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Integration of variable renewables such as solar and wind has grown at an unprecedented pace in Europe
over the past two decades. As the share of solar and wind rises, it becomes increasingly important for
long-term energy system models to adequately represent their short-term variability. This paper uses a
long-term TIMES model of the European power and district heat sectors towards 2050 to explore how
stochastic modelling of short-term solar and wind variability as well as different temporal resolutions
influence the model performance. Using a stochastic model with 48 time-slices as benchmark, the results
show that deterministic models with low temporal resolution give a 15—20% underestimation of annual
costs, an overestimation of the contribution of variable renewables (13—15% of total electricity genera-
tion) and a lack of system flexibility. The results of the deterministic models converge towards the
stochastic solution when the temporal resolution is increased, but even with 2016 time-slices, the need
for flexibility is underestimated. In addition, the deterministic model with 2016 time-slices takes 30
times longer to solve than the stochastic model with 48 time-slices. Based on these findings, a stochastic
approach is recommended for long-term studies of energy systems with large shares of variable

renewable energy sources.
© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The European power sector has the potential of becoming nearly
carbon neutral by 2050 through increasing the share of renewable
energy in the electricity mix [1]. A major share of this increase is
expected to come from solar and wind technologies. Over the past
two decades, solar and wind have experienced massive cost re-
ductions and technological development. In many locations,
unsubsidised solar and wind are already cheaper than their fossil-
fuelled counterparts, and costs are projected to plummet further
[2]. However, due to their variable and partially unpredictable na-
ture, a large share of solar and wind in the electricity mix gives rise
to a number of challenges, ranging from short-term systems op-
erations to strategic planning on a long-term timescale [3].
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Long-term energy models are frequently used to aid policy-
making, for strategic planning, and to understand the future
complexity of the energy system. Such models have the advantage
that they are capable of modelling the entire or parts of the energy
system several decades into the future, but they often model short-
term operations in a stylized and simplified way [4]. Pfenninger
et al. [5], point to “resolving time and space” as one of four main
challenges energy system models face today. It has also been shown
that failing to take into account the short-term fluctuations of solar
and wind could potentially give biased model results [6]. For
example, Haydt et al. [7] showed that low resolution models could
overestimate the contribution from variable renewables (VRES) and
underestimate CO;, emissions. Similarly, Ludig et al. [8] found that
having a too coarse representation of variability could lead to an
underestimation of total system cost. As the share of VRES in the
power system grows, the representation of their short-term vari-
ability thus becomes increasingly important in such models, with a
large impact on long-term strategic planning.
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1.1. Literature review

Improving the representation of short-term variations of solar
and wind in long-term energy models have seen increased atten-
tion in recent years. Different methodologies have been proposed
in the literature, some of which are presented in Table 1. For a more
thorough review, see Collins et al. [9] who examined the challenges
of long-term energy models when dealing with variable solar and
wind, and state-of-the-art methodologies to address them.

One approach is to soft-link long-term energy models with
operational power system models that treat the short-term oper-
ations of the grid in more detail. An example is the linking of the
Dispa-SET unit commitment and dispatch model and the JRC EU-
TIMES long-term energy model [17]. Another example is Welsch
et al. [10], who compared three models of the Irish power sector; a
long-term energy model (0SeMOSYS) with 12 time-slices, an
enhanced 0SeMOSYS model with technical constraints, and a soft-
linked TIMES-PLEXOS model with 8784 time-slices. Their results
showed that the simple OSeMOSYS model underestimated the
need of flexibility in the system and overestimated the effective use
of wind energy. By adding operational constraints, the enhanced
0SeMOSYS model was able to adequately reproduce the results of
the soft-linked TIMES-PLEXOS model. Moreover, Poncelet et al. [6],
compared a TIMES long-term energy model of Belgium to a merit-
order model and the unit commitment model LUSYM. Here, the
authors conclude that for a high penetration of variable renew-
ables, improving the temporal representation is more important
than including detailed techno-economic operational constraints
to the model. As an alternative to soft-linking, in which the models
follow an iterative approach where results are fed from one model
into the next run of the other, one could also hard-link models to
get one integrated model [18].

Much of recent work has focused on improving the temporal
representation in long-term energy models. One method is to
simply increase the temporal resolution by incorporating more
time-slices, e.g. by modelling representative days with hourly res-
olution or including more representative days [19]. Kannan &
Turton [20] increased the temporal resolution of a Swiss TIMES
model from 8 (two diurnal time-slices per season) to 288 time-
slices (24 h x 3 days x 4 seasons), achieving what they referred
to as “a far better solution” in the more detailed model. TIMES-
Norway [21] uses 260 times slices annually in order to give a
detailed description of the Norwegian hydropower system.

