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Abstract
Selecting the best design for genetic association studies requires careful delib-
eration; different study designs can be used to scan for different genetic effects,
and each design has its own set of strengths and limitations. A variety of family
and unrelated control configurations are amenable to genetic association analy-
ses, including the case-control design, case-parent triads, and case-parent triads
in combination with unrelated controls or control-parent triads. Ultimately, the
goal is to choose the design that achieves the highest statistical power using the
lowest cost. For given parameter values and genotyped individuals, designs can
be compared directly by computing the power. However, a more informative
and general design comparison can be achieved by studying the relative effi-
ciency, defined as the ratio of variances of two different parameter estimators,
corresponding to two separate designs. Using log-linear modeling, we derive the
relative efficiency from the asymptotic variance of the parameter estimators and
relate it to the concept of Pitman efficiency. The relative efficiency takes into
account the fact that different designs impose different costs relative to the num-
ber of genotyped individuals. We show that while optimal efficiency for analyses
of regular autosomal effects is achieved using the standard case-control design,
the case-parent triad design without unrelated controls is efficient when search-
ing for parent-of-origin effects. Due to the potential loss of efficiency, maternal
genes should generally not be adjusted for in an initial genome-wide associa-
tion study scan of offspring genes but instead checked post hoc. The relative
efficiency calculations are implemented in our R package Haplin.

K E Y W O R D S

case-parent triad, Haplin, parent-of-origin effects, power and sample size, relative (Pitman)
efficiency

1 INTRODUCTION

Optimizing the design of a genetic association study requires careful consideration because (among other things) there are
several factors to assess (eg, recruitment costs, genotyping costs, phenotypic costs, statistical power, and design-induced
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biases). The most common design for genetic association analysis is the standard case-control design in which
individuals with and without the disease in question are genotyped. By contrast, if case-parent triad data are collected
by genotyping cases and their biological parents, parent-of-origin (PoO) effects or direct effects of the maternal genome
during fetal development (ie, maternal effects) can also be investigated.1-4 Case-parent triads can also be combined
with unrelated control-parent triads in a hybrid design.5-9 Although the case-parent triad design is mostly used when
the outcome occurs early in life, this design can be used for any condition, provided that parents are available for
genotyping.

The statistical power is an important aspect of design comparison. Frequently, study designs are compared directly
through a power analysis without considering the total number of individuals that needs to be genotyped. For example, a
fixed number of complete case-parent triads could be compared with the same number of case-mother dyads. However,
this approach ignores the costs of data collection. In this article, our objective is to present comparisons that enable the
highest statistical power to be achieved using the smallest sample collection and assay costs. We assess this through the
quantity known as relative efficiency, defined as the ratio of variances of estimators for the same parameter computed
from two different designs, or equivalently, the ratio of the sample sizes needed for each of the two designs to achieve the
same significance level and power. We demonstrate how the relative efficiency measures relate to the concept of Pitman
efficiency.10

We have previously developed an extensive framework for genetic epidemiological analyses of binary traits based
on log-linear modeling, implemented in the R package Haplin.4,11-13 Haplin includes a complete setup for power and
sample size calculation,14,15 which is useful in study planning and in interpreting findings from a genome-wide associ-
ation study (GWAS). In this article, we present a structured overview of different genetic effects and etiologic scenarios
that are applicable to diseases with onset throughout the lifespan, along with appropriate choices of study designs.
Our primary focus is on estimating the relative efficiency, which is readily assessed within the power calculation
framework of Haplin.

The article is structured as follows. First, we introduce the relevant genetic effects and the family-based designs that
are the focus of this article. Second, we describe our sampling and penetrance models, explain the concept of relative effi-
ciency, and illustrate its association with statistical power. Finally, we study the relative efficiency of different designs for
different genetic effects, both for single-nucleotide polymorphisms (SNPs) and for haplotypes, that is, the combinations of
alleles from several SNPs within a locus. Although we focus on autosomal markers, the methodology presented is readily
applicable to SNPs or haplotypes on the X chromosome. A discussion of relative efficiency is provided in Appendix A. In
Appendix B, we provide a heuristic derivation of the relative efficiency for regular autosomal effects. To facilitate analysis
of other genetic mechanisms, study designs, and input parameters, we provide Haplin commands for various scenarios
on the Haplin website at https://people.uib.no/gjessing/genetics/software/haplin.

2 BACKGROUND

The R package Haplin is a comprehensive framework for genetic association analyses of binary traits based on log-linear
modeling.4 It implements a full maximum-likelihood model for estimation and calculates explicit estimates of relative
risks with asymptotic standard errors (SEs) and confidence intervals. Haplin enables the estimation of regular autoso-
mal effects, PoO effects, and maternal effects, as well as interactions between genetic effects and categorical or ordinal
exposure variables.11,13 It allows for parallel processing of analyses as well as data structure for handling GWAS data. In
Haplin, the main unit of analysis is the case-parent triad. However, the log-linear model can readily incorporate unrelated
controls or control triads that are population-based (ie, of unknown disease status), or, under the rare disease assumption,
unaffected controls or control triads.7,16,17 Note that unrelated controls are optional since “pseudocontrols” in princi-
ple can be derived from the nontransmitted parental alleles in case-parent triads.18-21 To account for unknown parent
of origin in ambiguous (uninformative) triads, for example, when the mother, father, and child are all heterozygous for
the same two alleles, Haplin uses the expectation maximization (EM) algorithm.22 The EM algorithm also accounts for
individuals that are missing “by design,” such as when case-parent triads are reduced to case-mother dyads due to miss-
ing data on fathers, assuming that the missingness is random, that is, independent of genotype. The log-linear model in
Haplin assumes Mendelian transmission, Hardy-Weinberg equilibrium (HWE), and random mating, although moderate
deviations from HWE are unlikely to cause bias.23 A detailed description of the underlying model is provided in several
of our previous publications.4,11,13 For applications of Haplin to GWAS data, readers are referred to some of our previous
publications.24-29
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T A B L E 1 Overview of
genetic effects available in
Haplin

Effects Description

Regular autosomal A regular autosomal effect is a standard effect of the offspring's own genes. It
occurs when a variant allele inherited from one or both parents increases
or decreases the risk of a condition.

PoO A PoO effect occurs if the effect of a variant allele in an individual depends
on whether it is inherited from the mother or from the father.
Hypothetically, an allele might be protective when inherited from the
mother but detrimental when inherited from the father. In statistical
terms, we define a PoO effect as an interaction since the effect of an allele
is modified by its parent of origin. In contrast, analyses of regular
autosomal effects assume that the effect of an allele in an individual is
independent of whether it is transmitted from the mother or the father.
Note that genomic imprinting may cause PoO effects.42,59 Imprinting is an
epigenetic phenomenon where one of the inherited parental alleles is
expressed whereas the other is silenced.

Maternal A maternal genetic effect occurs when a variant allele carried by the mother
increases or decreases the risk of a phenotype in her child, regardless of
whether the allele has been inherited by the child or not.34 It is expected to
operate mainly via mechanisms in the intrauterine environment.60 This is
different from regular autosomal and PoO effects, where we estimate the
effects of the child's own alleles. The relevance of maternal effects was
recently demonstrated for an individual's educational attainment,61 but
may be particularly relevant for conditions that depend directly on fetal
development.

Note: Adapted from Gjerdevik et al.14

Abbreviation: PoO, parent-of-origin.

2.1 Genetic effects

A GWAS scans the entire genome for common variants agnostically, without any prior information about the biological
significance of a gene for the trait or disease under investigation. Hence, the selection of an appropriate design for a
GWAS requires careful planning and depends heavily on the genetic effect being studied. Haplin enables the estimation
of several genetic effects, and we focus here on regular autosomal, PoO, and maternal effects. Table 1 (adapted from
Gjerdevik et al14) provides an explanation of the genetic effects.

