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Translational neuroscience is an important field that brings together clinical praxis with
neuroscience methods. In this review article, the focus will be on functional neuroimaging
(fMRI) and its applicability in clinical fMRI studies. In the light of the “replication crisis,” three
aspects will be critically discussed: First, the fMRI signal itself, second, current fMRI praxis,
and, third, the next generation of analysis strategies. Current attempts such as resting-
state fMRI, meta-analyses, and machine learning will be discussed with their advantages
and potential pitfalls and disadvantages. One major concern is that the fMRI signal shows
substantial within- and between-subject variability, which affects the reliability of both task-
related, but in particularly resting-state fMRI studies. Furthermore, the lack of standardized
acquisition and analysis methods hinders the further development of clinical relevant
approaches. However, meta-analyses and machine-learning approaches may help to
overcome current shortcomings in the methods by identifying new, and yet hidden
relationships, and may help to build new models on disorder mechanisms.
Furthermore, better control of parameters that may have an influence on the fMRI
signal and that can easily be controlled for, like blood pressure, heart rate, diet, time of
day, might improve reliability substantially.

Keywords: fMRI—functional magnetic resonance imaging, BOLD (blood oxygenation level dependent) signal,
reliability, clinical fMRI, psychiatry
INTRODUCTION

Translational neuroscience is an important branch within the broad field of neuroscience. In the
context of this opinion article, translational neuroscience will be seen as the attempt of bridging
neuroscience, neuroimaging, and clinics for improving our understanding of symptoms and
disorders, and for better diagnostics and treatments (1, 2).

This is not a new attempt. Neuroimaging, and in particular functional magnetic resonance
imaging (fMRI), has been considered as a revolutionary tool for exploring the healthy and the
diseased brain for more than two decades (3, 4). Consequently, since fMRI entered the scene in the
early 1990s, it had seen an enthusiastic phase over the first two decades. However, after this period,
neuroimaging—like almost any other psychological and medical sciences—was overrun by the
replication crisis. Recent studies have estimated the reproducibility of psychological studies to be
g January 2020 | Volume 10 | Article 9241
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39% or less and indicated a severe limitation of neuroimaging
(fMRI) study reliability (5–9). Furthermore, the neurophysiological
mechanisms behind the BOLD/fMRI signal are only partly
understood, which makes it difficult to generalise results or to use
it on an individual level for diagnostic purposes. Thereby impeding
the impact of highly neededneuroscience studies on theoretical and
methodological progress, and, last but not least, the clinical
application of fMRI.

In the following, this article will critically discuss current
strategies and developments within the field of neuroimaging
and tries to indicate possible future directions.

The Replication Crisis and Its
Consequences
The neuroimaging research community has taken the
“replication crisis” very seriously, like through the ReproNim
initiative (10), and the Organisation of Human Brain Mapping
(OHBM) announced in 2016 a new replication award, and put
reproducibility high up on their agenda with several new best
practice and data sharing initiatives (see, e.g., http://www.
ohbmbrainmappingblog.com).

Jointly, psychology and neuroimaging suffer substantially
from a lack of statistical power, meaning that the sample sizes
are typically too small, and effect sizes are too low (11). This has
not only been perceived as a critical challenge among scientists
but has recently also received public attention. On the other
hand, clinical applications require reliable single-case
examinations but not group studies that may reliably show the
general population effect but may vanish the information on
interindividual and intraindividual variability. Consequently, the
lack of information about the “naturally” occurring variability
hinders the successful development of translational and clinical
applications. Already in 2006, Paul Matthews and coworkers
critically discussed the applicability of clinical fMRI for other
applications than neurosurgical mapping (12). Although they
wrote down their opinion more than a decade ago, it appears like
that the development of clinical fMRI is in a “resting state,” as
recently pointed out by O’Connor and Zeffiro (13). Presurgical
mapping is still the only reliable and widely used clinical
application of fMRI. The critical question is, why haven’t we
yet achieved a breakthrough in clinical fMRI?
CURRENT STATUS

This article will critically discuss three aspects that are relevant to
consider in the context of clinical fMRI: First, the fMRI signal
itself, second, current fMRI praxis, and, third, the next
generation of analysis strategies.

