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Maria J. Barbosa a,c 

a Wageningen University, Bioprocess Engineering, PO Box 16, 6700 AA Wageningen, Netherlands 
b Faculty of Biosciences and Aquaculture, Nord University, N-8049 Bodø, Norway 
c Department of Biology, University of Bergen, PO Box 7803, 5006 Bergen, Norway   

A R T I C L E  I N F O   

Keywords: 
Microalgae 
Nannochloropsis 
Neutral lipid staining 
BODIPY 
Flow cytometry 
Viability 

A B S T R A C T   

Background: Microalgae are considered a promising platform for sustainable lipid production. Despite this, 
productivities need to be improved to facilitate an economically viable production process. This can be achieved 
through strain improvement, for instance by genetic engineering. Strain improvement strategies often deploy 
high-throughput screening platforms i.a. involving single-cell methodologies such as fluorescence-activated cell 
sorting (FACS) for the identification and isolation of better-performing strains. The heterokont microalga Nan-
nochloropsis is a prospective candidate for the industrial production of lipids. Previous studies have reported the 
isolation of high lipid-producing Nannochloropsis strains by combining qualitative staining of lipid bodies using 
the fluorophoric dye BODIPY with FACS methodology. However, it has never been investigated how cellular 
physiology and different staining conditions hamper the reproducibility of this method as a quantitative 
screening procedure. 
Results: Here we report the development of an optimized single cell lipid screening procedure for Nannochloropsis 
oceanica. Systematic assessment of different staining conditions revealed that treatment with 6% DMSO and 1.2 
μg ml− 1 BODIPY for 15 min is ideal for staining neutral lipids in an exponentially growing culture of N. oceanica. 
Cultures that are overproducing lipids, for example after exposure to external stimuli such as nutrient deprivation 
stress, require treatment with 10% DMSO and 1.2–1.6 μg ml− 1 BODIPY for 36 min to facilitate complete staining 
of lipid bodies. We verify that DMSO is required to permeabilize the particularly tough cell barrier of Nanno-
chloropsis and we show that exposure to 10% DMSO does not affect cell viability. Increasing concentrations of 
BODIPY, however, correlated with a decrease in viability when screening stressed cultures. Using the optimized 
protocol, reproductive viabilities can be expected to be ~91% and 83–82% for non-stressed and stressed cultures 
respectively. The optimized procedure allows for a quantitative prediction of cellular neutral lipids (R2= 0.981), 
as determined by comparison to results obtained through a reference procedure.   

1. Introduction 

Oleaginous microalgae are widely considered to be a promising 
platform for the production of commercially interesting lipids and bio-
fuel feedstocks due to their ability to grow photoautotrophically with 
relatively high biomass productivities on non-arable soil [1,2]. Some 
species accumulate considerable amounts of triacylglycerides (TAGs) as 
an energy storage compound in subcellular structures called lipid bodies 
[3]. Energy-rich TAGs are readily transesterified into fatty acid methyl 
esters (FAMEs), which are suitable feedstocks for biofuel products [4]. In 

particular, the heterokont Nannochloropsis is emerging as a model genus 
for industrial lipid production [5,6] due to robust growth and biodiesel- 
suitable fatty acid compositions [6–9]. In a comparative study with 9 
different Nannochloropsis strains, N. oceanica was found to be the best 
candidate for biofuel production processes [10]. Although the pro-
jections for areal lipid productivities are promising, microalgae-derived 
biofuel feedstocks have yet to reach economic feasibility [11]. One way 
to increase productivities and reduce costs is to find better-performing 
species. This could be achieved through bioprospecting or strain 
improvement techniques, such as genetic engineering, adaptive 
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laboratory evolution or random mutagenesis. All of these strategies 
frequently deploy high-throughput screening procedures and single cell 
methodologies such as fluorescence-activated cell sorting (FACS) have 
gained an outstanding importance in the field [12,13]. 