Another recently active area of research has focused on the
various methods to select representative days or time-slices.
Pfenninger [22] compared various methods in a model of the
Great Britain power system using the open-source modelling
framework Calliope. By applying downsampling, heuristics and
clustering techniques, Pfenninger showed that the results varied
strongly with the chosen method, particularly with large shares of
variable renewables. Heuristics showed promise, but the best

Table 1

method depends strongly on the type of system studied, the input
data and the model setup. Furthermore, Hilbers et al. [ 14] presented
an approach for sampling time-series based on the estimated
importance of each time-step and then including a number of the
most important time-slices in their model. In an idealised model of
the UK power system, they showed that their method performed
better in comparison to using random sampling, k-medoids clus-
tering or the use of individual years.

Many authors have looked at the impact of improving the
technical representation of long-term energy models. This includes
adding operational constraints to the model, specifying e.g. mini-
mum load levels, ramp-rates, start-up times etc. [23]. For example,
Gaur et al. [24] added a unit commitment extension to a TIMES
model of the Northern regional grid of the Indian power sector.
They found that adding operational constraints helped to avoid an
overestimation of VRES penetration and a better estimation of the
needs for flexible generation. Another approach is to incorporate
modelling of operating reserves (ancillary services), as in Ref. [25].

Stochastic modelling has in recent years emerged as a way of
representing short-term uncertainty in long-term energy models,
and has for example been used to model solar and wind variability
in an Arctic energy system [26]. While traditional deterministic
models make investment decisions based on only one operational
scenario, a stochastic model takes into account a range of repre-
sentative operational scenarios that can occur (see section 2.4.3).
Seljom and Tomasgard [27] showed that a stochastic representation
of short-term wind generation resulted in lower energy system
costs, lower wind power investments, less electricity exports and
an increased use of biomass compared to a deterministic model. As
a result, they recommended that decision makers use a stochastic
approach in order to obtain more solid results. Nagl et al. [28]
developed a stochastic optimisation model for the European elec-
tricity system. Through comparing the results from their stochastic
model to one with a deterministic investment strategy, they found
that VRES were significantly overvalued in the deterministic model
version, leading to an underestimation of costs and flexibility re-
quirements. EMPIRE is another example of a stochastic model of the
European electricity system, used for example to study the role of
demand response in Europe [29].

1.2. Hypothesis and contributions

This work evaluates and demonstrates different modelling ap-
proaches on how to represent the short-term variability of solar
and wind generation in a long-term TIMES energy model of the
European power and district heating systems. This includes
exploring the influence of both modelling approaches to consider
uncertainty and different temporal resolutions on model results. To
do so, a least-cost optimisation model of the European power and
district heat sectors, TIMES-Europe, was developed and applied.
Five model versions have been developed, all fundamentally

Studies focusing on the representation of short-term variability in energy models (Abbreviations: ESM = Energy system model, UC = Unit commitment, OSM = Operational

system model, MILP = Mixed integer linear programming).

Model Methodology Temporal resolution ~ Geographical resolution ~ Ref
TIMES, LUSYM Soft-linking of ESM and UC 12, 8760 Belgium [6]

0SeMOSYS, TIMES, PLEXOS ~ Technical operational constraints & soft-linking of ESM and OSM 12, 8784 Ireland [10]
LIMES Increased temporal resolution 4, 8, 16, 48, 96 Germany [8]

LIMES-EU+ Heuristics 49 Europe + MENA [11]
LIMES-EU Clustering + increased temporal resolution 8 to 800 Europe [12]
Calliope Resampling, clustering, heuristics 144 to 8760 Great Britain [13]
Calliope Random sampling, clustering, individual years, “importance subsampling” 480, 1920, 8760 United Kingdom [14]
TIMES Stochastic modelling 48 (90 scenarios) Denmark [15]
n/a Heuristics, clustering, random sampling, MILP optimisation, hybrid approach ~ 2—24 days Belgium [16]
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identical but each with increasing temporal resolution. These ver-
sions were further modelled using a conventional deterministic
approach and a stochastic approach that takes into account the
uncertainty of short-term solar and wind variability as well as the
electricity demand.

Most previous studies that have investigated the importance of
representing short-term solar and wind in long-term energy
models focus on national energy systems, e.g. Belgium [6], Ireland
[10], or Great Britain [14]. To the authors’ knowledge, this paper is
the first to assess the effect of a varying temporal resolution and
modelling methodologies on a European scale. As the European
power grid is becoming more and more harmonised, capturing the
dynamics of cross country trade and the correlation of solar, wind
and electricity demand across the whole of Europe is becoming
increasingly important.

In addition, this paper explicitly compares the performance of
stochastic versus high-resolution deterministic modeling ap-
proaches using TIMES at the European level. This study is the first to
assess how fine temporal resolution a deterministic model must
have in order to perform approximately as well as a stochastic
model. The main hypothesis in this work is that a stochastic
modelling approach gives a more realistic representation of the
electricity sector, especially when considering a system with a high
share of electricity production from intermittent renewable energy
sources. Hence, it will provide different investment strategies
compared to a deterministic model with the same temporal reso-
lution. Instead of just increasing the number of time slices in an
energy system model, this work demonstrates how a stochastic
approach can replicate and even improve upon a deterministic
model with a considerably higher temporal resolution. In order to
test the main hypothesis, a TIMES long-term energy system model
is applied to a case-study of the European power and district heat
systems towards 2050.

