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Abstract 

In modern society, the need for 24-hr operation and services requires some 

people to work outside normal daytime work hours (i.e. shift work), including the 

night. For instance, healthcare, police, and transportation, are sectors where night work 

is common. Exposure to shift work, and particularly night work, can have negative 

impact on the workers’ health. Especially, sleep is reported to be disturbed among 

night workers, as they must be awake at times they would normally be sleeping, and 

sleep at times they would normally be awake. This circadian misalignment of the 

sleep-wake rhythm may in a long-term perspective lead to ill health and diseases. 

Also, in a short-term perspective night work may cause adverse effects. Night workers 

experience increased sleepiness and performance deterioration during night shifts, and 

especially in the early morning hours, the sleep propensity and performance 

decrements are high. As such, night work has also been associated with increased risk 

of accidents and injuries. 

Several countermeasures to reduce the adverse impact of night work have been 

suggested. Common strategies involve scheduled naps and caffein use. However, there 

is increasing interest in the use of light interventions for eliciting beneficial effects for 

night workers. Light exposure has the potential to entrain the biological circadian 

rhythm in humans, and as such can be used to produce circadian adaptation to a night 

work schedule. In addition, light has acute alerting effects which can reduce alertness 

deficits and improve performance during the night shift. Such effects rely on several 

characteristics of the light, such as timing, intensity, and wavelengths (spectral 

distribution). With the development of light emitting diode (LED) technology, new 

strategies for illumination of workplaces have emerged. 

This thesis is based on three papers using standard ceiling mounted LED-

luminaires to administer different light conditions during simulated night shift 

experiments. The main aim has been to investigate and elucidate how such LED 

lighting strategies can be used to facilitate adaptation to night work on measures of 

sleepiness, performance, and circadian rhythm. 
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In paper 1, the objective was to investigate how a full-spectrum (4000 K) bright 

light (~ 900 lx), compared to a standard light (~ 90 lx), affected alertness and 

performance during three consecutive simulated night shifts (23:00–07:00 hrs), as well 

as circadian phase shift after the simulated night shifts. Results indicated that bright 

light effectively reduces sleepiness, and improves performance during three 

consecutive night shifts, compared to standard light. Bright light seems to be beneficial 

in the later parts of the shifts, when sleep propensity is particularly high. For instance, 

in the later parts of night 2 and 3 it was found that the number of lapses of attention on 

a vigilance task revealed half as many lapses with bright light, compared to standard 

light. Furthermore, bright light induced a larger phase delay as compared with standard 

light, although data were incomplete, hence validation of these findings are needed. 

The objective in the second paper was to investigate how short-wavelength 

monochromatic blue light (max = 455 nm), compared to red light (max = 625 nm) with 

similar photon density (~ 2.8 x 1014 photons/cm2/s), affected alertness and task 

performance during one simulated night shift (23:00–06:45 hrs), as well as circadian 

phase shift following the night shift. The results in paper 2 suggest that 

monochromatic blue light reduces sleepiness and improves performance in the later 

parts of the night shift. Similar to the findings in paper 1, the number of attentional 

lapses with blue light was half of that seen with red light. Blue light also led to a larger 

phase delay of the circadian rhythm. There were indications of improved visual 

comfort with blue light, although both light conditions overall produced visual 

discomfort. 

In the third paper the main aims were to investigate how polychromatic blue-

enriched white light (7000 K; ~ 200 lx), compared to warm white light (2500 K) of 

similar photon density (~ 1.6 x 1014 photons/cm2/s), affected alertness and 

performance during three consecutive simulated night shifts (23:00–06:45 hrs), as well 

as circadian adaptation to the night work schedule. The results indicated minor, yet 

beneficial effects of 7000 K light compared to 2500 K light, mainly in terms of fewer 

performance errors on a vigilance task in the end of night 1 and 2. No significant 



 9

difference in terms of circadian phase shifts were found between these two light 

conditions. 

In conclusion, the papers suggest that standard ceiling mounted LED-luminaires 

have the potential to produce light conditions that may facilitate adaptation to night 

work. Paper 1 suggests that bright light improves performance and reduces sleepiness 

during three consecutive simulated night shifts. Results from paper 2 indicate that 

short-wavelength blue light improves performance, reduces sleepiness, and causes a 

larger phase delay than long-wavelength red light during one simulated night shift. 

Paper 3 indicates that using polychromatic blue-enriched white light has minor, yet 

beneficial effects on performance measures, compared to warm white light during 

three consecutive simulated night shifts. Further research is needed to validate and 

support the findings and investigate the impact and feasibility of similar light 

conditions in real-life workplaces. Future research should also explore more light 

conditions that can be favourable for night workers, in order to develop 

recommendations for illumination of night workers workplaces. Moreover, there is a 

need to elucidate potential long-term adverse health impacts of exposure to LED 

lighting. 
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1. Introduction 

Modern society has been termed ‘the 24-hr society’ due to increasing demands 

for continuous operation and services 24/7 [1]. Some services (e.g. emergency and 

healthcare, police, military, transportation, and some types of industry) obviously need 

to be available 24 hrs a day. Still, commercial interests have favoured 24-hr operation 

also in other sectors. Consequently, large parts of the work force are engaged in some 

form of shift work (i.e. irregular/unusual work hours) to sustain these demands. 

Among European workers, it has been reported that 19% are engaged in work during 

the night (≥ 2 hrs between 22:00 and 05:00 hrs) at least once a month [2]. As most 

adults spend a great amount of time at work, the workplace impacts the life of workers 

in various ways. Many values their job not merely as a means for making money, but 

also as an arena for personal development and social interaction. Furthermore, while 

there are many positive effects of work, the workplace can also be the origin for 

adverse health effects. 

Working time arrangements has emerged as an important factor that can 

adversely impact workers health [3]. Shift work, and particularly schedules including 

night work, have been associated with increased risk for chronic diseases and adverse 

health effects [4]. Night work implies that workers must be awake at times they would 

normally be sleeping, and sleep at times they would normally be awake. Thus, a main 

challenge with night work relates to circadian misalignment of the sleep-wake rhythm, 

with night workers usually being partially out of phase with the biological circadian 

rhythm promoting wakefulness during the day and sleep during the night [5]. As such, 

night workers experience increased sleepiness and performance deterioration during 

night shifts [6]. These alertness and performance deficits have been related to the 

increased risk of injuries and accidents during night work [7]. 

Several measures to counteract the negative effects of night work have been 

suggested, e.g. forward shift rotation, naps, breaks, use of stimulants (caffeine), and 

bright light therapy [8]. However, there is still a need for investigating interventions 

that may effectively be implemented at real-life workplaces. 
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The potential beneficial effects of light exposure in terms of improved alertness 

and circadian adaptation have been known for many years [9, 10]. With development 

of light emitting diode (LED) technology, increasing interest in using light as a 

countermeasure has emerged. Cost-effective LED-based light sources can now be 

programmed to provide a range of different light conditions, both in terms of 

intensities and wavelengths, and LED-luminaires are now feasible as standard room 

lighting [11]. However, few studies have investigated such standard LED-based 

lighting during night work. Against this backdrop, the main purpose of this thesis was 

to investigate and elucidate how light, administered by standard ceiling mounted LED-

luminaires, can be used to facilitate adaptation to night work on measures of subjective 

alertness, performance, and circadian rhythm. 

1.1 Working time and shift work charachteristics 

The organization of the working time may impact workers’ health and quality 

of life. For instance, it is well-known that certain working time arrangements, such as 

shift work, can negatively impact workers health [4]. Furthermore, shift work entails 

non-standard work hours which may also impact workers’ social life (e.g. work-family 

balance) [12]. As working time has been recognized as an important factor for workers 

health, most countries have legislations that regulate working time arrangements to 

protect the health of workers. In Norway, working time is regulated in the Working 

Environment Act, while in European countries the regulations are under the European 

Working Time Directive [13]. These regulations provide specific rules regarding e.g. 

the length of working time and minimum rest periods. As an example, in every 24-hr 

period a worker is entitled to a minimum consecutive rest period of 11 hrs, and in case 

of night work the average working hours must not exceed 8 hrs per 24-hr period.    

 While most of the workforce are engaged in regular day work, with the work 

periods falling somewhere between approximately 07:00 and 17:00 hrs, many workers 

are engaged in irregular work hours or shift work. However, the term ‘shift work’ is 

not a precise concept as all types of working hours that takes place outside standard 

working hours, i.e. non-daywork, may be referred to as shift work [14]. Commonly, a 
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distinction is made between permanent shift work (e.g. permanent evening or night 

shifts), rotating shift work (e.g. alternating between morning, evening, and night 

shifts), and roster work (irregular types of rotating shift work) [14]. In the 2017 update 

of the sixth European working conditions survey, it was found that about 21% of 

workers reported shift work [2]. It is most common in the health sector where 40% are 

engaged in shift work. The most prevalent type of shift work is rotating shift work 

followed by permanent shift work [2]. 

Rotating shift work is usually divided in three-shift rotation or two-shift rotation 

systems. Three-shift rotation implies that workers rotate between morning, evening, 

and night shifts, while in two-shift systems, workers alternate between two of the 

shifts. Another type of two-shift rotation involves 12-hr shifts, alternating between day 

and night work [15]. Rotating shift work can also differ in terms of the speed (i.e. 

number of shifts before rotation) and the direction of the rotation. Forward rotation 

entails clockwise rotation (i.e. morning to evening to night shift), while with backward 

(counter clockwise) rotation the shifts may be scheduled as moving from night to 

evening to day shift. The latter, i.e. moving from an evening shift directly to a morning 

shift the following day, may cause restricted time to rest (< 11 hrs between 

consecutive shifts) between the shifts. Such rapid rotations have been termed quick 

returns [16]. In terms of speed, a schedule with one to three consecutive shifts of the 

same type before rotation has been considered to be fast-rotation, while at least five 

consecutive shifts of the same type before rotation have been considered to be a slow-

rotating shift schedule [17]. Thus, a range of different shift work schedules exists, and 

in addition to the descriptions above, shift work can be described also according to 

dimensions such as continuous or discontinuous (every day of the week or no work in 

the weekends), length of the shift cycle, duration of individual shifts, start and end 

times of the shifts, number and position of rest days, regularity of schedules, and type 

of shift work (with or without night work) [18]. 

Night work 

Night work has been referred to as a type of shift work where most of the 

working hours takes place between 21:00 and 08:00 hrs [19]. Others have noted night 
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work as shifts where ≥ 3 hrs takes place between 24:00 and 06:00 hrs [15], or that the 

start times of the shift is between 18:00 and 04:00 hrs [20]. In the Norwegian Working 

Environment Act, night work is defined as work taking place between 21:00 and 06:00 

hrs. While there is no strict definition, night work implies that workers are being called 

for work duties at night when they would normally sleep. 

In Europe, approximately 19% report work during the night at least once a 

month [2]. In the US, 7.4% of the working population were estimated to perform night 

work more than 5 times in the past 30 days [21]. For many workers, night work comes 

as part of a rotating shift work schedule, while in some sectors permanent night work 

is also prevalent. For example, in a US sample of healthcare workers, 19% worked 

permanent night shifts [22]. In investigations of the total workforce in Western 

countries, about 4% of employees have been reported to work permanent night shifts 

[20, 23]. Although some workers have a permanent night work schedule, it has been 

noted that nearly all shift workers can be considered as rotating shift workers, since 

most rotate back to daytime wakefulness during days off [20]. In the health sector, e.g. 

among nurses, night work typically comes as part of a three-shift rotation schedule, 

where it is common to work three consecutive night shifts [24]. 

Sleep deprivation 

Night work often entails sleep deprivation or extended wakefulness (i.e. 

cumulative wakefulness > 16 hrs). It is common to distinguish between three types of 

sleep deprivation (SD), short-term total SD (≤ 45 hrs), long-term total SD (> 45 hrs), 

and partial SD (< 5 hrs sleep in a 24-hr period) [25]. Total SD may also be referred to 

as acute SD. In terms of night work, short-term total SD or extended wakefulness may 

occur especially during the transition from day shifts to night shifts [26, 27]. For 

instance, a worker may wake up at 08:00 hrs on the day before the first night shift, 

remain awake until and during the night shift (e.g. from 23:00 to 07:00 hrs), and fall 

asleep at 08:00 hrs on the next morning. Thus, this worker experiences a short-term 

total SD of 24 hrs, or 8 hrs of extended wakefulness. However, many workers nap in 

the afternoon before the first night shift, with the prevalence of napping reported to be 
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30–50% [5]. It is likely that some shift workers also experience partial SD due to 

shortened daytime sleep after a night shift [28], or in relation to quick returns [16]. 

1.2 Night work and health 

Shift work has been associated with a range of health problems, and the main 

concern relates to disturbance of circadian rhythms, and sleep disturbances due to the 

non-standard work hours [4]. In the International Classification of Sleep Disorders 

[29], shift work disorder is one of five circadian rhythm sleep-wake disorders. 

Circadian rhythm sleep disorders are in general caused by a misalignment between the 

endogenous circadian rhythm and the external day-night cycle [30]. Shift work 

disorder is characterized by complaints of insomnia or excessive sleepiness, which can 

be attributed to misalignment of the individuals’ circadian rhythm and the work 

schedule [20]. Especially night work may impact sleep, and among nurses involved in 

night work, studies have suggested that the prevalence of shift work disorder can be as 

high as 44% [31]. Evidence has also suggested that night work impact workers health 

in terms of increased risk for a range of health problems and diseases. This includes 

breast cancer [32], with some suggested mechanisms being related to disturbance of 

the circadian system, alteration of the light-dark schedule, and inhibition of melatonin 

production [33-35]; coronary diseases [36], possibly due to increased psychosocial-, 

behavioural- and physiological stress [37]; diabetes [38]; and gastrointestinal disorders 

[39]. In addition to long-term health effects, night work has immediate impact on 

workers’ sleepiness/alertness, and performance [6, 27, 40, 41]. Such alertness and 

performance deficits have been related to the increased risk of injuries and accidents 

during night work [7, 42, 43]. Furthermore, sleep problems in general have been found 

to increase the risk of work injuries [44]. 

Models of shift work and health 

There are many pathways and mechanisms that may contribute to the 

explanation of why night work is associated with adverse health outcomes. Several 

general non-specific (in terms of disease) models of shift work and health have been 

proposed based on existing empirical evidence [4, 45, 46]. These models have in 
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common that circadian disruption (i.e. disturbance of biological timing) and sleep 

disturbances are considered core processes for linking shift work and health problems. 

The latest model, proposed by Kecklund et al. [4], shows how shift work related 

behaviours may lead to chronic disease as well as acute cognitive impairments and 

accidents (Figure 1). The authors have identified pathways by which shift work leads 

to 1) circadian disruption, 2) disturbed sleep, and 3) risk behaviours and psychosocial 

stress. These components are bidirectional and interact with each other, and through 

physiological and psychological mechanisms, may cause chronic diseases and 

accidents [4]. 

 

Figure 1 Theoretical model of mechanisms and pathways by which shift work and 
shift work related behaviours increase risk for chronic disease and accidents [4]. 
Reproduced from [Health consequences of shift work and insufficient sleep, Kecklund 
G, Axelsson J, 355, i5210, 2016] with permission from BMJ Publishing Group Ltd. 
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1.3 Circadian rhythms 

The main reason for the health problems associated with night work relates to 

the conflict between the non-standard work hours and the workers’ endogenous 

circadian rhythm [5], causing circadian misalignment. Circadian rhythms are reflected 

in biological processes displaying oscillations with a rhythmicity around 24 hrs. Such 

rhythms are considered to result from evolutionarily adaptation and regulates when 

biological events occur in relation to the 24-hr day-night cycle defined by the earth’s 

rotation [47]. Circadian rhythms exist at a cellular level in peripheral tissues [48], but 

the peripheral cellular ‘clocks’ are controlled and coordinated by the suprachiasmatic 

nuclei (SCN) in the hypothalamus [49, 50]. The SCN serves as the primary circadian 

pacemaker, synchronizing the peripheral clocks to ensure proper functioning of the 

circadian system [51]. Like the peripheral cells, the SCN and individual SCN cells 

produces their own autonomous circadian rhythm [51-53]. The cellular clocks consist 

of a complex system of interacting positive and negative transcriptional feedback 

loops that generates rhythmic transcription of clock genes in the cells [54]. Light is 

known to regulate the expression of e.g. the mammalian period circadian regulator 

(PER) genes in the SCN, with photic induction of PER1 being the primary stimulus for 

resetting the circadian clock [54]. In humans the circadian period has been estimated to 

have an intrinsic period of about 24.2 hrs on average [55]. Thus, the SCN needs to be 

entrained by external time cues to remain aligned with the day-night cycle. 

Circadian rhythms can be seen in a range of different bodily functions. Most 

prominently is the sleep-wake rhythm, but also alertness and cognitive performance, 

core body temperature, and hormone production show circadian rhythmicity [1]. An 

example of the circadian rhythm of the core body temperature (CBT) can be seen in 

Figure 2. Despite continuous fluctuations in temperature a clear circadian pattern 

occurs, with the CBT being lowered in the evening and at night. Temperature and 

sleep are related processes, and the decline in CBT in the evening promotes sleepiness 

and initiation of sleep [56, 57]. In Figure 2 the circadian minimum (nadir) of the CBT 

occurs at about the same time in every 24-hr period. On the third morning the CBT 

quickly rises as the subject was forced to wake up earlier than usual. 
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Figure 2. Core body temperature (℃) measured every minute (black solid line) over 
three days for one subject, using a BodyCap e-Celsius (BodyCap, France) temperature 
capsule. The red dashed line indicates the moving 2-hr average. 

As a rule of thumb, the nadir of the CBT is located around 2 hrs before habitual 

wake time [30], hence for a person waking up at about 07:00 hrs every day, the nadir 

of the CBT could be estimated to occur at around 05:00 hrs. The time around the nadir 

of the CBT has been identified as the time with highest sleep propensity [57], i.e. the 

time it is most difficult to stay awake. Thus, night workers and subjects exposed to 

total SD experience high levels of sleepiness especially in the early morning hours 

close to the nadir of the CBT [58]. There are substantial individual differences in the 

timing of the circadian system, which impacts daily variation in human behaviours e.g. 

timing of sleep. Hence, people can be placed on a continuum from extreme morning 

types (i.e. ‘larks’) who prefer to wake up very early, to the opposite comprising 

extreme evening types (i.e. ‘owls’) who prefer to go to bed late at night [59]. 

Circadian entrainment 

Several external factors may function as time givers (zeitgebers) for the 

circadian system, e.g. the timing of sleep plays a role, and also exercise, social cues, 

clock time, and food ingestion provide time cues to the circadian system [60]. 

However, the primary zeitgeber for synchronizing the internal circadian system is the 

light-dark cycle [61]. The SCN receives photic input from specialized intrinsically 

photosensitive retinal ganglion cells (ipRGCs), that signal directly to the SCN via the 
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monosynaptic retinohypothalamic tract [62]. The signals from the ipRGCs are non-

image forming (i.e. nonvisual), hence circadian responses can be seen also in blind 

humans with intact inner retinal function [63]. The ipRGCs express the photopigment 

melanopsin which is maximally sensitive to short-wavelength blue light [64-66]. 

However, the ipRGCs also receives indirect light input from the rod and cone 

photoreceptors [67].  

The SCN communicates to the peripheral clocks and cells both via neuronal and 

endocrine signalling. Of particular interest, the SCN regulates the production and 

release of the pineal hormone melatonin, which increases sleep propensity in humans 

and signals the time of day to peripheral tissue [68, 69]. SCN activity inhibits 

melatonin synthesis, hence melatonin is normally produced during the biological night. 

However, exposure to light at night supresses melatonin production [70]. This process 

is also mainly driven by the ipRGCs, and as for SCN entrainment, the melatonin 

suppression is most sensitive to blue light [71, 72]. Melatonin also provide feedback 

directly back to the SCN and inhibits SCN activity [73]. Thus, exogenous melatonin 

increases sleepiness in humans, and can shift the phase of the circadian rhythm if 

suitably timed [74]. As such, both light and melatonin can be administered as means 

for shifting the phase of the circadian system, and phase response curves (PRCs) for 

light and melatonin have been derived as shown in Figure 3. 

Light administered in the ~ 9 hrs before nadir of the CBT phase delays the 

circadian rhythm, while light exposure during the ~ 9 hrs after nadir of the CBT phase 

advances the rhythm [75, 76]. In terms of exogenous melatonin, the PRC is 

approximately opposite than for light, as melatonin administered in the evening phase 

advances the circadian rhythm, while melatonin in the morning phase delays the 

rhythm [77]. In general, the phase shifting response is larger in the hours close to the 

nadir of the CBT [78], as seen in Figure 3 the response to light peaks around 4 hrs 

before and after nadir of the CBT [75]. The endogenous circadian period length is 

normally slightly longer than 24 hrs, hence artificial environments free of zeitgebers 

cause free-running and gradually phase delay of most human’s circadian rhythm [55]. 

Consequently, it is usually easier to phase delay than to phase advance the rhythm. 
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Figure 3. Phase response curves for light (dark line) and melatonin (light dotted line). 
Based on the results reported by Khalsa et al. [75] and Lewy et al. [70]. 

While circadian rhythms can be assessed by measuring the CBT, it is also 

possible to measure the endogenous melatonin rhythm, which is considered a reliable 

marker of the phase of the SCN [79]. Generally, the circadian phase is determined 

based on melatonin samples and estimation of the dim light melatonin onset (DLMO) 

[30]. As melatonin production is directly driven by the SCN timing [74], it is possible 

to monitor phase shift of the central clock on a day-to-day basis, e.g. for investigation 

of night workers circadian adaptation. Note that evidence suggests large differences in 

the rhythms of the SCN and the peripheral oscillators following simulated night work 

[80]. To estimate DLMO several melatonin samples in the evening, when melatonin 

level is rising, are required (usually at 30- or 60-min intervals). Commonly, DLMO 

have been defined as the time melatonin levels reaches 3 or 4 pg/mL in saliva [81, 82]. 