The emergence of high-throughput screening platforms for the 
isolation of microalgal strains is accompanied by a need for methods to 
quantify lipids in single cells in order to allow identification of strains 
with superior TAG contents. Fluorophore dyes are a useful tool for this 
purpose because they facilitate cellular imaging for a variety of com-
pounds in vivo and allow selection of interesting traits in combination 
with FACS [13,14]. Lipid bodies were first visualized using fluorescence 
microscopy and flow cytometry by staining mammalian cells with Nile 
Red [15], and since then, this dye is among the most commonly 
employed lipophilic fluorophores [16]. The molecule from the benzo[α] 
phenoxazine family has several desirable properties such as a high 
quantum yield, intense brightness, low background fluorescence in 
aqueous solutions and a wide solvatochromic range, which permits 
discrimination between fluorescence emitted by molecules dissolved in 
either neutral or polar lipids [17]. More recently, other fluorophores 
have been discovered that are advantageous for several purposes such as 
specifically staining neutral and not polar lipids. Among these are 
BODIPY dyes [18,19], cyanine dyes [20], monodansylpentane [21,22], 
thalidomide analogs [23,24] and the benzothiadiazole derivative CBD- 
Fluor [25,26]. Some of these fluorophores have desirable properties in 
specificity for TAGs, cell penetration, higher signal intensities and 
improved resistance to photobleaching. Although none of them are as 
widely employed as Nile Red, considerable research has been devoted to 
understanding and utilizing BODIPY derivatives. Because this group of 
dyes has shown promising results for quantifying TAGs in different types 
of cells including microalgae [19,27,28], we here focus on BODIPY. 
BODIPY is usually dissolved in an organic solvent such as acetone or 
dimethyl sulfoxide (DMSO). In some cases the solvent is not only 
required for dissolving the molecule but further to ensure dye delivery 
by facilitating cell permeation. It was previously demonstrated that 
some microalgal species will not take up fluorophores unless they are 
permeabilized through appropriate pretreatments such as exposure to 
glycerol or DMSO [29]. BODIPY staining procedures for microalgae 
almost exclusively rely on DMSO for dissolving and delivery of the dye 
whereas other solvents play a tangential role [28]. 

The green fluorescing derivative BODIPY 505/515 has received 
reasonable attention as a dye for imaging lipid droplets in Nanno-
chloropsis and it is applied for flow cytometric high-throughput 
screening and cell sorting [30,31]. Unfortunately, staining protocols 
that allow an accurate and reproducible quantitation of cellular TAG 
contents are lacking for this genus because research is hampered by the 
low permeability of the cell barrier of Nannochloropsis for dyes 
[29,32,33]. Previous studies have shown that exposure of cells to 
varying concentrations of DMSO greatly influences BODIPY uptake 
[29], suggesting that solvent concentration plays a key role for dye 
delivery. Strain improvement of this genus by high-throughput 
screening procedures would be significantly improved by the avail-
ability of optimized staining protocols that result in a complete and 
quantifiable staining of lipids. For the isolation of improved strains via 
cell sorting it is furthermore of paramount importance that sorted cells 
maintain reproductive viability [34]. It was previously shown that 
DMSO can be toxic to Nannochloropsis at high concentrations and that 
staining Nannochloropsis with Nile Red in conjunction with FACS affects 
cell viability [35]. However, no studies have systematically addressed 
the impact of BODIPY staining and FACS on cell viability of Nanno-
chloropsis. A staining protocol featuring low cytotoxicity and quantita-
tive prediction of single cell lipid contents would lay the foundation for 
the isolation of lipid-rich Nannochloropsis strains by high-throughput 
methodologies. 

Previous studies on Chlamydomonas have shown that the isolation of 
lipid-rich strains is possible by screening mutant libraries specifically 
after the application of environmental stress such as nitrogen (N) 

deprivation [36]. This approach is likely also a viable choice for 
screening other microalgal species for strains with elevated lipid con-
tents because high levels of TAG accumulation are generally only 
observed in microalgae that have experienced nutrient stress [37–40]. 
Specifically Nannochloropsis shows profound rearrangements of meta-
bolic processes in response to N stress that are not limited to lipid 
accumulation but include a plurality of physiological changes such as an 
overhaul of the photosynthetic apparatus and thickening of the cell wall 
[41–46]. However, no reports exist on the repercussions of these phys-
iological and structural alterations on the applicability of BODIPY 
staining procedures or on cell viability after sorting. An improved 
Nannochloropsis lipid staining protocol might need to take cellular 
physiology into account in order to safeguard universal applicability for 
cultures grown under any cultivation condition. 

The aim of our study was to develop an optimized BODIPY staining 
procedure for N. oceanica cells that would be suitable for direct appli-
cation in high-throughput screening and sorting. By investigating the 
effect of DMSO treatment and BODIPY concentration on dye uptake in 
N. oceanica cells grown under replete and N-depleted conditions we 
wanted to ensure that this method would be adequately staining cells 
regardless of their physiological state. Lastly we wanted to minimize the 
amount of stress that this staining procedure would cause to an algal 
cell, by testing the effect of staining on cell viability, also in conjunction 
with stress induced by cell sorting. 

