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Abstract: We have proposed a consistent thermodynamic scheme for evaluation of enthalpy changes
of hydrate phase transitions based on residual thermodynamics. This entails obtaining every hydrate
property such as gas hydrate pressure-temperature equilibrium curves, change in free energy
which is the thermodynamic driving force in kinetic theories, and of course, enthalpy changes
of hydrate dissociation and formation. Enthalpy change of a hydrate phase transition is a vital
property of gas hydrate. However, experimental data in literature lacks vital information required for
proper understanding and interpretation, and indirect methods of obtaining this important hydrate
property based on the Clapeyron and Clausius-Clapeyron equations also have some limitations.
The Clausius-Clapeyron approach for example involves oversimplifications that make results obtained
from it to be inconsistent and unreliable. We have used our proposed approach to evaluate consistent
enthalpy changes of hydrate phase transitions as a function of temperature and pressure, and hydration
number for CH4 and CO2. Several results in the literature of enthalpy changes of hydrate dissociation
and formation from experiment, and Clapeyron and Clausius-Clapeyron approaches have been studied
which show a considerable disagreement. We also present the implication of these enthalpy changes
of hydrate phase transitions to environmentally friendly production of energy from naturally existing
CH4 hydrate and simultaneously storing CO2 on a long-term basis as CO2 hydrate. We estimated
enthalpy changes of hydrate phase transition for CO2 to be 10–11 kJ/mol of guest molecule greater
than that of CH4 within a temperature range of 273–280 K. Therefore, the exothermic heat liberated
when a CO2 hydrate is formed is greater or more than the endothermic heat needed for dissociation
of the in-situ methane hydrate.

Keywords: hydrate; enthalpy; hydrate formation; residual thermodynamics; CO2; methane; hydration
number; hydrate dissociation

1. Introduction

The international interest in natural gas hydrates as a potential source of energy is increasing
rapidly [1–7]. Important global economies [2,5,8] in the world, like for instance Japan and China,
are highly dependent on import of energy. These countries have substantial resources of natural gas
hydrates [2]. For China, the beneficial situation is that these hydrate energy sources are located offshore
as well as onshore in permafrost regions [3,9]. These natural resources have been estimated to be
huge in amount by Makogon et al. [2] and Collett [10]. However, the exact or accurate amount is still
being debated, thus, uncertain [8]. Klauda and Sandler [11] predicted it is more than 74,200 metric
gigatons (Gt) from thermodynamic modelling. While Milkov [12], based on the available information
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on natural gas hydrate distribution puts this amount at 2500 Gt. Nevertheless, as stated above, natural
gas hydrates are considered as a potential source of unconventional energy for the future [1–8].

A large variety of techniques for mining or production of the energy resources have been
recommended in the last three decades till date. Most efforts have been devoted to investigation of
thermal stimulation and pressure reduction. A more novel approach of using CO2 is attractive due to
the combination of energy production and long-term safe storage of CO2 as hydrate. And as we show
in this work the enthalpy changes of hydrate phase transitions of both (methane and carbon dioxide)
components will play a vital function in this process. Thus, it is imperative to obtain accurate values of
these heat of hydrate formation and dissociation.

However, the data that can be found in literature for enthalpy of hydrate phase transition obtained
by experiment most times lack vital information needed for proper understanding and interpretation.
Available experimental data for hydrate dissociation enthalpies are filled with various sources of bias
that we have discussed in separate papers. Several data available in literature are limited and relevant
information needed for proper understanding and interpretation are frequently missing. Sometimes
information about pressure, temperature or of both properties is missing [13]. Hydration number
and hydrate composition are also not available sometimes. The equation of state applied is also not
reported in some literature.

The Clausius-Clapeyron approach is the simplest method that is generally applied to estimate
enthalpy change of hydrate phase transition. The calculations are based on hydrate equilibrium data
of pressure and temperature from experiments or calculated data. The Clausius-Clapeyron equation
is over-simplified, which is the reason for the limitation of the accuracy of estimates especially at
higher pressures. Therefore, the ordinary Clapeyron equation is favoured by most recent works
applying different models for the change in volume associated with the hydrate phase transitions [14].
The estimates obtained by the use of the Clausius-Clapeyron approach are thus not reliable and not
consistent because of its over-simplification. In addition, older data based on Clapeyron equation lack
appropriate volume corrections. For example, the work of Anderson [14], hydrate filling fractions
even up to 282 K seem very high. Several experimental data (calorimetry) also lack any measured
filling fractions and regularly use a constant value that suggest that they might just be guessed values.
Information about superheating above the hydrate equilibrium conditions to completely dissociate the
gas hydrate to liquid water and gas is normally not lacking.