Ideally, for measuring circadian rhythmicity in e.g. melatonin and CBT, a constant 

routine protocol should be employed [83]. However, the constant routine is a 

comprehensive and demanding procedure for both researchers and participants, and 

the constant routine involves total SD which affect participants. Thus, restricting 

melatonin sampling to the evening, when melatonin levels are usually rising, can be 

preferable for estimating DLMO in practical/naturalistic contexts. Sampling at home 

can be applied, although it is common to encounter difficulties in estimating DLMO 

based on at home sampling, for instance due to melatonin suppression or participants 

mixing up samples [82]. 
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Night workers and circadian adaptation 

Considering the circadian entrainment induced by external zeitgebers, e.g. light 

exposure, night workers might be expected to phase delay their rhythm and gradually 

adapt to a night work schedule. Timed bright light and darkness have been shown able 

to induce near complete phase shift of the circadian rhythm within two to three days in 

highly controlled laboratory conditions [84]. However, adaptation in real-life takes 

time, and within 1–3 night shifts significant adaptation is usually not achieved [85]. In 

general, the circadian rhythm is considered to adjust about 1 hr per day, mainly due to 

duly timed light exposure [5]. Thus, with favourable conditions it would still take 

many consecutive night shifts before full circadian adaptation may be achieved. Work 

schedules with many consecutive night shifts or permanent night work may be argued 

to be beneficial in terms of allowing circadian adaptation. However, limited circadian 

adaptation was reported after seven consecutive night shifts [86], and even among 

permanent night workers only 21% showed substantial circadian adjustment, while 4% 

achieved full adaptation [87]. One explanation for the limited circadian adaptation 

relates to light exposure occurring not only during the phase delay part of the PRC, but 

also in the hours after the nadir of the CBT counteracting circadian adjustment. Studies 

have found that offshore workers on oil rigs in the North Sea tend to adapt well to 

night work schedules after 5–7 days with night work [88-90]. One probable reason is 

that offshore workers do not have to commute home after the night shift, hence they 

are not exposed to the same amount of morning daylight as onshore night workers. 

Additionally, they do not have to attend to domestic responsibilities while offshore. On 

the other hand, offshore workers seem to have problems readapting to a day-oriented 

schedule offshore [89], or when returning home [88]. Gibbs et al. [89] reported that 

there were very large individual variations in terms of adaptation and suggested 

differences in individual light exposure as a possible explanation. A recent study 

among healthcare workers engaged in rotating shift work (onshore), reported large 

inter-individual variability in the direction and magnitude of phase shift after three or 

four consecutive night shifts [91]. While most participants phase delayed from 

baseline to the final night shift a substantial portion of the workers phase advanced. 

Interestingly, the timing of light exposure relative to individuals’ circadian phase, and 
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diurnal preference accounted for 71% of the variability in the circadian response to 

night work [91]. In sum, evidence indicates that night workers experience circadian 

misalignment and limited circadian adaptation to the night work schedule. These 

findings seem to apply to both rotating and permanent night workers. However, as 

noted, there are large variations in individual workers circadian response to night 

work, and timing of light exposure apparently has the potential to induce circadian 

adaptation if timed properly. 

1.4 Sleep 

Due to the circadian misalignment seen among night workers, i.e. altering the 

sleep-wake rhythm, sleep is highly affected by night work. Humans spend about one-

third of their life asleep, yet the functions of sleep are not fully understood. Several 

hypotheses have been suggested, such as the importance of sleep for learning, 

memory, synaptic plasticity, brain energy metabolism, and removal of metabolic waste 

[92]. Although the functions of sleep need further elucidation, it is beyond doubt that 

sufficient sleep is essential for health and proper functioning [93]. 

Sleep can be defined as a ‘reversible behavioural state of perceptual 

disengagement from and unresponsiveness to the environment’ [94]. Despite the 

decreased responsiveness the brain is still active during sleep. Two main sleep states 

exist, rapid eye movement (REM) sleep and non-rapid eye movement (NREM) sleep. 

Based on the electroencephalogram (EEG), the NREM sleep is further divided into 

N1, N2, and N3 according to the American Academy of Sleep Medicine [95]. The 

EEG activity in N1, N2, and N3 is characterized by alpha (8–14 Hz) and theta (4–8 

Hz) activity; sleep spindles (7–15 Hz) and K-complexes; and delta (1–4 Hz) 

oscillations, respectively [96]. As seen in Figure 4, a healthy young adult normally 

enters sleep in NREM beginning with N1 and progressing through the deeper stages 

N2 and N3, with N3 also referred to as delta sleep or slow wave sleep, before the brain 

is reactivated with transition into REM sleep [94]. 
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Figure 4. A hypnogram showing an example of normal distribution of sleep stages. 
The numbers on top indicate clock time. 

While NREM sleep can be termed quiet sleep, REM sleep is characterized by EEG 

activation, muscle atonia, and episodes with rapid eye movements [94]. Throughout 

the night, NREM and REM sleep alternates with a period close to 90 min, with N3 

dominating the first third of the night and REM sleep dominating the last third of the 

night [94]. In terms of sleep duration, young adults usually report to sleep around 7.5 

and 8.5 hrs per night during weekdays and weekends, respectively [94, 97]. There are 

large differences in how much sleep individuals need. However, it has been 

recommended that the appropriate sleep duration for adults (18–64 years) is between 7 

to 9 hrs [98]. 

The gold standard for measuring sleep is polysomnography (PSG), requiring at 

least recording of EEG, electromyogram, and electrooculogram signals to make proper 

distinction between sleep stages [99]. However, PSG is usually performed in a sleep 

clinic/laboratory (ambulatory PSG is also possible) and sleeping with PSG equipment 

may disturb sleep (e.g. first night effects). Thus, it is also common to use actigraphy 

[100] and self-report/sleep diaries [101] to monitor and quantify sleep and sleep 

quality. Actigraphy and sleep diaries allow for assessment of sleep in a more natural 

environment, require far less resources, and are less invasive than PSG. Actigraphy 

and sleep diaries do however not allow for sleep staging, but in many circumstances, it 

may be sufficient to assess parameters such as timing and duration of sleep. While 

sleep diaries provide a subjective sleep assessment, actigraphy is considered a more 

objective measure. Actigraphy measures limb movement, which is used to assess 

activity-inactivity as a proxy for wake-sleep. Actigraphy allows monitoring of wake-
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sleep patterns over many days, and even years [102], hence actigraphy is suitable for 

investigating treatment effects, and circadian rhythms [100]. 

1.4.1 Sleep-wake regulation 

The alternation between sleep and wakefulness is regulated by a complex 

network of brain circuitry. The ascending arousal system, a network of cells groups 

originating in the brainstem projecting to the thalamus and cortex, promotes 

wakefulness, while during sleep the ventrolateral and median preoptic nuclei in the 

hypothalamus inhibit the arousal system [103, 104]. Activity in the SCN, i.e. the 

circadian pacemaker, inhibits the ventrolateral preoptic nuclei mainly by indirect (via 

the dorsomedial hypothalamic nuclei) projections [62]. The wake promoting and sleep 

promoting neurons are mutually inhibitory, providing sharp transitions between sleep 

and wakefulness, avoiding transitional states [104]. However, Saper et al. [104] noted 

that unwanted transitions may occur, e.g. falling asleep (microsleep) during a 

momentary attentional lapse while driving [105].  

The sleep-wake cycle has been proposed to be regulated mainly by two 

interacting processes, a homeostatic process and a circadian process, as conceptualized 

in the two-process model of sleep regulation [106, 107]. The sleep dependent 

homeostatic process entails that the need for sleep increases during time in 

wakefulness and decreases during time in sleep [106]. Hence, both total SD and partial 

SD increases the homeostatic sleep pressure, which can be seen in increased sleep 

propensity (i.e. sleepiness and reduced sleep onset latency) [99]. During sleep, the 

amount of N3 sleep mark the homeostatic process, with increased time in N3 after SD 

and reduced time in N3 during sleep after daytime napping [108]. The circadian 

process relates to the rhythmicity in sleep propensity generated by the circadian system 

and is mainly sleep independent [106], although it has been suggested that increased 

homeostatic sleep pressure attenuates the circadian system’s responses to zeitgebers 

[109]. Circadian rhythms in sleep propensity have been demonstrated in experiments 

of total SD, where circadian rhythmicity in both subjective sleepiness ratings and 

cognitive performance can be seen [110, 111]. Also, forced desynchrony protocols, i.e. 

scheduling subjects to artificial day lengths deviating from 24 hrs, can be applied to 
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investigate circadian rhythms [112]. As the homeostatic and circadian processes 

interact, the optimal timing of sleep is considered to occur when the circadian drive for 

sleep is synchronized with elevated homeostatic sleep pressure [107], that is, during 

the biological night after a full day (i.e. 16 hrs) awake. 

Although the two-process model provides a useful framework for understanding 

sleep regulation, other factors are also contributing to sleep-wake regulation. 

Behaviour can override both the homeostatic and circadian processes, and enables 

people, e.g. a night worker, to stay awake during a night shift [30]. Exposure to 

environmental factors such as light are also contributing, i.e. by eliciting acute alerting 

effects [10], and by its impact on the circadian system as described previously. Light 

exposure may also affect subsequent sleep, e.g. it was reported that, compared to dim 

light, light exposure (photopic illuminance = 250 lx) during 40 hrs of extended 

wakefulness increased the homeostatic sleep response [113]. Other environmental 

factors affecting sleep include noise [114], ambient temperature [115], as well as the 

quality of the bedding. 

Night workers’ sleep 

As most night workers show limited circadian adaptation, when they go to bed 

in the morning hours, the circadian system promotes wakefulness [116]. This circadian 

misalignment challenges night workers’ sleep, and accordingly night workers sleep 

less, and experience greater sleepiness compared to day workers [19, 117]. The 

circadian process mainly affects the duration of sleep, while the homeostatic process is 

considered to regulate how deep sleep is [30]. As the homeostatic sleep pressure is 

high due to extended wakefulness, most night workers tend to have short sleep onset 

latency and quickly enters N3 sleep, but sleep duration is usually shortened by 2–4 hrs 

between night shifts [28]. Due to N3 sleep mainly occurring and dominating the first 

parts of the sleep period, night workers’ N3 sleep is marginally affected by the 

shortened sleep duration [118], but N2 and REM sleep duration are clearly reduced 

[5]. Recent studies found that total sleep time, measured using actigraphy between 

consecutive night shifts, was around 5.7 hrs among nurses and healthcare workers on 

rotating shift work schedules [6, 27]. These studies indicated that total sleep time 
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between consecutive day shifts did not differ from the night shifts. However, prior to 

the first night shift, evening shifts, and days off, total sleep time was around 2 hrs 

longer than between the consecutive day and night shifts. The shorter sleep duration 

prior to day shifts was suggested likely due to early day shift start times, resulting in 

truncated sleep [6, 27]. The sleep duration between consecutive night shift is clearly 

much shorter than the recommended 7–9 hrs for adults [98]. Åkerstedt [5] noted that to 

compensate for the shortened daytime sleep, about one-third of shift workers add a late 

afternoon nap between subsequent night shifts. 

1.5 Night work, sleepiness and performance 

It is assumed that the quality of wakefulness relates to the quality of sleep [99]. 

As such, evidence has shown that lack of sleep, both due to total SD and partial SD, 

have major implications for alertness and performance during wakefulness [119]. 

Night workers’ daytime sleep may be shortened and lead to partial SD, while during 

night shifts workers may experience total SD. Thus, night workers experience 

increasing sleepiness throughout the night shift [120], and especially at the end of the 

shift during the early morning hours (close to the nadir of the CBT), the sleepiness 

levels and performance impairments are high [6, 27, 40, 41, 58]. Both circadian and 

homeostatic processes contribute to sleep-wake regulation, and as such also the 

increased sleepiness and performance impairments evident in the later parts of a night 

shift. 

Sleepiness 

Sleepiness is a universal phenomenon expressed both as a symptom of sleep 

disorders and as a normal physiological state. Sleepiness relates to sleep propensity, 

i.e. the tendency to fall asleep [121]. In clinical settings the Multiple Sleep Latency 

Test is an established measure of objective sleepiness, assessing how long it takes for a 

subject to fall asleep (using PSG recordings) during nap opportunities [122]. 

Physiological sleepiness may also be indicated by increased alpha and theta activity in 

the waking EEG, and by an increase in slow eye movements [123]. As it is demanding 

to carry out the Multiple Sleep Latency Test and/or EEG monitoring, it is also 
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common to use subjective measures for assessing sleep propensity, e.g. the Epworth 

Sleepiness Scale [124]. It has been suggested that sleep propensity or objective 

sleepiness should be distinguished from subjective sleepiness, as the latter is a 

perceived state correlated with various sleep related variables such as decreased 

cognitive performance, mood and a general sleep need [121]. It has also been 

suggested a distinction between manifest sleepiness, i.e. measurable behaviour 

indicating sleepiness (e.g. vigilance tests), and physiological sleepiness as measured 

by EEG [125].  

Subjective sleepiness (i.e. state sleepiness) implies that wakefulness can be 

quantified in terms of quality on a sleep-wake continuum. The construct is sometimes 

considered the converse of alertness and is commonly measured using Likert scales, 

e.g. the Stanford Sleepiness Scale [126], and the Karolinska Sleepiness Scale (KSS) 

[123]. Subjective sleepiness level shows a clear diurnal pattern with high sleepiness in 

the morning, low sleepiness during daytime, and rising sleepiness levels in the evening 

[58, 127]. Åkerstedt et al. [123] demonstrated that subjective sleepiness, as assessed 

with the KSS, is also reflected in the waking EEG. Corroborated by other studies 

showing that subjective sleepiness rating is closely related to both EEG and 

behavioural alertness (vigilant attention) variables [128], subjective rating scales are 

considered as valid measures of sleepiness. Partial SD studies have shown that under 

conditions with sustained sleep restriction, daily subjective sleepiness level is 

increased but stabilizes, while vigilant attention deficits steadily build-up from 

day-to-day [119]. Thus, in such circumstances the subjective sleepiness level may not 

reflect or correlate with task performance. 

As subjective sleepiness scales are easily administered it is a common method 

for assessing sleepiness, i.e. state of wakefulness/alertness, during night work and SD 

studies. The increased subjective sleepiness evident during night work, has been 

associated with decreased cognitive functioning and performance (e.g. driving) among 

night workers [27, 129]. Furthermore, sleepiness has been associated with increased 

risk of accidents and injuries during night work [7, 130-132]. Major disasters including 

Chernobyl, Exxon Valdez and the Three Mile Island accident occurred at night and 
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have anecdotally been related to sleepiness [131, 133]. Although subjective sleepiness 

scales provide useful measures of the wakefulness/alertness state, they should ideally 

be accompanied by other measures, e.g. alertness assessed with cognitive performance 

tasks. 

Performance 

A large number of studies have assessed how sleep loss, both total SD and 

partial SD, may affect various cognitive domains and performance tasks [134-136]. In 

general, there is a slowing of response times (RTs) and increased variability in 

performance during SD. However, it has been debated whether such impairments 

affect all cognitive capacities in a global manner, or if SD may also have 

selective/specific effects on certain brain areas, i.e. specific cognitive capacities [134, 

135]. The latter approach was endorsed by Horne [137], suggesting that SD especially 

impairs cognitive capacities relying on the prefrontal cortex, including higher order 

executive functions such as complex decision making [138]. Indeed, studies have 

shown that both total SD and partial SD impairs decision making capacities, relying 

heavily on the prefrontal cortex, such as moral judgement and reasoning [139, 140]. 

Harrison et al. [138] further suggested that performance degradation on simpler tasks 

is mainly due to boredom. On the other hand, in support of a global effect of SD on 

cognitive performance is the assumed hierarchical order of cognitive capacities, where 

higher order capacities to some degree rely on more basic functions. For instance, a 

certain level of alertness is required for engagement in complex decision making. By 

assessing SD effects on several neurobehavioral tests, Van Dongen et al. [141] 

reported three dimensions of neurobehavioral deficits due to SD, indicating that 

distinct neurocognitive systems may mediate the cognitive effects of SD. 

Interindividual differences in impairment differed across tasks, and cognitive 

processing capability and sustained attention was affected differently [141]. Thus, it 

was suggested that operational tasks depending on sustained attention, e.g. monitoring 

of automated systems in a control room, may be affected differently than brief 

performance tasks depending on cognitive processing capabilities [141]. Indeed, 

studies have found that the most consistent cognitive impairment during SD, is seen on 

basic capacities, i.e. sustained/vigilant attention [142, 143]. 
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Circadian rhythmicity has been indicated for various cognitive performance 

tasks, mainly however in vigilance and attention parameters [144]. Scmidt et al. [144] 

noted that assessing circadian rhythms in higher order capacities is difficult, as tests of 

executive functions usually shows practice effects and require some form of novelty. It 

has been indicated a close relationship between CBT (which have a clear circadian 

rhythm) and a variety of performance measures [145]. In terms of sustained attention, 

circadian rhythmicity in performance can be seen both on RTs and errors on 

psychomotor vigilance tests [146, 147]. 

Vigilant attention/alertness 

It has been argued that alertness is not the opposite of sleepiness, and that 

alertness refers to a person’s ability to respond to external and internal stimuli [148]. 

Thus, a person reporting a high level of sleepiness may still be somewhat alert and 

able to respond to stimulus, hence alertness can be quantified by assessing that ability. 

Such behavioural alertness is often measured using simple performance tasks assessing 

vigilant attention, i.e. the ability to maintain focused attention over a period of time by 

responding to visual or auditory stimuli in a timely fashion [149]. Due to its sensitivity 

to sleep loss and its psychometric properties [143, 150], the Psychomotor Vigilance 

Task (PVT), originally developed by Dinges et al. [151], has become the gold standard 

for assessing vigilant attention in SD studies.  

The vigilant attention/alertness impairment during SD relates to the time-on-

task effect, or vigilance decrement, which posits worsening of performance (i.e. timely 

or correct responses) across task duration [152]. As for sleep-wake regulation, vigilant 

attention is driven by homeostatic and circadian processes. Doran et al. [147] reported 

that performance deficits increase with increasing homeostatic sleep pressure, 

performance is however partly restored in the afternoons due to circadian processes 

promoting wakefulness/alertness at this time. A third allostatic process has been 

suggested to also regulate the temporal dynamics of vigilant attention, and a range of 

other factors such as light exposure, physical activity and distractions influence 

vigilant attention [149]. In addition, there are large individual differences in the 

vigilant attention deficits seen under both total SD and partial SD, and these inter-
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individual differences are considered to reflect a trait-like vulnerability [141, 153]. 

Furthermore, it has been suggested that individuals are not capable of accurately 

self-estimate their vulnerability to sleep loss, as there is a discrepancy between 

individual differences in behavioural alertness and individual differences in subjective 

sleepiness during SD [154].  

The performance deficits seen on vigilant attention tasks during SD are 

characterized by increased moment-to-moment variability, and already in the 1950’s 

such observations lead to the lapse hypothesis [155]. The lapse hypothesis implies that 

task performance during SD for the most part is unaffected/normal, but disrupted by 

brief periods of reduced responsiveness, i.e. a lapse. Hence, if a stimulus on a task 

coincide with the occurrence of a lapse, the response will be delayed or omitted. While 

increased number of lapses is evident during SD, there is also a general slowing of 

RTs and it has been suggested that SD leads to wake state instability [147]. Wake state 

instability entails that SD performance is unstable due to the interaction between 

homeostatic pressure for sleep, circadian pressure for wakefulness and compensatory 

efforts to uphold performance. According to the wake state instability hypothesis, 

there are rapid fluctuations between wake and sleep during SD, leading to a variability 

of performance, especially on vigilant attention tasks [147]. It has also been proposed 

that local sleep may explain the vigilant attention deficits evident during SD, 

suggesting that neuronal groups involved in a certain task may fall asleep locally due 

to sustained use [156]. This can explain the vigilance decrement during SD, seen on 

simple vigilant attention tasks relying heavily on specific brain circuitry. Hudson et al. 

[149] suggested that a rest/break or switching to another task not relying on the same 

circuitry may allow recovery from local sleep. Furthermore, differences in individual’s 

specific brain circuitry capacity to process information may explain inter-individual 

differences in vulnerability to sleep loss [149]. 

The PVT have been used to assess night workers performance dynamics during 

night shifts. In general, the findings among actual night workers concur with the 

findings from experimental SD studies. Ganesan et al. [6] found that, among 

healthcare workers, both PVT RTs and number of PVT lapses of attention increased 
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from the start to the end of a night shift, while during day shifts PVT performance 

remained stable during the whole shift. Furthermore, Ganesan et al.  [6] reported that 

PVT performance was equally impaired on subsequent night shifts. On the other hand, 

Magee et al. [157] reported that PVT performance during a simulated night shift, 

following 4–7 consecutive real-life night shifts, was more impaired compared to a 

simulated night shift following 2–3 consecutive real-life night shifts. In another 

simulated night shift experiment, it was also reported that PVT performance was 

impaired during night shifts, and although performance was worst on the first night 

shift, there were only minor differences between the subsequent night shifts, indicating 

limited adaptation [41]. 

1.6 Individual differences 

It has been suggested that some individuals may have the ability to adapt to 

shift work without adverse consequences, i.e. having shift work tolerance [158]. Yet, 

there are no consensus on how to define or measure shift work tolerance, hence a 

range of different measures have been used to assess this, making comparisons 

between studies difficult [159]. Nevertheless, in relation to night work and SD both 

circadian responses, sleep disturbance, and impairment of alertness and performance, 

seems to be affected by individual factors [91, 141]. Typically, age, gender, 

personality traits and circadian preference have been investigated in relation to shift 

work tolerance [160]. Furthermore, research have investigated whether individuals’ 

genetic variants affects adaptation to shift work, e.g. variants of clock genes [161]. 

Age 

Young age is generally considered positive for shift work tolerance [159], but it 

has been noted that a few studies have suggested older age to be beneficial, e.g. in 

terms of risk of some diseases [160]. However, the latter notion is probably explained 

by the older shift workers being a selected group that cope well with shift work, i.e. 

healthy worker effect [160]. As noted by Ritonja et al. [159], virtually all health and 

sleep problems become more severe with age. One study indicated that night work 

before age 25 was associated with lower risk of shift work related diseases compared 
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to older age [162]. Another study reported that young workers had better circadian 

adjustment to three consecutive night shifts compared to older workers [163]. In terms 

of cognitive performance, ageing is generally associated with slower RTs among 

adults [164]. Interestingly, studies have shown that the RTs, and lapses of attention, 

among younger subjects increases during SD, while older subjects seem less affected 

[165-167]. This is particularly evident with sleep pressure related performance 

decrements, indicating that with > 16 hrs of wakefulness the age differences in adults 

RTs disappears, and young adults perform at a similar level as older adults [167]. On 

the other hand, a study of night workers indicated that older workers’ performance 

(RTs and lapses) is more impaired compared to younger workers [168]. Also, a study 

of female hospital nurses, found that decreased cognitive performance, in terms of 

correct responses on a digit symbol substitution test and omission errors on a letter 

cancellation task, was associated with clock time, but also older age [129]. Bonnefond 

et al. [168] reported that the oldest (50–58 years) workers slept about 1 hr less than the 

youngest (25–34 years) workers after evening and night shift, but after morning shifts 

sleep duration was similar. It is known that older adults do not sleep as well as 

younger adults [169], and with aging the phase of the circadian rhythm becomes 

advanced [170], i.e. older adults tend to go to bed and wake up earlier than young 

adults. Thus, for night workers who have to sleep at unconventional biological times, 

age may further challenge sleep, and early chronotype has been associated with poorer 

sleep and sleep disturbance in connection with night shifts [171]. 