2. Materials and methods 

2.1. Media and strains 

N. oceanica IMET1 was a kind gift from prof. Jian Xu (Qingdao 
Institute for Bioenergy and Bioprocess Technology, Chinese Academy of 
Sciences). The microalga was cultivated in artificial sea water (ASW) 
containing 419.23 mM NaCl, 22.53 mM Na2SO4, 5.42 mM CaCl2, 
4.88 mM K2SO4, 48.21 mM MgCl2 and 20 mM HEPES at pH 8, supple-
mented with 2 ml l− 1 of commercial nutribloom plus (Necton, Portugal) 
growth media (ASW-NB) in an HT Multitron Pro (Infors Benelux, 
Netherlands) orbital shaker unit that was operated at 25 ◦C and 90 rpm 
shaking frequency with 0.2% CO2-enriched air under warm-white 
fluorescent light bulbs at an intensity of 150 μmol m− 2 s− 1 with a 
16:8 h diurnal cycle. For experiments with stressed cultures, ASW was 
supplemented with 2 ml l− 1 of a modified version of nutribloom plus 
that was lacking NaNO3 (ASW-NB-N). 

For cultivation on solid medium, ASW was supplemented with 1% 
(w/v) of agar (Merck) before autoclaving, cooled to 60 ◦C and mixed 
with 2 ml l− 1 of nutribloom plus before distribution into single-well 
plates for solidification. Algae-containing plates were incubated at 25 
◦C in ambient air under warm-white fluorescent light bulbs at an in-
tensity of 80 μmol m− 2 s− 1 with a 16:8 h diurnal cycle. 

2.2. Flow cytometry analysis 

BODIPY fluorescence emission was quantified by flow cytometry 
analysis on an SH800S (Sony Biotechnology, USA) cell sorter instrument 
equipped with a 70 μm nozzle microfluidic chip and a 488 nm laser, 
unless noted otherwise. Detector wavelengths for different channels 
were: 488 nm (forward scatter, gain 2); 488 nm (side scatter, gain 22%); 
510 ± 10 nm (BODIPY, gain 29%); 720 ± 30 nm (chlorophyll a auto-
fluorescence, gain 40%). For standard fluorescence analyses a minimum 
of 100,000 events were screened per sample. Gating was applied ac-
cording to supplementary Fig. S1 to remove background noise using an 
automated gating pipeline written in R statistical computing software 
[47] configured with the flowcore [48], flowWorkspace [49] and ggcyto 
[50] packages of the Bioconductor project [51]. Density curves in 
Figs. 1, 2 and S3 are smoothed kernel density estimates that were 
computed by Gaussian approximation with the standard kernel and 
bandwidth parameters provided in the basic R stats package [47]. 
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2.3. Staining of N. oceanica with BODIPY 

Fresh N. oceanica cultures were diluted to ~4 × 106 cells ml− 1 with 
ASW and kept at 22 ◦C prior to any treatment. BODIPY 505/515 (Invi-
trogen #D3921, hereafter referred to as BODIPY) was dissolved in 
DMSO at 4 mg ml− 1 and diluted with DMSO to different working stock 
concentrations. Cell suspensions were supplemented with the appro-
priate BODIPY working stock to a specific DMSO concentration between 
2 and 10% (v/v) with final BODIPY concentrations between 0.8 and 4 μg 
ml− 1. Pure DMSO was used for control treatments. Upon addition of the 
dye, samples were vortexed for 5 s and then incubated in the dark for 
15 min before flow cytometric analysis, if not indicated otherwise. For 
all experiments with unstressed cells, microalgal cultures were har-
vested during the mid-exponential stage at an OD750 of 0.6–0.8. For 
stressing cells, microalgal cultures were harvested during the mid- 
exponential stage at an OD750 of 0.6–0.8, washed twice with ASW–N, 
resuspended in ASW-NB-N to an OD750 of 0.2 and cultivated for 3 
d under the previously described conditions. For experiments described 
under 3.5, which were conducted using the ideal staining conditions, 
cultures were grown under the conditions described above. On the day 
of analysis, 1 ml of fresh culture was diluted to ~4 × 106 cells ml− 1 with 
ASW and stained with 6% DMSO and 1.2 μg ml− 1 BODIPY for 15 min 
(non-stressed cultures) or with 10% DMSO and 1.6 μg ml− 1 BODIPY for 
36 min (stressed cultures) before flow cytometry analysis. The rest of the 
culture was immediately used for quantification of neutral lipids via GC- 
FID (Section 2.6). 

2.4. Viability assessment 

Treated samples were sorted onto single-well agar plates using the 
cell sorter SH800S in a 384-well layout. The cell sorter was operated 
with a 100 μm nozzle chip and operational settings of a sample pressure 
of 1 and sorting mode “single cells 3 droplets”, specified in the SH800S 
software. 96 single cells were randomly selected from the cell popula-
tion with a typical chlorophyll autofluorescence signal (Fig. S1G) and 
sorted per treatment in quadruplicate. Agar plates were incubated for 
4 weeks before surviving colonies were counted. 