2.2 Study designs

2.2.1 The case-control design

Similar to classic epidemiological studies of environmental and behavioral risk factors, the case-control design is often
used in genetic association analyses (Figure 1A). The allele frequencies of cases and controls are contrasted to identify
variants associated with the trait or disease, and familiar methods such as logistic regression and chi-squared tests can be
used to discover associations.30 The case-control design is efficient in uncovering regular autosomal effects and their inter-
actions with exposure or stratification variables such as environmental risk factors, study sites, and ethnicity. However,
population stratification might lead to spurious associations if not controlled for.

2.2.2 The case-parent triad and dyad designs

The case-parent triad design involves genotyped cases and their biological parents and is based on the observation that
parental genotypes of affected offspring could be used to study associations between a disease and allelic variants.31,32

For regular autosomal effects, the frequencies of alleles transmitted to cases are compared to the frequencies of
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F I G U R E 1 A selection of designs for
genetic association analyses: (A) case-control
design (c-c); (B) various case-parent designs: (i)
case-parent triad (mfc); (ii) case-mother dyad
(mc); (iii) case-father dyad (fc); (C) a selection of
hybrid designs: (i) case-parent triad with
independent control (mfc-c); (ii) case-parent
triad with independent control-mother dyad
(mfc-mc); (iii) case-mother dyad with
independent control-mother dyad (mc-mc); (iv)
case-parent triad with independent
control-parent triad (mfc-mfc)

non-transmitted (pseudocontrol) alleles. Hence, the case-parent triad design does not rely on independent controls and
is protected against population stratification since the relevant information is extracted from within-family contrasts.
Since Spielman et al33 proposed the transmission disequilibrium test (TDT) for genetic association testing, exploring
family-based designs and their utility for studying different types of genetic effects has been an intense area of research
for several decades. Truncated versions of the case-parent triad design have been introduced, with the case-mother and
case-father dyad designs comprising genotyped cases and their biological mothers or fathers, respectively. The vari-
ous constellations are illustrated in Figure 1B. With information on parental genotypes, the case-parent triad and dyad
designs allow the estimation and testing of PoO or maternal effects. For PoO and maternal effects, Connolly and Heron34

reviewed different statistical methodologies and compared them according to statistical power and their suitability for
studying different etiologic scenarios. Methods for testing PoO effects include extensions of the TDT approach, such as
the transmission-asymmetry test (TAT) and the parental-asymmetry test (PAT),3 conditional logistic regression,20,21 and
log-linear1-4 and multinomial modeling.17,35,36 With the exception of TAT and PAT, these approaches can also account for
maternal effects.34 Despite the inherent strengths of the case-parent triad and dyad designs, there are also some draw-
backs. One such drawback is that they rely on Mendelian transmission. Another limitation is that, without independent
controls, it is impossible to estimate the main effect of an environmental exposure. There might also be practical concerns,
such as obtaining DNA from parents if the disease in question is late onset.

2.2.3 The hybrid design

To combine the advantages of the case-control and the family-based designs, joint analyses of various combinations of
case-parent triads and unrelated controls in a hybrid design have been proposed.5-7,17,37 An overview of hybrid designs has
been provided by Infante-Rivard et al,38 and different configurations are illustrated in Figure 1C. The full hybrid design
comprises complete pairs of case-parent triads and control-parent triads, but truncated versions may include case-parent
triads supplemented by control-mother dyads9 or case-mother dyads supplemented by control-mother dyads.8,39 Analy-
sis methods such as log-linear and multinomial modeling approaches are particularly appealing as they can readily be
adapted to accommodate the broad spectrum of various hybrid designs as well as a wide array of causal scenarios and
genetic effects.11,13,17,24,27,29,35,40 As an example, they can easily be extended to include the maternal-fetal genotype incom-
patibility test.41 Nevertheless, although the hybrid design combines the merits of both the case-control and case-parent
designs, a straightforward combined analysis may still be influenced by population stratification or non-Mendelian
transmission.
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2.2.4 Notation

We use the abbreviations provided in Figure 1 to describe the study designs. The letters c, m, and f denote the child (case or
control), mother, and father, respectively. The left side of the hyphen denotes case families, whereas the right side denotes
control families. For instance, mfc denotes the case-parent triad, whereas mfc-c denotes a hybrid design consisting of
case-parent triads and unrelated controls (ie, the control parents have not been genotyped). We will use the term hybrid
design to describe all constellations of study designs consisting of case families and independent control families, except
for the straightforward c-c design. Although a case together with a control dyad or control triad can be seen as a hybrid
design, these designs are rare in practice and will not be discussed.

3 METHODS

3.1 Parameterization of penetrances

We have developed a complete setup for power and sample size calculations in Haplin.14 The calculations can be per-
formed analytically using the asymptotic variance-covariance structure of the parameter estimator or by a straightforward
simulation procedure. Relative efficiency is easily assessed within this framework, and the basic calculations are for reg-
ular autosomal, PoO, and maternal effects, with the results depending on the underlying parameterization models. The
penetrance models, that is, the probability of a child having the disease conditional on a specific genetic composition,
are defined in Table 2 (adapted from Gjerdevik et al14). For regular autosomal effects, the penetrance model is parame-
terized as B ⋅ RRjRRlRR∗

jl, where B serves as a baseline parameter, and RRj is the relative risk associated with allele Aj.
The double-dose parameter RR∗

jl measures the deviation from what would be expected in a multiplicative dose-response
relationship, that is, RR∗

jl = RR∗
j when j = l and RR∗

jl = 1 when j ≠ l. The double-dose estimates provide information
about the effect of allele dose on risk. For a diallelic SNP with reference allele A1, the penetrance model can written as
P(D|A1A1) = B, P(D|A1A2) = B ⋅ RR and P(D|A2A2) = B ⋅ RR2RR∗ = B ⋅ R̃R. A recessive effect of A2 would then be seen
as RR = 1 and R̃R ≠ 1, a dominant effect would mean that RR = R̃R ≠ 1, and a multiplicative dose-response relationship
would be seen as R̃R = RR2 (see Gjessing and Lie).4

Since a mother and her child have one allele in common, maternal effects might be statistically confounded with reg-
ular autosomal or PoO effects of the child's own genes.42,43 An important feature of the log-linear model is, therefore, the
possibility of incorporating and adjusting for maternal effects. Specifically, maternal effects can be addressed simultane-
ously with regular autosomal or PoO effects by including the maternal risk parameters, as outlined in Table 2. Statistically,
we are thus able to separate the effects of maternal alleles from the effect of maternally-derived alleles carried by the
offspring.

T A B L E 2 Parameterization of penetrances Effects Parameterization of Penetrances

Regular autosomal B ⋅ RRjRRlRR∗
jl

PoO B ⋅ RRM,jRRF,lRR∗
jl

Regular autosomal and maternal B ⋅ RRjRRlRR∗
jl ⋅ RR(M)

i RR(M)
j RR(M)∗

ij

PoO and maternal B ⋅ RRM,jRRF,lRR∗
jl ⋅ RR(M)

i RR(M)
j RR(M)∗

ij

Note: B is the baseline risk level associated with the (more frequent) reference allele.
RRj is the risk increase or decrease associated with allele Aj, relative to B.
RRM,j and RRF,j are the relative risks associated with allele Aj, depending on whether the
allele is derived from the mother or the father, respectively. Here, we define a PoO effect as the
relative risk ratio RRRj = RRM,j∕RRF,j, which is a measure of the risk increase (or decrease)
associated with Aj when the allele is transmitted from the mother as opposed to from the father.
RR∗

jl estimates deviations from the risk that would be expected in a multiplicative
dose-response relationship, that is, RR∗

jl = RR∗
j when j = l and RR∗

jl = 1 when j ≠ l.
RR(M)

i is the relative risk associated with allele Ai carried by the mother, and RR(M)∗
ij is the

maternal double-dose parameter, with an interpretation analogous to RR∗
ij.

We set RR = 1 for the reference allele to ensure that the model is not overparameterized.
Adapted from Gjerdevik et al.14

Abbreviation: PoO, parent-of-origin.
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We consider a multiplicative dose-response relationship throughout this article, that is, RR∗
j is kept fixed at 1 for all j

and only RRj is estimated (an analogous interpretation applies for the parameterizations of PoO and maternal effects in
Table 2). The estimation of RR∗

j is possible and would allow other response models, for example, recessive or dominant,
but these situations are not explored herein.