2. Data & Methods

The overarching methodology of this paper is presented in Fig. 1.
The core of the approach is the long-term energy model, TIMES-
Europe, with its main assumptions and input data which are
equal for all model versions. An important input to this model is the
solar, wind and load data, exemplified in Fig. 1 with a week of
hourly data for Norway and further discussed in section 2.3. This
data is then aggregated or used in the scenario generation method
to produce input data for the various deterministic and stochastic
model versions with differing temporal resolution. Finally, the
various model versions are tested and their model results and
computational performance are compared using the stochastic
model with 48 time-slices as a benchmark for comparison. This is
done to investigate their similarities, their differences, and most
importantly the significance of an appropriate representation of
solar and wind short-term variability in a long-term energy model
of the European power sector.

2.1. TIMES-Europe

TIMES-Europe is a least-cost optimisation model of the Euro-
pean power and district heat sectors developed from the well-
known TIMES (The Integrated MARKAL-EFOM) modelling frame-
work [30]. The model is based on a TIMES model of the Scandina-
vian energy system [15], and uses linear optimisation to treat
investments in energy-infrastructure, system operation and im-
ports of energy carriers for 29 interconnected European countries
towards 2050 (see Fig. 2). In order to reduce computational re-
quirements, particularly arising from the focus on short-term
variability, the model is run with investment periods of ten years.

A discount rate of 4% is used, and the currency is 2°°€.

A comprehensive description of the model, its assumptions and
input data can be found in the model documentation in the Sup-
plementary Materials.

2.2. Model assumptions

Despite not being the main focus of this paper, it is important
that the case study of a future European power system is realistic.
One of the main drivers of model results is the projection of future
demand of electricity and heat. This is supplied exogenously to the
model, where all national demand projections are based on the
European Commission’s Reference Scenario from 2016 [32]. The
electricity demand increases by 27% between 2015 and 2050
(~3000 TWh to ~3800 TWh), whereas the district heat demand
increases by 10% (~610 TWh to ~670 TWh). Electrification of
heating/cooling and an increased use of electric appliances in the
residential and tertiary sectors are the main drivers of the increased
electricity demand in the EU Reference Scenario [32]. Many studies
have shown that e.g. electrification of the transport sector could
lead to a steeper increase of electricity demand than what is
assumed here [33]. For example, for a 100% renewable energy
scenario both Greenpeace Energy [R]evolution [34] and Breyer et al.
[35] see about a doubling of global electricity consumption towards
2050.

National generation capacities, electricity and district heat
generation as well as cross-border interconnection capacity and
trade has been calibrated by statistics for the year 2015 from a
number of sources (this is further elaborated in section 4 of the
Supplementary Materials). This calibration is important, as the
existing capacities serve as a basis for future investment needs and
provides the starting point for the gradual transition to a low car-
bon energy system.

Import prices for coal, natural gas and oil from 2015 to 2050 are
based on IEA’s New Policies Scenario from the World Energy
Outlook 2018 [36]. The CO; price in 2015 of 7.7 €/ton is based on
[37], and assumed to increase to 55 €/ton in 2050 [36]. This is a
conservative estimate in comparison to other similar studies. For
example, Bogdanov et al. [38] assume a CO, price of 150 €/ton in
2050, and Zappa et al. [39] assume a CO2 price of 120 €/ton in 2050.

All other subsidies, taxes, and national climate goals are
excluded. This is a standard assumption in social planning, and is
done in order to obtain the macroeconomic cost-optimal solution.
The only policies included are established nuclear phase-out pro-
grams (see Supplementary Materials section 4.3.). However, the
developed model tool is well suited for specific analyses of the
impact of both national and Europe-wide policies.

2.3. Input data

30 years of historic nationally aggregated hourly solar and wind
capacity factors (the ratio of actual energy generation during a
given period to the potential generation if producing at nominal
capacity during the same period) are used, spanning from 1985 to
2015 as basis to represent short-term solar and wind variability in
TIMES-Europe. Due to the significant inter-annual variability of
both solar and wind, recent studies have discussed the importance
of using long and coherent wind and solar data-sets in long-term
energy models [40].

The solar and wind data-sets are obtained from renew-
ables.ninja, a web application based on the Global Solar Energy
Estimator (GSEE) model [41] and the Virtual Wind Farm (VWF)
model [42]. These models estimate hourly availability of solar and
wind generation based on weather data from the MERRA reanalysis
[43], and are bias-corrected for European countries using national
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generation data.

The wind and solar data allows modelling the effect of solar and
wind correlation across Europe in the model. This could have sig-
nificant implications on the wider system operation, with benefits
of the smoothing effect seen when aggregating solar and wind
generation over large geographical areas. It could also lead to
challenges, as European-wide weather regimes could lead to longer
periods of low solar and/or wind availability. Figs. S4—S7 in the
Supplementary Materials show the Spearman rank correlation
coefficient for solar PV, onshore wind and offshore wind generation
calculated over the whole 30-year period.