2.5. Evaluation of staining duration 

Real-time flow cytometry analysis was conducted by immediately 
subjecting a microalgal suspension to flow cytometry analysis after 
addition of the BODIPY/DMSO staining stock and 5 s of mixing. The data 
over time was binned into 24 s intervals and the median of the green 
fluorescence signal of all noise-corrected events was extracted per bin. 
Median fluorescence values of only DMSO-treated controls were sub-
tracted from median fluorescence values of the samples and these cor-
rected median values were normalized to their maximum value. The 
relative corrected median fluorescence was averaged for 3 replicate runs 
and analyzed as mean±standard deviation. 

2.6. Quantification of neutral lipids via gas chromatography 

Cellular neutral lipid contents were determined using a modified 
version of the protocol described by Remmers et al. [52]. Briefly, 
microalgal cultures were harvested by centrifugation (4000 ×g, 10 min) 

Fig. 1. Representative density curves for single cell BODIPY fluorescence emission in samples treated with different DMSO concentrations. Nutrient-replete (non- 
stressed) and N-deprived (stressed) N. oceanica cultures were treated with 5 different DMSO concentrations and 0.8 μg ml− 1 BODIPY for 15 min and subjected to flow 
cytometry analysis. The density curves represent the frequency distribution of events in the green fluorescence channel, capturing cellular BODIPY fluorescence 
emission. The red and green arrows mark the position of peaks corresponding to non-stained and fully stained cells respectively. Solid vertical lines indicate the 
median of the distribution and dotted lines denote the border between the first and second and between the third and fourth quartile. With higher DMSO con-
centrations the fraction of unstained and intermediately stained cells decreases and the average BODIPY signal increases up to the optimal values of 6 and 10% DMSO 
for non-stressed and stressed cultures respectively. Samples treated with 0–10% DMSO and no BODIPY showed identical fluorescence distributions, exemplarily 
represented as ‘unstained’. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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and resuspended in 1 ml of ASW. Cell concentration was determined 
using a Beckman Coulter Multisizer 3 (Beckman Coulter Inc., USA, 50 
μm orifice) and 300 μl of the suspension was subjected to fatty acid 
extraction, separation into TAG and polar acyl lipids and quantification 
according to Remmers et al. [52]. The biomass was freeze-dried, sub-
jected to mechanical cell disruption and lipid extraction with a chloro-
form:methanol (1:1.25) solution containing the 2 internal standards 
tripentadecanoin (T4257; Sigma-Aldrich) and 1,2-didecanoyl-sn-glyc-
ero-3-phospho-(1′-rac-glycerol) (840434, Avanti Polar Lipids Inc.) at 78 
μg ml− 1 and 75 μg ml− 1 respectively. Polar and apolar lipids were 
separated using Sep-Pak Vac silica cartridges (6 cm3, 1000 mg; Waters). 
Neutral lipids were eluted with a hexane:diethylether (7:1 v/v) solution, 
methylated in 5% (v/v) H2SO4-containing MeOH, extracted with hexane 
and subjected to gas chromatography with flame-ionization detection 
(GC-FID). Total fatty acids were quantified based on the relative re-
sponses of individual fatty acids compared to the signal of the internal 
standard and normalized to the cell concentration. 

2.7. Statistical data treatment 

Association of two variables was tested using Pearson’s product- 
moment correlation, indicated as r [53]. First, data were tested for 
univariate normality of underlying distributions using Shapiro-Wilk’s 
test for normality [54] and for heteroscedasticity using the Breusch- 
Pagan test [55]. If univariate normality or homoscedasticity could not 
be assumed, monotonic relationship between variables was tested using 
Spearman’s rank correlation, indicated as rS [56]. Data presented in 
Section 3.4 were specifically tested for negative association between 
viability as a dependent variable and chemical concentrations as 

independent variables. Differences between the means of two normally- 
distributed groups were tested using independent two-sample t-tests. α 
was set to 0.05 for all statistical tests. All statistical data analysis was 
carried out using R statistical computing software [47]. 

3. Results and discussion 

3.1. The dimethyl sulfoxide concentration required to permeabilize 
N. oceanica cells depends on cellular physiology 

It was previously demonstrated that DMSO is required to facilitate 
BODIPY uptake in Nannochloropsis by Brennan and co-workers [29]. The 
authors reported that concentrations lower than 6% (v/v) caused 
incomplete staining in a subpopulation of cells. Although treatment with 
6% DMSO resulted in a homogeneous signal and was selected as the 
optimal DMSO concentration for non-stressed N. oculata in their study, 
the applicability of the protocol for stressed cells remained unclear. 
However, screening of microalgae for elevated lipid contents is prom-
ising especially when using stressed cultures that are overproducing 
lipids [36]. In order to develop a universally applicable N. oceanica lipid 
staining protocol that can be used in high-throughput screening studies, 
we investigated the effect of varying DMSO and BODIPY concentrations 
on fluorescence signal intensity in both, stressed and non-stressed cells. 