The statistical inference of the log-linear model in Haplin is based on log-transformed relative risks and relative risk
ratios using the Wald test. We calculate the relative efficiency based on the asymptotic variance-covariance structure of
the parameter estimator, and a derivation of the asymptotic variance-covariance matrix is given by Gjerdevik et al.14 How-
ever, the simulation procedure in Haplin is equally applicable and has been shown to provide similar results within the
range of sample sizes and allele frequencies usually studied.14 For external validation, the power calculation modules
in Haplin have previously been compared with the power attained in data simulations by EMIM (Estimation of Mater-
nal, Imprinting, and interaction effects using Multinomial modelling),17,35,36 which is another well-established tool for
the estimation of various genetic effects based on genotype data from a number of different child-parent configurations.
The consistency observed between Haplin and EMIM for regular autosomal, PoO, and maternal effects demonstrates
the computational accuracy of the inference methods used in both programs and suggests that power and relative effi-
ciency calculations in Haplin are applicable to genetic association studies based on either log-linear or multinomial
modeling.14

3.2 Asymptotic relative efficiency

Power analysis allows for a comparison of different designs when all parameter values have been specified. It demon-
strates the possible scope of a study, that is, what is feasible logistically, and should, therefore, be an essential part of study
planning. However, for “global” comparisons of statistical tests, relative efficiency is a more useful measure. In statisti-
cal terms, the relative efficiency of two designs is defined as the ratio of sample sizes required for each of the designs
to attain the same significance level and power. This is equivalent to the ratio of variances of two different parameter
estimators, corresponding to two separate study designs, taking into account that different designs require a different
number of individuals to be genotyped. Figure 2 illustrates the relationship of relative efficiency to sample size and power.
For regular autosomal effects, the efficiency of the c-c design is approximately 1.5 relative to the mfc design, which is
well known from other studies.44 For instance, if 1200 individuals (600 cases and 600 controls) are needed to reach a
power of 0.8 with the c-c design, 1800 individuals (600 case-parent triads) are required with the mfc design to achieve the
same power.

For the purpose of this article, we aim to compare tests asymptotically. Consider the problem of testing the null hypoth-
esis H0 ∶ 𝛽 = 0 versus the alternative H1 ∶ 𝛽 ≠ 0 for a fixed nominal level, 𝛼, where 𝛽 is the log relative risk. With a given
sample size N, the power of the test converges to 1 as |𝛽| → ∞. Similarly, when 𝛽 is fixed, the power converges to 1 as
N → ∞. The limiting power functions are identical for all reasonable tests, and such an approach is, therefore, unhelpful.
When N increases, the minimum detectable effect size decreases. To make an informative comparison of different designs,

F I G U R E 2 Relative efficiency derived from power and sample size. Here,
we compare the efficiency of the c-c design relative to the mfc design for regular
autosomal effects. The power is calculated for a diallelic SNP at the 5% nominal
significance level, using a MAF of 0.2 and an RR of 1.3. The sample size N is
defined as the total number of individuals, that is, N = 1800 means either 900
cases and 900 controls or 600 case-parent triads. If N = 1200, the power is nearly
0.8 for the c-c design. However, approximately N = 1800 individuals are
required for the mfc design to reach the same power. Similarly, we need N = 800
individuals for the c-c design to attain an approximate power of 0.6, whereas
N = 1200 individuals are required for the mfc design. Hence, the efficiency of
the c-c design is 1.5 compared with the mfc design
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we, therefore, examine the power at alternatives that approach the null hypothesis, that is, we shrink the alternative as N
increases, making it harder to discriminate between the null and alternative hypotheses as the number of observations
increases. This is known as the Pitman efficiency,10 and an explanation of this concept is provided in Appendix A. Most
effect sizes reported from genetic association studies of complex traits are small, and empirical studies show that individ-
ual relative risks of disease are commonly below two.45-48 Intuitively, the Pitman efficiency is thus a reasonable measure
of the asymptotic relative efficiency in our setting.

3.3 Analyses

We define k ∶ 1 as the ratio of control families to case families, regardless of the number of individuals within each
family. If k = 0.5, we have twice as many case families as control families. For example, for the mfc-mc design, we
might have 100 control-mother dyads and 200 case-parent triads. Our main results pertain to the relative efficiency,
and we present it here as a function of k on the log-scale. The efficiencies of various study designs are compared
with that of the case-parent triad design (mfc), that is, we use the case-parent triad design as a “reference design.” As
mentioned previously, the relative efficiency will take into account the total number of genotyped individuals within
each design. For example, 150 case-mother dyads are compared with 100 case-parent triads. If k = 1, a hybrid design
with 50 case-parent triads and 50 control-parent triads is compared with 100 case-parent triads, and if k = 2, a hybrid
design with 50 case-parent triads and 100 control-parent triads is compared with 150 case-parent triads. Only the ratio
of control families to case families, not the actual number of control and case families, affects the relative efficiency
estimates.

In genetic association studies, it makes sense to integrate data collection and assay costs with the concept of relative
efficiency. For example, if the recruitment of case children occurs at a hospital where parents are likely to be present,
parental pseudocontrols would be less expensive than independent controls. However, when studies are nested within a
cohort that has already been sampled, the costs of genotyping DNA samples are typically considered equal for all indi-
viduals. Hence, for the majority of this article, the data collection costs are simply defined as the number of genotyped
individuals. That is, we assume the same costs for all individuals, independent of the individual being a child, mother or
father, case or control. However, differential costs of data collection may occur if, for instance, publicly available reference
samples (eg, from catalogs such as the Wellcome Trust Case Control Consortium,49 the UK Biobank,50 and the Norwe-
gian Mother, Father and Child Cohort Study51,52) are included in the study. As a special scenario, we analyze situations in
which controls or control families are available without additional costs. For all analyses, we consider well-defined and
clinically verified phenotypes, thus ignoring the costs of phenotyping.

The analyses were performed using the Haplin relative efficiency calculator hapRelEff. The results were obtained
under the null hypothesis, corresponding to the Pitman efficiency.10 However, we note that relative efficiency esti-
mates in Haplin can also be obtained under alternative (nonnull) hypotheses, and investigators can readily apply our
functions to study how alternative effect estimates relevant to their own research question would affect the relative
efficiency values.

4 RESULTS

4.1 Regular autosomal effects

Figure 3 illustrates the relative efficiency for regular autosomal effects as a function of k, using two different values of
the minor allele frequency (MAF). We used the mfc design as the reference, to which the other designs were compared.
Unless the ratio of controls to cases is highly skewed, we see that the c-c design provides the best results. The optimal
relative efficiency is achieved when k = 1. Moreover, we observe that the mfc design is more efficient than the mc or fc
design. This result is independent of k, as no control families are sampled. Note that the contribution of a case mother
or control mother is equal to the contribution of a case father or control father, respectively. We also see that the relative
efficiencies of the hybrid designs decrease when two or three individuals are included in the control family. This is also
observed when k becomes sufficiently large. Furthermore, for designs consisting of case dyads or control dyads, that is,
mc, fc, mc-mc, fc-fc, mfc-mc, and mfc-fc, the relative efficiency is influenced by the MAF. The MAF does not affect the
relative efficiency of the c-c, mfc-c, and mfc-mfc designs.
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F I G U R E 3 Relative efficiency of regular autosomal effects for a given ratio of control families to case families (k). The efficiency of
different study designs is compared with that of the case-parent triad design (mfc) under the null hypothesis of RR=1. The equality sign (eg,
mc=fc) denotes that the two designs are interchangeable in terms of relative efficiency [Color figure can be viewed at wileyonlinelibrary.com]

A heuristic formula for the relative efficiency of regular autosomal effects is derived in Appendix B. Equation (B1) ver-
ifies the results of Figure 3, and an inspection of the formula provides a better understanding of the observed relationships
between the different study designs and each genotyped individual.