The electric load data for all countries is retrieved from the
European Network of Transmission System Operators (ENTSO-E),
and is given on an hourly basis between 2010 and 2015 [44]. The
electricity load profile is assumed to have the same shape in 2050
as it does today. This is a simplification, as it is expected that the
shape of the load profile will change e.g. due to increased pene-
tration of electric vehicles or the introduction of technologies for
demand side flexibility [45]. The district heat load profile, which
describes the fluctuation of district heat demand within a year, is
retrieved from the EnergyPlan model [46], and is given in hourly
resolution (8760 steps per year). This is also used to create generic
profiles for the model versions, and are used for all regions in
TIMES-Europe. It must be noted that the inclusion of the district
heat network is not the main focus of this research, but imple-
mented to capture the cross-sector effects, which are important for
both power-to-heat technologies and combined heat and power
plants.

Maximum installed capacities of the various renewable energy
sources as well as maximum use of biomass and waste are pre-
sented in Tables S40—48 in the Supplementary Materials. These
constraints are added in order to reflect both theoretical, environ-
mental and social constraints to the expansion of renewable en-
ergies. As an example, the assumed maximum onshore wind
capacity is based on estimates of available land area for onshore
wind installations in each country (based on [47] for EU countries,
[48] for Norway and [49] for Switzerland), taking into account
protected areas, mountainous areas etc.

2.4. Model versions

In order to explore the importance of the temporal resolution
and modelling methodology in long-term energy models, several
model versions were developed. Fundamentally, all versions work
in the same way and with the same data, but with varying temporal
resolution and modelling methodology. The following sections
present the developed model versions.

Table 2
Temporal structure of the tested model versions.

2.4.1. Temporal resolution

Five model versions with respectively 12, 48, 192, 672 and 2016
time slices per year were developed (see description of time-slice
division in Table 2). The number of time-slices in TIMES models
usually range between 4 and 48 [24], with the most detailed
models having 288 time-slices [ 19]. The models with 672 and 2016
time-slices represent a significant increase of the temporal reso-
lution compared to the existing literature. The different temporal
resolutions are combined with two alternative ways of handling the
uncertainty in the future supply.

2.4.2. Deterministic approach

A conventional deterministic modelling approach considers
only one operational scenario, in which the solar, wind and elec-
tricity demand profiles are based on their expected values (clima-
tology). Consequently, the investment decisions in a deterministic
model do not take into account a range of operational situations
that can occur. This is the simplest approach followed in this paper.

2.4.3. Stochastic approach

A two-stage stochastic model [50] is applied to provide invest-
ment decisions in TIMES-Europe that explicitly consider various
operational situations caused by the short-term uncertainty of solar
PV generation, wind generation and electricity demand. Each un-
certain parameter is represented by a set of 15 possible realisations,
called scenarios, which all are assigned the same probability of
occurrence. A stochastic model with only one operational scenario
would be equivalent to a simplified deterministic model.

Fig. 3 shows a scenario tree containing the information structure
of a two-stage stochastic model. The first stage involves investment
decisions for the entire model horizon, from 2015 to 2050, which
are made without knowing the realisation of the operational sce-
narios. The outcome of the operational scenarios is revealed at the
second stage, where operational decisions are made for each of the
scenarios and for all model periods. Investments and operational
decisions are made simultaneously through applying a multi-
horizon model structure [51], where no dependency of opera-
tional decisions between model periods is assumed. In order to take
into account the various operational scenarios in the optimisation,
the stochastic model minimises the investment costs and the
average of the operational costs for all scenarios. This results in
investments that take into account the expected operational cost,
and are identical and feasible for all operational scenarios.

In the stochastic modelling approach, the generated scenarios
describe the uncertainty of the solar and wind availability and in
addition represent realistic operational situations [27]. The sce-
narios are generated through a method that combines random
sampling and moment matching [27]. In short, the technique

Model version Description

12 time-steps
48 time-steps
192 time-steps
that contains the peak hour of the season
672 time-steps

2016 time-steps

3 time-steps per season, consisting of a night time-slice (00.00—07.00, 7 h), a day time-slice (07.00—23.00, 16 h) and a peak time-slice (1 h)
12 time-steps per season, one representative day with two-hourly resolution per season
48 time-steps per season, one average day with hourly resolution, and one peak day with hourly resolution

One week with hourly resolution per season, the week containing the peak hour of the combined European
load is chosen (to keep spatial and temporal correlation)
One week with hourly resolution per month, the week containing the peak hour of the combined European
load is chosen (to keep spatial and temporal correlation)
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Stage 1: Investment Decisions

A

Stage 2: Operation Decisions

Fig. 3. Illustration of a two-stage stochastic model with fifteen operational scenarios (adapted from Ref. [15]).

Table 3
Model runs in this study.

Model version Deterministic Stochastic

12 time-slices
48 time-slices
192 time-slices
672 time-slices
2016 time-slices

AN NN NN
x x x NN

involves randomly sampling a large set of historical days of the
solar, wind and load data and then select the set of days that has the
best fit with the statistical properties of the original datasets. A
more detailed explanation of the procedure is provided in Ref. [26].