Gender 

Male gender seems to be associated with increased shift work tolerance, 

although some inconsistency exists, depending on the measures used [159]. In a 

relatively small sample of experienced shift workers a trend for men adjusting faster 

than women, to three consecutive night shifts, was reported [172]. In a study of nurses, 

male gender was associated with a higher risk of shift work disorder compared to 

females [31], and one study suggested that long duration of exposure to night shift 

work is associated with increased mortality especially in male white-collar workers 

[173]. In general, women typically report poorer sleep quality, more sleep disruptions, 

and are at greater risk for insomnia than males [174]. Men have a more pronounced 
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preference for eveningness than women [175], and the intrinsic circadian period in 

women is shorter than in men [176]. However, studies have indicated that women’s 

sleep occurs at a later biological time than in men, and that women have a stronger 

amplitude of the circadian variation in alertness with a larger decline around nadir of 

the CBT [177, 178]. As such, the performance of women tends to be more impaired in 

the early morning hours [179]. The abovementioned gender differences may contribute 

to women being more vulnerable to sleep problems, and not coping with night work 

and SD in the same way as men. Also, men are generally faster than women in terms 

of simple RTs, yet there are some differences in strategy, as women tend to prefer 

accuracy over speed, in contrast to men [167]. Noteworthy, studies have indicated that 

menstrual phase impacts performance especially at night near the nadir of the CBT 

[180]. Indeed, it was found that for women undergoing SD for at least 30 hrs, 

follicular-phase women had greater performance impairments than both luteal-phase 

women and males [181]. Follicular-phase women had a stronger amplitude of the 

variation in CBT than luteal-phase women, and compared with men, the luteal-phase 

women performed better in terms of PVT RTs and errors of commission [181]. It has 

also been suggested that family and domestic duties may challenge women’s shift 

work tolerance [182]. 

Circadian preferences and personality traits 

Chronotype or circadian type, is an aspect of individual differences in circadian 

rhythms, that places individuals on the morningness-eveningness dimension ranging 

from extreme morning types to extreme evening types, with most individuals being 

intermediate types. These differences can be seen in individuals’ preferred timing of 

sleep and wakefulness, following a normal distribution in the population, with extreme 

morning types waking up at the time extreme evening types go to bed [183]. As noted 

previously, chronotype depends on both age and gender, tending to change from 

evening to morning preference with aging, and eveningness is more pronounced 

among men. In terms of shift work, evening types are suggested to have higher shift 

work tolerance, compared to morning types [159]. This is plausible as evening types 

go to sleep and wake up about 2 hrs later than morning types [184]. Assessment of 

alertness level at 08:00, 14:00, and 23:00 hrs, indicated that definitely evening types 
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have peak alertness at 23:00 hrs, while definitely morning types have peak alertness at 

08:00 hrs [185]. It has also been found that the build-up of subjective sleepiness is 

slower in evening types compared to morning types [186]. In relation to night shifts, 

earlier chronotypes have shortened sleep duration, higher social jet lag, and higher 

levels of sleep disturbances [171]. Among shift working nurses, earlier chronotypes 

have lower adaptation scores for night shifts than later chronotypes [161]. On the other 

hand, a study of intensive care unit nurses working night shifts, did not find 

differences in sleepiness and PVT performance between morning and evening 

chronotypes [187]. However, morning type individuals were more likely to nap before 

commencing the night shift, compared to the evening types [187]. Interestingly, one 

study suggested that evening types are more susceptible to adverse light at night 

effects during night work, as chronotype was found to affect level and timing of 

melatonin production [188]. 

It has also been found that circadian type in terms of languidity (i.e. difficulty 

overcoming sleepiness) and flexibility (i.e. the ability to sleep at odd hours) may be 

related to shift work tolerance [189]. Among shift working nurses, high scores on 

languidity have been related to more sleep-wake disturbance in relation to night shifts, 

while flexibility was associated with higher sleep-related shift work tolerance [190]. 

Another personality characteristic, hardiness (i.e. resilience to experiencing negative 

stress), have been associated with shift work tolerance in terms of reduced sleep-wake 

disturbance during night shifts [190]. Furthermore, it has been suggested that 

extroversion is positively related to shift work tolerance, while neuroticism is related 

to low shift work tolerance [160]. 

Genetics 

Genetics have also been investigated in relation to individual differences in shift 

work tolerance. Genetics and heredity have been associated with both circadian 

phenotype (i.e. chronotype), and variation in sleep duration (i.e. sleep need) [191]. 

Circadian gene variants are known to influence both sleep and waking function, i.e. 

cognitive performance, in relation to sleep loss [192, 193]. Furthermore, different 

genetic variants have been related to both sleepiness and insomnia among shift 
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workers [161, 194]. In terms of the trait-like vulnerability to effect of SD, a clock gene 

PER3 length polymorphism has been identified as a bio-marker, with sleep and 

performance of PER34/4 homozygotes being less vulnerable/impaired by sleep loss and 

SD than PER35/5 homozygotes and PER34/5 heterozygotes [193, 195, 196]. Adenosine 

have been suggested to play a role in regulation of sleep homeostasis [197], and gene 

variants involved in adenosine regulation have been found to also impact performance 

during SD [198, 199]. In terms of PVT performance during total SD, a polymorphism 

in the TNFα gene (TNFα is involved in sleep-wake regulation) was found to explain 

6.4% of the variance [200], and two genetic variants of the dopaminergic system 

explained 15% of variance in PVT performance [201]. 

1.7 Countermeasures 

Night work is associated with adverse health outcomes, sleepiness/reduced 

alertness, reduced performance, as well as increased risk of accidents. Hence, several 

measures to counter the negative impact of night work have been suggested [8]. The 

most effective countermeasure would be to avoid night work completely. However, 

since night work is common, and in many sectors necessary, it is imperative to take 

measures that reduces the adverse effects of night work. Several approaches have been 

suggested, e.g. selection of shift work tolerant personnel, and arranging the shift work 

schedule in a favourable way, e.g. by using forward rotation and avoiding long shifts 

[8]. Other common countermeasures include napping during the night shifts [202], use 

of stimulants such as caffeine and/or bright light for enhancement of alertness and 

performance [203, 204], melatonin for improved daytime sleep [205], and various 

combinations of these countermeasures. While the aforementioned countermeasures 

may have beneficial effects for night workers, Smith et al. [206] noted that such 

measures may not address the underlying problem with night work, which is circadian 

misalignment. Furthermore, although many countermeasures may have beneficial 

effects on sleep and performance, there is less knowledge of the long-term health 

effects of countermeasures. 
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As the aim for this thesis is to investigate how light can facilitate adaptation to 

night work, in the following the focus will be on light, nonvisual responses, and how 

light exposure may be used as a countermeasure against the negative, mainly short-

term, impacts of night work. 

1.7.1 Light and nonvisual responses 

Light is essential for vison, and in vertebrates, retinal photoreceptors (i.e. rods 

and cones) convey light information for vision to the brain via the optic nerve. For 

humans, the visible wavelengths of light ranges from around 400 nm (violet-blue) to 

around 700 nm (red), with peak spectral sensitivity for vision around 555 nm (green) 

[207]. However, light also elicits nonvisual responses via the ipRGCs, a third class of 

retinal photoreceptors. The ipRGCs project directly to the SCN, but also widespread 

throughout the brain, including to the ventrolateral preoptic nuclei [208]. Thus, in 

addition to modulate the circadian system, light exposure acutely affects e.g. sleep 

regulation and arousal, alertness, and cognitive processes [10, 209-211]. 

Neuroimaging studies, using positron emission tomography or functional magnetic 

resonance imaging, have been used to demonstrate that brain activity is modulated by 

light [210]. Perrin et al. [209] found that subcortical areas involved in alertness 

regulation, including regions encompassing the SCN and the ventrolateral preoptic 

nuclei, were affected by light during engagement in an auditory oddball task. 

Furthermore, light modulates brain activity, during nonvisual cognitive tasks, in 

alertness-related subcortical areas such as the brain stem [212]. In addition, structures 

typically involved in executive functions (complex cognitive tasks) are modulated by 

light exposure, and the effects are wavelength dependent (i.e. sensitive to 

short-wavelength blue light), differ between individuals, and depend on both 

homeostatic sleep pressure and circadian phase [213, 214]. 

The retinal photoreceptors have different wavelength or spectral sensitivity, i.e. 

the photopigment of ipRGCs, melanopsin, shows peak wavelength (max) sensitivity at 

approximately 480 nm, rod opsin, the photopigment of rods, shows max sensitivity 

around 500 nm, while the opsin of the three types of cones (S-cones, M-cones, and L-

cones) have max sensitivity around 420 nm, 530 nm, and 560 nm, respectively [215, 
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216]. Thus, when measuring light for nonvisual responses it’s important to assess and 

report the spectral power distributions (380-780 nm), specifying the amount of energy 

(photons) at each wavelength, in order to estimate the stimulation of the different 

photopigments [215, 216]. Using only the common light unit lux/lx (photopic 

illuminance), which is basically a unit for assessing apparent brightness for the human 

eye, is thus not sufficient. For instance, if humans are exposed to monochromatic 

(narrowband) red light with max at 625 nm and an illuminance of 40 lx, the 

stimulation of melanopsin (i.e. ipRGCs) would be close to zero. On the other hand, 

exposure to monochromatic blue light with max at 455 nm, using the same illuminance 

(i.e. 40 lx), would induce substantial melanopsin stimulation. Note, that indirect light 

input from rod and cone photoreceptors also reaches the ipRGCs [67]. Thus, the 

nonvisual responses to light depend on properties of the light including intensity, 

spectral composition, timing, duration of exposure, and prior light history [217]. 

Bright light has been applied therapeutically for many years, and especially for 

treatment of circadian rhythm sleep disorders [30]. In addition, bright light has been 

applied as an effective treatment of depression [218], and in particular seasonal 

affective disorder [219]. In terms of nocturnal light exposure, dose-response 

relationships have been established for light intensity and alerting responses, 

melatonin suppression, and circadian phase shifting responses [220, 221]. With light 

exposure for 6.5 hrs, under carefully controlled laboratory conditions, half of the 

maximal alerting effect of light can be induced with illuminance around 100 lx, with 

saturation of alerting responses occurring with illuminance approaching 1000 lx [221]. 

Under similar exposure conditions, saturation of melatonin suppression occurs with 

illuminance around 200 lx (minimal suppression < 80 lx), while saturation of the phase 

shifting response occur with illuminance around 550 lx (little phase shift < 15 lx) 

[220]. 

As the nonvisual responses rely on the ipRGCs, responses such as melatonin 

suppression/regulation [71, 72, 222], pupil constriction [223], circadian phase shifting 

[224, 225], and alerting responses [222, 226], are sensitive to short-wavelength blue 

light. While short-wavelength monochromatic light elicits greater nonvisual responses 
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than monochromatic long-wavelength light, also short-wavelength enriched (i.e. 

blue-enriched) light may have similar properties, although findings are somewhat 

ambiguous [227-229]. It should be noted that light intensity may impact the responses 

to blue light. Short-wavelength blue light and blue-enriched white light seem to induce 

greater nonvisual responses especially under relatively low light intensity levels, while 

with higher light intensity the differences are less clear [230]. For instance, alerting 

effects of a 30-min bright light (> 1000 lx) exposure at 03:00 hrs, was seen both with 

polychromatic light and short-wavelength filtered light [231]. Also, using bright 

blue-enriched white light is no more effective than standard bright light in phase 

shifting the circadian rhythm [232, 233]. 

As previously described, the timing of light exposure is important for the 

circadian phase shifting response (i.e. phase delay or advance), and PRCs for timing of 

bright light have been derived [75]. Similarly, PRCs for monochromatic blue light has 

been established [234]. While these studies have used rather long duration (around 6.5 

hrs) light exposure, it has also been established that short duration (0.2 hr) bright light 

exposure can phase delay the circadian pacemaker [235]. Chang et al. [235] derived 

duration-exposure curves for phase shift (i.e. PRC) and melatonin suppression, 

indicating non-linear relationships, e.g. a 0.2 hr light exposure was 5 times more 

effective (per min of exposure) in phase delaying the circadian pacemaker than 4 hrs 

of light exposure. However, increasing the exposure duration (from 1 to 3 hrs) to 

bright light with moderate (~ 2000 lx) light intensity increased the phase delay of the 

melatonin rhythm, while increasing from moderate to high (~ 8000 lx) light intensity 

did not increase the circadian response [236]. In practice, increasing the duration of 

exposure may thus be feasible. 

Many of the controlled laboratory studies of light responses have applied some 

form of dark adaptation prior to light exposure, e.g. using dark glasses or dim light 

exposure. Indeed, prior light history (1 lx vs. 90 lx) was found to impact the direct 

effects of nocturnal light exposure (90 lx) on alertness, cognitive performance and 

waking EEG [237]. Thus, light deprivation before a light stimulus increases the 

efficacy of the light exposure. 
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In addition to properties of the light and light exposure, other factors also 

impact the nonvisual responses. A recent study revealed large interindividual 

variability in the sensitivity to light in terms of melatonin suppression [238], as the 

effective dose for 50% melatonin suppression was found to range from 6–350 lx in the 

most and least sensitive individual, respectively. One study found that the circadian 

system of patients with delayed sleep-wake disorder is more sensitive to light exposure 

(~ 150 lx), exhibiting 31.5% greater phase delay, than healthy controls [239]. Sex 

differences in responses to blue-enriched light in the evening have also been found, 

with males showing increased PVT performance (i.e. vigilant attention) during 

exposure, and increased slow-wave activity during NREM sleep after exposure, 

compared to females [240]. It has also been suggested that nonvisual effects depend on 

genotype, as blue-enriched light was found to suppress melatonin, induce alertness and 

attenuate theta activity in the waking EEG, in PER35/5 individuals, but not in PER34/4 

individuals [241]. Similarly, functional magnetic resonance imaging showed increased 

brain responses to blue light during sleep loss in PER35/5 individuals only [213]. Thus, 

light exposure seems to be beneficial especially in those individuals vulnerable to 

sleep loss. It is also known that age comes with retinal changes, and it has been shown 

that the ability of light to impact the circadian system, both in terms of phase shifting 

responses and melatonin suppression, is reduced with older age [242, 243].  

Light interventions and night work 

In the early 1990’s it was shown that bright light exposure during simulated 

night-work experiments could improve circadian adaptation to night work, and 

alertness and task performance during the night shifts [203, 244-246]. Based on 

simulated night work studies the principles for circadian adaptation among night 

workers, using light and dark exposure, have been elucidated [247]. The early studies 

of bright light and night work mainly used light therapy lamps, i.e. light boxes, for 

administering light, and dark sunglasses for limiting light exposure in the morning 

hours. In a field study among nurses, it was found that intermittent bright light 

exposure during night shifts, and dark glasses and bedrooms after night shifts (12 night 

shifts over 21 days) lead to complete entrainment of the circadian system to the night 

work schedule [248]. However, it has been noted that full adaptation may often not be 
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preferable, and a compromise has been suggested, i.e. partial entrainment aiming to 

delay the nadir of the CBT to occur during the daytime sleep episode after night shifts 

[247]. With this approach, the sleepiest time of the circadian rhythm is delayed into the 

daytime sleep episode, and such phase delay has been found beneficial for both night 

shift performance and daytime sleep [249].  

While short-wavelength blue light has the potential to elicit greater nonvisual 

responses, the use monochromatic blue light during night work is rare. However, in 

one study using a driving simulator at night, exposure to dim narrowband blue light 

administered by a LED placed at the dashboard, suppressed EEG slow-wave delta and 

theta activity, reduced slow eye movements, and improved PVT RTs, compared to dim 

white light [250]. Blue-enriched light interventions have more commonly been used in 

connection with night work. Lowden et al. [251] found evidence that subjective 

sleepiness, among control room workers, was reduced during night shifts with blue-

enriched light exposure in the beginning of the shift. Another study found that highly 

blue-enriched light (17000 K; 350 lx) improves control room workers’ subjective 

sleepiness, working memory, and sustained attention during night shifts, compared to 

350 lx of 3000-4000 K light and 6500 K light [252]. However, a study of night 

workers exposed to blue-enriched light (17000 K; 89 lx), compared to a standard light 

(4000 K; 84 lx), found no significant differences in alertness and performance during a 

simulated night shift [253]. 

Challenges/issues with light interventions 

Although light exposure can induce nonvisual responses that may be beneficial 

for night workers, applying light interventions in real-life may be challenging. One 

issue concerns administration of light. Traditionally, bright light has been administered 

using light therapy boxes, e.g. in Bjorvatn et al. [254], thus requiring individuals to sit 

preferably unoccupied in front of the light box for a certain duration (typically 30–60 

min). This allows for individually tailored light exposure which is beneficial 

considering interindividual differences in circadian rhythms and responses. However, 

in many occupations, requiring workers to sit in front of a light box may not be 

feasible. Another approach for providing light exposure is by using light therapy 
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glasses. A recent study found that light glasses were comparable with light boxes, in 

terms of effectiveness in counteracting effects of acute short-term SD in the early 

morning hours during a simulated night shift [255]. Specially designated light rooms 

have also been used to administer bright light, e.g. Lowden et al. [256] installed bright 

light facilities (ceiling mounted lighting) in the lunch/break room of night workers and 

found beneficial effects for the night workers. Lowden et al. [256] noted that using 

light rooms may be more cost-effective than installing such light facilities at the whole 

workplace. However, technological development has made cost-effective tuneable 

LED-luminaires available [11], and nowadays such lighting may be used to administer 

a variety of light conditions. Thus, it is now possible to administer light interventions 

via standard ceiling mounted LED-luminaires, without interfering with the work tasks 

or putting special requirements on workers. 

A concern with light interventions for night workers relates to the possible 

adverse effects of nocturnal light exposure, i.e. artificial light at night. Light exposure 

may have beneficial effects for night workers, but disturbance of circadian rhythms 

and suppression of melatonin due to light at night, may also cause negative health 

effects [33, 257]. The International Agency for Research on Cancer has classified 

night shift work in Group 2A, ‘probably carcinogenic to humans’ [258]. One of 

several suggested mechanism for the probably increased risk of cancer is that light at 

night causes melatonin suppression, as melatonin is known to have e.g. antioxidative 

properties [259]. As such, it was reported that night workers have higher levels of 

oxidative stress and lower levels of antioxidant defences when compared to day 

workers [260], likely due to melatonin suppression. Thus, light interventions using 

short-wavelength depleted/filtered light, to avoid melatonin suppression, have been 

investigated (e.g. [231, 261-264]. These studies have indicated that filtered light have 

the potential to preserve melatonin levels during night shifts without having adverse 

effects on performance and sleepiness. On the other hand, exposing workers to various 

degrees of blue light (3000, 6500, and 17000 K light) during night shifts, did not 

reveal differences in antioxidant capacity, although melatonin concentration differed 

[265]. In general, the long-term effects of artificial light are not well understood but 

concerns regarding the long-term effects of blue light exposure have emerged. In a 
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recent study, Nash et al. [266] found that in Drosophila flies maintained in cycles of 12 

hrs with blue LED and 12 hrs with darkness, the longevity was significantly reduced 

compared with flies maintained in constant darkness or in light with blue wavelengths 

blocked. Thus, there are indications of adverse effects of prolonged blue light 

exposure. For blue light exposure, concerns have also been raised regarding short-term 

effects in terms of potential photochemical damage to the retina, i.e. blue-light hazard 

[267]. However, a recent review reported that there is currently no evidence indicating 

that LEDs used at normal domestic intensity are dangerous to the human retina [268]. 

As such, commercially available LED-luminaires conforming with safety standards is 

not expected to pose acute risk for retinal damage. Still, long-term effects of blue light 

exposure from LEDs need to be further elucidated in humans, also in terms of 

potential retinal damage.  

1.8 Methodological issues 

In shift work research, including night work, experimental and quasi-

experimental research designs have typically been used in real-life field studies to 

assess short-term effects [269, 270], e.g. immediate effects of interventions. Another 

similar approach is to conduct simulated shift work experiments under controlled 

conditions outside real-life work settings, such as in the laboratory [270]. The latter 

approach is very common in night work studies. A third approach in shift work 

research, not described in this thesis, is to analyse epidemiological data, and/or 

conduct cross-sectional and longitudinal survey studies [270], e.g. to investigate long-

term health effects and changes over time. In experimental research designs the aim is 

basically to manipulate one variable while keeping all other variables constant. Thus, 

in night work experiments, it is important to consider and control confounding factors 

to be able to draw conclusions about causal relationships, i.e. internal validity. In field 

studies of shift work, controlling confounding factors is very difficult. Hence, by 

conducting simulated shift work in the laboratory, a major benefit is better control of 

potential confounders such as work schedule, work tasks, light exposure, diet, sleep, 

and chronotype [271]. Using a laboratory also allows for incorporating a constant 
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routine into the study protocol for assessment of circadian phase before and after night 

work, as in the study by Czeisler et al. [245]. With the constant routine it is possible to 

avoid biases that may affect the true endogenous rhythm, such as behaviours and 

environmental factors. Keeping subjects awake for > 24 hrs in constant dim light, with 

a fixed body posture and very low activity, and nutritional intake distributed evenly at 

day and night, allows for assessment of a full circadian cycle [83]. By using the 

constant routine with multiple nap opportunities, it is also possible to assess circadian 

rhythmicity with low impact of the homeostatic process and sleep pressure [112]. 

However, using the constant routine clearly affects the participants, and is a tedious 

and resource demanding procedure, thus it is often not feasible to incorporate in 

studies of night shift work. 

A disadvantage with laboratory studies, compared to field studies, of shift work 

is of course that they are not performed under real-life conditions [271]. Thus, the 

external validity, i.e. the generalizability to a real-life workplace setting, may be 

limited. Yet another issue concerning external validity is that, while investigating 

actual shift workers in simulation studies is possible, it is more common to study shift 

work using samples of healthy young subjects with limited shift-work experience 

[271]. Evidence has suggested that experienced shift workers cope better with SD 

experiments in the laboratory than non-shift workers [272]. One likely explanatory 

factor contributing to such differences relates to the ‘healthy worker effect’, i.e. only 

the workers still engaged in shift work are studied, and not those who quitted due to 

not coping with the shift work schedule [270]. It has been shown that both light 

responses and cognitive impairments during SD and/or night shift work differ with age 

[129, 168, 243]. Thus, experiments using samples of young healthy participants, may 

not be generalized to other samples, e.g. older workers.   

A basic standard experiment consists of two equivalent groups of participants, 

one experimental group, and one control group. Ideally, the only difference between 

the groups is the independent manipulated variable, e.g. the light conditions during 

night work. Different participants may be assigned to the two groups in a between 

subject’s design, however, in night work and light experiments it is also common to 
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employ repeated measures design, i.e. individual participants complete all conditions 

(e.g. experimental and control condition). In a repeated measures design, fewer 

participants are needed, and a major advantage is that individual differences among 

participants can be accounted for. For instance, there are known individual differences 

in responses to SD, and light exposure [141, 238]. Still, repeated measures designs 

come with some methodological issues that need to be considered, such as the effects 

of the order of conditions, practice/learning effects, and carryover effects. Thus, the 

order of conditions needs to be counterbalanced, and the time between conditions 

should be sufficient for effects to wear off. To minimize learning/practice effects (i.e. 

with repeated administration cognitive tests) it is common to include a practice session 

as part of the experiment. Another problem with studies of light exposures relates to 

demand characteristics, i.e. the problem of participants finding out the purpose of the 

study. Obviously, when testing the effects of two different light conditions, it is 

impossible to blind the participants and/or researcher as is common in e.g. drug 

research. Participants may be kept unaware of the hypotheses, but it is not unlikely that 

participants will form expectations about the purpose and hypotheses based on the 

light conditions, hence they may act in other ways (confirming or rejecting the 

hypothesis, behaving socially desirable) than if they were blinded [273].  