However, thermodynamically, enthalpy change is uniquely but trivially related to change in free
energy. Therefore, thermodynamic models used for description of change in free energy associated
with hydrate phase transition (formation or dissociation) will have a consistent change in enthalpy
on the basis of the specific models. This kind of consistent method applies to kinetic theories like
classical nucleation theory (CNT) [15], phase-field theory [16–20], and multicomponent diffuse interface
theory (MDIT) [21], and other kinetic theory that is complete. Being complete implies there is implicit
coupling of heat and mass transports, together with the thermodynamics of phase transition. This is
why we propose the use of residual thermodynamics which able to evaluate real and not mere ideal
thermodynamic properties and the approach does not have the limitations of the other aforementioned
methods. With residual thermodynamics, we can calculate enthalpy changes of hydrate phase transition
which are consistent. We can calculate values outside of equilibrium, while the Clausius-Clapeyron
and Clapeyron approached are based on equilibrium. Real hydrate phase transitions, in industry and
nature—except in the laboratory—cannot reach equilibrium. This has been extensively discussed in
our previous studies [22–24]. We can obtain the degree of superheating needed for dissociation of
hydrates to liquid water and guest molecule back to its original phase (this is not included in this study
but in a subsequent work to this).

There are substantial deviations between various experimental data. Likewise, calculations
based on both the Clapeyron and Clausius-Clapeyron also vary considerably. The proposed
residual thermodynamic scheme is even very much numerically simpler than Anderson’s Clapeyron
scheme [14,25,26] that goes through ice, and it is directly adaptable to gas mixtures. This study is a
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continuation of our previous work [26] in the Project, “Simultaneous production of energy from in-situ
methane hydrate and long-termed offshore storage of CO2”. However, this work focuses on application
or implication of the enthalpies. This work also involves use of more extensive literature, and we
also make available data of enthalpies of hydrate phase transitions from our residual thermodynamic
approach that other researchers can make comparison with. This approach will be applied to hydrate
systems involving mixture of hydrate formers in our subsequent work.

2. Theoretical Analysis

Pure methane forms a structure denoted as structure I. In this structure, water molecules form two
types of cavities. The smallest cavity consists of 20 water molecules and is suitable for surrounding
molecules like for instance methane. A larger cavity consisting of 24 water molecules is large enough
to larger molecules like for instance ethane.

The cavities are stabilized by the molecular volume of the “guest” that enters the cavity and
weakens attractive forces which typically decay proportionally to the distance between water and
methane to the inverse of power 6. This is similar to the attractive part of the Lennard-Jones (12-6)
potential, and also the Kihara potential, which contains an additional parameter which is intended to
imitate effects of molecular elongation.

Van der Waal and Platteeuw [27] used a semi grand canonical ensemble to derive a Langmuir type
adsorption theory in which water molecules are fixed and rigid while molecules that enter cavities
(guest molecules) are open to exchange with surrounding phases. The final result of the derivation is
expressed in terms of chemical potential of water in hydrate:

µH
H2O = µ0,H

H2O −
∑

k = 1,2

RTvkln

1 +
∑

i

hi j

 (1)

µH
H2O is the chemical potential of water in hydrate, while µ0,H

H2O is the chemical potential of water in an
empty clathrate for the given structure in consideration. Historically, this value has not been calculated
by theoretical methods but rather fitted to experimental data in the form of chemical potential of
pure liquid water minus empty clathrate water chemical potential. See Sloan and Koh [28] for some
examples of values. T stands for temperature, and P is pressure. k is an index for cavity types and j
is an index for guest molecules in the various cavities. Number of cavities is ν, with subscripts k for
large and small cavities respectively. For structure I, which is the main focus here, νøarge = 3/24 and
νsmall = 1/24. For structure II the corresponding numbers are νøarge = 1/17 and νsmall = 2/17.

The canonical partition functions for the cavities, hi j that will be a result of the grand canonical
derivation will generally be an exponential function of the chemical potential time Boltzmann integrals
over interactions between guests and water (generally also with surrounding guest molecules [29]).
In the classical formulation of van der Waal and Platteeuw [27] the result for a rigid lattice is:

hki = f gas
i

(
T, P,

→
x
)
Cki(T) = xi∅i

(
T, P,

→
x
)
PCki(T) (2)

The Langmuir constant Cki(T) for a molecule i in cavity k and given below as Equation (3). In the
simplest case of a monoatomic spherical guest molecules, the Langmuir constant is a simple integral
over the Boltzmann factors of interaction energies between the guest molecule and surrounding waters.

Cki(T) =
1

KBT

y
eβ[ϕiw(x,y,z)]dxdydz (3)

For non-linear multi-atomic representations of guest molecules, the integration will involve
rotational degrees of freedom.



Energies 2019, 12, 4726 4 of 26

The most common guest/water interaction model in present versions hydrate equilibrium codes
based of the reference method is based on a spherically smeared out version of the Kihara potential for
interactions between a water and a guest. The Kihara potential can be expressed as:

∅i j
(
ri j

)
= 4εi j

( σi j

ri j − ai j

)12

−

(
σi j

ri j − ai j

)6 (4)

where i and j are molecular indices, while ri j − ai j is the closest distance between the two molecules.
σi j is a molecular diameter, and εi j is a well-depth. For aij equal to zero, Equation (4) reduces to the
Lennard-Jones (12-6) potential. A summation of approximate pairwise interactions in Equation (3)
is possible and integration can be conducted efficiently using a Monte Carlo approach [29,30]. It is,
however, more common to use an integrated smeared interaction version in which the average
water/guest interaction are smeared out over the surface of a spherically smoothed cavity radius R. Z is
used as the number of waters represented in this spherical shell in Equation (4) below. Z is therefore
20 for small cavity and 24 for large cavity. The details of this integration to reach at the spherically
smoothed potential is far too extensive to include here. See reference [28] for more details and further
references as well as examples of values for Equation (4). The final results for each specific cavity k is:

ϕiw(r) = 2Zkεiw

 σ12
iw

R11
k r

(
∆10 +

aiw
Rk

∆11
)
−
σ6

iw

R5
kr

(
∆4 +

aiw
Rk

∆5
) (5)

∆N =
1
N

(1− r
Rk
−

aiw
Rk

)−N

−

(
1−

r
Rk
−

aiw
Rk

)N (6)

The spherically symmetric integration version of Equation (3) can then be expressed as:

Cki(T) =
4π
kBT

∫
∞

0
eβ[ϕiw(x,y,z)]r2dr (7)

Kvamme and Tanaka [31] also utilized a semi grand canonical ensemble and used molecular
dynamics simulations to derive the same equation as Equation (1), but the meaning of chemical
potential is now the physically average sampled chemical potential of water in empty clathrate based
on a harmonic oscillator approach. These chemical potentials are therefore denoted as reference
chemical potentials. Values for chemical potential of water in empty clathrates of structures I and II are
plotted in Figure 1 below [30,31].

Parameters for linear fits of the various chemical potential in the plot is listed in Table 1 below.

µm
H2O

RT
= am

0 + am
1

(273.15
T

)
(8)

Table 1. Parameters for dimensionless chemical potential functions in Equation (8).

Water Phase, m a0 a1

Empty structure I −3.087 −18.246
Empty structure II −3.188 −18.186
Ice (T < 273.15 K) −2.639 −19.051

Liquid water (T > 273.15 K) −5.610 −16.080
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Figure 1. Dimensionless chemical potentials of water in empty clathrate of structure I (dashed-line),
structure II (dash-dot line) and water as ice or liquid water (solid-line).

Similar for the evaluation of the canonical partition functions in Equation (1). These can also be
evaluated for a rigid lattice in a similar fashion as Equation (2) but they can also be evaluated using a
harmonic oscillator approach and be expressed as:

hki = eβ[µki− ∆gki] (9)

where β is equal to the inverse of the universal gas constant multiplied by temperature. ∆gki stands for
the effect on hydrate water for inclusion of a hydrate former (guest molecules) i in the hydrate cavity k.
In an equilibrium situation, the chemical potential of the hydrate forming molecules i in the cavity
(cage) k is uniform with its (guest molecules i) chemical potential in the co-existing (original) phase it
emanates from. Considering a non-equilibrium situation, adjustment of the chemical potential is done
for distance from equilibrium through a Taylor expansion as will be discussed later. The free energies
of inclusion, that is ∆gki have been reported in other works [22,32–34]. At thermodynamic equilibrium,
µki is the chemical potential of the hydrate forming guest molecule in its original phase (gas, liquid,
or fluid) at the equilibrium pressure and temperature of the hydrate.

The composition of the hydrate is also trivially given by the derivation from the semi grand
canonical ensemble and given by:

θki =
hki∑
j hki

(10)

θki is the filling fraction of component i in cavity (cage) type k. Then:

xH
i =

θlarge,ivlarge + θsmall,ivsmall

1 + θlarge,ivlarge + θsmall,ivsmall
(11)
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where ν stands for the fraction of cavity in each water (i.e., per water) for the actual cavity (cage) type,
as shown by the subscripts. The corresponding mole-fraction (concentration) of water is therefore:

xH
H2O = 1−

∑
i

xH
i (12)

And the associated hydrate free energy is then:

G(H) = xH
H2Oµ

H
H2O +

∑
i

xH
i µ

H
i (13)

Outside of equilibrium the corresponding result for a Taylor expansion is given by:

GH
Non−equilibrium

(
T, P,

→
x
)

= HH, Eq.
(
TEq., PEq.,

→
x

Eq.)
+

∑
r

∂GH

∂xr P,T, i,r

(
xr − xEq.

r

)
+ ∂GH

∂P T,x

(
P− PEq.

)
+ ∂GH

∂T P,x

(
T − TEq.