The Bold Signal Perturbation
One of the major knowledge gaps in the field is the assumption
that the fMRI signal, i.e., the underlying BOLD effect (BOLD =
blood oxygenation level dependent), is sufficiently reliable and
stable, where “sufficiently” has never been defined yet. It is of
crucial importance to keep in mind that the BOLD signal represents
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only an indirect measure of neuronal activity, through a cascade of
physiological processes, called neurovascular coupling.
Consequently, the observed variability of the BOLD signal does not
necessarily justify the conclusion that the underlying neuronal
activity shows variability to the same degree. Scientifically speaking,
the BOLD signal is a physiological response that only indirectly
reflects neuronal activity, and which is easily and directly influenced
by blood pressure, blood oxygenation, or any other parameters that
have an effect on the vascular system, which in turn affect the balloon
effect that generates the BOLD signal (14, 15). The corresponding
balloonmodel became themost influential andmostly usedmodel in
fMRI research (15–17). It is a neurophysiological model that
describes the neuronal and vascular mechanisms that cause the
BOLD signal given a neuronal activity. It rests on the assumption
that theBOLDsignal is causedby changes in thebloodvolume, blood
flow, and the oxygen extraction rate. It is widely accepted that these
are the main parameters that determine the strength of the BOLD
signal. The balloon model and its corresponding hemodynamic
response function is, for example, an integral part of several analysis
models of fMRI data, but also for measures of functional and
effective connectivity, like dynamic causal modelling (DCM) (18).

However, it is less studied, how susceptible the BOLD signal is
to endogenous and exogenous influences and individual
variability of the underlying mechanisms. Hence, it might
occur that a change in the BOLD signal is detected while the
true neuronal activity and connectivity remains unchanged. It is
known that hormones (like cortisol), blood pressures, body mass
index, time of the day (circadian rhythm), time of the year, sleep
duration, and age influence blood volume, blood flow, and other
vascular parameter, and hence the BOLD signal (19–23).
Whether the individual variability of these parameters has a
significant influence on the BOLD signal is largely unknown. To
give another example, using magnetic resonance spectroscopy
(MRS), it has been shown that the individually varying
concentration of the inhibitory neurotransmitter GABA is
reflected in the amplitude and shape of the BOLD signal (24).
Complementary, comparable effects have been shown for the
excitatory neurotransmitter glutamate (25, 26). The list of those
endogenous parameters can be continued, including parameter
that may predominantly affect neuronal signal transmission or
vascular processes. In other words, the BOLD signal is most
likely not stable within and not necessarily comparable between
subjects. These factors are just additional sources of variability of
the fMRI signal that comes in addition to all other sources of
noise that are affecting the measurement, like other environmental
factors, thermal noise, noise of the measurement system itself,
movements of the subjects, daylight length, temperature, and
whether, to name a few, that may affect brain functions but also
the stability of the MR system (23, 27, 28).

Current fMRI Methods
Current Clinical Applications of fMRI
As outlined above, the only routinely used clinical application of
fMRI is the presurgical mapping (see Table 1). This is mostly
done in patients with brain tumours or epilepsy, since these
diseases may cause substantial displacement of brain functions,
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TABLE 1 | Schematic overview on reliability and current clinical applications of
the different fMRI techniques.