2.4.4. Model versions

Table 3 presents the various model versions that have been run
in this study. Some of the model versions have not been tested due
to memory requirements. As the 672 and 2016 time-slice models
were not solvable on a normal laptop computer,' all model versions
are run on a computer with state-of-art specifications.” This allows
a comparison of e.g. solution time between the models, and rep-
resents computational possibilities that most likely will be the
norm in the future. A model with 8760 time-slices was also
developed, but was unsolvable due to RAM limitations. This also
shows why it is important to reduce the temporal resolution in
long-term energy-models to make them computationally tractable.

3. Results and discussion

In this section, results from the various model versions are
compared, and the impact of increasing the temporal resolution or
modelling with a stochastic modelling approach is assessed. The
stochastic model with 48 time-slices is used as a reference for
comparison, in order to determine at which temporal resolution a
deterministic model is able to reproduce the results. First, the en-
ergy system related results are investigated, looking at the features
of a future European power system. Second, the computational
performance of each model version is assessed, discussing the
trade-off between model accuracy and computational effort.
Finally, the implications of the work is discussed and topics to be
explored for future studies are suggested.

! Intel(R) Core(TM) i7-5600U CPU @ 2.60 GHz, 16 GB RAM.
2 Intel(R) Xeon(R) Silver 4114 CPU @ 2.20 GHz, 96 GB RAM.

3.1. Model performance

Fig. 4 panel A and C show the European aggregated installed
capacity and electricity generation in 2050. The overall composition
of the system is similar across all versions, dominated by large
shares of onshore wind and solar PV, but there are important dif-
ferences between them.

These differences are highlighted in panel B and D of Fig. 4,
which show the mismatch of the installed capacity and electricity
generation in 2050 for each model version relative to the stochastic
model with 48 time-slices. The deterministic models with 12, 48
and 192 time-slices overestimate the contribution from solar and
wind, investing in an additional 321 GW capacity of VRES in Det12
(~17% of total installed capacity in Stoch48), and about 200 GW in
both Det48 and Det192. Consequently, this gives 500—600 TWh
(13—15% of total electricity generation) more VRES generation in
2050 in those models relative to Stoch48. Since the deterministic
model versions treat solar and wind based on their expected gen-
eration, their availability is overestimated. The large amounts of
solar and wind also leads to the 12, 48 and 192 time-slice models
underestimating the need of flexibility, with significantly lower
investments in flexible natural gas and biomass, as well as base-
load nuclear (see Fig. 4 panel B). This is also shown in panel D,
which shows that the mismatched generation from solar and wind
in Det12, Det48 and Det192 is largely replaced by biomass, natural
gas and nuclear generation in Stoch48.

The Stoch12 model also overestimates solar PV capacity, with
more than 1.1 TW of solar capacity across Europe in 2050, which is
350 GW more than Stoch48. Furthermore, the stochastic model
version works so that the fleet of technologies invested in by the
model should be able to meet the energy demand in all scenarios,
even those with unfavourable wind and solar conditions. In this
case, due to the structure of the 12 time-slice model where the peak
time-slice constitutes as much as 4% of the year, this results in the
Stoch12 model investing in large amounts of natural gas to cover
the peak hours in the stochastic scenarios with low VRES avail-
ability. This leads to a total natural gas capacity of 270 GW, which is
about three times as much as in Stoch48.

The higher temporal resolution of the Det672 model leads to a
better performance in comparison to the other deterministic
models. By modelling a full week per season, this model is able to
capture periods with low solar and wind availability, thus achieving
results that are more similar to Stoch48. There is, however, a big
discrepancy in the installed capacity of solar PV and natural gas. It is
interesting to notice that despite the lower natural gas capacity, the
actual electricity generation is higher in Det672 in comparison to
Stoch48. This, as was the case with Stoch12 above, has to do with the
internal structure of the stochastic model. In Stoch48, there are
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D. The diamonds show the net mismatch, i.e. the mismatch of total installed capacity or total electricity generation, and the percent mismatch relative to the Stoch48 model is shown
on the right-axis. Also note the different y-axes in the four panels. It must be mentioned that for the stochastic model versions, the installed capacity is common for all stochastic
scenarios, but the electricity generation changes for each scenario depending on VRES availability and the load curve shape. Therefore, panels C and D show the average across all
stochastic scenarios. The generation in 2050 shown in panel C of about 4000 TWh is larger than the demand of 3800 TWh mentioned in the text mainly due to grid losses.
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some scenarios with low VRES availability where additional natural
gas generation is needed, and others with high VRES variability
where natural gas is less used. This leads to a wide spread of natural
gas generation across the stochastic scenarios, ranging from
82 TWh to 280 TWh. Thus, the average natural gas generation is
lower in Stoch48 than in Det672, but in some scenarios, which also
determine the installed capacity, natural gas generation is higher.

The model performing the closest to the stochastic 48 time-
sliced model is the Det2016 model, with the only big difference
being less solar PV capacity in the deterministic model. There are
also some small differences in the choice of fuel in the electricity
generation, but the spread of mismatched generation is reduced
drastically from Det12 to Det2016. The two models are also aligned
in the share of renewables in the electricity mix, both with a total
renewables share of 82%, with 62% being from variable renewables.