It has been noted that a general challenge with laboratory shift work studies 

relates to the relatively small number of participants that can be studied under such 

conditions [271]. Small samples may lead to studies not having sufficient statistical 

power to detect differences between conditions, thus the probability of making a Type 

Ⅱ error, i.e. accepting the null hypothesis when the null hypothesis is false, may 

increase [274]. Indeed, it has been noted that many studies investigating alerting 

effects of light have employed small samples increasing the likelihood of biased 

results [275]. Thus, it is generally recommended to perform a priori power analysis to 

select a proper sample size. Souman et al. [275] indicated that for an experiment with 

two conditions analysed with a paired t-test, a sample size of N = 26 would be needed 

to detect a medium effect size (Cohen’s d = 0.5) with power of 0.80 and a significance 

level of .05. However, in repeated measures designs, even smaller sample sizes may be 

sufficient, depending on the number of multiple measurements on each participant 
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within each condition. It is recommended to also pre-register the study protocol and 

analysis plan [274], to clarify if analyses are exploratory or confirmatory, and as such 

reduce data mining and selective reporting. 

In night work and SD experiments a wide range of measurements methods have 

been employed, and large variations regarding in research designs and methodology 

makes comparison between studies somewhat complicated. For instance, field studies 

of night work often differ in terms of workplace settings, work-schedules, and 

participant characteristics, hence comparison between studies is often difficult. In 

terms of the study of human biological rhythms, there has been suggested criteria for 

matters that needs to be accounted for in the methods [276]. Some of the included 

criteria that should be reported and/or attended to are; participants’ sleep-wake pattern; 

the season research is conducted; use of tobacco, caffeine and alcohol; ensure that 

subjects have not undertaken trans meridian travel or night work preceding the 

experiment; and it is further advisable to assess objective markers of subjects’ 

circadian rhythms. It was also noted that shift work studies should carefully account 

for and define the working time arrangements and work tasks of 

employees/participants [276]. An additional challenge in light studies concerns how 

the light conditions are reported [275], and how to interpret light conditions for 

comparison between studies. Recent recommendations are to make the whole spectral 

distribution available, and to report light intensity weighted by the sensitivity of the 

different photoreceptors [215, 216]. Furthermore, an issue with light studies is that 

light history may vary among participants, which is known to affect the responses to a 

light intervention [237]. 

Both subjective, behavioural, and physiological measures such as subjective 

sleepiness scales, cognitive performance tasks, and/or EEG recordings, are common in 

night work and SD studies. Often a combination of multiple measures is preferable, to 

increase the confidence of results, and/or to detect and investigate differences between 

measures. In night work and SD research some measures are common and have been 

validated as reliable and sensitive measures, e.g. the KSS for assessing subjective 

sleepiness [128], and the PVT for assessing vigilant attention [150]. In terms of 
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cognitive performance assessment in SD research, a wide range of tests have been 

employed in addition to the PVT [134, 135]. A challenge with cognitive performance 

testing is that cognitive performance is not a unitary concept but rely on multiple 

processes that may be differentially affected by SD [277]. Especially complex tests are 

haunted by the task impurity problem, i.e. it is difficult to decompose and specify 

exactly which cognitive processes/faculties that are measured [277]. Furthermore, it is 

often desirable to repeat cognitive tests to assess the temporal dynamics of 

performance, e.g. during the night shift. However, practice effects have been noted as 

the largest problem with repeated testing [135], and complex tests are particularly 

vulnerable to such effects. Thus, it is common to employ simple test such as the PVT, 

with minimal task impurity issues, and basically no aptitude and practice effects [278]. 

On the other hand, the ecological validity of simple laboratory tests may be limited, as 

simple tests may not predict the very complex tasks one typically encounters in real-

life situations [279].  
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2. Main aims of this thesis 

This thesis aimed to investigate how aspects of the physical work environment, 

in terms of light conditions, can be arranged to facilitate adaptation to night work on 

measures of alertness, performance, and circadian rhythm. As night work have adverse 

impact on alertness, performance, safety, and health, it is important to take measures 

for minimizing such consequences of night work. With the development of LED 

technology, new opportunities for illumination of workplaces have emerged. To 

examine the effects of naturalistic LED lighting, a laboratory with standard ceiling 

mounted tuneable LED-luminaires have been established at the Faculty of Psychology, 

University of Bergen, Norway (see Figure 5). Using these laboratory facilities, three 

experimental night work studies examined the effects of different light conditions 

during simulated night work. 

 

Figure 5. The laboratory and participants during a simulated night shift. 

Objectives of paper 1 

The main aims of paper 1 was to investigate how a full-spectrum (4000 K) 

bright light (~ 900 lx), compared to a standard light (~ 90 lx), affected alertness and 

performance during three consecutive simulated night shifts, and timing of the 
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circadian rhythm after the night shifts. Daytime sleep after the night shifts was also 

assessed. 

It was hypothesized that bright light, compared to standard light, would 

facilitate alertness and performance during the night shifts, and phase delay the 

circadian rhythm. 

Objectives of paper 2 

The main aim of paper 2 was to investigate how monochromatic blue light (max 

= 455 nm), compared to red light (max = 625 nm) using similar photon density (~ 2.8 

x 1014 photons/cm2/s) across conditions, affected alertness and task performance 

during a simulated night shift, as well as circadian phase shift following the night shift. 

In addition, the participants’ subjective evaluation of the light conditions, and visual 

comfort during the night shift was assessed. 

It was hypothesized that blue light, compared to red light, would lead to better 

alertness, mood and performance during the shift, and a larger phase delay of the 

circadian rhythm. 

Objectives of paper 3 

The main aim of paper 3 was to investigate how a standard polychromatic blue-

enriched white light (7000 K; ~ 200 lx), compared to warm white light (2500 K) of 

similar photon density (~ 1.6 x 1014 photons/cm2/s), affected alertness and 

performance during three consecutive simulated night shifts, as well as circadian 

adaptation to the night work schedule. Additionally, daytime sleep after the night 

shifts, and participants’ subjective evaluation of the light conditions were investigated. 

The hypotheses were that 7000 K light, compared to 2500 K light, would 

increase alertness and performance during the night shifts, and lead to a larger phase 

delay of the circadian rhythm. 
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3. Methods 

3.1 Procedures 

This thesis is based on three experimental studies with separate samples. All 

three studies employed similar design and procedures, and the study protocol was pre-

registered at www.ClinicalTrials.gov, identifier NCT03203538. Each experiment used 

a counterbalanced crossover study design with repeated measurements. Thus, in each 

experiment, participants performed two study periods with simulated night shifts, one 

study period in each light condition. The study periods were separated by a 4-week 

washout period, and the counterbalanced crossover design entailed that about half of 

the participants started the trial with the opposite light condition as the other half. In 

each experiment participants were placed in one of 4–6 groups (maximum nine 

participants in each group). The first group started with one light condition (e.g. bright 

light), the second group started with the opposite light condition (e.g. standard light), 

and similarly for group 3 and 4, respectively. The experiments were commenced in the 

weekends, and completion of the experiment for four groups took at least eight weeks. 

Participants were allocated to the groups based on their availability for participation at 

the specific dates for the two study weekends, and the vacancy in the groups. Hence, 

participants were sampled into the groups by convenience, though individual 

participants’ order of conditions was random per se. 

The counterbalancing and 4-week washout period ensured minimal crossover 

effects, yet the within-subjects design controlled for interindividual differences. In 

study 1 and 3, each study period consisted of three consecutive simulated night shifts 

(i.e. six shifts in total), while in study 2, the participants performed one simulated night 

shift in each condition (i.e. two shifts in total). The night shifts started at 23:00 hrs, and 

ended at 07:00 hrs in study 1, and at 06:45 hrs in study 2 and 3. Participants were 

restricted to the laboratory only during the simulated night shifts, while they slept at 

home and were largely free to engage in other activities during their spare time. Thus, 

the studies were semi-controlled naturalistic trials, simulating real-life night work. 
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Both study periods started three days prior to the first night shift with 

monitoring of participants’ sleep, using actigraphy and sleep diaries, to assess napping 

behaviour, and to verify that the participants did not significantly shift their circadian 

rhythm before the simulated night shifts. In paper 1 and 3, daytime sleep after the 

night shifts was also assessed. In the evening on the day before the first night shift, 

participants collected saliva samples, at home, for estimation of DLMO before the 

night shifts (baseline). This procedure was repeated in the evening on the first day 

following the night shifts to estimate the final DLMO. During the night shifts, five 

main test bouts comprising the main outcome measures: Positive And Negative Affect 

Schedule (PANAS) (reported in paper 2 only), KSS, PVT, and a Digit Symbol 

Substitution Test (DSST) were completed at 23:30, 01:00, 02:30, 04:00, and 05:30 hrs. 

One test bout took around 20 min to complete. Between main test bouts, participants 

completed other questionnaires and tests, and had breaks allowing quiet activities. A 

standardized snack/meal (~ 200 kcal) was provided at about 02:00 and 05:00 hrs, and 

water was available ad libitum. A researcher was present throughout the night shifts to 

ensure adherence. 

3.2 Participants and samples 

In all three studies the participants were mainly recruited among students at the 

University of Bergen via a learning platform, mass e-mail and flyers. The studies used 

an online survey tool, for screening purposes, before inviting eligible subjects to an 

enrolment session at the laboratory. Eligible subjects were young adults (between 18-

30 years) with good health, and with no current or recent history of diseases/disorders 

(including psychiatric-, neurological-, and sleep disorders), not on medication (except 

contraceptives), with normal vision and no colour deficiencies, and who were not 

pregnant or breastfeeding. Eligible subjects also had to report habitual sleep duration 

of 6–10 hrs, and wake times between 06:00 and 10:00 hrs, not engaged in night work 

and/or trans meridian travels in the months prior to or during the study. Extreme 

chronotypes according to the short Morningness-Eveningness Questionnaire (MEQ) 

[280], were not included. 
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In the beginning of the enrolment session thorough information about the study 

and its purpose was provided, and participants gave their written consent to participate 

in the study. Participants completed a set of questionnaires including the General 

Health Questionnaire-12 [281], Dispositional Resilience Scale 15 [282], NEO Five 

Factor Inventory [283], Bergen Insomnia Scale [284], Global Sleep Assessment 

Questionnaire [285], Circadian Type Inventory [189], MEQ [286], Munich 

Chronotype Questionnaire [59]. A practice session of the performance tasks used in 

the experiments was also commenced during the enrolment session. 

Samples 

In study 1, 36 participants completed the enrolment session. Four withdrew 

before the first night shift, four after the first night shift and two prior to the second 

study period. Two participants were excluded due to non-compliance with the sleep 

criteria. One got ill and could not attend the last night shift. The data used in paper 1 

were from 27 participants, 20 females and 7 males, with a mean age of 21.4 (SD = 2.1) 

years. Included participants completed at least one of the study periods, and 24 

participants completed all the night shifts (i.e. both study periods). 

In study 2, the sample consisted of 34 participants completing at least one shift, 

27 females and 7 males, with a mean age of 21.6 (SD = 2.0) years. Six participants 

dropped out after the first night shift, and the second night shift was cancelled for two 

participants. Paper 2 included data from 31 and 29 participants for the night shift in 

blue and red light, respectively. Twenty-six completed both shifts. 

In study 3, a total of 33 participants completed the enrolment session, two 

withdrew before the first night shift and one was excluded due to non-compliance with 

the sleep criteria. Thus, the data in paper 3 were from 30 participants completing at 

least one study period, 20 females and 10 males, with a mean age of 23.3 (SD = 2.9) 

years. Data were included from 29 and 28 participants for the night shifts in 7000 K 

and 2500 K, respectively. Twenty-seven participants completed all the night shifts. 

A sample size of 26, required for a paired t-test, has been recommended in 

studies investigating alerting effects of light [275], although with repeated 
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measurements designs lower sample sizes may be feasible. As such, using the 

G*Power 3 software [287], a priori power analysis was conducted. Expecting a 

medium effect size (Cohen’s d = 0.5), with significance level set to .05, power at 0.80, 

and correlation among repeated measurements (N = 5) to 0.5 in a repeated-measures 

within factors design (analysis of variance), 21 participants were calculated to be 

needed. Changing the number of repeated measurements to N = 4, or N = 3, yielded 

that 24 or 28 participants were needed, respectively. The aim was to include 28 

participants in each study. However, due to exclusions and drop-outs, complete data 

were collected for 24, 26, and 27 participants in study 1, 2, and 3, respectively. 

3.3 Laboratory and light conditions 

The laboratory (30 m2 room with no windows) was equipped with 20 standard 

ceiling mounted LED-luminaires (size: 60 x 60 cm), providing uniform illumination 

without producing glare. These LED-luminaires (Modul R 600 LED CCT/RGB MP; 

Glamox Luxo Lighting AB, Sweden) can be tuned to provide a range of different light 

conditions, both in terms of intensity, colour temperature, and monochromatic light. 

The room had nine available workplaces, separated by partition walls, with similar 

desktop computers and two LED-luminaires situated above each workplace. Noise 

cancelling headsets (BOSE QuietComfort 25; BOSE Corp., US) were used during 

performance testing, and the computer screens were fitted with a filter foil (Metolight 

SFG-10; Asmetec, Germany) blocking all wavelengths < 520 nm. 

Light conditions 

Light conditions were measured in the direction of gaze (vertical plane, 120 cm 

height) at the workplaces using a calibrated spectroradiometer (GL Spectics 1.0 T 

Flicker; GL Optic, Poland). For paper 1 and 3, light conditions were estimated based 

on measurements at each workplace prior to the night shifts. In paper 2, light 

conditions were measured at two workplaces (one in each side of the room) in the 

beginning, middle, and end of the night shift. The toolbox provided by Lucas et al.  

[216] was used to calculate the photometric information for the main light parameters 

seen in Table 1.  
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Table 1. Main light parameters (380–780 nm inclusive). Given as mean (SD). 

 
Photopic 

illuminance (lx) 
Irradiance 
(µW/cm2) 

Melanopsin 
(a-opic lx) 

Photon density 
(photons/cm2/s) 

Study 1 a     

Bright light 911 (62) 269 (17) 635 (36) 7.6 x 1014 (4.9 x 1013) 

Standard light 91 (6) 26 (2) 57 (11) 7.3 x 1013 (4.8 x 1012) 

Study 2     

Blue light 61 (4) 125 (6) 645 (25) 2.9 x 1014 (1.5 x 1013) 

Red light 196 (11) 82 (5) 4 (2) 2.6 x 1014 (1.7 x 1013) 

Study 3     

7000 K light 197 (19) 61 (6) 192 (19) 1.7 x 1014 (1.6 x 1013) 

2500 K light 206 (18) 55 (5) 86 (8) 1.6 x 1014 (1.4 x 1013) 
a After 05:00 hrs the mean photopic illuminance was 193 lx in both light conditions. 

In study 1 a standard colour temperature (4000 K) was used in both light conditions, in 

study 2 the max for the blue and red light was 455 and 625 nm, respectively. The 

spectral distributions can be seen in Figure 6. 

 

Figure 6. Spectral distributions for the studies. Irradiance (µW/cm2/nm) given on the 
y-axis (the scale differs in A–C), wavelengths (410–730 nm) on the x-axis. (A) study 
1: black solid line for bright light, grey dashed line for standard light. (B) study 2: blue 
solid line for blue light, red dashed line for red light. (C) study 3: blue solid line for 
7000 K light, orange dashed line for 2500 K light.  
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3.4 Measures and instruments 

Online screening survey 

Several items were used to retrieve relevant information for screening of the 

participants, such as previous and planned night work and trans meridian travels, self-

reported health status, current and previous diseases, use of medication, and habitual 

sleep times. The short MEQ was used to assess participants’ chronotype [280]. Based 

on questions about preferred rise times and bed times, time of the day with peak 

performance and self-classification of chronotype, the short MEQ allows for 

classification of subjects into the following types: Definitely morning type, moderately 

morning type, neither type, moderately evening type and definitely evening type. 

Actigraphy and sleep diaries 

Participants’ sleep was monitored using wrist-actigraphy (Actiwatch 2 or 

Actiwatch Spectrum, Phillips Respironics Inc., US) and sleep diaries. Based on the 

assumption that limb movement is limited during sleep, actigraphy has been validated 

as a useful tool for measuring sleep [288]. Participants wore the Actiwatch on their 

non-dominant hand and were instructed to press an event marker when they turned out 

the lights for sleeping, and when they woke up and started the day. Data were recorded 

in 1 min epochs in study 1, and 30 s epochs in study 2 and 3. The wake threshold 

sensitivity was set to medium (40 activity counts per min), and time of inactivity for 

sleep onset and wake time was set to 10 min (Actiware 6.0, Philips Respironics Inc., 

US). Usually actigraphy is used in combination with sleep diaries, as the sleep diaries 

may help to estimate start and end times of the rest intervals. With sleep diaries 

subjects self-monitor and record their previous sleep episode. Such records can be 

used to assess metrics such as sleep onset and wake time, sleep onset latency, time in 

bed and sleep quality [101]. 

Dim Light Melatonin Onset 

Based on the at-home collected saliva samples, the DLMO was estimated 

before (baseline DLMO) and after (final DLMO) the night shifts. Hourly saliva 

samples (six samples) were collected at home by the participants, using salivette tubes 
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(Sarstedt AG & CO, Germany). Baseline sampling started 4 hrs before, and the final 

sample was collected 1 hr after, participants’ habitual bedtime. Final DLMO sampling 

was delayed by 1 hr relatively to baseline sampling. Participants were provided with 

dark glasses and instructed to wear them from 1 hr prior to sampling start and during 

the whole sampling procedure. Additionally, instructions concerning e.g. food, drink, 

tooth brushing etc. were provided, similar to that reported by Saxvig et al. [289]. 

Samples were assayed at the laboratory facilities at the Faculty of Psychology, 

Department for Biological and Medical Psychology, University of Bergen, Norway. 

Enzyme-linked immunosorbent assay kit (EK-DSM, Bühlman Laboratories, 

Switzerland), with a detection limit of 0.5 pg/mL, and functional sensitivity of 1.6–

20.5 pg/mL was used. Samples were quantified using a Wallac 1420 Multilabel 

counter (Perkin Elmer Inc., US). DLMO was defined as the time salivary melatonin 

levels reached 4 pg/mL. Linear interpolation between adjacent samples were used, and 

if levels reached 3 pg/mL but not 4 pg/mL, linear extrapolation was used. Circadian 

phase shifts were estimated by calculating the difference between baseline DLMO and 

final DLMO. In accordance with previous procedures [290], nadir of the CBT was 

estimated as DLMO + 7 hrs. Based on the final DLMO, and sleep onset and offset 

(wake time) of the daytime sleep after the third night shift, phase angle after the night 

shifts was estimated. 

Karolinska Sleepiness Scale (KSS) 

The KSS comprises a single item assessing the state of sleepiness [123]. 

Participants indicated their current level of alertness-sleepiness on a 9-point Likert 

scale with the following steps: 1) very alert, 3) alert, 5) neither alert nor sleepy, 7) 

sleepy, but no difficulty remaining awake, 9) very sleepy, fighting sleep, strenuous to 

keep awake. The intermediate steps (2, 4, 6, 8) could also be used, but had no 

descriptive label. 

Psychomotor Vigilance Task (PVT) 

The PVT is a simple neurobehavioral task that measures vigilant attention by 

recording RTs to stimuli occurring at random inter-stimulus intervals [143, 151]. The 



 60

PVT is suitable for repeated administration and is nowadays considered the gold 

standard for detecting neurobehavioral effects of sleep loss and circadian misalignment 

[278]. All three experiments used a computerized 10-min PVT with similar 

design/setup as recommended by Basner et al. [150]. Participants were instructed to 

respond with their dominant hand by pressing the space bar as soon as a stimulus 

appeared on the screen (see Figure 7).  

 

Figure 2. Screen images (example) during one trial of the psychomotor vigilance task. 
(A) No stimulus (1-9 sec). (B) Stimulus (counting timer [max 30 sec]). (C) RT 
feedback (1 sec). 

All three papers assessed the two main outcome metrics, the mean 1/RT (reciprocal 

RTs) and the number of PVT lapses (i.e. RTs ≥ 500 ms), as suggested by Basner et al.  

[150]. In paper 2 the mean RT500 (mean RTs excluding lapses) was also analysed, 

while in paper 3 the number of false starts (responses without a stimulus), the fastest 

10% RT (mean RT of the 10% fastest RTs) and the slowest 10% 1/RT (mean 1/RT of 

the 10% slowest RTs) were analysed in addition to the aforementioned main outcome 

metrics. 
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Digit Symbol Substitution Test (DSST) 

Digit symbol substitution tests are assumed to measure complex attention [291], 

and the DSST is considered a sensitive measure for detecting change in cognitive 

function [292]. However, the DSST has low specificity in terms of determining which 

cognitive domain that has been affected [292]. A computerized version was used in all 

three experiments. Participants were instructed to pair nine target symbols, randomly 

and individually presented at the centre of the screen, with their corresponding digit in 

a symbol-digit array shown at the bottom of the screen (see Figure 8).  

 

Figure 8. Screen image (example) during the digit symbol substitution test. 

The response was given using the mouse pointer, and if no response was recorded after 

5 s, the next trial began. In study 1 the test duration was 90 s, while in study 2 and 3 a 

test duration of 120 s was used. The symbol-digit pairs were randomized for each 

administration of the test. The outcome measure from the DSST was the number of 

correct responses during the test. 

Other measures 

In addition to the measures described above, the 17-plate Ishihara Test for 

Colour Deficiency was used to ensuring that participants had normal colour vision. In 

paper 2 and 3, subjective evaluation of the lighting was assessed using a questionnaire 
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with nine items rated on a 7-point semantic differential scale, adopted from Smolders 

et al. [293, 294]. The first four items assessed the pleasantness of the lighting: 1) 

unpleasant-pleasant, 2) uncomfortable-comfortable, 3) disturbing-not disturbing, 4) 

causing glare-not causing glare. The pleasantness subscale showed internal reliability 

with Cronbach’s α of .87 and .82 in study 2 and 3, respectively. Single items were 

used to assess the clearness (unclear-clear), colour (warm-cold), brightness (dim-

bright), if the light was activating (relaxing-stimulating), and if the light was suitable 

for work (unsuitable-suitable). In paper 2, PANAS was used to measure mood. The 

PANAS assesses two factors of mood, positive and negative, and comprises 20 

items/words that describe different feelings and emotions [295]. For each of the 

PANAS items participants indicated to what extent they felt a certain way right now, 

on a 5-point Likert scale ranging from 1) very slightly or not at all, to 5) extremely. 