Reliability Current clinical
applications

Task-related
fMRI:
Localisation of
functions

Single subjects:
Reasonable good

Presurgical mapping;
Occasionally single
case studies

Typical paradigms:
Motor, Language, Memory
Group studies:
Good; Various tasks are used

Psychiatry, Neurology

Task-related
fMRI:
Strength of
activation

Single subjects:
Poor - Limited -Depends on task,
instructions & attention

Limited applicability

Group studies:
Limited - Good; Various Tasks

Psychiatry, Neurology

Resting-state
fMRI

Single subjects:
Poor – Limited - Good

Limited applicability

Reliability depends mainly on
analysis methods, i.e. different
measures show different
reliability, but it depends also
on scan length, instruction, etc.
Group studies:
Limited – Good

Psychiatry, Neurology

Reliability depends mainly on
analysis methods, i.e. different
measures show different
reliability, but it depends also
on scan length, instruction, etc.
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and functional mapping with fMRI may help surgeons to localize
important areas despite their unusual neuroanatomical
localization (29). However, most of those clinical applications
are task-related fMRI with simple paradigms, and the first
reports date far back to the beginning of fMRI (30, 31).

One of the most common application is the localization of
language areas and their lateralization, which is an essential
information in the treatment of patients with epilepsy (32–38).
In most occasions, this clinical application of fMRI shows
comparable results as the invasive WADA test but might
deviate in cases with atypical language dominance (39).

Good experience also exists for paradigms probing the
localization of motor, sensory, and memory functions, which
are often not only used for localization but also for predicting
outcome (40–44). Nowadays, clinical fMRI is often combined
with diffusion tensor imaging for localizing relevant fibre
tracts (42).

In contrast to the presurgical mapping where it is sufficient
enough to localize a function, any application in psychiatry, for
instance, needs to focus on the strength of activations.
Accordingly, there exists no routinely used clinical application
of fMRI outside of the field of presurgical mapping due to the
lack of sufficient reliability in the measurement of individual
activation strength—for example task, instruction, and different
levels of attention may influence reliability (45, 46). Group
studies, by contrast, show a much higher reliability in detecting
deviations in activation strength (47). Therefore, almost
exclusively all fMRI studies in psychiatry have explored
Frontiers in Psychiatry | www.frontiersin.org 3
cohorts of patients (see Table 1). However, one possible way
to circumvent this lack of reliability on the individual level has
been recently suggested by Paek et al. in connection with a study
on dementia by proposing repeated (baseline) measurements of
the patients (48).

Another problem in clinical fMRI in psychiatry is the
heterogeneity of patient populations. The disorders are often
spectrum disorders with a continuum that ranges from normality
to pathological (49), but also that varies between various symptoms
and diagnosis, like between schizoaffective disorder, schizophrenia,
bipolar disorder (50). Furthermore, the disorders often manifest in
varies subtypes, and different studies may use different diagnostic
criteria.Consequently, imaging results oftendiffer substantially even
on the level of group studies (51).

Is Resting-State fMRI the Solution?
While the first two decades of fMRI were mostly dominated by
task-related fMRI, i.e., fMRI acquisitions while research subjects
performed an active task, like a working memory, attention, or
language task, the more recent years have seen an alternative
approach, which is called “resting-state” fMRI (rs-fMRI). Here,
research subjects are just scanned over a certain period without
any concrete, active task—they are presumably “at rest.”
Surprisingly, the measured BOLD signal that is measured
during such an rs-fMRI examination is not random but
fluctuates in a spatially and temporally systematic manner (52,
53). It has been shown that even in the absence of a concrete task,
certain brain areas are forming networks through characteristic
correlated fluctuations of the BOLD signal, called resting-state or
intrinsic networks. These network patterns can be detected by
focusing on low frequent (<0.01Hz) fluctuations of the BOLD
signal, since these fluctuations propagate through the underlying
neuronal network structures, indicating an information exchange
within the networks even in the absence of a concrete task. It has
been further shown that these networks are very similar across
individuals (52, 53). They are therefore assumed to reflect some
fundamental—trait- or biomarker-like—brain processes.

From resting-state data, it is possible to identify neuronal
networks that show in their spatial organization a striking
similarity with those networks that have been identified
through task-related fMRI (54). These networks are often
identifiable also on single subject levels, but depends on the
method that is used for extracting the information (46). Since
this discovery, there has been a tremendously interest in resting-
state fMRI and the examination of the related intrinsic-brain
networks and their dynamics (17, 55–62). One of the most
investigated networks in this respect is the “default mode
network” (DMN) (61, 63). The DMN network is related to
processes, like mind wandering, intrinsically focused attention,
daydreaming, etc. Interestingly, there is a counterpart to the
DMN, which has been described under different names in the
literature.Here, itwill becalled the “extrinsicmodenetwork” (EMN)
and represents a network for extrinsically focused attention (61).