4.2 PoO effects

Figure 4 shows the relative efficiency for PoO effects as a function of k. Again, we compared the relevant study designs
with the mfc design under the null hypothesis of RRR = RRM = RRF = 1. When the MAF is 0.1 (left panel), the mc and fc
designs are more efficient than the mfc design. However, this relationship reverses when the MAF is 0.3 (right panel). PoO
effects are primarily estimated in case families, by comparing the frequency of alleles transmitted from mother to child
with the frequency of alleles transmitted from father to child. Hence, the relative efficiency decreases when k increases
or when the number of genotyped individuals within a control family increases. Moreover, the relative efficiencies of the
mfc-c, mfc-mc, mfc-fc, and mfc-mfc designs are not influenced by the MAF.

4.3 Maternal effects

A putative maternal effect detected in a genome-wide scan may, at closer inspection, turn out to be caused by alle-
les carried by the offspring.42,43 In Haplin, maternal effects are therefore assessed while accounting for the effects of
the offspring's own alleles (see Table 2). Figure 5 shows the relative efficiency for maternal effects as a function of k
while adjusting for possible regular autosomal effects (left panel) and PoO effects (right panel). The results were cal-
culated under the global null, that is, all relative risks are equal to one, using a MAF of 0.1. Overall, the mfc design is
a good choice when adjusting for regular autosomal effects. However, when adjusting for PoO effects, a hybrid design
generally performs better for small values of k. In both panels, the relative efficiency of the hybrid designs decreases
when the number of genotyped individuals within a control family increases, as well as when k becomes sufficiently
large. This was also seen in the above analyses of regular autosomal and PoO effects. Note that we excluded the
mc, fc, and fc-fc designs when adjusting for PoO effects because the models based on these designs would become
overparameterized.

http://wileyonlinelibrary.com
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F I G U R E 4 Relative efficiency of PoO effects for a given ratio of control families to case families (k). The efficiency of different study
designs is compared with that of the case-parent triad design (mfc) under the null hypothesis of RRR=RRM=RRF=1. The equality sign (eg,
mc=fc) denotes that the two designs are interchangeable in terms of relative efficiency [Color figure can be viewed at wileyonlinelibrary.com]

F I G U R E 5 Relative efficiency of maternal effects for a given ratio of control families to case families (k). The efficiency of different
study designs is compared with that of the case-parent triad design (mfc) under the global null (ie, all RRs are equal to 1). We assumed a MAF
of 0.1. The equality sign (eg, mfc-mc=mfc-fc) denotes that the two designs are interchangeable in terms of relative efficiency [Color figure
can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 6 Relative efficiency when adjusting for maternal effects for a given ratio of control families to case families (k). For each
design, we first adjusted for maternal effects under the global null (ie, all RRs are equal to 1). We then repeated the analysis without adjusting
for maternal effects and compared the results. The unadjusted analyses were used as references. We assumed a MAF of 0.1. The equality sign
(eg, mfc-mc=mfc-fc) denotes that the two designs are interchangeable in terms of relative efficiency [Color figure can be viewed at
wileyonlinelibrary.com]

4.4 Relative efficiency when adjusting for maternal effects

Including a search for maternal effects in a full GWAS analysis is likely to reduce the power to detect regular autosomal
or PoO effects. Figure 6 demonstrates this loss of efficiency as a function of k for regular autosomal effects (left panel) and
PoO effects (right panel). We used a MAF of 0.1 in both panels. For each design, we first adjusted for possible maternal
effects (even though we did not assume maternal effects in the parameterization model in Table 2, ie, we set RR(M) = 1).
We then repeated the analysis without adjusting for maternal effects and compared the results. The unadjusted analyses
were used as references, and the mfc design is thus no longer a global reference. For regular autosomal effects, adjusting
for maternal effects generally decreases the efficiency. However, no loss in efficiency is observed for the mfc design.
Although the genotypes of individuals and their mothers are correlated in the population, their contributions to the mfc
analysis are close to orthogonal.1,2 That is, the estimation of maternal parameters does not affect the estimation of regular
autosomal parameters or their SEs, and little bias is introduced for the mfc design (results not shown). When searching
for PoO effects, adjusting for maternal effects causes a substantial loss of power for all designs. The efficiency is more
than halved for the mfc design.

4.5 Haplotype reconstruction

The fundamental model in Haplin relates to a single multiallelic locus but extends directly to haplotypes, that is, the
sequence of alleles from several closely linked markers within a locus, by statistically reconstructing unknown haplotype
phase using the EM algorithm.4 A haplotype analysis should enhance the possibility of enclosing a causal variant if the
haplotype has a SNP on each side of the variant. However, this analysis might lose power due to haplotype reconstruction
and an increased number of degrees of freedom.

In order to assess the relative efficiency when haplotype reconstruction is performed, we considered a situation
where one marker with four alleles was compared with two diallelic SNPs. In both scenarios, there were four possible
haplotypes (alleles 1, 2, 3, and 4 and SNP-haplotypes 1-1, 2-1, 1-2, and 2-2), with haplotype frequencies 0.1, 0.3, 0.3,

http://wileyonlinelibrary.com
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F I G U R E 7 Relative efficiency when haplotype reconstruction is performed for a given ratio of control families to case families (k). We
constructed four alleles (haplotypes) from a single marker (alleles 1, 2, 3, and 4), and four haplotypes from two diallelic SNPs (haplotypes 1-1,
2-1, 1-2, and 2-2), both with haplotype frequencies 0.1, 0.3, 0.3, and 0.3, respectively, under the global null. A comparison of the solid (single
marker, known phase) and dashed (haplotypes from two diallelic SNPs) lines demonstrates the loss of efficiency for the least frequent
haplotypes due to haplotype reconstruction, relative to the mfc design. Allele 4 and haplotype 2-2 were used as references. The equality sign (eg,
mc=fc) denotes that the two designs are interchangeable in terms of relative efficiency [Color figure can be viewed at wileyonlinelibrary.com]

and 0.3, respectively. The alleles are directly observed when derived from a single multiallelic marker, and a haplotype
reconstruction is only needed in the analysis of haplotypes from multiple markers. In Figure 7, we considered the effi-
ciency of the least frequent haplotype in all designs, relative to the mfc design, and assessed both regular autosomal
and PoO effects. Allele 4 and haplotype 2-2 were chosen as references, respectively. As phase is unknown, haplotype
reconstruction for the c-c design is purely a statistical reconstruction. However, if the data from an individual and one
or both parents are available at a single locus, the parent of origin can be deduced directly unless all individuals are
heterozygous for the same two alleles, such that the EM algorithm is only needed for these ambiguous dyads or triads.
Designs that include case-parent triads are, therefore, less vulnerable to unknown phase than the c-c, mc, fc, mc-mc,
and fc-fc designs. These findings are in general agreement with those of Douglas et al53 and Schaid.54 Note that, in
general, the results depend on the haplotype frequencies and also on the reference haplotype (results not shown). The
haplotype frequencies used in the example deviate little from their values under linkage equilibrium (r2 = 0.0625). Thus,
our analysis demonstrates a larger loss of efficiency than what would be expected when the SNPs are in close linkage
disequilibrium. Moreover, haplotype reconstruction in Haplin depends partly on the HWE assumption. Deviations
from this assumption can be assessed within the Haplin framework, but such investigations are beyond the scope of
this article.