The positive and negative mood subscales showed internal reliability with Cronbach’s 

α of .92 and .68, respectively. Paper 2 also assessed visual comfort during the night 

shifts, using the headache and eye strain scale [296]. This scale comprises 8 

items/symptoms: 1) irritability, 2) headache, 3) eye strain, 4) eye discomfort, 5) eye 

fatigue, 6) difficulty focusing, 7) difficulty concentrating, 8) blurred vision. 

Participants indicated the degree of symptoms on a 4-point scale (1 = absent, 2 = 

slight, 3 = moderate, 4 = severe). In paper 3, the menstrual phase (follicular, luteal) of 

female participants were estimated, based on self-reported last menses onset and usual 

menstrual cycle length, similar to previously reported procedures [181].  

3.5 Statistical analysis 

In all papers, the main analyses were conducted using linear mixed model 

(LMM) and generalized linear mixed model (GLMM) analysis. GLMMs with a 

negative binominal distribution were used for analysing the PVT lapses, and false 

starts, as these count variables were skewed towards zero and showed overdispersion. 

Light (condition 1 vs. condition 2), shift (night 1, night 2, and night 3), time (23:30, 

01:00, 02:30, 04:00, and 05:30 hrs), and their interactions (light*shift, light*time, 

shift*time, light*shift*time) were treated as fixed factors. In paper 2, there were no 
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shift factor included. In all models, participant was included as a random factor. In all 

papers the phase shift magnitude of the melatonin rhythm (DLMO) was also analysed 

using LMMs with light entered as a fixed factor. Multiple comparisons were made 

using Bonferroni corrections to evaluate differences between light conditions, shifts 

and time points. For each of the outcome variables, e.g. KSS score and PVT lapses, 

separate LMMs and GLMMs were conducted. The estimated marginal means and 

standard errors (SE) were reported and/or plotted in the papers to graph the results in 

the papers. In all papers, the differences in baseline DLMO between light conditions 

were assessed using paired samples t-tests. To investigate if baseline DLMO correlated 

with the phase shift magnitude, Pearson’s product-moment correlation coefficients 

were calculated. All statistical analyses were conducted using IBM SPSS Statistics, 

version 25 (IBM Corp., US). 

Paper 1 

LMMs were modelled for the KSS, PVT mean 1/RT, and DSST, and a GLMM 

for PVT lapses. Initially, napping (nap vs. no nap) was also included as a fixed effect, 

but there were no significant effects of napping, thus the factor was not included in the 

final models. Paired samples t-tests were used to assess differences in daytime sleep, 

phase angle, and phase shift for participants with complete data. 

Paper 2 

Three separate LMMs were applied on the PANAS positive mood, negative 

mood, KSS, PVT mean 1/RT, RT500, and DSST. In a random effect model the 

random factor participant was included. In a main effect model the fixed factor light 

(blue vs. red) was entered. In an interaction effects model the light*time interaction 

was entered. The model fit was compared using a likelihood ratio test, comparing the 

difference in -2 times the log of the likelihood between the random effect model, main 

effect model, and interaction effect model, following the chi- square distribution. The 

degrees of freedom used for comparison equalled the difference in the number of 

parameters between the compared models. Pseudo R2 statistics (% explained variance) 

were calculated based on reduction in variance from the random effects model to the 

final model. PVT lapses were analysed with a GLMM using a similar modelling 
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approach as for the LMMs. However, model fit was compared by assessing the 

Akaike’s information criterion and the Schwarz’s Bayesian criterion, preferring 

smaller values. Visual comfort (headache and eye strain symptoms) and evaluation of 

light conditions were also assessed with LMMs using the approach described above, 

however the time factor for the headache and eye strain symptoms had only three time 

points (23:15, 03:15, and 06:15 hrs), while for light evaluation there was no time 

factor (nor interaction) included in the LMM. 

Paper 3 

As for paper 2, three separate LMMs were applied on KSS, PVT mean 1/RT, 

fastest 10% RT, slowest 10% 1/RT, and DSST. The modelling approach was similar as 

described for paper 2, with a random-, main-, and interaction effects model. 

Likelihood ratio tests were calculated to compare model fit. If there were significant 

interaction effects despite the likelihood ratio test indicating poorer model fit, the 

interaction effects models were trimmed (by removing non-significant interactions), 

before a second likelihood ratio test was conducted. Accordingly, the models with the 

best fit were used, and corresponding R2 statistics were calculated. PVT lapses and 

false starts were analysed using GLMMs in a similar manner as described for paper 2, 

also including the shift factor. Daytime sleep was analysed with LMMs using similar 

procedures as described for the other measures. Participant was included as a random 

effect, and the fixed factors light, shift, and the light*shift interaction were entered. In 

paper 3, the light evaluation was analysed with LMMs including participant as a 

random effect, and the fixed factors light, time (start of first shift vs. end of last shift), 

and the light*time interaction. For participants with complete data, paired samples 

t-tests were used to assess differences in baseline sleep, daytime sleep, phase shift and 

phase angle. 

3.6 Ethical considerations 

The studies were approved by the Regional Committee for Medical and Health 

Research Ethics, health region West, Norway (No. 2016/1903). When enrolled in the 

study, each participant was given a unique id-number that was used throughout the 
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study to ensure that data were non-identifiable. A coding key, which could be used to 

identify participants, was kept separate from the data. It was necessary to be able to 

identify participants during the study periods, for organizing the trials and for follow-

up when they had enquiries during the ongoing study. All subjects gave their written 

informed consent to participate and could opt out from the study at any time. 

The simulated night shifts entailed work hours similar to that employed in real-

life shift work and complied with the regulations of working time according to the 

Norwegian Working Environment Act. As such, the trials were not considered to pose 

excess risk for participants, other than what is already generally accepted. However, 

general sleep hygiene advice was given to the participants, and they were also advised 

not to drive a car during commute home after the night shifts. 

In terms of light exposure, the commercially available LED-luminaires were 

CE-marked and confirms with the European Standard (EN 62471:2008) for 

photobiological safety [297]. The light conditions in study 1 and 3 were similar to real-

life lighting, except that the bright light condition applied moderately high light 

intensity compared to common real-life lighting. However, the bright light condition 

still had much lower light intensity than employed in many previous studies. In study 

2, the monochromatic light conditions, in particular the blue light, were very different 

from real-life lighting, hence only one night shift in each light condition was 

commenced. 

Participants were exposed to strenuous work hours in the studies and were 

compensated financially for their participation. Participants completing study 1 or 3 

received 4000 NOK (VISA gift cards), and participants completing study 2 received 

1500 NOK (cash). 10 NOK ~ 1 €. 
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4. Results 

4.1 Summary of findings 

Paper 1 

The results from the analyses of KSS and task performance (PVT and DSST) 

supported the hypotheses, as bright light (900 lx), compared to standard light (90 lx), 

significantly reduced sleepiness and performance deterioration during three 

consecutive night shifts. The KSS scores increased during the night shifts, starting 

with KSS scores around 4–5, in both light conditions. However, on night 2 and 3, the 

KSS scores were reduced with bright light at 04:00 and 05:30 hrs. With bright light the 

KSS scores on night 2 and 3 were around 6–7 at the end of the shifts, while with 

standard light the KSS scores were around 8. Performance deterioration on the PVT 

and DSST was reduced with bright light relatively to standard light already on night 1. 

Performance in terms of PVT RTs (mean 1/RT), PVT lapses, and DSST responses, 

was significantly better with bright light in the later parts of the shifts. For PVT lapses, 

the number of lapses increased to around 16 during all night shifts with standard light. 

With bright light, on night 2 and 3, the number of PVT lapses increased to around 8, 

i.e. half of that with standard light. For the subset of participants with valid DLMO 

measures, the melatonin rhythm after the night shifts was phase delayed with an 

estimated mean of 3:17 (SE = 0:23) hrs, and 2:06 (SE = 0:15) hrs with bright and 

standard light, respectively. There was no significant difference in baseline DLMO 

between light conditions, nor significant correlation between baseline DLMO and the 

phase shift magnitude. Thus, the results indicated that bright light induced a larger 

circadian phase delay than standard light. Hence, the hypothesis was supported. 

Furthermore, daytime sleep duration (actigraphy) was significantly longer after the 

night shifts with bright light (mean = 6:44 hrs, SE = 0:13 hrs) compared to standard 

light (mean = 6:21 hrs, SE = 0:09 hrs). Overall, the results suggest that the bright light 

intervention was beneficial for participant’s sleepiness and task performance during 

the night shifts and indicate that circadian adaptation and daytime sleep was improved 

after night shifts with bright light.  
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Paper 2 

One night shift with monochromatic blue light (max = 455 nm), compared to 

red light (max = 625 nm) using similar photon density (~ 2.8 x 1014 photons/cm2/s), 

reduced subjective sleepiness and improved task performance, in line with the 

hypotheses. There was no beneficial effect of blue light on the measures of mood. 

Sleepiness was reduced with blue light, compared to red light, from 02:30 hrs 

onwards. With both light conditions the KSS scores were around 5 in the beginning of 

the night shift. With blue light the KSS scores reached levels around 7 at 04:00 and 

05:30 hrs, while with red light the KSS scores reached levels around 8. PVT mean 

1/RT was improved at 02:30 hrs, while PVT RT500 was improved also at 04:00 hrs. 

With blue light, from 02:30 hrs onwards, the number of PVT lapses was about half of 

that with red light. At 04:00 and 05:30 hrs, the number of PVT lapses were around 8 

and 16 with blue and red light, respectively. For the DSST, there was a main effect of 

light, indicating improved performance with blue light, although the light by time 

interaction was not statistically significant. In terms of circadian rhythm, there was a 

larger phase delay of the melatonin rhythm after the night shift with blue light, 

compared to red light, with an estimated mean of 1:26 (SE = 0:16) hrs, and 0:36 (SE = 

0:15) hrs, respectively. Thus, the hypothesis of larger phase delay with blue light was 

supported. There was no significant difference in baseline DLMO between light 

conditions, nor significant correlation between baseline DLMO and the phase shift 

magnitude. Participants’ report of visual comfort was higher with blue light compared 

to red light, and there was a statistically significant light by time interaction effect for 

eye discomfort and eye fatigue, indicating beneficial effects of blue light in the middle 

and later parts of the night shift. However, with both light conditions visual comfort 

was reduced during the night shift. The evaluation of the lighting indicated that blue 

light was evaluated as colder, brighter, and more activating than red light. For the 

other light evaluation items, no differences between light conditions were found. In 

sum, the results indicate that the blue light was beneficial, compared to the red light, 

on measures of nocturnal sleepiness and performance, as well as circadian adaptation. 
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Paper 3 

In paper 3 we found that polychromatic blue-enriched light (7000 K), compared 

to warm light (2500 K), improved task performance, but not subjective sleepiness 

during three consecutive simulated night shifts. Thus, the hypotheses were partly 

supported. The KSS scores increased during the night shifts from around 4–5 at 23:30 

hrs to 7–8 at 05:30 hrs, and there was a main effect of light, with lower KSS scores 

with 7000 K light. However, there were no significant interaction effects of light by 

time, indicating that 7000 K light did not reduce sleepiness relatively more than 2500 

K light during the night shifts. PVT performance deteriorated during the night shifts, 

and for PVT lapses and false starts performance improved with 7000 K light, 

compared to 2500 K light, in the end of night 1 and 2. On night 1 at 05:30 hrs, the 

number of PVT lapses was around 16 with 2500 K light, and around 8 with 7000 K 

light. Also, for the 10% fastest RTs on the PVT there were significant interaction 

effects of light by time, indicating faster RTs with 7000 K light. The circadian phase 

was delayed with an estimate of 2:34 (SE = 0:14) hrs, and 2:12 (SE = 0:14) hrs with 

7000 K and 2500 K light, respectively. The difference did not reach statistical 

significance hence the hypothesis was not supported. There was no significant 

difference in baseline DLMO between light conditions, nor significant correlation 

between baseline DLMO and the phase shift magnitude. Due to missing data the 

results concerning the circadian phase shift magnitude are somewhat inconclusive and 

should be interpreted with caution. There were no statistically significant differences 

in the daytime sleep variables, with mean (SD) sleep duration of 6:01 (0:57) and 5:43 

(0:58) hrs with 7000 K and 2500 K light, respectively. Regarding the evaluation of the 

lighting, 7000 K light was evaluated as clearer, colder, brighter, more activating, and 

more suitable for work than 2500 K light. The 2500 K light was evaluated as more 

pleasant than 7000 K light, still both light conditions were evaluated as rather pleasant. 

In sum, the 7000 K light, compared to 2500 K light, seems to be beneficial in terms of 

performance. There were no statistically significant differences between the light 

conditions in terms of reduced sleepiness during the night shifts, nor circadian 

adaptation after the night shifts. 
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5. Discussion 

Technological development has now made cost-effective LEDs available, and 

standard ceiling mounted LED-luminaires can now easily be installed and used to 

administer various light conditions at workplaces. Using such LED lighting in 

simulated night shift studies, the overall purpose of this thesis was to investigate how 

different light conditions may facilitate adaptation to night work on measures of 

alertness, performance, and circadian rhythm. The three papers in the present thesis 

have documented that sleepiness increases and performance deteriorates during night 

shifts, and that different LED-based light conditions may reduce such alertness and 

performance deficits. The results also indicate that the circadian rhythm and daytime 

sleep may be differentially affected by the employed light conditions. The most 

important findings of this thesis are summarized in the following: 

1. During simulated night work, subjective sleepiness increases, and task 

performance is reduced, probably due to circadian misalignment and increased 

homeostatic sleep pressure. 

2. Bright full-spectrum (4000 K) light (900 lx) compared to a standard light (90 

lx), administered from 23:00 hrs until 05:00 hrs, reduces sleepiness and 

performance deterioration during three consecutive simulated night shifts. 

3. Monochromatic blue light (λmax = 455 nm), compared to photon matched (~ 2.8 

x 1014 photons/cm2/s) red light (λmax = 625 nm), reduces sleepiness and 

performance deterioration during one simulated night shift. 

4. Blue-enriched white light (7000 K; ~ 200 lx), compared to warm white light 

(2500 K) using similar photon density (~ 1.6 x 1014 photons/cm2/s), reduces 

performance deterioration, but not subjective sleepiness during three 

consecutive simulated night shifts. 

5. Light exposure during simulated night work, affects the amount of circadian 

phase shift following the night shifts. Especially, bright light (900 lx) compared 

to standard light (90 lx), and monochromatic blue light compared to red light, 

seems to phase delay the circadian rhythm.  
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5.1 Sleepiness and reduced performance during night work 

Previous studies have reported increased sleepiness and reduced performance 

during night shifts, both in real-life and simulated night work studies [6, 27, 41]. The 

findings in all the papers included in this thesis are in line with these previous reported 

results. The initial KSS score at 23:30 hrs on the first night shift was around 5 in all 

three studies and increased to around 7–8 at 05:30 hrs, depending on light condition. 

These numbers are slightly higher than reported in the real-life studies of nurses and 

intensive care workers [6, 27], where mean sleepiness (KSS) levels increased from 

around 4 to near 7, during the first night shift. The higher sleepiness reported in the 

present studies, is likely due to night shifts starting two hours later, and that the KSS 

score is the average of KSS assessments before and after the performance tasks (i.e. 

PVT and DSST). It is known that such tasks may induce additional sleepiness, hence 

higher KSS rating [58]. Another explanation to the difference may be that naturalistic 

studies represent more activating and varied stimulation (e.g. walking and attending a 

sick patient) compared to more monotonous laboratory-based tasks, which mostly 

involve sitting in front of a computer. In paper 1 and 3, sleepiness was reduced on 

night 2 and 3, compared to night 1. Reduced sleepiness with consecutive night shifts 

has also been reported previously [6, 41]. Such reduced sleepiness is likely due to 

increased homeostatic sleep pressure during the first night shift compared to 

subsequent shifts and reduced circadian misalignment on subsequent shifts. Indeed, it 

has been reported that workers are awake substantially longer in connection with the 

first night shift than with subsequent shifts [6, 27]. Still, the results are at odds with 

findings showing that the risk for accidents increases with consecutive night shifts [7]. 

In all three studies the performance on the PVT and DSST worsened from the 

start to the end of the first night shift. On the PVT, performance deterioration was 

found both in terms of a general slowing of RTs and an increase in number of 

omission (PVT lapses) and commission (false starts) errors, depending on light 

conditions. These results are also in line with previous findings among night workers 

[6], and simulated night shift experiments [41]. In contrast to the KSS findings, the 

results in paper 1 did not reveal improved PVT performance on night 2 and/or 3, 
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compared to the first night shift. On the other hand, the DSST performance improved 

on night 3 compared to night 1 in both paper 1 and 3. The DSST is known to show 

practice effects with repeated administration [292], which may explain the difference 

from the PVT results in paper 1, as the PVT is known to show minimal practice effects 

[278]. Discrepancy between KSS and PVT has previously been reported [6]. Limited 

sleepiness and performance adaptation were reported by McHill et al. [41], while 

higher number of consecutive night shifts had negative impact on PVT performance in 

another study [157]. In paper 3, there were indications of improved PVT performance 

with consecutive night shifts, as there were fewer PVT lapses in the end of the shift on 

night 3, compared to night 1. 

It may be difficult to evaluate the practical implications of slightly slower RTs 

(e.g. 350 vs. 300 ms). However, the implications of lapses of attention can clearly be 

related to safety issues, as inattentiveness has the potential to compromise safety in 

real-life tasks (e.g. driving). As such, PVT lapses has been found to predict variability 

in lane position during a driving simulator task [298]. Furthermore, PVT performance 

at blood alcohol concentrations of 0.05% in a rested state (at 22:00 hrs), revealed 

number of PVT lapses around 6 [299]. The estimated number of PVT lapses increased 

dramatically during the night shifts, from 0–4 at 23:30 hrs for all light conditions, to 

numbers around 16 at 05:30 hrs for some of the light conditions. 

5.2 The impact of light during night work 

Bright light 

Bright light can be used to elicit nonvisual responses in humans, e.g. phase shift 

circadian rhythms as well as acute alerting responses. The principles for bright light 

eliciting such responses have been used in simulated night shift studies, usually in 

combination with scheduled darkness, and indicate that bright light has great potential 

to counteract the immediate negative effects of night work [245, 248, 290, 300]. 

Although effects are not as clear-cut as in simulation studies with high experimental 

control, also field studies in different occupational settings have reported beneficial 

effects of nocturnal (intermittent) bright light exposures [254, 256, 301-305]. The 



 74

previous studies have mainly applied specialized lighting set-ups using therapy lamps 

and light boxes for administration of the bright light. As such, workers must remain in 

front of the light source to receive bright light exposure, and in real-life workplaces 

this may not be practical or feasible due to work task requirements. Lowden et al. 

[256] administered bright light via ceiling mounted luminaires in a designated room 

where the night workers sojourned during their 20-min breaks. Hence, there is a need 

for studies investigating how night workers may be affected by more uniformly 

brightly lit work environments. 

The results in paper 1 largely supports previous research findings of alerting 

and performance enhancing effects of bright light, and suggest that beneficial effects 

can also be acquired using standard ceiling mounted LED-luminaires for 

administration of bright light. Paper 1 found that the alerting and performance 

enhancing effects emerged in the later parts of the night shifts, close to the nadir of the 

CBT when sleep propensity is high [57], which is a typical finding in studies of 

nocturnal bright light exposure. In paper 1, no differences in subjective sleepiness 

levels between conditions were reported on night 1, while task performance was 

improved already on the first night shift. Discrepancy between bright light effects on 

KSS and PVT performance has also been reported previously [306]. Such findings 

suggest that bright light has acute alerting effects, as detected by the performance 

tasks, while the effect on subjective sleepiness is not evident before night 2 when the 

homeostatic sleep pressure and circadian misalignment was likely reduced. The 

finding of improved DSST performance suggests that bright light has the potential to 

conserve performance also on more complex attention tasks relying on multiple 

cognitive capacities [292]. This finding contrasts a previous field study [301], 

reporting no statistically significant difference in DSST performance during night 

shifts with bright light and night shifts with room light. 

Late night work is usually associated with KSS ratings slightly below 7 (sleepy, 

but no difficulty remaining awake), while with monotonous tasks KSS ratings from 7–

9 (critical for safety) is common [58]. KSS ratings 8–9 is associated with sleep 

intrusions in the waking EEG [123], and dangerous driving [307]. In paper 1, the 
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results showed that despite the monotonous performance tasks, with bright light, mean 

KSS scores on night 2 and 3 remained below 7 during the whole shift. However, with 

standard light, KSS scores were above 7 in the later parts of all shifts. 

While the number of PVT lapses was improved already on night 1, the largest 

differences between light conditions were seen on night 2 and 3. The number of PVT 

lapses (0–4 at 23:30 hrs) increased to about 8 and 16, in the later parts of night 2 and 3, 

with bright and standard light, respectively. Among real-life night workers, the number 

of lapses on a 5-min PVT increased from 0–2 at the start, to around 4 in the end, of 

consecutive night shifts [6]. Due to the artificial conditions in the laboratory with 

limited opportunities for compensating efforts, e.g. physical activation and varied 

stimulation, one might expect that the non-shift workers in study 1 would have more 

lapses than found among shift workers at a real-life workplace. However, considering 

the different PVT duration (5 min vs. 10 min), the performance in terms of PVT lapses 

with bright light in paper 1 seem similar to that reported in real-life [6]. On the other 

hand, with standard light, the PVT lapses reached similar numbers as seen in a 

simulated night shift study of non-shift workers, using a constant posture protocol 

under dim light conditions [41]. 

In terms of circadian adaptation, the results in paper 1 (note that data were 

incomplete) implied larger phase delay of the melatonin rhythm after three night shifts 

with bright light (3:17 hrs), compared to the standard light (2:06 hrs). In addition, the 

average daytime sleep duration after night shifts with bright light was longer, 

indicating that sleep occurred at a more favourable circadian phase position. Thus, the 

findings corroborate previous studies reporting that bright light can be used for 

circadian adaptation among night workers [245, 290, 300]. The phase shift magnitude 

was close to the ~ 4-hr phase delay reported in a previous study of three consecutive 

simulated night shifts [290]. However, the light exposure differed, as Smith et al. [290] 

employed five 15-min bright light pulses interspersed by 45 min of dim room light, 

and dark glasses to avoid light exposure during daytime. Although the phase shift 

magnitude was smaller than with bright light, the ~ 2-hr phase delay with standard 

light was larger than the ~ 1-hr phase delay reported for participants exposed to three 
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nights with 50 lx [290]. Thus, the standard light (90 lx) may also be of sufficient 

intensity to elicit some circadian phase shifting effects. It should be noted that for 

some participants a portion of the bright light, apparently occurred also in the phase 

advancing part of the PRC, hence such exposure may have attenuated the circadian 

adaptation to the night shifts. Among actual night workers, light exposure relative to 

the PRC has been reported to explain a large portion of individual variability in 

circadian adaptation to night work [91]. 