One reason why rs-fMRI became such a popular tool in the
field of neuroimaging is that it may allow studying cognitive
functions even in the absence of a task, which would be an
intriguing possibility for doing clinical fMRI, especially in cases
January 2020 | Volume 10 | Article 924
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where patients are severely affected like after a stroke or
traumatic brain injury. Clinical applications of rs-fMRI are
based on the assumption of certain interindividual and
intraindividual stability of resting-state networks in healthy
individuals to draw conclusions from observed deviations in
patients. In order to increase comparability and to limit
variability in data acquisition between studies, first sets of
guidelines for standardized protocols have been developed
(e.g., like the “Alzheimer’s disease neuroimaging initiative”
(ADNI); http://adni.loni.usc.edu), and other initiatives are
following their example and have started similar undertakings.

However, one major disadvantage of rs-fMRI is that rs-fMRI
studies still vary in their acquisition methods and whether they
are conducted on a 1.5T, 3T, or 7T MR. The typical approach in
rs-fMRI is to do an fMRI scan of several minutes duration with a
repetition time (TR) of typically 1–3 s. But between studies and
labs, there are already at least three different types of instructions,
asking the research subjects to either close their eyes, keep them
open, or to fixate on a fixation cross. Although the differences
between these three possible instructions are moderate, they are
still measurable (64). Interestingly, the most reliable results for
most but not all examined networks were achieved when subjects
fixated on a fixation cross. It is, however, difficult to control how
well an individual followed that instruction as eye-tracking
devices or eye cameras are typically not installed inside of an
MR scanner and especially not in clinical MR scanners.
Furthermore, different TR times may also cause varying results,
since periodic signals like heart rate variability or respiration rate
might affect results differently (65, 66). Another factor that varies
between different studies and also influences the results is the
duration of the resting-state examination that roughly varies
between a few minutes and up to 12 min and more. The
reliability of specific rs-fMRI seems to improve with scan
durations, and acceptable good reliability for both intrasession
and intersession rs-fMRI might be around 12 min (67).

Furthermore, there are also still no standards of how rs-fMRI
data should be analysed. Previous studies have applied a wide
spectrum of rs-fMRI analysis strategies, with varying levels of
reliability (46, 68). But progress has been made in standardizing
some of the procedures for achieving across-site comparability
(69). It is, however, beyond the scope of this article to review all
the different methods, but, just as an example, it has been shown
that different methods do have different reliability, like measures
of the static functional connectivity networks against the
temporal dynamics of these networks (70).

In addition, rs-fMRI studies are based on the assumption of
the inherent stability of the underlying resting-state networks
across time and individuals. In other words, one assumes a low
intrasubject and intersubject variability with high sensitivity to
clinical deviations. This assumption has, however, never been
thoroughly tested and might not be justifiable. There are only
sparse and inconsistent reports that resting-states are indeed
resting-traits (71), while the majority of reports point out that
intraindividual variation can depend on environmental and
psychological effects (72–74). Another source of variability is
the time of the day and time of the year. In an effortful
Frontiers in Psychiatry | www.frontiersin.org 4
longitudinal study of a single subject over 3.5 years, Choe et al.
could show that there were systematic variations with a
“significant linear trend, annual periodicity, and persistence”
(75). Others have found that resting-state activity varies with
the circadian rhythm (76), sleep duration (22), prior events (72),
or mood (73). But also the metabolic state of hunger against
satiety has a measurable effect on various resting-state measures
(77–79)—and the list of factors influencing rs-fMRI and/or the
BOLD signal could be continued endlessly.