First, we elucidated the effect of different solvent concentrations on 
the permeabilization of microalgal cells. A non-stressed, exponentially 
growing culture of N. oceanica and one that was stressed by cultivation 
in N-depleted media for 3 d were subjected to BODIPY staining using 
2–10% (v/v) DMSO at a fixed BODIPY concentration of 0.8 μg ml− 1 for 
15 min. Single cell fluorescence was quantified using flow cytometry 

Fig. 2. Representative density curves for single cell BODIPY fluorescence emission in samples treated with different BODIPY concentrations. Nutrient-replete (non- 
stressed) and N-deprived (stressed) N. oceanica cultures were treated with 10% DMSO and 12 different BODIPY concentrations for 15 min and analyzed by flow 
cytometry. The density curves represent the frequency distribution of events in the green fluorescence channel. The red and green arrows mark the position of peaks 
corresponding to non-stained and fully stained cells respectively. Solid vertical lines indicate the median of the fluorescence distribution and dotted lines denote the 
border between the first and second as well as between the third and fourth quartile. 0.8 μg ml− 1 BODIPY is sufficient to stain non-stressed wild type N. oceanica cells, 
whereas 1.2 μg ml− 1 is required for stressed cultures. This difference is possibly related to higher intracellular TAG contents of microalgal cells under stress con-
ditions. Higher concentrations than 2.0 μg ml− 1 BODIPY resulted in an increased kurtosis of fluorescence distributions of stressed cells. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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analysis, statistical software and an automated gating pipeline (sup-
plementary Fig. S1) for removal of noise. Fig. 1 shows the distribution of 
single cell fluorescence in the green channel, capturing the emission of 
BODIPY. Unstained controls were treated with 0–10% DMSO but no 
BODIPY, and displayed the same signal distribution regardless of solvent 
concentration. This signal (“unstained” in Fig. 1) represents the auto-
fluorescence of cells in the green spectrum. Homogeneously stained 
samples were expected to produce unimodal Poisson distributions on a 
log-scale, as is common for flow cytometry data [57]. Bimodal distri-
butions or multiple peaks indicated heterogeneously stained samples 
with a subpopulation of cells that was either unstained or only partially 
stained. The positions of peaks corresponding to unstained and fully 
stained cells are highlighted by red and green arrows respectively. 

Non-stressed cells appear to be effectively permeabilized by treat-
ment with DMSO concentrations of 6% or higher because no difference 
can be seen for fluorescence distributions of samples treated with 6–10% 
DMSO, indicated by identical median values (solid vertical lines in 
Fig. 1) and interquartile ranges (IQRs, dotted vertical lines in Fig. 1) of 
the distributions. Samples treated with 2% DMSO showed a substantial 
fraction of unstained and partially stained cells and treatment with 4% 
DMSO resulted in negative skewness of the distribution compared to 
samples treated with 6–10% DMSO. Stressed cells require treatment 
with 10% DMSO, as samples that were treated with 8% or lower show a 
fraction of completely unstained cells (lefthand peak) and a lower 
fluorescence signal of stained cells. Based on these results we concluded 
that (i) stressed cells require higher concentrations of solvent for cell 
permeabilization and (ii) 10% DMSO facilitate complete dye uptake in 
N. oceanica regardless of physiological state. 

Our findings regarding a subpopulation of N. oceanica cells being 
insufficiently permeabilized when treated with less than 6% DMSO are 
in good agreement with observations made by Brennan et al. [29] for 
non-stressed Nannochloropsis oculata. We were able to establish that this 
phenomenon is even more pronounced for stressed compared to non- 
stressed cells but it remains unclear which factors contribute to cul-
ture heterogeneity with regard to permeabilization. During flow 
cytometry analysis of samples that had been treated with suboptimal 
DMSO concentrations, partially and fully stained cell populations 
showed identical forward scatter distributions (data not shown). 
Because forward scatter is a proxy for particle size, we can conclude that 
cell size is not a relevant parameter for permeabilization. When applying 
DMSO concentrations >6%, we did not find a decrease in BODIPY 
fluorescence signal. This is in contrast to what was observed for BODIPY 
staining of N. oculata [29] and other microalgal genera. For instance, 
Cirulis et al. [58] found an inhibitory effect of DMSO at concentrations 
>1% (v/v) on BODIPY fluorescence intensity when staining Scenedesmus 
and Chlorella, concomitant with a substantial decrease in intact cells and 
an increase in cell debris. The drastically different response of Scene-
desmus and Chlorella to elevated DMSO concentrations compared to 
what we report for N. oceanica highlights the need for attentiveness 
when adapting laboratory protocols for use with other species. An 
obvious reason for this is the high evolutionary diversity of the poly-
phyletic group of microalgae which implicates a highly variable cell 
morphology and physiology among different genera. 