4.6 The use of external control samples

It has become increasingly common to utilize data from external and publicly available reference or control samples.49-52

Figure 8 illustrates the gains in relative efficiency when external controls or control families are added to the mfc design.
The efficiency of the different hybrid designs is compared with that of the mfc design, and the controls are here considered
to be free of cost. For regular autosomal effects, we see that the use of freely available control samples increases the
efficiency. For PoO effects, however, it has been shown elsewhere that unrelated control samples would not increase the
power attained by the mfc design alone.14 Thus, the relative efficiency of the mfc-c, mfc-mc, mfc-fc, and mfc-mfc designs
is equal to 1 for all values of k.

http://wileyonlinelibrary.com
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F I G U R E 8 Relative efficiency of regular autosomal effects for a given ratio of control families to case families (k). The efficiency of
different hybrid designs is compared with that of the case-parent triad design (mfc) under the null hypothesis of RR=1. We consider the
control samples to be free of charge, that is, without any sampling or genotyping costs. The equality sign (mfc-mc=mfc-fc) denotes that the
two designs are interchangeable in terms of relative efficiency [Color figure can be viewed at wileyonlinelibrary.com]

T A B L E 3 Application of relative efficiency to cleft palate data

Variance
Effects SNP MAFa Case-mother dyads Case-parent triads

Empirical Relative
Efficiencyb

Theoretical Relative
Efficiencyb

Regular autosomal rs2274616 0.1 0.0387 0.0370 0.96 0.94

rs12119556 0.3 0.0184 0.0154 0.84 0.85

PoO rs12137004 0.1 0.0649 0.0868 1.34 1.32

rs2357649 0.3 0.0399 0.0364 0.91 0.89

aApproximate estimates.
bThe case-parent triad design is used as reference.
Abbreviations: MAF, minor allele frequency, PoO, parent-of-origin; SNP, single-nucleotide polymorphism.

4.7 Application of Haplin to cleft palate only data

Cleft palate only (CPO) is a common craniofacial birth defect in humans, typically classified as to whether the cases occur
with (nonisolated) or without (isolated) other congenital anomalies or identifiable malformation syndromes. The overall
prevalence of isolated CPO is 5.0 per 10 000 births.55 From our previously published GWAS,56,57 genotype data from 550
isolated CPO families were available, including 466 complete case-parent triads. These families were primarily of Euro-
pean and Asian ancestry, although other ethnicities were also present in the data. The GWAS data set is available at the
dbGaP database (https://www.ncbi.nlm.nih.gov/gap) under accession ID phs000094.v1.p1, and information on quality
control and detailed characterizations of study participants have been provided elsewhere.25 Background information on
the study is given in the original publication,56 and ethics approvals were obtained from the respective ethics committees
for all the data in the cleft consortium.

To illustrate what the relative efficiencies may amount to with typical MAFs and effect sizes from our example data,
we selected a total of 450 complete case-parent triads and chose SNPs with varying MAFs and effect estimates (RR or
RRR) close to one for both regular autosomal and PoO effects. For case-mother dyads, the fathers were simply set to
missing. To ensure an equal number of genotyped individuals for each design, 300 case-parent triads were randomly
drawn from the 450 families using bootstrapping with 101 repetitions. The empirical relative efficiency was then calcu-
lated by dividing the median variance of the 101 case-parent triad replicates by the variance of the case-mother dyads.
The results are displayed in Table 3, and the findings are in general agreement with the asymptotic calculations shown in
Figures 3 and 4.

http://wileyonlinelibrary.com
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5 ADDITIONAL CONSIDERATIONS

5.1 Gene-environment interactions

A gene-environment interaction (GxE) occurs when a genetic effect is modified by an environmental exposure or a
stratification factor such as ethnicity. For example, maternal exposures such as alcohol consumption, smoking, or vita-
min intake during the periconceptional period might modify the association between SNPs and a birth defect.25,28,29

Interactions between genetic effects and categorical exposure variables are incorporated into the log-linear frame-
work of Haplin by fitting the log-linear model separately for each exposure stratum. A Wald test is then applied to
detect whether the relative risk estimates differ significantly across exposure levels.11,13 The genetic effect in question
might be a regular autosomal, PoO, or maternal effect. Thus, GxE effects can be estimated for all study designs but
are restricted to the genetic effects enabled by that design. Note, however, that the main effects of an environmen-
tal exposure cannot be estimated from the case-parent triad or dyad design alone without the addition of independent
controls.

Because the GxE test stratifies on exposure levels, detecting a GxE effect requires a larger sample size than detect-
ing the genetic effect alone. The SE of a GxE effect is determined by the standard errors of the individual genetic effects
in the unexposed and exposed strata.13 Provided that the same study design and parameter values are used in each stra-
tum, the relative efficiency estimates are, therefore, directly transferable to GxE effects. Calculated under the global null,
that is, RRR = RRexposed = RRunexposed = 1, Figures 3-5 would also apply to the relative efficiency for GxE effects in these
situations.

5.2 X-chromosome analysis

Haplin allows for analyses of X-linked markers, with corresponding PoO, maternal, and GxE effects. Genetic association
analyses of X-linked markers are especially relevant if the prevalence of a complex trait differs systematically between
males and females. In Haplin, different X-chromosome models may be fitted depending on the underlying assump-
tions, including sex-specific baseline risks, shared or different relative risks for males and females, and X-inactivation in
females.24,40 The methodology presented herein on relative efficiency is readily transferable to genetic effects on X-linked
markers. Nevertheless, a discussion regarding sex effects is needed. For instance, when searching for X-linked PoO effects,
females are needed to be able to compare maternally- and paternally-derived X-chromosome alleles. However, male indi-
viduals and fathers contribute to estimating allele frequencies.13,27 They also facilitate haplotype reconstruction because
phase can be deduced directly from fathers.

6 CONCLUDING REMARKS

Statistical power is often a limiting factor for genetic association studies, and no comprehensive software has been avail-
able for the full assessment of power and comparison of study designs in such analyses to date. In this article, we provided
insights into how relevant designs compare in terms of relative efficiency for a wide range of genetic effects and etiologic
scenarios. Furthermore, we illustrated the methodology with extensive analyses and presented results for regular auto-
somal, PoO, and maternal effects. To facilitate the analysis of power and relative efficiency, the calculations have been
implemented in our R package Haplin.15

The results herein relate to power and efficiency considerations only. Using either a single-SNP or a haplotype
approach, the c-c design is recommended when the aim is to search for regular autosomal effects. An equal number of
cases and controls maximizes the efficiency. However, additional correction for population stratification may be neces-
sary for the c-c design. For a PoO analysis, the mfc design would be an overall good choice. Note that unrelated control
families would not improve the power obtained by the case-parent triad design, as PoO effects are primarily estimated
in case families by comparing the frequencies of alleles transmitted from mother to child with the frequencies of alleles
transmitted from father to child.14 Nonetheless, inferences based on the case-parent triad design rely on key assumptions
that cannot be fully checked or corrected for without the inclusion of unrelated control families. For maternal effects, the
mfc design is appropriate when adjusting for regular autosomal effects, whereas the mfc-c or mc-mc design would be a
good choice when adjusting for PoO effects.
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Due to the potential loss of power, we do not generally recommend including maternal effects in a full GWAS
investigation of regular autosomal or PoO effects. Instead, we suggest additional post-scan analyses to control for
possible confounding from maternal effects. As a matter of routine, the most promising SNPs from a GWAS analy-
sis should be further examined for maternal effects.25 However, we note that complex but less likely scenarios where
maternal effects cancel out regular autosomal or PoO effects may go undetected by this strategy.

When analyzing real data, one would typically use a combination of several study designs. For example, the data
can consist of case-parent triads supplemented by unrelated cases and controls.37,38 Such mixture designs are read-
ily handled in Haplin, both in the analysis module and in the power simulation module, but were not illustrated in
this article.

The relative efficiency depends on multiple factors, such as the genetic effect in question, the MAF of a given SNP, and
the study design. The results are, therefore, hard to summarize. Moreover, the most efficient design to test one hypothesis
(ie, casual scenario) is not necessarily the best for testing another hypothesis. If different hypotheses about the modes
of inheritance are to be tested, one may prefer a design that is reasonably efficient for a majority of hypotheses rather
than the optimal design for a single hypothesis. Hence, since the mfc design is reasonably efficient for the genetic effects
studied herein, it may be considered an overall optimal design. The importance of sampling case-parent triads is further
strengthened since unrelated, ethnically matched controls have become more easily accessible through publicly available
reference samples.49-52

The concluding recommendations in this article are subject to the log-linear model with the given assumptions, the
investigated parameter values, and study designs; they should, therefore, not be interpreted as universal guidelines. Fur-
thermore, practical issues should always be considered, such as the availability of case-parents or suitable controls, as
well as recruitment and phenotyping costs. Nevertheless, the methodology presented herein is a useful approach toward
optimizing the statistical power using the lowest sample collection and assay cost, and a careful assessment of possible
study designs should be routinely performed prior to conducting a GWAS.