In summary, while acquisition methods and analysis strategies
can be standardized, it will become challenging to control for
additional endogenous and exogenous factors in a daily clinical
routine.Althoughallmentioned factorsmight only have amoderate
effect on resting-state measures, in the light of clinical applications,
they may be in the same range that differentiates between patients
and healthy controls. It is therefore questionable whether rs-fMRI
will ever make it into a clinical tool. One might speculate, whether
the reliability of task-related fMRI, with concrete tasks that requires
focusing the attention, might be more superior and more suitable
for clinical application (36, 45, 80).

Table 1 gives a schematic overview on reliability and current
clinical applications of task-related and resting-state fMRI,
separated for both single subject and group-level studies.

Next-Generation Data Analyses
Are Meta-Analyses the Solution?
In the light of increasing computational power, cloud computing,
and open-access databases with thousands of datasets, meta-
analyses became increasingly popular. Meta-analyses are a
suitable tool for examining general network structures for a
given cognitive task, and which areas, on average, show deviating
effects in large patient populations. They may become important
cornerstones for building new and more fine-grained models for
various disorders.

But, like any emerging new method, the methods behind
meta-analyses of large datasets are still under development and
standards needs to be established (81). This implies that meta-
analyses are not necessarily comparable and may suffer from the
publication bias (82). This has been a known issue for decades
since it has been noted that meta-analyses and randomized
control studies may show different results (83), but methods
are under development that control for potential biases (84).
Furthermore, pure meta-analyses may not be the most sufficient
way to go, since they often provide us only with very general
common-sense solutions, that do not go much beyond to those
functional lesion maps that already have been drawn in the first
half of the last century (85, 86). As a side note, already then, the
posterior cingulate cortex has been associated with self-awareness,
which is nowadays called the “default mode network.”Or, another
example, there is a striking functional and structural similarity
between Kleist maps, based on brain lesions and injuries, and the
meta-analysis of neuroimaging data on language functions (87).

In summary, meta-analyses are important contributors in
revising and updating our understanding of the structural and
functional organization of cognitive functions, and how structure
and function interact. Focusing either only on lesions or only on
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fMRI results may not be sufficient enough for building new and
more integrative and holistic theories of brain functions and
sources of brain disorders. One way of achieving this is, for
example, joining structural lesion maps with results from
functional imaging within one multivariate analysis (88–90).

Is Machine Learning the Solution?
Over the most recent years, meta-analyses have been supplemented
with machine- and deep-learning methods that can extract (partly
hidden) information out of the data and may be able to detect a
pattern that is not observable otherwise. Themain characteristic that
differentiates deep learning from other classifier approaches, e.g., for
identifying subpopulations in a multimodal data space, is that
features are learned automatically and do need a feature selection
as a preceding step, which removes subjectivity and substantially
improves accuracy (91). Deep learning has shown superior
performance in detecting cross-modality relations and has
attracted a substantial amount of attention among researchers
from various fields. Furthermore, it has been nominated as one of
the “10 breakthrough technologies” by MIT Technology Reviews
(https://tinyurl.com/zx82sg5). Another advantage of deep-learning
methods are their depth and breadth in model building, which may
uncover hidden relations between factors that are of relevance for
future clinical applications of fMRI in psychiatry (92–94).

However, one potential problem with machine-learning
approaches might be, however, the problem of overfitting
which may compromise generalization of the results (95).
Overfitting means that the algorithm finds a solution that
perfectly parameterises the given dataset but may fail to
classify new data correctly. One reason for overfitting is the
use of too-small sample sizes as training data (96). But the field of
machine learning has been hit by the replication crisis, as well
(97). This is most like caused by insufficiently shared code and
(training) data. Accordingly, the use of machine- and deep-
learning methods is only justifiable in combination with large-
scale open-access databases and open-source software.