As found in previous studies [88, 89], workers adapting to a night work 

schedule may encounter problems readapting to a day schedule after the night work 

period. Paper 1 did not investigate readaptation after the night shifts, but considering 

the relative moderate phase shift magnitude, it can be expected that readaptation 

should be less difficult than reported for offshore workers after seven consecutive 

night shifts [89]. Scheduled darkness, as used in many previous studies, was not 

employed in the studies in this thesis. However, general sleep hygiene advice, e.g. dark 

bedroom, was provided, and due to the high latitude and time of year, daylight 

exposure in the morning was limited. Thus, at other latitudes and/or times of the year, 

the results may have been different. 

It has been suggested that bright light should be used in combination with 

scheduled sleep in darkness to sufficiently shift the melatonin rhythm [300]. 

Furthermore, interventions using bright light during simulated night shifts in 

combination with scheduled evening sleep, to produce circadian phase advance (in 

contrast to phase delay) have also been reported to improve night shift alertness, 

performance, and daytime sleep [306, 308]. However, though recommendations in 

real-life may be given, sleep will occur ad libitum, and the majority of night workers 

go to bed in the morning directly after the shift. It has been suggested that a 

compromise phase position, delaying nadir of the CBT into the daytime sleep episode, 

is preferable for night workers [247]. The main aim of the current study was not to 

change the circadian rhythm per se, but rather to improve performance during the night 

shifts. Still, only a few of the participants in paper 1 apparently achieved the 

compromise phase position, although it is likely that most of the participants with 
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incomplete data also achieved the compromise phase position after the night shifts. 

The nine participants with complete phase shift estimates had mean DLMO at 24:00 

hrs after the night shifts, hence the estimated temperature minimum (DLMO +7 hrs) 

would be at 07:00 hrs. This implies that the period with highest sleep propensity 

occurred approximately when participants were commuting home after the night shifts. 

In real-life, such timing of the nadir of CBT may be considered unfavourable, 

especially if workers are driving home as this would coincide with their peak level of 

sleep propensity and as such pose a clear safety risk [307]. On the other hand, with 

standard light, the estimated temperature minimum was at 06:00 hrs, which is at the 

end of the night shift, which is a critical time in terms of elevated risk for performance 

errors and accidents/injuries. Thus, considerations about issues related to the timing of 

the period with maximum sleep propensity should be taken in real-life settings, to 

minimize the risk of compromising safety. 

In terms of daytime sleep after the night shifts, paper 1 found that with both 

light conditions the average sleep onset was around 07:30 hrs. Thus, sleep was 

initiated only about 30 min after the end of the shift, and not about 60 min which has 

been reported as the most usual interval [5]. This discrepancy is most likely due to 

most participants living quite close to the laboratory facilities hence the commuting 

time home was short. The average daytime sleep duration for the three sleep periods 

following night 1–3 was longer (and wake time later) with bright light (mean = 6:44 

hrs) than with standard light (mean = 6:21 hrs). As sleep duration is regulated mainly 

by the circadian system, it is likely, as noted earlier, that longer sleep duration after 

night shifts with bright light, reflects sleep occurring at a more favourable circadian 

time due to circadian adaptation. It is also possible that the increased light intensity 

during the shifts with bright light may have induced a higher homeostatic sleep 

response, as found for illuminance levels around 250 lx compared to dim light [113]. 

With both light conditions the daytime sleep duration was apparently longer than 

among healthcare workers, where a mean total sleep time of 5.74 hrs between night 

shifts has recently been reported [6]. One probable explanation for the participants in 

the present thesis sleeping longer is that they comprise young adults (mean age = 21.4 
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years), mainly students, who didn’t have to attend to domestic duties in the same 

extent as the older adults (mean age = 33.8 years) studied by Ganesan et al. [6].   

Short-wavelength monochromatic light 

Nonvisual responses to light exposure rely on ipRGCs that are particularly 

sensitive to blue light [309]. Using monochromatic (i.e. narrowband) light exposures, 

it has been shown that several nonvisual responses, e.g. alertness, melatonin 

suppression, and circadian phase shifting, is sensitive to short-wavelength light [222, 

224, 226]. In paper 2, such findings were largely supported also in a simulated night 

shift study, employing higher light intensity/photon densities than the previous studies. 

During a night shift (23:00–06:45 hrs) with monochromatic blue light (λmax = 455 nm), 

subjective alertness and task performance was improved, and the melatonin rhythm 

was phase delayed, compared to photon matched (2.8 x 1014 photons/cm2/s) red light 

(λmax = 625 nm). Like the results in paper 1, the effects of light emerged in the middle 

and later parts of the night shift when sleep propensity is high. As previous studies 

have employed specialized lighting set-ups and carefully controlled light exposure 

procedures, the findings in paper 2 suggests that also when using standard ceiling 

mounted LED-luminaires, and relatively higher photon densities, short-wavelength 

light elicits greater nonvisual responses than long-wavelength light. 

Subjective sleepiness was reduced with blue light compared to red light, and the 

KSS scores did not reach the safety critical level, 7, before the assessment at 05:30 hrs. 

In contrast, with red light KSS scores were > 7 already at 02:30 hrs, and > 8 at 04:00 

and 05:30 hrs. While a previous study indicated that blue light (λmax = 479 nm) at 

lower irradiance (5 x 1013 photons/cm2/s) is more effective at enhancing subjective 

alertness than red light (λmax = 627 nm) [230], paper 2 reported such effects also with 

higher irradiance. In paper 2, mood (PANAS) was also assessed, and revealed reduced 

positive mood scores during the night shift but the night shift had only minor impact 

on negative mood. This is similar to previous findings [310, 311], which also reported 

that subjective sleepiness and positive mood are associated, suggesting that these share 

a similar neurobiological pathway. However, in contrast with the KSS findings, paper 

2 found no significant differences in positive mood between the light conditions. There 
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was a higher negative mood score with blue light at 23:30 hrs, but this difference was 

only found at the initial assessment, hence it was probably related to a negative initial 

perception (first impression) of the blue light. Plitnick et al. [311] investigated effects 

of nocturnal 60-min exposure (from about 01:00 to 02:00 hrs) to monochromatic blue 

and red light relative to dim light, using similar illuminance levels (10 lx and 40 lx) 

across the light conditions. Thus, the light exposure and duration was quite different 

from that reported in paper 2, making comparison somewhat obscured. Nevertheless, 

Plitnick et al. [311] found that KSS and positive mood were basically mirror images of 

one another, similar to the findings in paper 2. However, it was also indicated by 

Plitnick et al. [311], that both the red and the blue light reduced sleepiness and 

increased positive mood in a similar manner, somewhat contrasting the findings of 

reduced sleepiness with blue light compared to red light in paper 2. 

The PVT performance was improved with blue light in a similar pattern as for 

the KSS. Both improved RTs and reduced number of PVT lapses were evident. With 

red light, the number of PVT lapses increased to around 16 in the end of the night 

shift, similar to that seen with standard light in paper 1 during night 2 and 3. However, 

with blue light the number of PVT lapses were similar to that found for bright light 

during night 2 and 3 in paper 1, i.e. around 8. Although comparison may be spurious 

due to different light exposures and procedures, the PVT findings in paper 2 are in line 

with the previous reports of improved RTs and reduced lapses with monochromatic 

blue light [226]. Also, in terms of DSST performance there was a general improved 

performance with blue light similar to the PVT and KSS, although the light by time 

interaction did not reach statistical significance. 

In paper 2 there were relatively large individual differences in the circadian 

response to working simulated night shifts with monochromatic blue and red light 

conditions. Apparently, while most participants showed basically no phase shift of the 

melatonin rhythm after a night shift with red light, some participants acquired a 

substantial phase delay. With blue light, most participants phase delayed, while a few 

participants apparently phase advanced their circadian rhythm. The red light condition 

had limited direct stimulation of the melanopsin photoreceptors (melanopic lx = 4), 
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hence the circadian entrainment by melanopsin stimulation was minimal. Still, a recent 

study [312] indicated that melatonin suppression is predicted to occur at melanopic 

illuminance levels as low as ~ 1.5 melanopic lx, and indirect stimulation of the 

ipRGCs via the rods and cones is also possible [67]. Importantly, the light exposure 

was continuous during the whole shift, hence participants may have been exposed to 

light both in the phase delay and phase advance parts of the PRC. Considering a PRC 

specific for blue light [313], it seems however that the blue light exposure was mainly 

in the phase delay part of the PRC. Interindividual variability in the sensitivity and 

circadian responses to light have been reported previously [238] and other factors than 

the light exposure may also impact circadian rhythms [60]. It is not unlikely that 

behaviours we did not thoroughly control might have affected the results, e.g. light 

exposure outside the laboratory. The timing of sleep is also of importance [300, 308], 

and other nonphotic stimulus such as exercise, social cues, and meal timing, may 

induce circadian phase shifts [314]. Thus, it is possible that other factors than light 

contributed to the observed individual differences. Nevertheless, the general results in 

paper 2 are in line with previous findings indicating short-wavelength light sensitivity 

of the circadian system [224].  

Paper 2 also found that visual comfort was generally better with blue light, 

compared to red light, possibly due to greater pupil constriction driven by the ipRGCs 

[223]. However, symptoms of visual discomfort were much more pronounced, also for 

the blue light condition in paper 2, than reported during daytime office hours in a 

previous study [296]. Neither monochromatic blue light nor red light were evaluated 

as particularly suitable for work, hence the practical use of such lighting should be 

investigated further. 

Polychromatic blue-enriched light 

As monochromatic light exposures may not be applicable due to its visual 

properties, it has been suggested that polychromatic short-wavelength enriched light, 

i.e. blue-enriched light, has the potential to elicit greater nonvisual responses than light 

with less short-wavelength energy. For instance, 17000 K light, compared to 4000 K 

light, induces greater melatonin suppression [228]. Furthermore, exposure to 17000 K 
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light, compared to 4000 K light, for 6.5 hrs during the biological night, reduced 

subjective sleepiness, but did not improve PVT performance during light exposure 

[229]. In another study, moderately blue-enriched light (6500 K; 40 lx) during 2 hrs in 

the evening, compared to warm light (2500 K; 40 lx), was also found to induce larger 

melatonin suppression and reduced subjective sleepiness, as well as improved PVT 

performance [227]. Chellappa et al. [227] employed relatively low light levels and 

used the same illuminance for both light conditions, while Hanifin et al. [229] 

employed higher light intensity (i.e. 123 lx and 96 lx in the 4000 K and 17000 K light, 

respectively), and photon matching ensuring 1.0 x 1014 photons/cm2/s in both light 

conditions. These latter illuminance levels are more like typical indoor room lighting. 

Few simulated night shift studies and/or field studies have investigated the use of blue-

enriched light during night work. One study [253] found no effects of 17000 K light 

(89 lx), compared to standard 4000 K light (84 lx), on sleepiness, task performance, as 

well as EEG correlates of sleepiness, during simulated night shifts among actual night 

workers. However, if compared relative to circadian phase 17000 K light reduced 

subjective sleepiness compared to the standard light [253]. A field study [252] of 

control room workers exposed to 350 lx of 17000 K light, compared to 4000 K and 

6500 K light, found beneficial effects of 17000 K light on measures of sleepiness and 

performance, and melatonin suppression was greater. Although light conditions vary in 

the previous studies, findings overall suggest beneficial effects of blue-enriched light 

during night work, although some inconsistency exists. 

In paper 3, it was reported minor albeit beneficial effects of 7000 K light, 

compared to 2500 K light, for some performance measures, but not on subjective 

sleepiness, nor were there statistically significant differences between conditions 

regarding phase shifts of the melatonin rhythm. Thus, the findings concur with the 

somewhat limited consistency in previous studies. The KSS scores with both 

conditions apparently reached the suggested safety critical level, 7, at 04:00 and/or 

05:30 hrs, depending on night number. With 7000 K light, there was evidence of fewer 

PVT errors in the later parts of night 1 and 2, as well as faster RTs in the optimal 

domain of responses in the middle to late parts of the night shifts. Thus, the 7000 K 

light seems to be beneficial, especially in terms of reduced PVT errors around the time 
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with highest sleep propensity. The number of PVT lapses on night 1, increased to 

about 16 at 05:30 hrs with 2500 K light, while with 7000 K light the number of PVT 

lapses increased to around 8. However, with both 7000 K and 2500 K light, the 

number of PVT lapses on night 3 was very similar to that seen for the bright light 

condition in paper 1 on night 2 and 3. Thus, using blue-enriched light seem to be 

beneficial for PVT performance mainly on the first night shifts, while on the third shift 

there are no differences in terms of PVT lapses. Participants also evaluated the 7000 K 

light as more activating than 2500 K light, in line with findings during office hours 

[293]. Overall, the results suggest that blue-enriched light have minor but beneficial 

effects for night worker’s alertness and performance, yet further research is needed to 

validate these findings and maximize the effectiveness of blue-enriched light. 

In terms of circadian phase, with both 7000 K and 2500 K light, the melatonin 

rhythm was estimated to be delayed, with 2:34 and 2:12 hrs, respectively, not reaching 

statistically significant difference. For more than half of the participants, in both light 

conditions, the phase delay was apparently not sufficient to reach the compromise 

phase position (i.e. nadir of the CBT occurring during the daytime sleep episode). 

Considering daytime sleep after the night shifts, paper 3 indicated no significant 

differences between light conditions. Similarly, a study comparing sleep after SD with 

exposure to 250 lx of 9000 K light, compared to 2800 K light, found no differences in 

sleep parameters between the light conditions [113]. Paper 3 reported that with both 

light conditions the average sleep onset was at 07:45 hrs, and the sleep onset latency 

was around 0:05 hr after the night shifts with both 7000 K and 2500 K light. The short 

sleep onset latency and initiation of sleep around 1 hr after the end of the night shift, 

concur with typical sleep patterns for night workers [5]. The average daytime sleep 

duration was 6:01 and 5:43 hrs with 7000 K and 2500 K light, respectively. This is 

relatively similar to the total sleep time reported between night shifts among healthcare 

workers [6]. 

A factor complicating the evaluation and comparison of studies using blue-

enriched light conditions, is the different spectral distributions, and the different light 

intensities employed. For example, the study by Motamedzadeh et al. [252] compared 
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light conditions keeping the illuminance level (350 lx) the same across conditions, 

while Hanifin et al. [229] compared light conditions with different illuminance levels, 

as the photon densities were equated. As photoreceptors act as photon counters [210], 

the clear-cut effects reported by Motamedzadeh et al. [252] may hinge on higher 

photon density in the 17000 K condition rather than differences in wavelengths. Thus, 

if the photon densities were equated as in the study by Hanifin et al. [229], the results 

might be different. However, Motamedzadeh et al. [252] investigated lighting at a real-

life workplace and ensuring adequate visual qualities (i.e. illuminance) may demand 

unequal photon densities of light with different spectral distribution. In paper 3, the 

photon density employed was similar across conditions. Despite substantially higher 

melanopic illuminance, there were only minor effects of 7000 K light, compared to 

2500 K light. One possible explanation for the limited effectiveness of the blue-

enriched light, may be use of saturating light levels as also suggested by Sletten et al. 

[253]. For instance, when using light boxes, bright blue-enriched white light (17000 

K) is no more effective than standard bright light (4100 K), with similar photon 

density (~ 4.2 x 1015 photons/cm2/s), in phase shifting the circadian rhythm [232, 233]. 

Interestingly, the number of PVT lapses on night 2 and 3 in paper 3 are not very 

different from the numbers seen on night 2 and 3 with bright light in paper 1. As such, 

the notion of saturating light levels seems to be a likely explanation for this. 

5.3 Limitations and methodological considerations 

In general, it is difficult to compare experimental studies of SD, night work, and 

light exposure. The design and methodology may differ substantially between studies, 

e.g. with light studies it may be challenging to compare light conditions, as noted in 

the previous paragraph. As such, there are methodological considerations and some 

limitations that should be noted with the studies in the present thesis. 

Research design 

The studies in this thesis were designed as experimental and controlled trials. 

However, a hybrid solution was used with simulated night shifts in the laboratory, and 

real-life conditions during spare time outside the laboratory. As such, experimental 
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control was kept during night work in the laboratory, while the real-life aspects to 

some degree was maintained as participants were sleeping at home, and were largely 

free to engage in activities and manage their own spare time. Note that there were 

restrictions concerning caffein, tobacco, alcohol, and to some extent napping (paper 1 

and 3 had restrictions on timing and duration of naps, while paper 2 did not allow 

naps). Furthermore, participants were required to extend their period of wakefulness 

by 1 hr during baseline DLMO sampling. Nevertheless, the studies were simulating 

real-life night work. An advantage with the employed approach is that the studies have 

ecological validity, in that the design includes the dynamics between work, spare time, 

and sleep, being somewhat transferrable to a real-life work situation. A drawback with 

the design is that potential confounders such as light exposure, sleep, and other 

behaviours outside the laboratory, complicates and likely have distorted the results. In 

particular, the light history and light exposure of the participants may have affected the 

results, e.g. differences in light exposure in the morning after the night shifts. 

However, the experiments were conducted at relatively high latitude and a time of year 

with limited daylight exposure in the hours before and after the night shifts. Still, it is 

likely that differences in spare time light exposure and other behaviours occurred, both 

between and within individuals. 

As individual variation in responses to light and SD/night work is known [141, 

238], a repeated measures design was employed, hence the results should be minimally 

affected by inter-individual differences. The order of conditions was counterbalanced, 

and the study periods were separated by one month, hence order and crossover effects 

were also controlled. One other concern when designing light studies, relates to 

demand characteristics, as it is not possible to introduce blinding of the subjects to the 

light conditions used. For instance, knowledge about the effects of blue light is 

probably increasing as e.g. blue light filters are becoming standard software 

applications on cell-phones, computers, and tablets [315]. Thus, it is likely that 

participants may have developed expectations in terms of study hypothesis. One way 

to reduce the effects of demand characteristics related to light exposure could be to e.g. 

administer placebo caffeine pills to all participants, hence reduce the focus on light 

conditions. However, the studies in this thesis did not employ such strategies. 
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Participants and samples 

The participants were not night workers, and as actual shift workers may cope 

better with SD in the laboratory than non-shift workers [272], the transferability to 

real-life night work is somewhat limited. Furthermore, the participants were screened 

and selected young healthy adults, not representative for a shift working population. 

However, the selection of participants was made to avoid biases in terms of e.g. 

extreme chronotypes, age differences, sleep, and health issues, which are all of 

importance in the study of human biological rhythms [276]. By studying a 

homogenous sample, the confounding factors may be reduced, thus increasing the 

internal validity. However, although the participants may be considered a homogenous 

group, it is still possible that differences in terms of e.g. light sensitivity and tolerance 

to SD, affected the results. For instance, genotype has been related to both sleepiness 

and insomnia among shift workers [161, 194], and nonvisual effects of light have also 

been reported to depend on genotype [241]. Although selected based on chronotype 

assessed with the short MEQ, there were considerable variation in the baseline DLMO 

estimates ranging from around 19:00 to 24:00 hrs. As most participants were females, 

the generalizability to other gender distributions may not be feasible. However, males 

have been suggested to have larger nonvisual responses to light [240], hence in a more 

equal gender distribution, the beneficial effects may have been greater than suggested 

by the studies in this thesis. There were also challenges with dropouts in all studies, 

and most of the dropouts occurred after the first night shift. Although not documented, 

many of the dropouts, indicated that it was too demanding to complete all the shifts, 

and some felt that it would interfere too much with other duties (e.g. studying). This 

may indicate that vulnerable participants were inclined to dropout, while those coping 

with the night shift remained and completed the study, i.e. a healthy worker/participant 

effect may have affected the results. For instance, it has been suggested that especially 

individuals vulnerable to sleep loss may benefit from light exposure [213, 241]. 

The studies employed sample sizes based on a priori power analyses. In all 

three studies the sample size (N ≥ 24) was higher than in most of the previous studies 

assessing alerting effects of light [275]. For instance, in the controlled laboratory trials 

conducted by Czeisler et al. [245] and Lockley et al. [226], a sample size of 8 and 16 
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was used, respectively. Thus, the likelihood of Type Ⅱ error, and biased results, due to 

small sample size may be considered relatively low. On the other hand, this notion 

hinges also upon the expected effects based on the light conditions used. Within paper 

1 and 2, the relative difference between the employed light conditions (e.g. in terms of 

melanopic lx) were large, hence they may be expected to elicit largely different 

degrees of nonvisual effects. In paper 3, the relative difference between the employed 

light conditions (e.g. melanopic lx) were much smaller than in both paper 1 and 2, 

although very different in terms of colour temperature. Thus, it is possible that paper 3 

was underpowered compared to paper 1 and 2, and the likelihood of Type Ⅱ error may 

be increased. In all papers the incomplete phase shift estimates increase the risk of 

biased results in terms of the circadian rhythm measures. 

Measures 

Most of the instruments and measures used in this thesis are standard measures, 

frequently used in SD, night work, and light research, and their reliability and validity 

have been assessed in previous studies. Actigraphy is considered a reasonable valid 

and reliable instrument for assessing sleep in healthy normal individuals [316]. 

However, actigraphy is not good at detecting wakefulness within sleep episodes, but in 

terms of sleep duration and total sleep time, depending on studied population, 

actigraphy data correlate reasonably well with PSG [100]. To be able to properly 

estimate the start and end times of rest periods, a standardized sleep diary similar to 

the consensus sleep diary [101], was used in addition to actigraphy. Both the KSS, 

PANAS, PVT, and DSST are considered valid and reliable measures, although the 

DSST is known to show practice effects [292]. Considerations should be taken 

regarding the real-life relevance of the simple tasks performed under artificial 

conditions in the laboratory, such as the PVT. In real-life situations much more 

complex tasks are normally encountered. Such tasks are known to rely on multiple 

cognitive capacities, and may not be as vulnerable to sleep loss and circadian 

misalignment as the PVT. On the other hand, the PVT may be repeated with limited 

practice effects as seen in more complex tasks, hence the PVT is suitable for assessing 

the temporal dynamics during a night shift. PVT performance have also been 
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suggested to have ecological validity as it can reflect real world risks [150], in that 

many applied tasks rely on timely reactions and sustained attention, e.g. driving. 

The subjective measures assessing visual comfort and evaluation of the lighting 

are not that common, and the validity may be questioned. The headache and eye strain 

scale was used in a previous study [296] of daytime office workers and was shown to 

be sensitive to exposure of different light conditions. The items assessing evaluation of 

the lighting were adapted from previous studies finding that evaluation differ with 

different intensities and spectral distributions of polychromatic light [293, 294].  