ACKNOWLEDGEMENTS
The authors acknowledge four anonymous reviewers for their valuable comments on the article. Support for this work was
provided by the Bergen Medical Research Foundation (BMFS) (Grant 807191), and by the Research Council of Norway
(RCN) through Biobank Norway (Grant 245464/F50), and the Centres of Excellence funding scheme (Grant 262700). The
funding bodies played no role in the design of the study, analysis or interpretation of data, nor in writing the manuscript.

CONFLICT OF INTERESTS
The authors declare that they have no competing interests.

AUTHOR CONTRIBUTIONS
M.G. developed the relative efficiency and power calculation tools in Haplin, conceived, planned, and performed the
analyses and drafted the manuscript. J.R., Ø.A.H., A.J., N.O.C., and R.T.L. helped develop the concepts and revised
the manuscript. J.R. has also contributed to the recent developments of Haplin. H.K.G. developed the Haplin software,
conceived, and planned the analyses and revised the manuscript. All the authors read and approved the final manuscript.

DATA ACCESSIBILITY
Haplin is implemented in the statistical software R and can be installed from the official R package archive,
CRAN (https://cran.r-project.org).58 Standard power calculations in Haplin can be carried out
analytically using the asymptotic variance-covariance structure of the parameter estimator (recently imple-
mented in the function hapPowerAsymp), or else by a straightforward simulation approach (see functions
hapRun and hapPower). Relative efficiency estimates are readily computed using the function hapRelEff.15

For a thorough description of the Haplin functions and their arguments, please refer to the website at
https://people.uib.no/gjessing/genetics/software/haplin. The CPO GWAS data are available at the
dbGaP database (https://www.ncbi.nlm.nih.gov/gap) under accession ID phs000094.v1.p1.

ORCID
Miriam Gjerdevik https://orcid.org/0000-0002-2604-2132
Julia Romanowska https://orcid.org/0000-0001-6733-1953
Øystein A. Haaland https://orcid.org/0000-0001-5288-7879

https://orcid.org/0000-0002-2604-2132
https://orcid.org/0000-0002-2604-2132
https://orcid.org/0000-0001-6733-1953
https://orcid.org/0000-0001-6733-1953
https://orcid.org/0000-0001-5288-7879
https://orcid.org/0000-0001-5288-7879


GJERDEVIK et al. 15

REFERENCES
1. Weinberg CR, Wilcox AJ, Lie RT. A log-linear approach to case-parent-triad data: assessing effects of disease genes that act either directly

or through maternal effects and that may be subject to parental imprinting. Am J Hum Genet. 1998;62(4):969-978.
2. Wilcox AJ, Weinberg CR, Lie RT. Distinguishing the effects of maternal and offspring genes through studies of "case-parent triads". Am

J Epidemiol. 1998;148(9):893-901.
3. Weinberg CR. Methods for detection of parent-of-origin effects in genetic studies of case-parents triads. Am J Hum Genet.

1999;65(1):229-235.
4. Gjessing HK, Lie RT. Case-parent triads: estimating single- and double-dose effects of fetal and maternal disease gene haplotypes. Ann

Hum Genet. 2006;70(3):382-396.
5. Nagelkerke NJD, Hoebee B, Teunis P, Kimman TG. Combining the transmission disequilibrium test and case-control methodology using

generalized logistic regression. Eur J Hum Genet. 2004;12(11):964-970.
6. Epstein MP, Veal CD, Trembath RC, Barker JN, Li C, Satten GA. Genetic association analysis using data from triads and unrelated subjects.

Am J Hum Genet. 2005;76(4):592-608.
7. Weinberg CR, Umbach DM. A hybrid design for studying genetic influences on risk of diseases with onset early in life. Am J Hum Genet.

2005;77(4):627-636.
8. Shi M, Umbach DM, Vermeulen SH, Weinberg CR. Making the most of case-mother/control-mother studies. Am J Epidemiol.

2008;168(5):541-547.
9. Vermeulen SH, Shi M, Weinberg CR, Umbach DM. A hybrid design: case-parent triads supplemented by control-mother dyads. Genet

Epidemiol. 2009;33(2):136-144.
10. Noether GE. On a theorem of Pitman. Ann Math Stat. 1955;26(1):64-68.
11. Skare Ø, Jugessur A, Lie RT, et al. Application of a novel hybrid study design to explore gene-environment interactions in orofacial clefts.

Ann Hum Genet. 2012;76(3):221-236.
12. Jugessur A, Skare Ø, Harris JR, Lie RT, Gjessing HK. Using offspring-parent triads to study complex traits: a tutorial based on orofacial

clefts. Nor Epidemiol. 2012;21(2):251-267.
13. Gjerdevik M, Haaland ØA, Romanowska J, Lie RT, Jugessur A, Gjessing HK. Parent-of-origin-environment interactions in case-parent

triads with or without independent controls. Ann Hum Genet. 2018;82(2):60-73.
14. Gjerdevik M, Jugessur A, Haaland ØA, et al. Haplin power analysis: a software module for power and sample size calculations in genetic

association analyses of family triads and unrelated controls. BMC Bioinform. 2019;20(1):165.
15. Gjessing HK. Haplin: analyzing case-parent triad and/or case-control data with SNP haplotypes R Package Version 7.1.0, 2019.
16. Weinberg CR, Shi M. The genetics of preterm birth: using what we know to design better association studies. Am J Epidemiol.

2009;170(11):1373-1381.
17. Ainsworth HF, Unwin J, Jamison DL, Cordell HJ. Investigation of maternal effects, maternal-fetal interactions and parent-of-origin effects

(imprinting), using mothers and their offspring. Genet Epidemiol. 2011;35(1):19-45.
18. Knapp M, Seuchter SA, Baur MP. The haplotype-relative-risk (HRR) method for analysis of association in nuclear families. Am J Hum

Genet. 1993;52(6):1085-1093.
19. Schaid DJ, Sommer SS. Genotype relative risks: methods for design and analysis of candidate-gene association studies. Am J Hum Genet.

1993;53(5):1114-1126.
20. Cordell HJ, Barratt BJ, Clayton DG. Case/pseudocontrol analysis in genetic association studies: a unified framework for detection

of genotype and haplotype associations, gene-gene and gene-environment interactions, and parent-of-origin effects. Genet Epidemiol.
2004;26(3):167-185.

21. Cordell HJ. Properties of case/pseudocontrol analysis for genetic association studies: effects of recombination, ascertainment, and multiple
affected offspring. Genet Epidemiol. 2004;26(3):186-205.

22. Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc Ser B. 1977;39(1):
1-38.

23. Wise AS, Shi M, Weinberg CR. Family-based multi-SNP X chromosome analysis using parent information. Front Genet. 2016;7:20.
24. Skare Ø, Gjessing HK, Gjerdevik M, et al. A new approach to chromosome-wide analysis of X-linked markers identifies new associations

in Asian and European case-parent triads of orofacial clefts. PLoS One. 2017;12(9):e0183772.
25. Haaland ØA, Jugessur A, Gjerdevik M, et al. Genome-wide analysis of parent-of-origin interaction effects with environmental exposure

(PoOxE): an application to European and Asian cleft palate trios. PLoS One. 2017;12(9):e0184358.
26. Moreno ULM, Fomina T, Munger RG, et al. A population-based study of effects of genetic loci on orofacial clefts. J Dent Res.

2017;96(11):1322-1329.
27. Skare Ø, Lie RT, Haaland ØA, et al. Analysis of parent-of-origin effects on the X chromosome in Asian and European orofacial cleft triads

identifies associations with DMD, FGF13, EGFL6, and additional loci at Xp22.2. Front Genet. 2018;9:25.
28. Haaland ØA, Lie RT, Romanowska J, Gjerdevik M, Gjessing HK, Jugessur A. A genome-wide search for gene-environment effects in

isolated cleft lip with or without cleft palate triads points to an interaction between maternal periconceptional vitamin use and variants
in ESRRG. Front Genet. 2018;9:60.