In summary, machine-learning approaches are a promising
move toward new discoveries of hidden relationships. Once
reliable patterns have been identified and validated across
different databases, one could expect that these approaches will
bring us much closer to clinical applications of single-subject
fMRI, as they may allow identifying fingerprints for certain
disorders. But, it is still a long way to go until we will see
clinical fMRI for diagnostic purposes, since, despite promising
progress, the most recent developments are still in their infancies.
DISCUSSION: THE NEXT STEPS IN
TRANSLATIONAL NEUROSCIENCE

Translation neuroscience is a rapidly expanding field. If one
takes the term literally, it means translating one concept from
one domain or scientific discipline into another. In the field of
neuroscience, it actually could be thought both ways, either
translating a clinical concept into something that is measurable
Frontiers in Psychiatry | www.frontiersin.org 5
with neuroscientific methods and, the other way around,
translating results from neuroscience into clinical praxis. The
first way would lead to a better understanding of neurobiological
underpinnings of a disorder, while the other way focuses more
on the benefits of the patients. However, the issues raised above
have to be taken into account for any translational research,
whether it is for explorative purpose or diagnostics. The
replication crisis might have triggered a new way of think and
further attempts to exploring underlying mechanisms. Especially
the recent years has seen an increasing interest in exploring all
kind of endogenous and exogenous factors that might influence
not only brain functions but also the mechanisms that generate
the BOLD signal. Some of them have been discussed above, but
the list of influencing factors is far frombeing complete.Moreover, it
should highlight that there are indeed several processes that can
affect thephysiological andvascular basis of theBOLDsignal but not
necessarily the underlying neuronal mechanisms and activations,
like the current blood pressure. Other factors, by contrast, might
have a systematic effect on brain functions but do not have anything
to do with the neurological or psychiatric disorder that should be
examined, like the current phase of the circadian rhythmor the time
point of the last meal. Or other factors are purely technical, like
temperature, technical noise of the MR system. The influence of
these factors might be boosted by the combination with
nonstandardized fMRI acquisitions, different instructions (e.g., in
rs-fMRI eyes open, eyes closed), nonstandardized analysismethods,
less suitable algorithms. While there is an increasing number of
reports recommending larger-sample sizes (n > 100) for improving
reliability (98), other attempts are needed to improve single-subject
fMRI (99), which are compulsory for pushing forward clinical fMRI.

Concerning the aspect of larger sample-sizes, this is
mandatory for basic research of neuronal correlates of
neurological and psychiatric disorders. Those studies are
needed for building models and testing hypothesis of the
source of a disorder and its progression. This needs a clear
conceptualization of what neurobiological or cognitive
components may cause the disorder, and how they can be
measured with, for example, neuroimaging. While in some
disorders, this might be a rather trivial endeavour, psychiatric
disorders are often lacking such a definite relationship. However,
machine-learning and big-data approaches may help uncovering
hidden relationships and are promising strategies in current
research applications (94). An often seen problem within fMRI
studies is the huge overlap of results across different cognitive
tasks and domains. As pointed out by Hugdahl and coworkers,
the fronto-parietal attention network, aka EMN, is virtually
activated every time the attention is focused on an extrinsic
task (61). Such an unspecific but the fMRI results dominating
activation pattern is difficult to interpret in the light of
psychiatric disorders where problems may arise in one
particular cognitive domain but not in others. Group studies
and meta-analyses may provide the sufficient power to study also
subtle effects within the EMN that may relate to psychiatric
disorders, but the back translation into diagnostic attempts are
difficult to achieve. However, one might also have to rethink the
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concept of certain disorders. Many psychiatric disorders are
nowadays formulated and specified as spectrum disorders,
forming a gradient from healthy to severely affected with perhaps
varying probabilities of certain comorbidities, with unclear
aetiologies. Accordingly, it is less likely that one is able to identify
one single spot in the brain or one single deviation in a biomarker
that causes this particular set of symptoms. Furthermore, there are
often unclear and not directly related functional-structural
relationships. For example, functional differences seen in rs-fMRI
data from patients with depression (100) may not directly
correspond to deviations seen in structural data (101).
Accordingly, the cognitive and neurobiological models of
psychiatric disorders may take into account that the spectrum of a
disorder has multiple sources and that structural and functional
causes may or may not depend on each other. Unfortunately and
despite uncountable neuroimaging studies and meta-analyses,
neuroimaging results have yet not been used for redefining and
specifying diagnostic categories, as, for example, specified by the
DSM5 (4).