In terms of the employed measures, a main limitation concerns the circadian 

phase shift estimates based on the DLMO sampling. That is not due to the 

methodology per se, as estimation of DLMO is a validated measure of circadian phase 

[317], also with at home sampling procedures [82]. The problem concerns issues with 

the employed sampling protocol and possibly participants’ adherence. Especially in 

paper 1, only a small subset (33%) of the participants’ circadian phase shift could be 

estimated after the night shifts with bright light, mainly due to no observed rise in the 

melatonin concentration during the final sampling period. Apparently the final DLMO 

shifted to a later time than accounted for in the sampling protocol (i.e. last final 

DLMO sample 2 hrs after usual bedtime), but also possibly due to light exposure 

suppressing melatonin, or other adherence issues. In the other light conditions, the 

sampling protocol seemed to work better, although phase shifts could only be 

calculated for 61–79% of the participants. This suggests that a constant routine 

protocol would be preferable for assessment of circadian phase, and/or that the DLMO 

sampling should have been conducted in the laboratory controlled by a researcher or 

conducted over a wider time frame. Furthermore, the findings stress the importance of 

carefully planning the timing of the sampling, and the importance of protocol 

adherence if sampling at home is employed. Previous studies have also reported 

challenges with missing DLMO estimates using at home sampling procedures [82, 

289]. 
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5.4 Strengths 

While there are many factors that might have impacted the results, as 

participants were mainly free to manage their spare time and sleep, this may also be 

viewed as an asset in terms of generalizability and ecological validity. The light 

conditions were administered using standard ceiling mounted LED-luminaires, which 

can be installed and implemented at a real-life workplace. In that sense the studies 

have novelty, and a general strength across the studies is that the employed light 

interventions put minimal requirements on participants for adherence, and 

administration of light exposure did not interfere with work tasks. Thus, the 

interventions can easily be transferred to real-life workplaces. Another strength is the 

repeated measurements crossover design using counterbalancing, which limit the 

impact of crossover effects and individual differences. Additional strengths of the 

studies are the use of validated instruments, e.g. KSS and PVT, and repeated 

administration for assessing the dynamics during the shifts. In addition, the analysis 

strategy used should be considered a strength as the use of LMM and GLMM allows 

for missing data without excluding cases completely as with analysis of variance. 

In paper 1 and 3, the light conditions employed were suitable for, and somewhat 

similar to (except the bright light), real-life application. In paper 2 and 3, the light 

conditions were photon matched, hence we investigated the impact of short-

wavelength light compared to long-wavelength light, while controlling for light 

intensity. 

5.5 Ethics 

The ethics committee approving the studies only allowed individuals to 

participate in one of the studies, as the demanding work schedules should not interfere 

too much with other duties (e.g. students study). Other concerns may relate to the 

adverse effects of night work and light exposure. The participants were exposed to 

strenuous work hours, albeit still in compliance with regulations of working time. In a 

short-term perspective the employed light conditions were not considered to pose any 
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health risks, however participants did experience some visual discomfort especially 

with the monochromatic light conditions reported in paper 2. Furthermore, it is likely 

that some participants encountered some problems readapting to a day schedule after 

the simulated night shifts. It is also possible that light exposure in rare instances may 

trigger sleep disturbances, i.e. individuals with delayed sleep wake disorder are 

particularly sensitive to light exposure [239]. However, participants were screened 

prior to the study to avoid such problems. In terms of employing similar light 

conditions at real-life workplaces, some caution should be taken, as there are concerns 

regarding long-term effects of light at night and prolonged blue light exposure [266, 

268]. Another issue worth mentioning is that even though participants were 

compensated for their efforts, compared to real-life night work, payment was low. 

5.6 Conclusions and further direction 

This thesis has contributed to the research field by investigating how LED-

based lighting can be used to facilitate adaptation to simulated night work. The 

findings across studies indicate that standard ceiling mounted LED-luminaires can be 

used to administer different light conditions, with the potential to modulate the impact 

of working outside standard working hours, i.e. night work. Thus, the use of similar 

LED lighting should be investigated also in real-life workplaces, with actual night 

workers. The present studies employed homogenous samples of healthy young adults 

with a skewed gender distribution, hence replications with other populations (e.g. more 

males and older workers) need to be conducted. Future studies should also assess other 

measures, e.g. more complex cognitive tasks, to investigate if the effects of the light 

conditions are task specific, and if various cognitive capacities may be affected 

differently. Another important issue to address in future studies is individual 

differences in responses to nocturnal light exposure and tolerance to night work. 

The results of paper 1 suggests that full-spectrum (4000 K) bright light (~ 900 

lx), compared to a standard light (~ 90 lx), reduces sleepiness, and improves 

performance during three consecutive night shifts. Paper 1 also indicated that bright 

light may hasten circadian adaptation and suggested increased daytime sleep duration 
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after the night shifts with bright light compared to standard light. As such, these 

findings have implications for the recommended light intensity that should be 

employed at real-life workplaces during night work. Increasing the light intensity may 

have beneficial implications both in terms of safety and productivity, as well as 

workers’ wellbeing with reduced sleepiness and improved sleep. The standard light 

condition of 90 lx at eye level seems to have too low light intensity for being 

recommended for night work. The results in paper 2 suggests that monochromatic 

short-wavelength blue light (max = 455 nm), compared to long-wavelength red light 

(max = 625 nm) with similar photon density (~ 2.8 x 1014 photons/cm2/s), reduces 

sleepiness, and improves performance, and circadian adaptation during one simulated 

night shift. Paper 2 also indicates that monochromatic light conditions, previously 

administered with specialized lighting set-ups, can now be provided using standard 

LED-luminaires. Using such light conditions may not be feasible at a real-life 

workplace, but the findings warrants more research to assess the applicability at 

workplaces, as well as for treatment purposes. The results of paper 3 indicated minor, 

yet beneficial effects during three consecutive night shifts with ~ 200 lx of blue-

enriched white light (7000 K), compared to warm white light (2500 K). However, the 

effects may have important implications as 7000 K light apparently reduces the 

number of omission and commission errors during a sustained attention task in the 

early morning hours. Thus, safety may be improved during similar applied task, e.g. 

driving, or monitoring in a control room, by exposing night workers to blue-enriched 

light. More research in applied settings is needed to validate these findings.  

LED lighting has great potential for eliciting favourable nonvisual effects 

among night workers, and as such improve adaptation to night work. However, further 

research is warranted to investigate the applicability at real-life workplaces. There is 

also a need to address possible adverse effects of nocturnal light exposure, in particular 

long-term effects. Future research should also explore more light conditions and 

combinations, e.g. dynamic LED lighting (changing spectral characteristics across the 

day/night), that can be favourable for night workers, in order to develop 

recommendations for illumination of night workers workplaces. 
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Abstract: Light can be used to facilitate alertness, task performance and circadian adaptation during
night work. Novel strategies for illumination of workplaces, using ceiling mounted LED-luminaires,
allow the use of a range of different light conditions, altering intensity and spectral composition.
This study (ClinicalTrials.gov Identifier NCT03203538) investigated the effects of short-wavelength
narrow-bandwidth light (λmax = 455 nm) compared to long-wavelength narrow-bandwidth light
(λmax = 625 nm), with similar photon density (~2.8 × 1014 photons/cm2/s) across light conditions, during
a simulated night shift (23:00–06:45 h) when conducting cognitive performance tasks. Light conditions
were administered by ceiling mounted LED-luminaires. Using a within-subjects repeated measurements
study design, a total of 34 healthy young adults (27 females and 7 males; mean age = 21.6 years,
SD = 2.0 years) participated. The results revealed significantly reduced sleepiness and improved task
performance during the night shift with short-wavelength light compared to long-wavelength light.
There was also a larger shift of the melatonin rhythm (phase delay) after working a night shift in
short-wavelength light compared to long-wavelength light. Participants’ visual comfort was rated as
better in the short-wavelength light than the long-wavelength light. Ceiling mounted LED-luminaires
may be feasible to use in real workplaces, as these have the potential to provide light conditions that are
favorable for alertness and performance among night workers.

Keywords: short-wavelength light; night work; sleepiness; alertness; performance; circadian rhythm

1. Introduction

At the beginning of this century it was established that humans have nonvisual photic input from
a subset of intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing the photopigment
melanopsin, which is maximally sensitive to short-wavelength light [1–3]. These ipRGCs project
directly to the main circadian pacemaker located in the hypothalamic suprachiasmatic nuclei (SCN),
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and this pacemaker controls and coordinates circadian rhythms [1,2]. Further insights have revealed
that ipRGCs also project to various brain areas involved in sleep–wakefulness regulation, mood and
even higher order cognitive processes [4–6]. Although melanopsin is the primary photopigment
eliciting nonvisual effects, classical rods and cones also contribute to nonvisual responses to light via
input to the ipRGCs [7,8].

Nonvisual responses sensitive to short-wavelength light include suppression of melatonin
production [9,10], circadian phase shifting [11,12], pupil responses [13], and enhancement of alertness
and performance [14–16]. It has been suggested that the alerting effects of light are strongest at night [5],
when the circadian- and homeostatic drives for sleep are high, as postulated by the two-process
model of sleep regulation [17]. Accordingly, several previous studies reporting alerting effects of
short-wavelength narrow-bandwidth light [14,15,18] were conducted late in the evening or during the
biological night, under relatively high circadian- and homeostatic sleep pressure. During the night,
the alerting effects of short-wavelength light are induced by counteracting both the circadian and
homeostatic drives for sleep, while during the day only the homeostatic sleep pressure is affected [19].

Especially at lower light intensity levels, short-wavelength narrow-bandwidth light (λmax = 479 nm)
was found to be more effective for eliciting subjective alerting responses than long-wavelength
narrow-bandwidth light (λmax = 627 nm), while at higher intensity levels the difference becomes
less clear [20]. Note that long-wavelength narrow-bandwidth light (λmax = 630 nm) also seems to
be able to enhance alertness and performance compared to dark conditions [21,22]. Such findings
have also been reported during daytime, as long-wavelength light improved alertness, assessed with
electroencephalography, relative to darkness [23]. It was further noted that melatonin suppression is
thus not needed for eliciting alerting effects in humans. Common for the previous narrow-bandwidth
light studies were strict control of light exposure, and administration by special lighting set-ups such
as custom-made light spheres [9–11,14,19,20], light goggles [15,21], light visors [16], or light boxes [22].
While the use of such specialized lighting set-ups allows for well controlled laboratory trials, the suitability
in real-life settings may be limited.

Night work has consistently been associated with alertness and performance deterioration [24,25],
and light interventions have the potential to counter these immediate effects of night work, both by its
acute alerting properties [26] and via circadian phase shifting [27]. However, reviews of interventions
to reduce the negative impact of night work (also chronic health effects) have indicated that definite
conclusions on the beneficial effects of light interventions during night work cannot yet be drawn [28,29].
Recently, it was also noted that although most field studies indicate some beneficial effect of light
during night work, methodological issues and diversity preclude conclusion about appropriate light
schedules for night shift workers [30].

Due to nonvisual responses being sensitive to short-wavelength light, there has been an interest in
employing short-wavelength enriched (i.e., blue-enriched) white light as a countermeasure against some
of the negative impacts of night shift work. As such, recent studies have suggested beneficial effects of
blue-enriched light on nocturnal alertness and performance [31–33]. On the other hand, an issue with
the use of light interventions during night work, especially short-wavelength light, is the potential
negative effects associated with light at night, e.g., melatonin suppression has been suggested as a
mechanism for the increased risk of cancer among night shift workers [34,35]. Thus, studies have also
investigated short-wavelength depleted/attenuated white light during simulated night shifts [36–38].
These studies have indicated that such lighting can reduce melatonin suppression and phase shifting
of the melatonin rhythm, without having a negative impact on alertness and performance.

The development of light emitting diodes (LED) has made light characteristics such as spectral
composition and light intensity easily controllable [39]. Thus, light exposures previously administered
by specialized lighting set-ups, can now be administered via standard ceiling mounted LED-luminaires
applicable for illumination of workplaces. However, only a few recent studies have used such
LED-based lighting during simulated night work [33,40,41]. The effects of narrow-bandwidth lighting
using ceiling mounted LED-luminaires during night work have not yet been investigated.
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Most previous studies reporting alerting effects of short-wavelength narrow-bandwidth light have
employed relatively low photon density [14,15,18,19], hence there is a lack of studies investigating
narrow-bandwidth light levels that could be sufficient for a workplace setting. Three previous
studies [14,15,19] used photon matching and a photon density of 2.8 × 1013 photons/cm2/s, comparing
short-wavelength narrow-bandwidth light (λmax = 460 nm) and medium-wavelength narrow-bandwidth
light (λmax = 550–555 nm) light. One study [18] compared short-wavelength narrow-bandwidth light
(λmax = 460 nm) and long-wavelength narrow-bandwidth light (λmax = 640 nm), using an even lower
photon density of 5 × 1012 photons/cm2/s (~1.0 lx). The latter study, however, was targeted towards work
situations such as driving, where low intensity light would be practical.

The aim of the current study was to investigate how short-wavelength narrow-bandwidth light,
compared to long-wavelength narrow-bandwidth light, administered by standard ceiling mounted
LED-luminaires, affected alertness, task performance, and circadian adaptation during a simulated
night shift. Similar photon density (~2.8 × 1014 photons/cm2/s) was used for both the short-wavelength
(λmax = 455 nm) and the long-wavelength (λmax = 625 nm) narrow-bandwidth light, with photopic
illuminances of 60.8 lx and 195.9 lx, respectively. Multiple measures were used to assess subjective
alertness, mood states and task performance during the simulated night shift, as well as the magnitude
of the circadian phase shift following the night shift. Limited constraints and requirements were put on
the participants in order to mimic naturalistic working conditions as much as possible. We employed
repeated measurements to assess the alertness dynamics during the night shift. We hypothesized that
high photon density short-wavelength narrow-bandwidth light, administered by standard ceiling
mounted LED-luminaires, would lead to better alertness, mood and performance during the night
shift, compared to a night shift with long-wavelength narrow-bandwidth light. We also hypothesized
that the night shift with short-wavelength light would lead to a larger phase delay of the circadian
rhythm, compared to a night shift with long-wavelength light. In addition, we investigated participants’
subjective evaluation of the lighting conditions, as well as visual comfort, during the night shift.

2. Materials and Methods

2.1. Study Design

A within-subject repeated measures design was applied to investigate the effects of
narrow-bandwidth light exposure (short-wavelength vs. long-wavelength) during two simulated
(laboratory) night shifts (Figure 1). Participants came to the laboratory, in groups of four to eight
participants, on two separate evenings to complete the night shift (23:00–06:45 h) (short-wavelength
and long-wavelength light counterbalanced). The simulated night shift sessions were separated by
4 weeks. The study was conducted at a high latitude (~60◦ N), and during a time of year (October 2018
to March 2019) with limited daylight exposure, in order to accentuate effects of light exposure.

2.2. Participants

Thirty-four young adults participated in the study (27 females and 7 males; mean age 21.6 years,
SD = 2.0 years, range 18–27 years). Six participants dropped out after the first shift, and two had their
second night shift cancelled as their group (n = 2) was considered too small to carry out the night
shift. Thirty-one (6 males) and 29 participants (7 males) completed the night shift in short-wavelength
and long-wavelength light, respectively. Overall, 26 participants (6 males: mean age 21.6 years,
SD = 1.9 years) completed both night shifts. A power analysis was conducted a priori. Expecting a
medium effect size (Cohen’s d = 0.5) with significance level of 0.05, power of 0.8 and correlation among
repeated measures (n = 5) of 0.5 in a repeated measures within factors design (ANOVA), 21 participants
were calculated to be needed [42]. The sample size complied also with the recently recommended
sample size (paired t-test; n = 26) for studies investigating the alerting effects of light [43].
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bandwidth light (A) and short-wavelength narrow-bandwidth light (B). The night shifts were 
separated by 4 weeks and the order of conditions was counterbalanced. White bars indicate 
enrollment and practice session (before the first night shift only) in the laboratory. Black bars indicate 
assumed sleep periods at home. Colored bars indicate night shifts in the laboratory. Black dots 
indicate primary test bouts including the Positive and Negative Affect Schedule (PANAS), the 
Karolinska Sleepiness Scale (KSS), a Psychomotor Vigilance Task (PVT), and a Digit Symbol 
Substitution Test (DSST). White diamonds indicate salivary dim-light melatonin sampling at home. 
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Figure 1. Double-raster plot of the simulated night shift protocol. The protocol included two simulated
night shifts (from 23:00 to 06:45 h) performed in a laboratory with long-wavelength narrow-bandwidth
light (A) and short-wavelength narrow-bandwidth light (B). The night shifts were separated by 4 weeks
and the order of conditions was counterbalanced. White bars indicate enrollment and practice session
(before the first night shift only) in the laboratory. Black bars indicate assumed sleep periods at home.
Colored bars indicate night shifts in the laboratory. Black dots indicate primary test bouts including the
Positive and Negative Affect Schedule (PANAS), the Karolinska Sleepiness Scale (KSS), a Psychomotor
Vigilance Task (PVT), and a Digit Symbol Substitution Test (DSST). White diamonds indicate salivary
dim-light melatonin sampling at home.

Participants were recruited among university students by invitation via the learning platform
and/or mass e-mail. Prior to enrollment, subjects completed an online screening survey to ensure
eligibility. All participants had good to excellent self-reported health and body mass index <30 kg/m2.
Participants reported no current or relevant history of psychiatric-, neurological-, cardiovascular-, lung-,
sleep- and/or eye diseases/disorders, and normal color vision (also measured with the 17-plate Ishihara
Test for Color Deficiency). Participants were not on medications (except some females were on oral
contraceptives) and females were not pregnant or breastfeeding. None of the participants were extreme
chronotypes according to the short Morningness–Eveningness Questionnaire [44], and none were
engaged in night work and/or had transmeridian travel in the month prior to or during the study period.
All recruited participants reported habitual sleep duration of 6–10 h per night, with habitual wake times
between 06:00 and 10:00 h. These sleep criteria were set to reduce variation in participants’ circadian
phase, and homeostatic sleep pressure. Furthermore, the sleep criteria ensured that the participants
performed the night shifts during their biological night. Adherence was confirmed by sleep diaries
and wrist-actigraphy (Actiwatch 2 or Actiwatch Spectrum; Philips Respironics, The Netherlands) for
three days prior to each night shift. The light sensor on the Actiwatch was also used to assess light
exposure in the hours preceding the night shifts (see Table S1). Participants refrained from alcohol use
three days prior to and during each night shift, caffeine use in the period from 10:00 h on the day prior
to (i.e., morning coffee was allowed) and during each night shift, and tobacco/nicotine use at least 2 h
prior to and during each night shift.

2.3. Procedures

Three days prior to the first night shift, eligible subjects were invited to an enrollment session.
All subjects signed an informed consent form and completed a set of questionnaires and practiced the
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performance tasks used in the experiment. Standard illumination (~4000 K) of approximately 200 lx
at eye level (vertical plane, 120 cm height) was applied during the enrollment session. In addition,
participants received the actigraph and equipment for collecting saliva samples (instructions sheet,
dark sunglasses, and saliva tubes) at home. The participants slept at home with no restrictions on
activities or light exposure, except during saliva sampling in the evening on the day before the night
shift, and no napping was allowed on the day prior to the night shift.

The simulated night shift and light exposure (short-wavelength or long-wavelength light) started at
23:00 h and ended at 06:45 h. The first 30 min were used for adaptation and preparation, including completing
questionnaires assessing visual comfort (headache and eye strain symptoms), and evaluation of the
lighting conditions. At 23:30 h, the first of five main test bouts commenced, and was repeated every
90 min at 01:00, 02:30, 04:00 and 05:30 h, respectively. One test bout lasted ~20 min and included
the Positive and Negative Affect Schedule (PANAS), the Karolinska Sleepiness Scale (KSS), a 10-min
computerized Psychomotor Vigilance Task (PVT), and a 2-min computerized Digit Symbol Substitution
Test (DSST). During testing, participants were seated at their desk space and wore noise cancelling
headsets (BOSE QuietComfort 25, BOSE Corp., Framingham, MA, USA). Between the main test
bouts, other tests and questionnaires were administered, such as a pegboard test, working memory,
reversal learning, numerosity discrimination, and a Go/No-go test, as well as a questionnaire on
evaluation of moral issues. In this paper, we report results from the main test bouts only, in addition to
visual comfort and evaluation of the lighting conditions. The protocol was the same during both night
shifts. Participants had several short breaks (usually 10–15 min) allowing quiet activities (e.g., reading
and talking). Participants remained seated at their designated desk space for most of the time during
the whole shift, except for toilet breaks, for which they had to walk through a dimly lit hallway.
A researcher was present in the laboratory during the whole shift to ensure completion of tasks and
adherence to the protocol. A standardized meal/snack (~200 kcal) was provided at about 02:00 and
05:00 h, and water was available ad libitum. No other foods or drinks were allowed.

Participants completing the study were compensated for their participation and inconvenience.
The study was conducted in accordance with the Declaration of Helsinki, and the protocol was approved
by the Norwegian Regional Committee for Medical and Health Research Ethics, health region West
(No. 2016/1903). The study was preregistered, with ClinicalTrials.gov Identifier NCT03203538.

2.4. Laboratory and Light Exposure

The laboratory (30 m2) had no windows, was air-conditioned and temperature maintained at
~22 ◦C. Participants were designated to one of eight similar desk spaces, separated by partition walls,
with equivalent desktop computers. Computer screens were fitted with a filter foil (Metolight SFG-10;
Asmetec, Kirchheimbolanden, Germany) that blocked all light wavelengths <520 nm. The room was
equipped with 20 ceiling mounted LED-luminaires (Modul R 600 LED CCT/RGB MP; Glamox Luxo
Lighting AB, Gothenburg, Sweden; size 60 × 60 cm), providing uniform illumination of the room.
The light conditions were measured at the beginning, middle, and end of each night shift, at two
desk spaces, one on each side of the room. Measurements were performed at eye level (vertical plane,
120 cm height) while seated at the desk space, using a spectroradiometer (GL Spectics 1.0 T; GL Optic,
Puszczykowo, Poland). Lighting parameters (Table 1) were calculated according to the CIE S 026
Toolbox—version 1.049 [45]. The photon density was similar for the two light conditions, and both
light conditions had <15 nm half-peak bandwidth (Figure 2). Note that participants’ posture and gaze
direction were not strictly controlled (except when engaged in the performance tasks). The light levels
thus represent the approximate light exposure at eye level during most of the time in the laboratory.



Clocks&Sleep 2020, 2 507

Table 1. Light exposure at eye level (vertical plane) for the two light conditions.