29. Haaland ØA, Romanowska J, Gjerdevik M, Lie RT, Gjessing HK, Jugessur A. A genome-wide scan of cleft lip triads identifies
parent-of-origin interaction effects between ANK3 and maternal smoking, and between ARHGEF10 and alcohol consumption [Version
2]. F1000Res. 2019;8(960).



16 GJERDEVIK et al.

30. Clayton D, Hills M. Statistical Models in Epidemiology. Oxford, UK: Oxford University Press; 1993.
31. Falk CT, Rubinstein P. Haplotype relative risks: an easy reliable way to construct a proper control sample for risk calculations. Ann Hum

Genet. 1987;51(3):227-233.
32. Self SG, Longton G, Kopecky KJ, Liang K-Y. On estimating HLA/disease association with application to a study of aplastic anemia.

Biometrics. 1991;47(1):53-61.
33. Spielman RS, McGinnis RE, Ewens WJ. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent

diabetes mellitus (IDDM). Am J Hum Genet. 1993;52(3):506-516.
34. Connolly S, Heron EA. Review of statistical methodologies for the detection of parent-of-origin effects in family trio genome-wide

association data with binary disease traits. Brief Bioinform. 2015;16(3):429-448.
35. Howey R, Cordell HJ. PREMIM and EMIM: tools for estimation of maternal, imprinting and interaction effects using multinomial

modelling. BMC Bioinform. 2012;13:149.
36. Howey R, Mamasoula C, Töpf A, et al. Increased power for detection of parent-of-origin effects via the use of haplotype estimation. Am

J Hum Genet. 2015;97(3):419-434.
37. Stewart WCL, Cerise J. Increasing the power of association studies with affected families, unrelated cases and controls. Front Genet.

2013;4:200.
38. Infante-Rivard C, Mirea L, Bull SB. Combining case-control and case-trio data from the same population in genetic association analyses:

overview of approaches and illustration with a candidate gene study. Am J Epidemiol. 2009;170(5):657-664.
39. Wang S, Yu Z, Miller RL, Tang D, Perera FP. Methods for detecting interactions between imprinted genes and environmental exposures

using birth cohort designs with mother-offspring pairs. Hum Hered. 2011;71(3):196-208.
40. Jugessur A, Skare Ø, Lie RT, et al. X-linked genes and risk of orofacial clefts: evidence from two population-based studies in Scandinavia.

PLoS One. 2012;7(6):e39240.
41. Sinsheimer JS, Palmer CGS, Woodward JA. Detecting genotype combinations that increase risk for disease: the maternal-fetal genotype

incompatibility test. Genet Epidemiol. 2003;24(1):1-13.
42. Hager R, Cheverud JM, Wolf JB. Maternal effects as the cause of parent-of-origin effects that mimic genomic imprinting. Genetics.

2008;178(3):1755-1762.
43. Buyske S. Maternal genotype effects can alias case genotype effects in case-control studies. Eur J Hum Genet. 2008;16(7):783-785.
44. Cordell HJ, Clayton DG. Genetic association studies. Lancet. 2005;366(9491):1121-1131.
45. Ioannidis JPA, Trikalinos TA, Khoury MJ. Implications of small effect sizes of individual genetic variants on the design and interpretation

of genetic association studies of complex diseases. Am J Epidemiol. 2006;164(7):609-614.
46. Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE. Systematic meta-analyses of Alzheimer disease genetic association studies: the

AlzGene database. Nat Genet. 2007;39(1):17-23.
47. Wray NR, Goddard ME, Visscher PM. Prediction of individual genetic risk to disease from genome-wide association studies. Genome Res.

2007;17(10):1520-1528.
48. Manolio TA, Collins FS, Cox NJ, et al. Finding the missing heritability of complex diseases. Nature. 2009;461(7265):747-753.
49. The Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared

controls. Nature. 2007;447(7145):661-678.
50. Bycroft C, Freeman C, Petkova D, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature.

2018;562(7726):203-209.
51. Magnus P, Birke C, Vejrup K, et al. Cohort profile update: the Norwegian Mother and Child Cohort Study (MoBa). Int J Epidemiol.

2016;45(2):382-388.
52. Helgeland Ø, Vaudel M, Juliusson PB, et al. Genome-wide association study reveals dynamic role of genetic variation in infant and early

childhood growth. Nat Commun. 2019;10:4448.
53. Douglas JA, Boehnke M, Gillanders E, Trent JM, Gruber SB. Experimentally-derived haplotypes substantially increase the efficiency of

linkage disequilibrium studies. Nat Genet. 2001;28(4):361-364.
54. Schaid DJ. Relative efficiency of ambiguous vs. directly measured haplotype frequencies. Genet Epidemiol. 2002;23(4):

426-443.
55. Mossey PA, Castilla EE. Global Registry and Database on Craniofacial Anomalies. Geneva, IN: World Health Organization; 2003.
56. Beaty TH, Murray JC, Marazita ML, et al. A genome-wide association study of cleft lip with and without cleft palate identifies risk variants

near MAFB and ABCA4. Nat Genet. 2010;42(6):525-529.
57. Shi M, Murray JC, Marazita ML, et al. Genome wide study of maternal and parent-of-origin effects on the etiology of orofacial clefts. Am

J Med Genet A. 2012;158(4):784-794.
58. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing;

2019.
59. Lawson HA, Cheverud JM, Wolf JB. Genomic imprinting and parent-of-origin effects on complex traits. Nat Rev Genet. 2013;14(9):

609-617.
60. Guilmatre A, Sharp AJ. Parent of origin effects. Clin Genet. 2012;81(3):201-209.
61. Kong A, Thorleifsson G, Frigge ML, et al. The nature of nurture: effects of parental genotypes. Science. 2018;359(6374):424-428.
62. Lehmann EL. Elements of Large-Sample Theory. New York, NY: Springer; 1999.
63. van der Vaart AW. Asymptotic Statistics. Cambridge, UK: Cambridge University Press; 2000.



GJERDEVIK et al. 17

64. Agresti A. Categorical Data Analysis. 3rd ed. Hoboken, NJ: Wiley; 2013.
65. Schaid DJ. Disease-marker association. In: Elston R, Olson J, Palmer L, eds. Biostatistical Genetics and Genetic Epidemiology. Wiley

reference series in biostatistics. West Sussex, UK: Wiley; 2002:206-217.

How to cite this article: Gjerdevik M, Gjessing HK, Romanowska J, et al. Design efficiency in genetic
association studies. Statistics in Medicine. 2020;1–19. https://doi.org/10.1002/sim.8476

APPENDIX A

A1 Relative efficiency
For comparisons of statistical tests, the asymptotic relative efficiency is a useful measure.62 The asymptotic relative effi-
ciency is defined as the ratio of the asymptotic variances of two different estimators of the same parameter. Under general
conditions (see Theorem 14.19 of Reference 63), this ratio corresponds to the ratio of sample sizes needed to achieve the
same precision from the two different estimators, or the ratio of sample sizes needed to achieve the same significance level
and power for two hypothesis tests about the parameter. In our setting, we compare the variances of the estimators of the
same parameter computed from two different study designs, weighted by the number of genotyped individuals within
each design. The weights allow us to compare the relative efficiency of the two different designs, subject to the constraint
that each design contains the same number of genotyped samples. The relative efficiency thus refers to a ratio of the num-
ber of genotyped individuals, not a ratio of the number of families. Let n denote the number of family structures with a
case child. As n varies, we assume the composition of family structures remains the same, relatively speaking. That is, we
assume, for instance, that the ratio of case-parent triads to control-mother dyads remains the same, likewise for the ratio
of case-mother dyads to complete control-parent triads, and so on.