) (14)

Residual Thermodynamic Modelling of Hydrate Phase Transition

With residual thermodynamics we are able to calculate real gas behaviour taking into account
thermodynamic deviations from ideal gas behaviour [35]. A phase transition of hydrate (formation or
dissociation) can be reversed along the pressure-temperature equilibrium curve of hydrate, just as it is
used in the Clapeyron method for hydrate formation from a separate hydrate former phase (gas or
liquid) and a free water phase. The change in the free energy for this hydrate phase change can be
expressed as:

∆GH =

xH
H2O

(
µH

H2O

(
T, P,

→
x

H)
− µwater

H2O

(
T, P,

→
x
))

+
∑

j

xH
j

(
µH

j

(
T, P,

→
x

H)
− µ

gas
j

(
T, P,

→
y

gas)) (15)

where superscript H signifies hydrate phase in Equation (15). T signifies temperature, and P is pressure.
x signifies mole-fraction (hydrate or liquid phase), and y denotes mole-fraction in hydrate former phase
(gas or liquid). j is an index for guest molecules or hydrate formers. Superscript water refers to water
phase which is turned into hydrate. The water phase is usually liquid or ice, but in this study, we have
considered liquid water only. And µ is chemical potential. The chemical potential of liquid water is
estimated from the symmetric excess:

µH2O
(
T, P,

→
x
)
= µ

pure, H2O
H2O (T, P) + RTln

[
xH2OγH2O

(
T, P,

→
x
)]
≈ µ

pure, H2O
H2O (T, P) + RTln

[
xH2O

]
lim

(
γH2O

)
= 1.0 when xH2O approaches 1

(16)

where γ represents activity coefficient, superscript H2O signifies water phase and subscript H2O is
liquid water. In Equation (16) the approximation on the right-hand side (R.H.S) is not necessary.
A theoretical model can be used for the activity coefficient or Gibbs-Duhem equation [36]. CH4 solubility
in water is very low, thus, the R.H.S of Equation (16) will then be close to pure water chemical potential.
From to residual thermodynamics, the hydrate former j chemical potential is given as:

µi
(
T, P,

→
y
)
= µ

pure, ideal gas
i

(
T, P,

→
y
)
+ RTln

[
yi∅i

(
T, P,

→
y
)]

(17)

where yi denotes mole-fraction of component i in the gas mixture. ∅i represents the fugacity coefficient
for component i. Ideal gas chemical potential for pure component i can be trivially computed for
any model molecule by means of statistical mechanics from mass and intramolecular structure (bond
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lengths and bond angles). The ideal gas chemical potential as well as density and temperature are
obtainable from the momentum space canonical partition function. The Soave-Redlich-Kwong equation
of state (SRK EOS) [37] have been used to calculate the fugacity coefficient and the density required for
the ideal gas free energy evaluations.

Enthalpy change is trivially connected to the associated change in free energy
thermodynamically as:

∂
[

∆GTotal

RT

]
P,N

∂T
= −

[
∆HTotal

RT2

]
(18)

superscript Total is brought in to also include the penalty of pushing away the old phases to make
way for the new hydrate phase during hydrate formation. The total free energy change is in essence
Equation (16) in addition to the interface free energy, multiplied by the area of contact between water
and the hydrate forming phase in the nucleation stage of hydrate formation, divided by the number of
molecules in the given core size. Since the critical nuclei sizes are small [15], the entire particle can be
seen or considered as covered with water because of capillary forces. When the hydrate core grows
beyond the critical core size, the penalty reduces rapidly in comparison to the free energy benefits of
going into hydrate, given by Equation (16).

∂

[
µH

H2O
RT

]
P,
→

N

∂T
=

∂

[
µ0,H

H2O
RT

]
P,
→

N

∂T
−

[
∂
∂T

]
P,
→

N

 ∑
k = 1,2

vkln

1 +
∑

i

hki


 (19)

The water (liquid) phase in Equation (16), and the chemical potential of the empty hydrate,
which is the first term on R.H.S. of Equation (19), is trivially evaluated from [31]. Then, the second
term is rearranged as given in Equation (20):

[
∂
∂T

]
P,
→

N

 ∑
k = 1,2

vkln

1 +
∑

i

hki


 =

 ∑
k = 1,2

vk

∑
i

[
∂hki
∂T

]
P,
→

N

(1 +
∑

i hki)

 (20)

Differentiation of cavity partition functions can be written as:[
∂hki
∂T

]
P,
→

N
= hki

[
−

1
RT2

(
µki − ∆gki

)
+

1
RT

(
∂µki

∂T
−
∂∆gki
∂T

)]
(21)

The partial differentiation in the last term on R.H.S. is numerically computed from the polynomial
fits of [31]:

∂

[
µH

H2O
RT

]
P,
→

N

∂T
=

∂

[
µ0,H

H2O
RT

]
P,
→

N

∂T
+


∑

k = 1,2

vk

∑
i hki

[
1

RT2

(
µki − ∆gki

)
+ 1

RT

(
∂µki
∂T −

∂∆gki
∂T

)]
(1 +

∑
i hki)

 (22)

µ0,H
H2O = −RT2

∂

[
µ0,H

H2O
RT

]
P,
→

N

∂T
+


∑

k = 1,2

vk

∑
i hki

[(
µki − ∆gki

)
+ T

(
∂µki
∂T −

∂∆gki
∂T

)]
(1 +

∑
i hki)

 (23)

the enthalpy of water (liquid) is yet more trivially estimated with the use of numerical differentiation
of the polynomial fit of chemical potential as a function of temperature T as Kvamme and
Tanaka [31] specified.