Concerning the translation from neuroimaging results in
clinical praxis, i.e., using fMRI for diagnostics, this is an even
more difficult attempt. As outlined earlier, clinical fMRI is
routinely used only for presurgical mapping but not for
diagnostic purposes per se, and in particular not for diagnostic
purposes in psychiatric disorders. The fMRI signal is too easily
affected by many different endogenous and exogenous factors
that are difficult to control. Even with standardized acquisition and
analysis protocols, substantial and clinically irrelevant variations in
individual fMRI results will be still present. Moreover, these
variations are most likely at the same magnitude as the deviation
from the mean that one would expect in a patient. This problem is
further amplified by the fact that many disorders are spectrum
disorders with gradual deviations. However, advanced machine-
learning approaches that have been applied to large databases
achieved, for example, for the classification of autism spectrum
disorders already accuracies of 70% (102) to 90% (103).
Interestingly, both studies used the same dataset but different
algorithms, indicating that the selection of the algorithms can
bias the results. Furthermore, there has not been reached a
consensus yet, which algorithms are superior or recommended
for fMRI data in general or for the classification of specific disorders
in particular. But further methodological progress and better
standardizations can be expected in the near future.

Besides using fMRI for diagnostics and classification of patients,
there have also been attempts at using fMRI for the development of
drugs and validating of drug effects (104). However, also this field of
translational neuroscience still suffers from the replication crisis,
publication bias, and the lack of standard acquisition and analysis
methods. Hence, there is currently only very limited applicability of
fMRI for this purpose, as well.
CONCLUSION

In conclusion, developments and progress have been and will be
made in all domains, covered by this article. The replication crisis
has pushed the development of new strategies, like the ReproNim
Frontiers in Psychiatry | www.frontiersin.org 6
initiative, that will help to standardize acquisition and analysis
pipelines. Furthermore, the increased computational power and
the continually growing number of available open-access
databases with large sample-sizes and longitudinal data will
allow the generation of “norm”-databases that can describe the
distribution and interindividual variability of cognitive functions
and network structures. Longitudinal data that are increasingly
available will also give a better picture of disease progression.
Machine-learning approaches will become better and more
reliable in identifying disorders from multiple sources. All
these approaches may lead to redefinitions of symptoms and
may give a clearer picture of the causes of various spectrum
disorders. Whether this will finally lead to clinical fMRI as a
diagnostic tool is difficult to predict, since the variability of the
BOLD signal is still an unresolved issue. In light of that, rs-fMRI
currently does not appear as a tool that shows sufficient reliability
and stability within and between subjects. The most reliable way
of conducting rs-fMRI might be in combination with a fixation
task and at least 12-min scan duration. By contrast, task-related
fMRI that require focused attention of the subject might have
better reliability and hence predictive value on the single-
0subject level but would require a careful selection of clinically
relevant paradigms. Here, better theoretical models have to be
developed for translating clinical concepts into meaningful fMRI
paradigms. Furthermore, it would be beneficial to acquire the
data (in particular rs-fMRI) approximately at the same time of
the day, and a sleeping and diet protocol could explain further,
but irrelevant variability. Meta-analyses, in turn, might help in
identifying precisely clinical concepts. In essence, after almost
three decades, fMRI has generated substantial new insights into
neurological and psychiatric disorders. It has produced a vast
amount of data and triggered the development of new methods
both for data acquisition and data analysis. Although the
reliability of fMRI is still limited and hinders its use for
diagnostic purposes in a daily clinical routine, the field of
translational neuroscience is continuously moving toward
more standardized, more reliable, and more clinical relevant
applications of fMRI.

In essence, it is not unlikely to expect that clinical fMRI will at
one point go beyond its current presurgical application and
toward more diagnostic applications. This will be achieved by
improved and standardized methods, better understanding of the
neurovascular-coupling mechanisms, and revised models of
psychiatric disorders.
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