While Fig. 4 only shows the European aggregated results for
2050, Figs. S20—S33 in the Supplementary Materials show the
development in installed capacity and electricity generation from
2015 to 2050 for each country for all model versions. These figures
strengthen the impression that Det672 and Det2016 perform well in
reproducing the results from Stoch48.

The transition to a power system based primarily on renewable
energy sources also leads to major cuts in CO, emissions (see Fig. 5).
The emission cuts range from 72% to 88% in the various model
versions, with the low-resolution deterministic model generally
achieving the highest emission reductions. High emission re-
ductions are also obtained in Stoch48, but this depends strongly on
the given stochastic scenario, with emissions ranging from 190
Mton CO; to 290 Mton COs.

Fig. S35 in the supplementary materials shows the district heat
generation in 2050 for each model version. By the middle of the
century, there is still a large contribution (about 40% in Stoch48)
from fossil-fuel powered combined heat and power plants and
natural gas boilers for district heating. The remainder of the de-
mand is mostly served by electrified heating (mostly heat pumps),
biomass as well as solar thermal heating.

3.1.1. Flexibility requirements

In a future Europe with high shares of variable renewables, there
is a significant need for flexibility to match the variable renewable
generation. As already discussed, the low resolution deterministic
model versions (12, 48 and 192 time-slices) put too much trust in
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Fig. 5. Estimated CO, emissions from 2015 to 2050.

renewables to generate electricity when needed, systematically
underestimating the need for flexible and base-load generation
(Fig. 6 panel A). In addition to flexible generation, additional
sources of flexibility can help the integration of large shares of
variable renewables. Significant investments in the European
transmission grid is seen in all model versions (Fig. 6 panel B), with
more than a doubling of total interconnection capacity. Energy
storage will also be an important source of flexibility. Fig. 6 panel C
shows the energy storage discharge capacity in 2050 in the various
model versions. Pumped hydro storage (PHS) utilises all its avail-
able potential in almost all model versions, and lithium-ion batte-
ries are also very popular. Hydrogen storage sees a very limited role
in the future power sector, but this could change if the present
model is expanded to also include the transport sector. Including
the transport sector could also greatly impact the need for grid-
scale battery storage through the battery capacity in electric
vehicles.

The previous sections have shown that both Det672 and Det2016
achieve similar results as Stoch48. By applying a test called the
Value of Stochastic Solution (VSS), the resulting energy system
configuration from Det672 and Det2016 can be exposed to the same
short-term uncertainty as modelled in Stoch48. This will provide a
measure of the value of following a stochastic approach relative to a
deterministic one [27,52]. The VSS works by fixing the investments
from a deterministic model and then running the model with the
stochastic operational scenarios. In other words, the investments
from Det672 and Det2016 are implemented in Stoch48, and then run
with the fifteen operational scenarios without allowing new in-
vestments. For both Det672 and Det2016, the VSS leads to infeasible
solutions. The deterministic investment strategy leads to a system
that is not able to meet the demand in 14 out of 15 scenarios for
Det672 in 2050, and in 7 scenarios for Det2016. This shows that the
deterministic models underestimate the need for flexibility in
comparison to the stochastic model.

A common way of ensuring enough back-up capacity in deter-
ministic models is to use a heuristic that limits the contribution
from VRES and ensures investment in flexible generation capacity
[15]. The deterministic models have been tested using operational
peaking constraints, with the approach and results presented in the
supplementary materials. For the low temporal resolution models,
adding this constraint did not have significant impact on the re-
sults. The results are very similar to the other deterministic models,
with the exception that the peaking reserve constraint leads to
more investments in natural gas capacity, including open cycle gas
turbines (OCGT). This is the cheapest capacity available, and is only
invested in to satisfy the peaking reserve constraint, but rarely
used.

It does, however, make an impact for the deterministic models
with higher resolution. The additional flexible capacity in these
models, leads to a feasible solution when tested for the VSS, which
without the peaking reserve constraint led to infeasible solutions.
The relative VSS is found to be 6% for Det672, indicating that the
total system cost is higher for the deterministic model solution
when uncertainty is present. This is mainly due to the extra in-
vestments in OCGT capacity and the expensive use of this capacity
in periods with low solar and wind availability. This highlights the
caveat of the peaking reserve approach, as the reserve re-
quirements are set exogenously and are not a result of endogenous
model decisions. Due to memory requirements, Det2016 proved
impossible to run with additional peaking constraints on the cur-
rent computer setup. However, similar results as shown with
Det672 are to be expected.

3.1.2. Costs of a highly renewable European power system
Fig. 7 shows the aggregated annual costs for the European
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power and district heat systems in 2050, divided into investment
costs, fuel costs, 0&M costs and CO, taxes. The annual costs range
from ~150b€/year to ~200b€/year depending on the model
version. Due to their overestimation of the contribution from var-
iable renewables, Det12, Det48 and Det192 underestimate the ex-
penditures in all cost segments. This leads to Ilarge
underestimations of total annual costs, being 30—35 b<€/yr
(15—20%) lower than Stoch48. On the other hand, Stoch12 over-
estimates the fuel and CO, costs, mainly due to high natural gas
usage, which in turn gives annual costs about 10 b€/yr (5%) higher
than Stoch48.