A1.1 The asymptotic SE of the log-scale parameter estimator
In Haplin, we use the Wald test to conduct post-hoc inference on the log-transformed relative risk parameters, based on
asymptotic normality (see Chapter 1.3 of Reference 64). The main univariate outcome measure is the log relative risk
of the relevant genetic effect, that is, 𝛽 = log(RR). For PoO effects, the parameter of interest is the ratio of two relative
risks, which means looking at the difference between the corresponding 𝛽 values, so the theory is the same. Based on the
standard maximum likelihood theory, Haplin computes the SE 𝜎n(𝛽) of 𝛽 from the observed Fisher information, using
all available data, that is, with n cases. If the composition of family structures is kept fixed as n increases, we have that√

n𝜎n(𝛽) ≈ 𝜔(𝛽), where 𝜔(𝛽) is the asymptotic SE of 𝛽 computed from the Fisher information in the maximum likelihood
model.14 The value of𝜔(𝛽) can thus be seen to represent a sample with only one case (n = 1). For instance, in a setting with
200 case-parent triads and 100 control-parent triads, 𝜔(𝛽) would, theoretically, correspond to a family structure with one
case triad and half a control triad. The derivation of the asymptotic multivariate variance-covariance matrix is provided
in a previous article.14

A1.2 Asymptotic relative efficiency
The asymptotic SE is characteristic of the design used in the estimation. When comparing two designs 0 and 1, with design
0 as reference, the asymptotic relative efficiency of design 1 over design 0, that is, using design 0 as reference, is

{
𝜔(0)(𝛽)∕𝜔(1)(𝛽)

}2
⋅

m0

m1
, (A1)

where m0 and m1 are the number of individuals to be genotyped in designs 0 and 1, respectively. For instance, the
asymptotic relative efficiency of the case-control design over the case-parent triad design uses m0 = 3 and m1 = 2 (the
case-parent triad design is used as reference). Note that a ratio larger than one favors design 1.

Comparing the asymptotic variances of estimators of the same parameter from different designs provides an intuitive
understanding of relative efficiency. Alternatively, one can consider relative efficiency in terms of hypothesis testing.
Consider the problem of testing the null hypothesis H0 ∶ 𝛽 = 0 versus the alternative H1 ∶ 𝛽 ≠ 0 for a fixed nominal level.
Let 𝛾n(𝛽) be the power of the Wald test based on n cases (ie, n family structures with one case child in each). Clearly, for a
fixed alternative 𝛽 ≠ 0, limn→∞𝛾n(𝛽) = 1. That is, with enough data, a relative risk RR different from one will eventually
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be detected by increasing the sample size sufficiently. To make an informative asymptotic comparison of two tests, that
is, of tests for the same null hypothesis but based on two different designs, it is better to compare the efficiency of the tests
when testing steadily decreasing effect sizes as the sample size increases. Here, we let the alternative to be tested for be
𝛽n = h∕

√
n, where h is a fixed constant. Under general conditions,

lim
n→∞

𝛾n(𝛽n) = 𝛾(h),

where 𝛾(h) is the so-called local limiting power function (see Theorem 14.7 of Reference 63). In our setting, the limiting
power function 𝛾 of the Wald test with level 𝛼 can be written

𝛾(h) = 1 − F𝜆(h)(𝜒2
𝛼 ),

where 𝜒2
𝛼 is the upper-𝛼 quantile of the chi-squared distribution with one degree of freedom and F𝜆 is the cumulative

distribution function of a one degree of freedom non-central chi-squared distribution, with 𝜆 = 𝜆(h) as the noncentrality
parameter. The noncentrality parameter can be expressed as 𝜆(h) = (h∕𝜔(0))2, where 𝜔(0) is the asymptotic SE of 𝛽 under
the null hypothesis. Hence, comparing two parameter estimators corresponding to different study designs is equivalent
to comparing the locally attained power of the Wald test. That is, the asymptotic relative efficiency of two designs when
testing the null hypothesis can be found from Equation (A1) by setting 𝛽 = 0. Note that Equation (A1) is independent of
𝛼 and h when 𝛽 = 0 (see Theorem 14.19 of Reference 63). This type of asymptotic relative efficiency for hypothesis tests
is referred to as the Pitman efficiency.10

APPENDIX B

B1 An explicit formula for the asymptotic relative efficiency of regular autosomal effects for a diallelic SNP
under H0
For regular autosomal analyses of a diallelic SNP under H0, a formula for the relative efficiency is easily derived by heuris-
tic arguments. We quantify the statistical contribution of a genotyped individual by its “design factors” and count the
effective number of cases and controls while assuming a multiplicative dose-response relationship. The case (affected
individual) forms the basis of the family-based designs and is always assumed to be genotyped. We, therefore, define the
effective number of cases as n1 = 1. The total effective number of controls can be written as n0 = d1 + kd0, where d1 is the
effective number of controls from a case family, d0 is the effective number of controls from a control family, and k ∶ 1 is
the ratio of control families to case families.

A single case or control (without their genotyped parents) identifies only two case or control alleles, respectively.
Hence, the design factors are d1 = 0 and d0 = 1. However, a single case-parent triad encompasses four alleles, two of
which are inherited by the case child, two of which are not. The nontransmitted parental alleles form the so-called
pseudocontrols.20,21 Effects are seen as a contrast between the alleles of the pseudocontrols and the cases, similar to the
approach used with a regular case-control design. A case-parent triad thus represents one case and one control (d1 = 1).
Conversely, a complete control-parent triad adds a single control offspring. Moreover, a pseudocontrol can also be formed,
effectively resulting in two controls (d0 = 2). Because these two controls together carry the same alleles as their parents,
there is no need to genotype the original control child when both control parents have been genotyped.7

The issue of determining the design factor gets more complex when case dyads or control dyads are genotyped. If the
case and only one of his/her parents are available, there are two case alleles and one control allele. However, deciding
which of the parent's two alleles should be the control allele is not always possible when the other parent is missing. This
results in a loss of efficiency, which leads to a design factor d1 < 1∕2, depending on the minor allele frequency (MAF).65 If
only one of the control parents is available for genotyping, genotyping the control offspring and his/her parent produces
three control alleles. However, similar to the case-dyad scenario, if both the control offspring and his/her parent are
heterozygous, one cannot distinguish which allele has been transmitted from the genotyped parent. Again, this leads to
a loss of efficiency and a design factor d0 < 3∕2. The results are summarized in Table B1.

B1.1 An explicit formula
The total (actual) number of genotyped individuals is equal to G = l1 + kl0, where l1 and l0 are the number of genotyped
individuals within a case and control family, respectively, with the possible values 0, 1, 2, or 3. Under H0, the SE of the
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T A B L E B1 Design factors for
regular autosomal effects under H0

in the single-SNP situation

Control Family Case Family

d0 l0 d1 l1

MFC 2 3 1 3

MF 2 2 — —

MC or FC (3 − MAF ⋅ (1 − MAF))∕2 a 2 (1 − MAF ⋅ (1 − MAF))∕2 a 2

M or F 1 1 — —

C 1 1 0 1

Note: d0 is the effective number of controls from a control family; l0 is the number of genotyped individuals
within a control family; d1 is the effective number of controls from a case family; l1 is the number of genotyped
individuals within a case family.
Abbreviations: MAF, minor allele frequency.
aThe effective number of controls is derived by subtracting the subset of ambiguous dyads.

difference between cases and controls is expected to be proportional to
√

1∕n0 + 1∕n1. Because n1 = 1, the effective sample
size for design i can be written as

Ni ∝
1

SE2
i

∝ n0

n0 + 1
.

Relative to the number of genotyped individuals, the effective sample size for design i is

Ni

Gi
(k) = d1 + kd0

(d1 + kd0 + 1)(l1 + kl0)
.

In this article, the case-parent triad design (mfc) is used as the reference, and we have that Nmfc
Gmfc

(k) = 1
6
. Under H0, the

efficiency of design i relative to the mfc design is thus

Ni∕Gi

Nmfc∕Gmfc
(k) = 6(d1 + kd0)

(d1 + kd0 + 1)(l1 + kl0)
. (B1)

When k = 1, we see that the relative efficiency is 3/2 for the case-control (c-c) design and 3/4 for the full hybrid
(mfc-mfc) design, independent of the MAF. This corresponds to the results of Figure 3 in this article.