If we consider equilibrium scenario, the chemical potential of a specific hydrate former (guest
molecule) in the two types of cages have to be uniform and they have to also be uniform with the
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chemical potential of the same hydrate former in the original phase that it is taken or extracted from.
Considering a heterogeneous hydrate formation, it means the chemical potential of the hydrate former
phase, either gas or liquid. Nevertheless, outside of equilibrium which represent industrial situation
and nature, the gradients in chemical potentials as function of pressure, temperature and concentrations
(mole-fractions) need to reflect how the hydrate former behaves in the cage.

Enthalpies of different hydrate formers in the two cavity types can be computed utilizing Monte
Carlo simulations along the lines described by Kvamme et al. (1993) [29] and Kvamme and Førrisdahl
(1993) [30] by sampling interactions energies between water and guest molecule, and efficient volumes
from the movements of the guest molecules:

HR
ki = UR

ki + (zki − 1)RT (24)

U here stands for energy and superscript R signifies residual (interaction) contribution. zki is
compressibility factor for the hydrate forming guest i in cavity k. The consistent ideal gas values for
the same interaction models which have been used in computation of the residual values is trivial.

zki =
PVki
kBT

(25)

kB is Boltzmann’s constant and Vki is the excluded volume of a hydrate forming molecule of type i
in cavity of type k. This latter volume can be calculated from the sampled volume of centre of mass
movements together with the excluded volume because of water/guest occupation.

The differentiation of chemical potential of a hydrate former molecule i in cavity (cage) type k
with respect to temperature, T as required in Equation (22) is the negative of partial molar entropy for
the same hydrate former molecule and can be computed as follows:[

∂µki

∂T

]
N,
→

N
=

µki −Hki

T
(26)

And Equation (23) can then be reorganised into:

µ0,H
H2O = −RT2

∂

[
µ0,H

H2O
RT

]
P,
→

N

∂T
+


∑

k = 1,2

vk

∑
i hki

[
Hki − ∆gki + T ∂∆gki

∂T

]
(1 +

∑
i hki)

 (27)

The residual enthalpies for guest molecule in a separate hydrate former (guest molecule) phase
are trivially evaluated from:

HR
ki = −RT2

∑
i

yi

∂ln∅gas
i

∂T


P,y j,i

(28)

The same Soave-Redlich-Kwong [37] equation of state (SRK EOS) is applied for estimating fugacity
coefficients for the chemical potentials.

3. Results and Discussion

3.1. Hydrate Equilibrium Curves Using Residual Thermodynamics

Hydrate equilibrium (P-T) curves calculated for methane and carbon dioxide hydrates using our
scheme based on residual thermodynamic scheme approach are plotted with experimental (and some
calculated) data in Figure 2a,b. For CH4 hydrate, we compared our estimates with different 11 data
sets from literature [14,38–46], and our CO2 hydrate estimates are also compared with 11 different
data sets [13,25,38,42,47–52]. The agreement is sufficiently good even though we did not do any
empirical data fitting because it is not a priority. Our priority is to have the statistical mechanical
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model used [31] without adjustable parameters in all aspect, including the chemical potential of empty
hydrate and that of water (ice and liquid). For CO2 (Figure 2b) at 283 K, a jump can be observed.
This has been explained in some of our previous studies [53,54]. The jump represents a point where
the hydrate former undergoes a phase split (from gas phase to both liquid + gas), if we increase the P-T
conditions along the equilibrium curve. It is caused by a change to a higher density because of part of
the CO2 becoming liquid at this higher pressure. This point is called a “quadruple point”; hydrate +

liquid water + liquid CO2 + CO2 gas co-exist at this point. Several literature do not show this jump.
Some smoothen the curve and some stop their evaluations at this point. However, Ohgaki et al. [52]
show this jump and show that these high pressures are due to liquid phase of CO2. Our calculations
took account of the presence of both liquid CO2 and CO2 gas as from this quadruple point, which is
realistic. Ohgaki et al. [52] performed their evaluations for each of the separate phases (liquid and
gas) of CO2. However, this is not the focus of this paper. The focus is on reviewing and revealing the
wide differences in values calculated for enthalpy changes of hydrate phase transition (formation or
dissociation) and the importance of enthalpies in CH4-CO2 swap.
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Figure 2. (a) Equilibrium (P, T) curve of methane (solid line) from residual thermodynamics compared
with literature-experimental and calculated enthalpy data [14,38–46]; (b) Equilibrium (P, T) curve of
carbon dioxide calculated from residual thermodynamics compared with literature-experimental and
calculated enthalpy data [13,25,38,42,47–52].

3.2. Enthalpy Changes of Hydrate Formation or Dissociation: Residual Thermodynamics versus
Other Approaches

Enthalpy change of a hydrate phase transition, hydrate formation or dissociation is a very vital
property of gas hydrate [13] as we have mentioned earlier. For example, to produce natural gas
from the vast amount of in-situ methane hydrates dispersed in the world, information about the
dissociation heat of these hydrates is very vital. In gas transport in form of hydrate, we also require
this information about heat of formation and dissociation of the hydrate for effective and efficient
gas recovery. Enthalpy change of hydrate formation or dissociation is normally obtained by direct
measurement by means of experiment [45,55,56], or indirectly by calculations based on thermodynamic
models. The Clausius-Clapeyron [46,50,57] and Clapeyron [14,25,46] equations are generally used
by many researchers. Some researchers use these equations with different modifications [50,58].
We have focused on only CH4 and CO2 hydrate guest molecules in this study because they are the
relevant components in our project: simultaneous CH4 production from in-situ CH4 hydrate and
long-term storage of CO2 as hydrate. We have also reported our calculations in hydrate dissociation
(positive values). However, both formation and dissociation have the same values, negative values
for hydrate formation since it is exothermic process and positive values for dissociation being an
endothermic process.