The closest results are achieved for Det2016 and Det672, with
annual costs that deviate by respectively 1.5 and 5 billion euros per
year in comparison to Stoch48 (0.8 and 2.6% deviation). These minor
deviations occur due to slightly higher investment and O&M costs
in Stoch48, which are compensated by higher fuel and CO; costs in
Det672 and Det2016. This is also an indication that Stoch48 invests
more in a system capable to serve the demand in all stochastic
scenarios, but this additional capacity might only be used in a
couple of the scenarios. In fact, the total annual costs in Stoch48
range from 185 to 200 b€/yr across the scenarios, depending on
VRES availability and the need to use fossil fuels (investments costs
and O&M costs are of course equal in all scenarios). On the other
hand, the deterministic models only optimise on the basis of one

scenario, where it is cheaper to invest in less capacity but with a
higher utilisation. However, it is this investment strategy that leads
to challenges when exposed to the variability of the operational
scenarios in the VSS tested above (section 3.1.1).

The maps in Fig. 8 show the electricity shadow price in 2050 for
each country in A) Det48, B) Det672, C) Det2016, and D) Stoch48. All
these model versions are able to capture the spatial trends across
Europe, even the simple low resolution Det48 model. The outskirts
of Europe generally achieve lower prices, whereas the big load
centres in the middle of Europe (e.g. France, Germany and Italy),
have higher prices. This trend occurs due to the north and south of
Europe having the best resource potential for renewable energy
sources (high wind potential in the north and high solar potential in
the south). A lot of renewable capacity is therefore built in these
regions, with additional investments in grid interconnections to
transfer the electricity to central Europe. The surplus of electricity
thus leads to low prices in these regions, while the import de-
pendency of the central European countries gives higher prices.
This is particularly the case in time-slices with low availability of
renewables, which leads to less cheap electricity being available for
import, thus increasing the need for more expensive fossil fuel use
pressing prices upwards.

All deterministic models in Fig. 8 return lower shadow prices in
2050 than Stoch48. While Stoch48 estimates the average European
shadow price to be ~61.2 €/ MWh, the prices in Det48, Det672 and
Det2016 range between 57.7 and 58.7 €/MWHh, corresponding to a
deviation of 4—6%.

3.2. Computational performance

An important discussion point is the trade-off between accuracy
and computational effort in the model versions. While stochastic
models have been shown to give a more realistic representation of
short-term solar and wind variability in models with low temporal
resolution, they are complicated, need intricate preprocessing and
have long run times relative to deterministic models with the same
resolution (see Fig. 9 and Table 4). The deterministic model version
with 48 time-slices takes less than a minute to solve, whereas the
same model with a stochastic approach takes more than 10 h.

As the previous sections have shown, only the deterministic
model versions with 672 and 2016 time-slices come close to
reproduce the results from Stoch48. However, Det672 has a solution
time almost equal to Stoch48, whereas Det2016 is almost 30 times
longer. Given that both fail the VSS, this suggests that the stochastic
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modelling approach is able to weigh up for its lower temporal
resolution.

3.3. Outlook

This paper has investigated the importance of an adequate
representation of short-term solar and wind variability in long-
term energy models. A conventional deterministic approach was
compared to a stochastic approach, and the effect of increasing the
temporal resolution was also assessed. In addition, the introduction
of a heuristic that limits the contribution of VRES has been dis-
cussed, and how it can improve the output from low resolution
deterministic models. This paper does not, however, compare the
stochastic modelling approach to more sophisticated methods of
selecting time-slices. Both Det672 and Det2016 are based on heu-
ristic methods, selecting a week of hourly data based on the
occurrence of the combined European peak hour in that week.
Other methods could also be tested, using e.g. clustering algorithms
or optimisation techniques to better select the time-slices. This
could improve the performance of the low resolution deterministic
models, potentially to the extent that it could replicate the results
achieved with the stochastic model version. However, such tech-
niques would also add to the complexity and intricate pre-
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Table 4

Computational performance of tested model versions (nonzero elements, equations and variables are reported after aggregation).
Model version Time (s) Time (h) Nonzero elements Equations Variables
Det12 7.1 ~0 393623 69319 80778
Stoch12 6078 ~2 5717225 1037871 1078179
Det48 69.9 ~0 1413852 230953 275513
Stoch48 37141 ~10 20183347 3237170 3679885
Det192 1060 ~0.3 5507870 879168 1053827
Det672 34606 ~10 19079446 3022448 3631491
Det2016 1075263 ~299 55805140 8821290 10633679

processing, which is a drawback of the stochastic model version
used in this paper. It is also important to mention that deterministic
models with hourly temporal resolution exist, including e.g. Ener-
gyPlan [53] and the LUT Energy Transition Model [54]. The former
follows a simulation based approach, which could be an alternative
to the optimisation based models discussed in this paper [55].
Another alternative approach that could be further investigated is
the coupling of long-term energy models to operational power
systems models. This could reduce the temporal resolution needed
in the long-term energy model, while simultaneously capturing the
detailed operation of the system.