Insufficient dye penetration using conventional staining protocols 
has previously been reported for several stains with different Nanno-
chloropsis species [29,32,33,35] and it is usually attributed to the 
comparably thick, scaly cell wall of this genus. It is, therefore, reason-
able to assume that the increased solvent concentrations necessary to 
stain stressed N. oceanica cells in our study are related to a change in the 
cell wall ultrastructure compared to non-stressed cells. This hypothesis 
is in good agreement with results of previous studies, which showed that 
cell wall thickness of Nannochloropsis increases up to >50% under N- 
deprivation and other stress conditions [46,59,60]. Whereas the inter-
action between DMSO and lipid membranes is well-studied [61–63], an 
interaction model for the solvent with cell walls of living organisms has 
never been reported. However, experimental evidence exists for the 

ability of DMSO to disrupt intra- and intermolecular H-bonds in cellu-
lose and other plant cell wall polysaccharides, as it is capable of solu-
bilizing these compounds in vitro when applied together with LiCl 
[64–66]. Thus, an interaction of DMSO with the primary Nanno-
chloropsis cell wall constituent cellulose [46,67] is a potential explana-
tion for our observation that higher solvent concentrations facilitate cell 
permeation under conditions of increased cell wall thickness, which 
warrants further investigation. 

3.2. The minimum BODIPY concentration necessary for full staining 
depends on cellular triacylglyceride contents 

In consequence of the previous results, 10% DMSO was chosen as a 
fixed solvent concentration for investigating the effect of BODIPY con-
centration on fluorescence intensity. We treated non-stressed and 
stressed cultures with 12 different BODIPY concentrations, namely 0.01, 
0.05, 0.1, 0.2, 0.4, 0.8, 1.2, 1.6, 2.0, 2.4, 3.2 and 4.0 μg ml− 1 for 15 min. 
The experiment revealed that 0.8 μg ml− 1 BODIPY is sufficient to 
completely stain exponentially growing N. oceanica and that higher 
BODIPY concentrations have no effect on the fluorescence distribution 
(Fig. 2). Stressed cells however required treatment with 1.2 μg ml− 1 

BODIPY, as treatment with 0.8 μg ml− 1 resulted in a lower median 
fluorescence signal. This was also seen when conducting the experiment 
with DMSO concentrations other than 10% (supplementary Fig. S2). 
Presumably, the increased TAG contents of cells grown under stress 
conditions compared to that of non-stressed cells necessitates higher 
concentrations of dye to achieve full staining of lipid bodies. Consid-
ering this possible link between cellular TAG content and required dye 
concentration, an ideal staining protocol should feature BODIPY con-
centrations of 1.6 μg ml− 1 to be suitable for identifying strains with 
higher lipid contents than the wild type strain investigated here. Under 
this premise, 1.2 μg ml− 1 BODIPY would likely be sufficient for 
screening of non-stressed microalgal cultures as the wild type is 
completely stained with 0.8 μg ml− 1 under these conditions (Fig. 2). 
BODIPY concentrations higher than 2.0 μg ml− 1 are not advisable 
because they resulted in an increased kurtosis and IQR of fluorescence 
distributions in our experiments with stressed cells (Fig. 2), possibly due 
to formation of staining artifacts. 

3.3. Optimal staining duration depends on cellular physiology 

In the study of fluorophores an optimization of the staining duration 
is important for several reasons. First, several fluorigenic molecules such 
as Nile Red are prone to photobleaching, a process of photochemical 
alterations when in a radiation-induced state of excitation which causes 
the dye to degrade over time [28,68]. When incubated in the dark, non- 
radiation-induced dye inactivation presumably through interaction with 
reactive oxygen species can further result in a decrease in active dye 
molecules [69–72], which was, i.a., shown for Nile Red inactivation 
inside microalgal cells [73]. Second, dye uptake is highly dependent on 
chemical properties of the fluorophore and on cell physiology, especially 
on the structure of the cell barrier. Incomplete staining of target com-
pounds in consequence of an insufficient staining duration can cause a 
strongly shifting signal over time, high variability between samples and 
an underestimation of target molecules. Third, when staining is com-
bined with the isolation of viable cells, exposure to dye and solvent need 
to be minimized to forestall unnecessary toxic effects. Furthermore, 
excessive staining duration can lead to metabolic changes in non-fixed 
cells or it can cause cellular decomposition in the presence of solvents. 