In this section and the subsequent Sections 3.3 and 3.4, we are not using literature data to verify or
validate our thermodynamic scheme. That has been done in Section 3.1. This is to show the picture of
how the values obtained from the literature (even values from the same method) vary substantially.
A look at several literature shows remarkable disagreement in reported values obtained for enthalpy
changes of hydrate phase transition. Lirio and Pessoa [13] acknowledged this variation in literature
values and their results. Thus, they [13] and some other literature have more confidence in their
average values.
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Estimates using residual thermodynamics which we have proposed are plotted with several data
sets (experimental and calculated data from the Clapeyron and Clausius-Clapeyron equations) from
literature as can be seen in Figure 3a,b and Figure 4a,b. We have plotted enthalpy changes of hydrate
dissociation in kJ/mol of guest molecule as a function of temperature for CH4 and CO2 in Figures 3a
and 4a respectively. While Figures 3b and 4b present enthalpy changes of hydrate dissociation in kJ/mol
of guest molecule as a function of pressure for CH4 and CO2 respectively. Figure 3a,b also include
our calculations using Clapeyron and Clausius-Clapeyron approaches. These figures represent what
we have in literature now. They present the picture of varying values of enthalpy changes of hydrate
formation and dissociation as mentioned above. For example, Gupta et al. [46] obtained different
values for the enthalpy changes from experiment, Clapeyron and Clausius-Clapeyron approaches as
presented in both Figure 3a,b. Our estimates using residual thermodynamics and the other two indirect
methods also show great difference in values as can be seen in Figure 3a–Figure 4b. It is observed that
Clausius-Clapeyron calculations give very high values, except when used with some modifications.
The deviations are more in the case of CO2 as can be observed in Figure 4a,b. Nevertheless, for methane
hydrate, the results of Nakamura et al. [44] are closed to our results, and also the experimental results
of Gupta et al. [46] but only between 280 and 286 K. A lot of literature reports a single value and
sometimes it is the average of all the values calculated within a temperature range [13]. That is why we
have only one value plotted for some studies in the figures. The single point value of Kang et al. [54]
and Sloan and Fleyfel [58] are close to our results. We do not expect much agreement with our results
based on the limitations of the other methods, especially, the simplicity of both the Clapeyron and
Clausius-Clapeyron equations. Our calculations of enthalpy changes of hydrate dissociation and
hydration (occupation) number for a temperature range of 273–290 K are presented in Table 2 with
their pressures.Sustainability 2019, 11, x FOR PEER REVIEW 12 of 27 
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Figure 3. (a) Enthalpy changes of CH4 hydrate dissociation (negative values for formation) in
kJ/mol of CH4 as a function of temperature from residual thermodynamics compared with the
literature [14,44–46,55–57,59–62]; (b) Enthalpy changes of CH4 hydrate dissociation (negative values
for formation) in kJ/mol of CH4 as a function of pressure from residual thermodynamics compared
with the literature [14,44–46].
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Figure 4. (a) Enthalpy changes of CO2 hydrate dissociation (negative values for formation) in
kJ/mol of CO2 as a function of temperature from residual thermodynamics compared with the
literature [13,25,49–51,55,58,63,64]; (b) Enthalpy changes of CO2 hydrate dissociation (negative values
for formation) in kJ/mol of CO2 as a function of temperature from residual thermodynamics compared
with the literature [13,25,49–51].
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Table 2. Enthalpy changes of hydrate phase transition and hydration number of CH4 and CO2.

Temperature
Methane (CH4) Carbon Dioxide (CO2)

Pressure Hydration
Number (n) ∆Hdissociation Pressure Hydration

Number (n) ∆Hdissociation

(K) (kPa) (kJ/mol
Guest) (kPa) (kJ/mol

Guest)

273.16 25.19 6.46 57.07 14.19 7.26 67.79
274.17 27.87 6.43 56.63 15.73 7.24 67.24
275.13 31.01 6.41 56.19 17.59 7.22 66.67
276.15 34.53 6.38 55.75 19.73 7.20 66.08
277.16 38.45 6.37 55.31 22.21 7.18 65.50
278.17 42.83 6.35 54.88 25.06 7.16 64.91
279.13 47.43 6.34 54.47 28.17 7.14 64.36
280.14 52.87 6.32 54.03 31.96 7.11 63.77
281.16 58.97 6.31 53.57 36.34 7.09 63.18
282.17 65.80 6.30 53.11 41.42 7.07 62.59
283.13 73.03 6.30 52.66 46.95 7.05 62.03
284.14 81.64 6.29 52.17 109.88 6.69 60.96
285.15 91.41 6.28 51.65 128.38 6.67 60.40
286.17 102.55 6.28 51.11 152.24 6.64 59.86
287.13 114.65 6.27 50.57 183.38 6.62 59.39
288.14 129.55 6.27 49.97 233.44 6.59 58.96
289.16 147.28 6.26 49.33 313.22 6.57 58.68
290.00 164.94 6.26 48.76 404.15 6.55 58.55