While this paper focuses on the temporal aspects of wind and
solar integration, the spatial resolution is limited to country level.
This simplification undermines how generation and demand is
distributed within each country and the bottlenecks that could
occur. An example is the German power grid, where bottlenecks
between the windy north and the industrial south leads to
congestion and overloading [56]. This assessment on a national
scale could therefore underestimate necessary investment in the
distribution grid, even though costs for cross-country transmission
lines are overestimated to also take into account improvements in
the distribution grid. A better spatial representation could give
important information about the placement of new renewable ca-
pacity, to minimise land-use impacts and to avoid social conflicts
[57]. Since TIMES has been heavily used in national and sub-
national studies, the present establishment of a European version
enables comparison, exchange of parameters and perhaps even
coupling of models on different scales. It is then important to
remember that the present model optimises the power and district
heating systems of a collective Europe, and not each individual
country.

The demand side of the energy system could be another source
of flexibility to ease the integration of VRES. In addition to energy
efficiency measures, demand response (DR) could actively help
matching the demand to the available supply through shifting load
in time, change load profiles or even curtail load [29]. Additional
sector coupling, not only with the district heat sector as in this
paper, but also with e.g. the transport sector could improve flexi-
bility through intelligent EV charging or even using EV batteries as a
means of storage [58]. Connolly et al. [59] modelled a 100%
renewable energy system in Europe by 2050 for all sectors. They
found that such a system is technically feasible, helped by the extra
flexibility gained by additional sector coupling. The model Ener-
gyPlan was used, having hourly resolution but with the EU
modelled as one single region. For future research, the model and
approach followed in this study could be expanded to encompass
all sectors. One could then further examine the synergies of sector
coupling, both in terms of extra flexibility in the power system and
also how this could enable renewable energy sources to decar-
bonise more difficult sectors such as transportation or industry. In
addition, the results lead to a VRES share of about 60% of the
electricity generation, with a total renewable share of about 85%.

Additional scenarios that require 100% renewable energy or zero
CO, emissions would be interesting to assess, in order to increase
the VRES share and investigate how this affects the flexibility re-
quirements of the European power system.

4. Conclusions

The future European power system is expected to contain large
shares of variable electricity generation, particularly from solar and
wind technologies. Long-term energy system models are often
used to provide insights of power market transitions with large
shares of renewables, and require therefore an appropriate repre-
sentation of short-term solar and wind variability. In this work, the
representation of solar and wind variability in a TIMES long-term
energy model of the European power and district heat sectors to-
wards 2050 is assessed.

This paper has shown that an accurate representation of short-
term solar and wind variability is highly important when modelling
the future European power system. When compared to a stochastic
model with 48 time-slices, deterministic models with a too coarse
temporal resolution underestimate annual costs in the range of
15—20% and overestimate the contribution from variable energy
sources from 13 to 15% of total electricity generation. Consequently,
this leads to an underestimation of CO, emissions and the required
flexibility to handle solar and wind variability.

A better approximation of the results from the stochastic 48
time-slice model is only achieved when significantly increasing the
temporal resolution to 672 or 2016 time-slices. The 2016 time-slice
model achieves the closest results to the stochastic 48 time-slice
model, with a generation mismatch of about 5%, and a deviation
of annual system costs of 0.8%. However, both the 672 and 2016
time-sliced models invest in too little flexibility to handle the same
short-term uncertainty as the stochastic model, needing an added
peaking constraint to achieve feasible results. In addition, while the
deterministic model with 672 time-slices takes as much time to run
as the stochastic one, the 2016 time-slice model is 30 times slower.
This shows that a stochastic model version with 48 time-slices is
able to weigh up for a low temporal resolution in comparison to
very high temporal resolution deterministic models, both in terms
of solution time and model accuracy.

The choice of temporal resolution and modelling approach plays
thus an important role both in model results and insights as well as
computational performance of long-term energy models, and
should be carefully evaluated when such models are used for
decision-making. When modelling an energy system consisting of
large shares of variable renewable energy sources, a stochastic
modelling approach that takes into account the uncertainty of their
short-term variability is recommended, both due to its accuracy
and also its computational efficiency in comparison to high-
resolution deterministic models.

This case-study has also shown that a large share of renewable
electricity generation is the most-preferred pathway for the
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European power and district heat systems. This is achieved with a
conservative CO, tax, and without emission constraints or targets
for renewables share. This shows that new renewables already are,
and to an increasing extent will be, competitive with fossil fuelled
power generation. Future studies could use a stochastic long-term
energy system model to investigate such aspects, including sector
coupling and more radical transformations, considering e.g. 100%
renewable energy or zero emission scenarios. Further studies
should also assess other time-slice selection techniques to improve
the deterministic model versions.
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