In literature dealing with BODIPY staining of Nannochloropsis typical 
incubation durations range between 5 and 30 min [27,29,74–76] 
without discrimination between different physiological states of 
microalgal cells. Real-time flow cytometric analysis has proven as a 
powerful approach for measuring molecular interactions and cellular 
responses to external stimuli [77–79] so we deployed this technique to 
monitor the dye uptake in N. oceanica. Cells from a stressed and non- 
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stressed culture were stained with 1.2 μg ml− 1 BODIPY and 10% or 6% 
DMSO respectively, as these concentrations were found to induce the 
highest signal intensities in our previous experiments. Fig. 3 illustrates 
the development of the background-corrected, median BODIPY fluo-
rescence intensity relative to its maximum signal over time. The 
maximum fluorescence intensity was reached around 15 min for non- 
stressed cells, whereas stressed cells displayed a stable signal after 
~36 min, although 90% of the maximum intensity was reached after 
22 min with only gradual signal increases after that point. For both 
culture states the initial increases in fluorescence intensity were low and 
linear with a surge around 3 min of staining. After this, the fluorescence 
signal development was well described by an adjusted Michaelis-Menten 
model (data not shown). 

In light of these findings, the experiment described under Section 3.2 
was performed with stressed cultures using a staining duration of 36 min 
(Fig. S3). No substantial differences were seen regarding the optimal dye 
concentration compared to results obtained when staining for 15 min, 
although kurtosis increase for BODIPY concentrations greater than 2 μg 
ml− 1 was less pronounced with 36 min staining. 

3.4. The impact of staining and sorting on cell viability depends on the 
BODIPY concentration 

Optimizing the impact of BODIPY treatment on cell viability is 
crucial in order to develop a protocol that is suitable for coupling in vivo 
lipid staining to cell sorting. Proper experimental design of high- 
throughput screenings requires knowledge of the fraction of cells that 
can be expected to survive the procedure. Because in high-throughput 
screenings cells are exposed to chemical stress during the staining and 
to physical stress during sorting, we designed an experiment that factors 
in both stressors. Non-stressed and stressed cultures were treated with 
0–10% DMSO (Fig. 4A) and 0–4 μg ml− 1 BODIPY (Fig. 4C) for 15 and 
36 min respectively and single cells were sorted onto agar plates using a 

fluorescence-activated cell sorter. The fraction of viable cells was 
determined as the percentage of single cells that were able to grow into 
colonies within 4 weeks (Fig. 4). 

We found that cultures in different growth stages have a profoundly 
different tolerance toward stress inflicted by staining and sorting. When 
no BODIPY was applied during treatment, no significant negative cor-
relation between DMSO concentration and cell viability was observed 
(Fig. 4A, Pearson correlation coefficients r(22) = 0.39, p=0.972 and r 
(22) = 0.23, p=0.865 for non-stressed and stressed cultures respec-
tively). Therefore, all data for DMSO-only treated samples were pooled 
and tested for differences in post-sort viability between non-stressed and 
stressed cultures (Fig. 4B). We found that non-stressed cells (M = 91, SD 
= 3.5) recovered slightly better after cell sorting compared to stressed 
cells (M = 87.8, SD = 2.1), t(43) = 6.3, p < 0.001, which can be 
attributed to an increased susceptibility of stressed cells to adverse ef-
fects of staining and cell sorting or to lower pre-sort viabilities. When 
treatment was conducted with 10% DMSO and different BODIPY con-
centrations (Fig. 4C), no significant effect of staining treatment on 
viability was found for unstressed cells (Spearman’s ρ rS=0.07, 
p=0.655). For stressed cultures however, BODIPY concentration was 
negatively correlated with cell viability (rS= − 0.34, p=0.027). Because 
we observed no significant fluorescence increase for BODIPY concen-
trations greater than 1.2 μg ml− 1 (Fig. 2), this concentration is likely 
preferable when high cell viabilities are required. 

The average post-sort reproductive viability that we observed for 
unstressed, DMSO-only treated N. oceanica (91%) is high when 
compared to values reported for other microalgae. Pereira and co- 
workers found an average of 70% viability when sorting microalgal 
communities [80], which is already more than the 20–30% viability 
reported by Sensen et al. [81]. Because shear forces are the most com-
mon stressor during FACS [82], the strong resilience of N. oceanica cells 
to sorting is likely related to good cellular properties for high shear 
resistance. Several features of Nannochloropsis cell physiology such as a 
small cell size, the absence of flagella, and presence of a rigid, cellulose 
containing cell wall [67] have been proposed to be associated with high 
shear resistance [83], supporting this notion. In this regard, it may seem 
contradictory that stressed N. oceanica cells show an increase in cell wall 
thickness but a decrease in post-sort viability compared to non-stressed 
cells. However, previous studies have indicated that cell wall thickness 
is not necessarily correlated with tensile and shear resistance of micro-
algal cells [46,83,84]. 