3.3. Hydration Number (n) Using Residual Thermodynamics versus Experimental Data

Figure 5a,b and Figure 6a,b present the overview of the values of our estimates of the hydration
number (n), which is the number of water per guest molecule, and recalculated back from the calculated
mole-fractions of guests in hydrate. Literature values are also plotted. We have plotted values
of CH4 and CO2 as a function of temperature (Figures 5a and 6a) and as a function of pressure
(Figures 5b and 6b). These figures also present the overview values calculated by various literature
and our consistent approach. Essentially, our aim here is not to validate our studies with literature
values, having seen the limitations in the other methods. However, in the case of CH4 hydrate, the
results of Galloway et al. [65] from their solid–solution theory at 283.15 K and 283.21 K agree with our
results (Figure 5a,b). Kang et al. [55] value experimentally obtained at 273.65 K is also close (Figure 5a).
In Figure 5b, that is from pressure perspective, the same theoretical results of Galloway [65] agree with
our results. Uchida et al. [66] experimental results between 6000–8000 kPa also have good agreement.
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Figure 5. (a) Hydration number of CH4 hydrate as a function of temperature from residual
thermodynamics compared with the literature [14,45,55,56,58,65–67]; (b) Hydration number of
CH4 hydrate as a function of pressure from residual thermodynamics compared with the
literature [14,45,65,66].

Both CH4 and CO2 are structure I hydrates. This structure has 46 molecules of water and two
small and six large cavities. Since CH4 can occupy both the small and large cavities, if we assume full
occupation which is not realistic, then we will have 2 + 6 = 8 cavities that CH4 can occupy. This will
give us a hydration number (n) of 46 water molecules divided by 8 cavities, which is 5.75. Therefore,
the realistic hydration number of methane hydrate should be greater than this value.

The hydration number of CO2 hydrate values obtained experimentally by Kang et al. [55],
Bozzo et al. [68] and the value calculated by Vlahakis [64] from their Clausius-Clapeyron approach
have good agreement with our results (Figure 6a). The results of Lirio and Pessoa. [13] along the
hydrate equilibrium are not in agreement with our results. However, as mention earlier, they have
more confidence in their average value and that is the value they compared with other literature.
That is the value that is also in agreement with our results as can be seen in both Figure 6a,b.
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Figure 6. (a) Hydration number of CO2 hydrate as a function of temperature from residual
thermodynamics compared with the literature [13,25,55,58,64,67–69]; (b) Hydration number of CO2

hydrate as a function of pressure from residual thermodynamics compared with the literature [13,25,69].

3.4. The Significance of Enthalpy Changes of Hydrate Formation or Dissociation in CH4-CO2 Swap

Beside the problem gas hydrates can pose in industrial applications involving pipeline transport
of gas [23,24,53,70–73], the vast naturally occurring hydrates also offer potential possibility to provide
a huge source of cleaner energy (compared to other fossil fuels) to the world, and a possibility of
CO2 sink (long-term storage) [54]. Much attention has been given to the production of natural gas
from the abundant in-situ methane hydrate spread across the world. Highly populated nations like
China, Japan, and Indian who depend on huge import of fuel for energy have been investing a lot
of money in research and tests towards realizing self-sufficiency in energy through exploration of
these vast source of cleaner energy. Pressure reduction [74] below hydrate stability pressure is one
major method that is being explored. This can only take care of the thermodynamic driving force.
However, whatever technology that will be used to produce these vast energy resources will require
supply of heat to ensure successful operation. The lessons learnt from the two tests already carried
out offshore of Japan [75] few years ago agree with this. Among other challenges, they encountered a
freezing down problem because of insufficient heat supply from the surroundings. One solution to
this is thermal stimulation [76], that is, by supplying heat using either hot water or steam. While it is
possible technologically, economically, it has been assessed to be too expensive. Therefore, a novel
solution which is an environmentally friendly solution is injection of carbon dioxide (CO2) into the
reservoir of sin-situ CH4 hydrate deposits. This is the focus in this section. Lee et al. [77] and also
Falenty et al. [78] had confirmed a solid-state CO2-CH4 swap process but in the ice region. The main
aim in this section is to draw our attention to the significance of the role enthalpies of CO2 hydrate
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formation and enthalpies of CH4 hydrate formation can play in the swap process. Figure 7a and
Figure 8b present our estimates of enthalpy changes of hydrate formation and dissociation.
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thermodynamics compared with the literature [14,25,55]; (b) Comparison of enthalpy changes of CH4 

