirm a leakage has a cost of κ times
the operational cost. The cost of not confirming a true leakage is gamma times the cost of confirming a
leakage. We assume there is no cost with not looking for a leak when there is no leakage.

Leak No-Leak

Confirm (α1) λ11 = κ λ12 = 1
Not Confirm (α2) λ21 = γλ11 λ22 = 0

In Figure 12 we show the percentage of the total area to be monitored for κ ∈ {10, 100, 1000} and
1 ≤ γ ≤ 100.

Figure 12. The figure shows the percentage of the total area to be monitored where the optimal
decision would be confirming a leak. The cost function is altered by varying the parameter κ and γ

in Equation (7) and Table 3. The three different lines represents varying κ, and the the x-axis shows
varying γ for each scenario. Increased cost difference between the operational cost and the cost of
confirming a leak, result in a higher degree of confirmation, faster. (Left Panel) The MAP of the
predictive posterior distribution. (Right Panel) The expectation of the predictive posterior distribution.
Using the mode instead of the expectation results in less confirmation/mobilization.

This cost function shows the trade-off between confirming a leak and not confirming a leak.
By using the MAP, the predictive distribution becomes more distinct on which class it belongs. We see
this in Figure 12, where the percentage area needed to be monitored under the same cost function is
significantly lower.

4. Discussion

We have presented a three-step algorithm that combines BCNNs with Bayesian decision theory,
for support in environmental monitoring. In the first step a BCNN is optimize on labeled simulated
data. In the next step, the BCNN is used to generate a posterior predictive distribution of class
labels. In the final step, the optimal monitoring strategy is calculated based on the posterior predictive
distribution and given operational costs.

Our case study indicates that MC dropout and BCNN are effective tools for detecting CO2 seeps
in marine waters. The overall predictive power is large, as seen through the ROC curve in Figure 4.
While the majority of the time series are either classified as leak or no-leak with little uncertainty,
a small proportion will be inconclusive; see Figure 5. As expected, the classification uncertainties
increase with the distance to the leak source location. This distance depends on the seep flux rates and
can be modeled from the outcome of the BCNN; see Figure 6.

66 Paper A



Algorithms 2019, 13, 145 19 of 24

Demanding high detection probability reduces the detectable area of a monitoring location,
i.e., you will need to measure closer to a leak in order to achieve the desired accuracy; see Figure 10.
This motivates the use of optimal decision strategies, that is finding appropriate action that should be
initiated based on the prediction, its uncertainty, and costs associated with taking wrong and right
decisions. We gave an example of an optimal strategy choice in a binary classification setting in
Section 3.7 for different costs, showcasing the algorithm.

There is extensive literature, including several deep-learning approaches, on monitoring and
forecasting of air quality time series. For example Biancofiore et al. [35] used a recursive and feed
forward neural network and Freeman et al. [36] a RNN to forecast and monitor air quality from time
series data. In context of oceanography monitoring, Bezdek et al. [67] used hyper-ellipsoidal models
for detecting anomalies in a wireless sensor network and validated their approach on data from Great
Barrier Reef. None of these approaches take uncertainty into account. Ahmad [68] recently published
a literature review of machine-learning applications in oceanography.

As CO2 is naturally present in the ocean and is highly variable, it is difficult to attribute measured
CO2 to an unplanned release. Blackford et al. [39] developed pH anomaly criterion for determination of
marine CO2 leaks. This criterion is however location dependent and cannot be generalized. In contrast
to Blackford et al., our method automatically extracts features and characteristics that could be hidden
within the natural variability, potentially increasing the detection probability. Due to the costly survey
in case of confirmation of leakages, it will be of importance with information about the model’s
uncertainty, our approach provides that.

The most important strength of our approach is that it is principled and consistently uses a
probabilistic Bayesian framework for effective decision-making in the context of environmental
monitoring. A potential weakness of our case study is that we did not systematically optimize
hyper-parameters, which could potentially improve the results. Examples are increasing or decrease
the number of CNN layers, changing activation functions, loss functions, optimization procedures,
and size of filters, strides and kernel size of the convolutional layers. With respect to loss function and
activation function, we have chosen the standard techniques used in the machine-learning community
today and have not addressed these norms. With respect to size of filters, strides and kernel size
of the convolutional layers, we have only performed a small trial and error search of the possible
hyper-parameters. Looking into the model’s weights shows that quite a large part of the network is
active, suggesting that the model structure and size is relatively well-balanced. We have not found
it feasible to use a lot of time to tune the model further, as we have achieved good results with the
current hyper-parameter configuration.

Another more serious limitation is the fact that the BCNN is optimized with data based on a
limited number of simulations for a limited time period. This biases the BCNN model towards the
simulated conditions. The model can still be used in a general scenario, but its predictive power will
decrease. That is why more simulations with different forcing, leak locations and fluxes are necessary
to generate a predictive model that is more robust.

To test how well our BCNN model generalizes, we have carried out some sensitivity analyses
in Section 3.6. The general observation was that adding noise to the test data increased uncertainty
and decreased predictive accuracy. With low level of noise the prediction deteriorates, mainly because
no-leak time series is miss-classified as leaks, false positives. However, it is still able to distinguish the
two classes with relatively good success. Corruption of deep-learning models is a well know problem,
even with small alterations in the input data. This problem might have been solved by training the
model on noisy data.

A second sensitivity analysis showed that removal of the 300T data set reduced the overall
predictive power in all cases; however, the method was still able with high confident and accuracy to
predict the 300T test data set. This indicates at least good generalization properties to different leakage
fluxes, and potentially to different leakage locations.
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In this study, univariate time series was used; however, if more information were available in
terms of different sensors, measuring different geochemical markers, this framework could be extended
to a multi-variate TSC setting. Another extension could be to increase the number of classes and treat
them as a multi-label classification tasks, with the purpose to classify time series as be either of the
following classes; 0T, 30T, 300T or 3000T.

Another question we would like to study is how well our model generalizes to different locations.
One of the key concepts of CNNs is the ability to extract important features from the data. Here
the concept capability to capture key characteristics of time series that contain a leak signal or not.
In this sense, the model should generalize well to other locations. Testing this hypothesis would be an
important step towards wide-spread use of our method.

However, in our view, the most interesting extension would be to extend the framework to a
transfer learning setting. The concept of transfer learning is to use a pre-trained model and fix the
weights of the first few layers and re-train with an entirely new data set. Transfer learning has been
used with success in computer vision and other tasks, and the key benefit is that the need for data is
reduced drastically. Translation of this concept to binary TSC, where the pre-trained model would be
trained on simulation data, should be investigated closer.
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The following abbreviations are used in this manuscript:

AUC Area Under the Curve
BCNN Bayesian Convolutional Neural Network
CCS Carbon Capture and Storage
CO2 Carbon dioxide
CNN Convolutional Neural Network
DOAJ Directory of open access journals
DTW Dynamic Time Warping
ERSEM European Regional Seas Ecosystem Model
FVCOM Finite-Volume Community Model
IOC Intergovernmental Oceanographic Commission
KDE Kernel Density Estimate
MAP Maximum A Posteriori
MDPI Multidisciplinary Digital Publishing Institute
MC Monte Carlo
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MCMC Markov Chain Monte Carlo
ReLu REctified Linear Unit
RNN Recurrent Neural Networks
ROC Receiver Operating Characteristic
STEMM-CCS Strategies for Environmental Monitoring of Marine Carbon Capture and Storage
TSC Time Series Classification
UN United Nations
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