3.5. The staining procedure allows for accurate prediction of lipid 
contents 

After deciphering the optimal conditions for staining cells that were 
incubated under different nutrient regimes we wanted to validate our 
improved staining procedure by determining how accurately it trans-
lates to cellular neutral lipid contents. We applied the procedure to 18 
independent N. oceanica cultures, quantified the fluorescence emission 
and compared the results to cellular neutral lipid contents determined 
by a reference procedure involving gas chromatography and cell 
counting [52]. Fig. 5 shows the median of the background-corrected 
single cell BODIPY fluorescence levels plotted against the content of 
neutral lipids per cell. To cover a broad range of lipid contents in a single 
experiment, half of the microalgal cultures were harvested during the 
mid-exponential growth phase, the other half was starved of N for 72 h 
prior to analysis. We found an excellent correlation between fluores-
cence intensities of N. oceanica cells stained with the optimized protocol 
(6% DMSO and 1.2 μg ml− 1 BODIPY for 15 min for replete cultures, 10% 
DMSO and 1.6 μg ml− 1 BODIPY for 36 min for deplete cultures) and 
cellular neutral lipid contents, with a coefficient of determination of R2=

0.981. Evidently, the optimized procedure has high predictive power for 
cellular neutral lipid contents in N. oceanica. When regression analysis 
was carried out based on data from cultures within the same growth 
stage only (Fig. 5, dotted gray lines), the coefficient of determination 

Fig. 3. Effect of staining duration on single cell fluorescence emission for un-
stressed (◼) and stressed ( ) N. oceanica cultures. With optimal BODIPY and 
DMSO concentrations, unstressed microalgal cells are stained rapidly and 
achieve full staining within 15 min. Stressed cultures achieve full staining after 
~36 min. Fluorescence values shown are the mean ± SD of the median of the 
fluorescence distribution observed in n = 3 algae cultures relative to its 
maximum value per sample. 
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remained high (R2 > 0.8). This suggests that the optimized procedure 
will allow to distinguish between strains with similar neutral lipid 
contents. 

Several correlation curves have been established for staining of 
microalgae with Nile Red, some of which had R2 values of 0.95 or 
higher, for example for species belonging to the genera Botryococcus 
[85], Isochrysis [86], Chlorella [87], and Scenedesmus [58]. Far fewer 
reports exist for correlations between probe fluorescence and lipid 
content when using BODIPY as lipophilic dye [58,88] and none of them 

for Nannochloropsis, despite major advantages of BODIPY compared to 
Nile Red, including high specificity for neutral lipids, stronger signal and 
better photostability [29,89]. Whereas qualitative or semi-quantitative 
lipid estimations can suffice for some high-throughput screening pro-
cedures, our improved staining protocol will facilitate a sophisticated 
screening with high accuracy in neutral lipid quantification and mini-
mum impact on cell viability. Moreover, the good translatability of 
fluorescence values to cellular neutral lipids suggests that our staining 
protocol could replace cumbersome and expensive lipid quantification 
procedures, which typically rely on solvent-based extraction coupled to 
gravimetric or GC analysis. 

4. Conclusion 

We have developed a robust and simple staining protocol for 
N. oceanica with good translatability of fluorescence values to neutral 
lipid contents. We found that cellular physiology strongly affects the 
staining conditions necessary for complete cell barrier permeabilization 
and dye uptake. Exponentially growing cells are readily stained with a 
treatment of 6% DMSO and 1.2 μg ml− 1 BODIPY for 15 min whereas N- 
stressed cultures require 10% DMSO and 1.2–1.6 μg ml− 1 BODIPY for 
36 min for complete staining. When coupling these lipid staining pro-
tocols to cell sorting, viabilities of ~91% and 83–82% can be expected 
for unstressed and stressed cells respectively. The optimized screening 
procedure will no doubt aid in the identification of N. oceanica strains 
with elevated neutral lipid contents in future studies. 
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Fig. 4. Impact of staining and sorting on cell viability of non-stressed (■) and stressed ( ) N. oceanica cells. (A) Cultures were treated with DMSO only and subjected 
to cell sorting. Viabilities are given as the mean ± SD of n = 4 replicate cultures. The results show that exposure to the solvent alone without application of BODIPY 
does not impair cell viability regardless of culture state. (B) For DMSO-only treatments, stressed (S) cultures showed an overall decrease in cell viability compared to 
non-stressed (NS) cultures, which can be attributed to an increased sensitivity toward sorting stress or to a lower pre-sort viability. (C) Cultures were treated with 
10% DMSO and varying BODIPY concentrations before being subjected to cell sorting. Non-stressed cells were not affected by staining and survival rates showed no 
significant correlation with BODIPY concentration whereas stressed cells showed a decline in viability with higher BODIPY concentrations. 

Fig. 5. Correlation between BODIPY fluorescence and cellular neutral lipid 
content. With the optimized staining procedure we found a highly significant 
linear correlation between cellular neutral lipid content and median BODIPY 
fluorescence. The R2 value (0.981) of this correlation greatly exceeds previously 
reported values and suggests that the optimized protocol allows for an absolute 
quantification of cellular neutral lipids in the range of 0.1–4 pg cell− 1, which 
roughly corresponds to 3–45% of neutral lipids per dry biomass for N. oceanica. 
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