Figure 7. (a) Comparison of enthalpy changes of CH4 and CO2 hydrate dissociation (negative values
for formation) as a function of temperature in kJ/mol of guest molecule from residual thermodynamics
compared with the literature [14,25,55]; (b) Comparison of enthalpy changes of CH4 and CO2 hydrate
dissociation (negative values for formation) as a function of pressure in kJ/mol of guest molecule
from residual.
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Figure 8. (a) Comparison of enthalpy changes of CH4 and CO2 hydrate dissociation (negative values
for formation) as a function of temperature in kJ/mol of hydrate from residual thermodynamics;
(b) Comparison of enthalpy changes of CH4 and CO2 hydrate dissociation (negative values for
formation) as a function of pressure in kJ/mol of hydrate from residual thermodynamics.
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Hydrate formation is an exothermic process, and hydrate dissociation process is endothermic.
It can be seen clearly in Figure 7a,b and Figure 8a,b that the enthalpy changes for CO2 hydrate phase
transition are well over those for CH4 hydrate formation or dissociation. Considering a temperature
range of 273–280 K, the enthalpy changes we calculated from residual thermodynamics scheme for
CO2 hydrate formation are approximately 10–11 kJ/mol of guest molecule greater than the enthalpy
changes of CH4 dissociation (see Figure 7a,b). Kang et al. [55] calculated this difference to be 8.4 kJ/mol
of guest molecule at 273.65 K. Anderson [14,25] calculated approximately 10 kJ/mol of guest molecule
at 274 K and 7 kJ/mol of guest molecule at 278 K. These are significant differences (values). Basing the
calculation on per mole of hydrate, we got about 0.5–0.6 kJ/mol hydrate within a temperature range of
273–280 K as can be observed in Figure 8a,b. The implication is, when CO2 is injected into the in-situ
methane hydrate reservoir, CO2 hydrate will be formed either directly through a solid-state process or
from the available free water (including pore water). Since CO2 hydrate formation is an exothermic
process, heat that is 10–11 kJ/mol of guest molecule greater than the heat requirement for CH4 hydrate
dissociation will be released. This heat is then available for further dissociation of CH4 hydrate to
liquid water and CH4 gas. The CH4 will be released through buoyancy forces and the liquid water
will be available for further CO2 hydrate formation and the process will go on. It is important to state
here that this process is still under study and under development, and there are constraints which
are also under investigation. CO2 hydrate formation from CO2 and pore water at the interface occurs
very rapidly, which quickly forms a thin film of CO2 hydrate at the interface [15] thereby blocking
the pore space to limit further supply of CO2. There have been suggestions of using nitrogen (N2) in
mixture with CO2 to reduce the driving force. This reduces the driving force so much and leads to
a very slow [33,71], ineffective and inefficient conversion of the in-situ CH4 hydrate to CO2 hydrate.
Nevertheless, we recommend using surfactants instead of nitrogen, to reduce the hydrate nucleation
and growth processes at the interface in order to enable an effective control of the simultaneous CH4

production and long-term CO2 storage in form of hydrate [79].

4. Conclusions

Enthalpy changes of hydrate phase transition is one of the most important properties of clathrate
hydrate. However, the data in literature for enthalpy of hydrate formation and dissociation from
experiment are lacking in vital information needed for proper understanding and interpretation.
Indirect methods of obtaining this significant hydrate property based on the Clapeyron and
Clausius-Clapeyron equations also have some limitations. The Clausius-Clapeyron approach for
example involves oversimplifications that make results obtained from it to be inconsistent and unreliable.
The approach can also not be used for very high-pressure systems. Therefore, we recommend a consistent
thermodynamic scheme where every gas hydrate property such as hydrate pressure–temperature
equilibrium curves, change in free energy (thermodynamic driving force in kinetic theories),
and enthalpy changes involved in hydrate dissociation and formation are obtained based on residual
thermodynamics approach. Calculations based on residual thermodynamics enable us to evaluate real
gas behaviour with consideration of the thermodynamic deviations from ideal gas behaviour. We have
given the overview of the estimates of enthalpy changes of hydrate phase transitions available in
literature from experiments, Clapeyron and Clausius-Clapeyron approaches which shows remarkable
disagreement in the various estimated values. Our calculations based on our proposed approach,
and residual thermodynamics are plotted together. Overview of the available hydration number is
also given in this work. The significance of these enthalpy changes of hydrate phase transitions to
environmentally friendly energy production from in-situ methane hydrate and simultaneously storing
carbon dioxide in form of gas hydrate is also highlighted in this study. Enthalpy changes of hydrate
phase transition for CO2 are between 10–11 kJ/mol of guest molecule more than that of CH4 within a
temperature range of 273–280 K. Kang et al. calculated a difference of 8.4 kJ/mol of guest molecule at
273.65 K, and Anderson calculated it to be 10 kJ/mol of guest molecule at 274 K and 7 kJ/mol of guest
molecule at 278 K. And since heat is needed to be supplied from the surroundings during production
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of methane from in-situ methane hydrate, injection of CO2 into the reservoir of in-situ methane which
will lead to CO2 hydrate formation will also provide more heat per guest molecule than the heat per
guest molecule needed to dissociate methane hydrate.
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