Short-Wavelength
Narrow-Bandwidth Light

Long-Wavelength
Narrow-Bandwidth Light

Mean (SD) Mean (SD)

Peak spectral irradiance (nm) 455 625
Irradiance (µW/cm2) 125.0 (5.4) 82.6 (4.9)
Photopic illuminance (lx) 60.8 (4.0) 195.9 (10.6)
Melanopic EDI (lx) 584.5 (23.0) 4.1 (1.6)
Photon density (photons/cm2/s) 2.9 × 1014 (1.4 × 1013) 2.6 × 1014 (1.5 × 1013)

Human photoreceptor responses
(irradiance—µW/cm2)
S-cone-opic 97.0 (3.9) 0.2 (0.1)
M-cone-opic 23.7 (1.0) 9.5 (0.6)
L-cone-opic 14.6 (0.8) 38.3 (2.0)
Rhodopic 63.5 (2.5) 1.3 (0.2)
Melanopic 77.5 (3.1) 0.5 (0.2)

Note: Light was measured in the beginning, middle, and end of each night shift at two desk spaces. Lighting
parameters computed according to the CIE S 026 Toolbox—version 1.049 [45]. EDI = equivalent daylight illuminance.
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Table 1. Light exposure at eye level (vertical plane) for the two light conditions. 

 
Short-Wavelength 

Narrow-Bandwidth Light 
Long-Wavelength 

Narrow-Bandwidth Light 
Mean (SD) Mean (SD) 

Peak spectral irradiance (nm) 455 625 
Irradiance (µW/cm2) 125.0 (5.4) 82.6 (4.9) 
Photopic illuminance (lx) 60.8 (4.0) 195.9 (10.6) 
Melanopic EDI (lx) 584.5 (23.0) 4.1 (1.6) 
Photon density (photons/cm2/s) 2.9 × 1014 (1.4 × 1013) 2.6 × 1014 (1.5 × 1013) 
Human photoreceptor responses 
(irradiance—µW/cm2) 

  

S-cone-opic 97.0 (3.9) 0.2 (0.1) 
M-cone-opic 23.7 (1.0) 9.5 (0.6) 
L-cone-opic 14.6 (0.8) 38.3 (2.0) 
Rhodopic 63.5 (2.5) 1.3 (0.2) 
Melanopic 77.5 (3.1) 0.5 (0.2) 

Note: Light was measured in the beginning, middle, and end of each night shift at two desk spaces. 
Lighting parameters computed according to the CIE S 026 Toolbox—version 1.049 [45]. EDI = 
equivalent daylight illuminance. 
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higher irradiance of the short-wavelength light (EMM = 125; SE = 1 µW/cm2) compared to long-
wavelength light (EMM = 82; SE = 1 µW/cm2), but there were no significant effects of Time (F2,54 = 1.07; 
p = 0.351) or the Light by Time (F2,54 = 0.27; p = 0.765) interaction. 

Figure 2. Spectral distribution of the short-wavelength narrow-bandwidth light (solid line) and the
long-wavelength narrow-bandwidth light (dotted line). Means and SD (error bars) for measurements
(vertical plane) at eye level.

The stability of the light exposure (irradiance) during the night shifts was analyzed using a
linear mixed model with Group (six groups of participants) included as a random factor and Light
(long-wavelength vs. short-wavelength), Time (beginning, middle or end of shift), and the interaction
Light by Time entered as fixed factors. There was a significant effect of Light (F1,54 = 1087.44; p < 0.001)
with higher irradiance of the short-wavelength light (EMM = 125; SE = 1 µW/cm2) compared to
long-wavelength light (EMM = 82; SE = 1 µW/cm2), but there were no significant effects of Time
(F2,54 = 1.07; p = 0.351) or the Light by Time (F2,54 = 0.27; p = 0.765) interaction.

2.5. Measures

2.5.1. Mood and Subjective Alertness

Positive and negative mood were measured with PANAS [46]. PANAS comprises 20 items/words
describing different feelings and emotions, and participants indicated to which extent they felt a
certain way at that moment on a 5-point Likert scale ranging from 1, “very slightly or not at all”,
to 5, “extremely”. PANAS was completed at the beginning of each main test bout, and the positive
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and negative affect subscales showed internal reliability of Cronbach’s α = 0.92 and Cronbach’s
α = 0.68, respectively.

Subjective alertness/sleepiness was measured with KSS [47]. KSS comprises a 9-point Likert scale
ranging from 1, “very alert”, to 9, “very sleepy, fighting sleep, strenuous to keep awake”. The KSS was
completed at the beginning and at the end of each main test bout, and the average KSS rating for each
test bout was analyzed.

2.5.2. Task Performance

Participants’ vigilance and ability to sustain attention was assessed with a 10 min PVT [48,49].
The PVT is sensitive for detecting effects of sleep deprivation and shows minor aptitude and learning
effects [48,49]. Participants monitored a rectangle/box on the computer screen and responded with
their dominant hand by pressing the space bar when a visual stimulus (a counting timer) appeared
inside the box. After each trial, a 1 s feedback on response time (RT) was provided. The interstimulus
interval randomly varied from 2 to 10 s including feedback. If no response was registered after 30 s
(treated as a valid trial with RT = 30,000 ms), a sound alerted the participant and a new trial began.
RTs shorter than 100 ms were considered as false starts. For all PVTs performed during the night shifts
(n = 300), the mean number of trials per test was 95 (SD = 6). The outcome measures reported here are
the “mean 1/RT” (reciprocal RTs), “lapses” (number of RTs ≥ 500 ms) and the “mean RT500” (mean RTs
with lapses excluded).

Participants also performed a 2-min DSST [50], which was administered directly following the
PVT. The DSST is sensitive to changes in cognitive function, and able to detect sleep deprivation
effects [50]. DSST performance improves, however, with repeated administration [50], and to minimize
such learning effects the DSST was practiced once during the enrollment session, and the symbol–digit
pairs were randomized across administrations. A target symbol (one of nine symbols presented in a
random order) was presented at the center of the screen and had to be paired with the corresponding
digit from a symbol–digit array shown at the bottom of the screen. The mouse pointer was used for
selecting digits and if no response was recorded after 5 s, the next trial began. The mean number of
trials per test was 76 (SD = 8), and the outcome measure derived was the “n correct” (number of correct
responses).

2.5.3. Visual Comfort and Evaluation of Lighting Conditions

Visual comfort was assessed with the Headache and Eye Strain Scale (HES) [51] at the beginning
(23:15 h), middle (03:15 h), and at the end (06:15 h) of each night shift. The HES questionnaire comprises
8 items/symptoms: “irritability”, “headache”, “eye strain”, “eye discomfort”, “eye fatigue”, “difficulty
focusing”, “difficulty concentrating”, and “blurred vision”. Participants indicated to what extent
they currently experienced the symptoms on a 4-point scale (1 = absent, 2 = slight, 3 = moderate,
and 4 = severe).

Participants’ subjective evaluation of the lighting conditions was assessed using a 7-point semantic
differential scale questionnaire adapted from [52,53]. The questionnaire was completed at the beginning
(23:15 h) and at the end (06:30 h) of each night shift. Four items comprised the subscale “pleasantness”
of the lighting (“unpleasant–pleasant”, “uncomfortable–comfortable”, “disturbing–not disturbing” and
“causing glare–not causing glare”) which showed good reliability with Cronbach’s α = 0.87. Four single
items assessed the “clearness” (“unclear–clear”), “color” (“warm–cold”), “brightness” (“dim–bright”),
and whether the lighting was “activating” (“relaxing–stimulating”). One item probed whether the
light was “suitable for work” (“unsuitable for work–suitable for work”). For each of the six outcomes,
the average rating for the two time points was used for analysis, as there were no differences between
time of assessment.
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2.5.4. Circadian Phase

Participants’ circadian phase was assessed before and after each night shift by measuring salivary
dim light melatonin onset (DLMO). Baseline DLMO was sampled in the evening on the day before
each night shift, while the final DLMO was sampled in the evening on the day after each night shift.
Participants provided hourly saliva samples at home (six samples each evening), using Salivette tubes
(Sarstedt AG & CO, Nümbrecht, Germany). Sampling of baseline DLMO started 4 h before and
lasted until 1 h after the participants’ usual bedtime. Relative to baseline DLMO sampling, the time
of final DLMO sampling was delayed by 1 h (hence the last sampling was 2 h after usual bedtime).
A similar protocol as described in a previous study was applied [54]. To ensure dim light during
sampling, participants wore dark sunglasses (Uvex Athletic ISO 9001, Uvex Winter Holding GmbH
& Co., Fürth, Germany; and/or Uvex Genesis S3208 Infra-dura 5.0, Honeywell, Charlotte, NC, USA)
from 1 h before and during the whole sampling period. These glasses’ lenses reduce light intensity to
<1% [54]. Before delivery to the laboratory for storage at −70 ◦C, participants were instructed to label
the samples with clock time and store them in their domestic refrigerator (4 ◦C).

The saliva samples were assayed with an enzyme-linked immunosorbent assay kit (EK-DSM,
Bühlman Laboratories, Schönenbuch, Switzerland) with a detection limit of 0.5 pg/mL and a functional
sensitivity of 1.6–20.5 pg/mL. A Wallac 1420 Multilabel counter (Perkin Elmer Inc., Waltham, MA, USA)
was used to analyze the samples. The inter-assay variation was 18.4% and 14.8% for the low and high
quality control, respectively. The mean (SD) melatonin value was 4.4 (0.8) and 13.7 (2.0) pg/mL for
the low and high quality control, respectively. The DLMO was set as the clock time when salivary
melatonin concentration reached 4 pg/mL, using linear interpolation between adjacent samples [55].
If melatonin concentration during sampling reached 3 pg/mL, but not 4 pg/mL, linear extrapolation
was used. The magnitude of the phase shift was calculated as the difference between baseline DLMO
and final DLMO for each individual. As an estimate of the temperature minimum (Tmin), 7 h was
added to the baseline and final DLMO [27].

Due to missing DLMO data, the circadian phase shift could not be calculated for all participants.
After the night shift in long-wavelength light, phase shifts were estimated for 22 (76%) of 29 participants,
while after the night shift in short-wavelength light, phase shifts were estimated for 19 (61%) of
31 participants. For the long-wavelength light condition, one participant did not reach 3 pg/mL during
final sampling, four had melatonin levels exceeding 4 pg/mL for all samples at baseline and/or final
DLMO sampling, and two participants did not provide saliva samples. For the short-wavelength light
condition, three participants did not reach 3 pg/mL during final sampling, eight had melatonin levels
exceeding 4 pg/mL for all samples at baseline and/or final DLMO sampling, and one did not perform
the final sampling.

2.6. Statistical Analysis

Participant characteristics were described by means and standard deviations (SD). To assess the
effects of light exposure, Linear Mixed Model (LMM) analyses and Generalized Linear Mixed Model
(GLMM) analyses were performed. For positive mood, negative mood, KSS, PVT mean 1/RT and mean
RT500, and the DSST n correct (separate analyses per variable), three LMM models, using maximum
likelihood estimation, were performed for each of the variables: (1) A random effect model with
Participant included as a random effect, (2) a main effects model with Light (short-wavelength vs.
long-wavelength) and Time (23:30 vs. 01:00, 02:30, 04:00 and 05:30 h) entered in the model as fixed
factors, and (3) an interaction effect model with the Light by Time interaction also included as a fixed
factor. For all variables, the main effects model had a better model fit, as assessed with a Likelihood
Ratio Test (LRT), than the random effect model. For variables with a significant Light by Time
interaction, the LRT indicated that the interaction effect model had the best model fit. The LRT was
performed by comparing the difference in −2 times the log of the likelihood between successive models
following a chi-square distribution, using degrees of freedom equal to the difference in the number of
parameters between the compared models. The normality of the residuals from the interaction effect
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models were assessed with Shapiro–Wilk tests and normality plots to confirm that assumptions were
met. Post-hoc comparisons were conducted using Bonferroni corrections, and the estimated marginal
means (EMM) and standard errors (SE) are reported. R-squared (R2) was calculated representing
the proportion of reduction in variance of the residuals (this measure can also have negative values),
and R2 for the interaction effect models are reported.

PVT lapses were analyzed using GLMM models, with a negative binominal distribution, as this is
a count variable showing overdispersion. A similar procedure as described above (random-, main- and
interaction effect models) was applied. The LRT approach for assessing model fit is not appropriate
for the GLMM analyses, as restricted maximum likelihood estimation is used. Instead, the Akaike’s
information criterion (AIC) and the Schwarz’s Bayesian criterion (BIC) were used for comparison
of model fit (smallest values were preferred), and accordingly, the interaction effects model had the
best fit.

The HES symptoms, and the items probing evaluation of the lighting conditions, were analyzed
using LMMs as described above. However, there were only three time points (23:15, 03:15 and 06:15 h)
for the HES’ Time factor, and for evaluation of lighting conditions there was no time factor (nor
interaction) entered into the LMM models.

The magnitude of the phase shift was analyzed using LMMs with Participant as a random effect,
and Light (short-wavelength vs. long-wavelength) included as a fixed factor, employing similar settings
and procedures as described above. To investigate whether there were differences in baseline DLMO
between the conditions, paired samples t-tests were used. Pearson’s product–moment correlation
coefficients were calculated to assess whether baseline DLMO was related to the phase shift magnitude.

Statistical analyses were performed using IBM SPSS Statistics, version 25 (IBM Corp., Endicott,
NY, USA).

3. Results

3.1. Mood and Subjective Alertness

3.1.1. PANAS: Effects on Mood

Analyses of positive mood and negative mood indicated no significant main effects of Light,
but there was a significant main effect of Time for both measures (Table 2). Positive mood was reduced
at 01:00, 02:30, 04:00 and 05:30 h (p < 0.001, all) compared to 23:30 h. Negative mood was reduced at
02:30 h (p = 0.002) compared to 23:30 h. For positive mood, there was no significant Light by Time
interaction effect (Figure 3A). For negative mood, there was a significant Light by Time interaction
effect, and post-hoc comparisons revealed increased negative mood in short-wavelength light at 23:30 h
(Figure 3B).

3.1.2. KSS: Effects on Subjective Sleepiness

For KSS, there were significant main effects of Light with reduced sleepiness in short-wavelength
light, and Time with increased sleepiness at 01:00, 02:30, 04:00 and 05:30 h (p < 0.001, all) compared
to 23:30 h (Table 2). There was also a significant Light by Time interaction effect, with post-hoc
comparisons showing reduced sleepiness in short-wavelength light in the middle and later parts of the
night shift (Figure 3C).



C
lo

ck
s&

Sl
ee

p
20

20
,2

51
1

Ta
bl

e
2.

Eff
ec

ts
of

lig
ht

co
nd

it
io

n
an

d
ti

m
e

on
m

oo
d,

su
bj

ec
ti

ve
sl

ee
pi

ne
ss

,t
as

k
pe

rf
or

m
an

ce
an

d
vi

su
al

co
m

fo
rt

.

Lo
ng

-W
av

el
en

gt
h

Li
gh

t
Sh

or
t-

W
av

el
en

gt
h

Li
gh

t
Li

gh
t

Ti
m

e
Li

gh
tb

y
Ti

m
e

EM
M

(S
E)

EM
M

(S
E)

F
(d

f)
p

F
(d

f)
p

F
(d

f)
p

R
2

PA
N

A
S

(1
0–

50
(e

xt
re

m
el

y)
)

Po
si

ti
ve

m
oo

d
19

.6
3

(0
.8

7)
20

.2
2

(0
.8

6)
1.

13
(1

,2
78

)
0.

28
9

56
.8

1
(4

,2
67

)
<

0.
00

1
1.

57
(4

,2
67

)
0.

18
2

0.
28

N
eg

at
iv

e
m

oo
d

11
.5

5
(0

.3
1)

11
.7

4
(0

.3
1)

0.
99

(1
,2

78
)

0.
32

0
3.

93
(4

,2
67

)
0.

00
4

3.
24

(4
,2

67
)

0.
01

3
0.

05

Sl
ee

pi
ne

ss
(K

SS
,1

–9
(s

le
ep

y)
)

6.
97

(0
.2

1)
6.

28
(0

.2
1)

25
.3

2
(1

,2
78

)
<

0.
00

1
59

.2
3

(4
,2

66
)

<
0.

00
1

3.
61

(4
,2

66
)

0.
00

7
0.

30

Ps
yc

ho
m

ot
or

vi
gi

la
nc

e
ta

sk

M
ea

n
1/

R
T

2.
82

(0
.0

8)
2.

97
(0

.0
8)

18
.3

6
(1

,2
72

)
<

0.
00

1
32

.2
1

(4
,2

66
)

<
0.

00
1

3.
29

(4
,2

66
)

0.
01

2
0.

14
M

ea
n

R
T5

00
34

2.
79

(5
.4

6)
33

2.
40

(5
.4

4)
25

.2
4

(1
,2

70
)

<
0.

00
1

40
.9

7
(4

,2
66

)
<

0.
00

1
4.

04
(4

,2
66

)
0.

00
3

0.
14

N
um

be
r

of
la

ps
es

(R
Ts
≥

50
0

m
s)

a
6.

95
(1

.4
9)

4.
82

(1
.0

9)
6.

60
(1

,2
90

)
0.

01
1

37
.4

1
(4

,2
90

)
<

0.
00

1
2.

68
(4

,2
90

)
0.

03
2

-
D

ig
it

sy
m

bo
ls

ub
st

itu
tio

n
te

st
(n

co
rr

ec
t)

73
.5

0
(1

.3
2)

76
.3

5
(1

.3
1)

18
.1

7
(1

,2
73

)
<

0.
00

1
8.

48
(4

,2
65

)
<

0.
00

1
1.

58
(4

,2
65

)
0.

18
0

0.
08

H
ea

da
ch

e
an

d
ey

e
st

ra
in

sc
al

e
(1

–4
(s

ev
er

e)
)

Ir
ri

ta
bi

lit
y

1.
71

(0
.1

2)
1.

70
(0

.1
2)

0.
01

(1
,1

55
)

0.
92

8
7.

41
(2

,1
47

)
0.

00
1

2.
78

(2
,1

47
)

0.
06

5
0.

05
H

ea
da

ch
e

1.
80

(0
.1

1)
1.

58
(0

.1
1)

7.
14

(1
,1

56
)

0.
00

8
18

.4
5

(2
,1

47
)

<
0.

00
1

0.
57

(2
,1

47
)

0.
56

8
0.

11
Ey

e
st

ra
in

2.
73

(0
.1

2)
2.

44
(0

.1
2)

8.
33

(1
,1

57
)

0.
00

4
39

.4
5

(2
,1

46
)

<
0.

00
1

2.
08

(2
,1

46
)

0.
12

9
0.

22
Ey

e
di

sc
om

fo
rt

2.
50

(0
.1

4)
2.

22
(0

.1
4)

7.
18

(1
,1

54
)

0.
00

8
29

.7
5

(2
,1

46
)

<
0.

00
1

3.
82

(2
,1

46
)

0.
02

4
0.

15
Ey

e
fa

ti
gu

e
2.

86
(0

.1
1)

2.
49

(0
.1

1)
14

.1
8

(1
,1

58
)

<
0.

00
1

86
.0

7
(2

,1
45

)
<

0.
00

1
3.

97
(2

,1
45

)
0.

02
1

0.
39

D
iffi

cu
lt

y
fo

cu
si

ng
2.

72
(0

.1
3)

2.
45

(0
.1

3)
7.

72
(1

,1
54

)
0.

00
6

56
.0

7
(2

,1
45

)
<

0.
00

1
2.

05
(2

,1
45

)
0.

13
2

0.
25

D
iffi

cu
lt

y
co

nc
en

tr
at

in
g

2.
74

(0
.1

1)
2.

39
(0

.1
1)

11
.2

7
(1

,1
60

)
0.

00
1

74
.0

3
(2

,1
47

)
<

0.
00

1
1.

45
(2

,1
47

)
0.

23
8

0.
38

Bl
ur

re
d

vi
si

on
2.

06
(0

.1
4)

1.
82

(0
.1

3)
6.

43
(1

,1
54

)
0.

01
2

13
.8

3
(2

,1
46

)
<

0.
00

1
1.

54
(2

,1
46

)
0.

21
9

0.
07

N
ot

e:
V

ar
ia

bl
es

an
al

yz
ed

us
in

g
lin

ea
r

m
ix

ed
m

od
el

an
al

ys
es

.a
A

na
ly

ze
d

us
in

g
ge

ne
ra

liz
ed

lin
ea

r
m

ix
ed

m
od

el
s.

R
2

is
th

e
pr

op
or

tio
n

of
re

du
ct

io
n

in
va

ri
an

ce
of

th
e

re
si

du
al

s
be

tw
ee

n
a

ra
nd

om
eff

ec
ts

m
od

el
an

d
th

e
in

te
ra

ct
io

n
eff

ec
ts

m
od

el
.E

M
M

=
es

tim
at

ed
m

ar
gi

na
lm

ea
n;

SE
=

st
an

da
rd

er
ro

r;
df

=
de

gr
ee

s
of

fr
ee

do
m

;P
A

N
A

S
=

Po
si

tiv
e

an
d

N
eg

at
iv

e
A

ff
ec

tS
ch

ed
ul

e;
K

SS
=

K
ar

ol
in

sk
a

Sl
ee

pi
ne

ss
Sc

al
e;

R
T

=
re

sp
on

se
ti

m
e.



Clocks&Sleep 2020, 2 512Clocks & Sleep 2020, 2 FOR PEER REVIEW 11 

 

 

Figure 3. Mood, sleepiness and performance during a simulated night shift in long-wavelength 
narrow-bandwidth light (red bars) and short-wavelength narrow-bandwidth light (blue bars). The 
bars represent estimated marginal means with error bars indicating standard error. (A) Positive mood 
assessed with the Positive and Negative Affect Schedule (PANAS). (B) Negative mood assessed with 
PANAS. (C) Subjective sleepiness assessed with the Karolinska Sleepiness Scale (KSS). (D) Reciprocal 
response times (mean 1/RT) on the Psychomotor Vigilance Task (PVT). (E) RTs excluding lapses 
(mean RT500) on the PVT. (F) Number of lapses (RTs ≥ 500 ms) on the PVT. (G) Number of correct 
responses on the Digit Symbol Substitution Test (DSST). Significant differences indicated for variables 
with a significant Light by Time interaction only. Number symbols (#) indicate significant difference 
compared to the first test bout (23:30 h), and asterix symbols (*) indicate significant difference between 
light conditions. ##; ** = p < 0.01, ###; *** = p < 0.001. 

Figure 3. Mood, sleepiness and performance during a simulated night shift in long-wavelength
narrow-bandwidth light (red bars) and short-wavelength narrow-bandwidth light (blue bars). The bars
represent estimated marginal means with error bars indicating standard error. (A) Positive mood
assessed with the Positive and Negative Affect Schedule (PANAS). (B) Negative mood assessed with
PANAS. (C) Subjective sleepiness assessed with the Karolinska Sleepiness Scale (KSS). (D) Reciprocal
response times (mean 1/RT) on the Psychomotor Vigilance Task (PVT). (E) RTs excluding lapses (mean
RT500) on the PVT. (F) Number of lapses (RTs ≥ 500 ms) on the PVT. (G) Number of correct responses
on the Digit Symbol Substitution Test (DSST). Significant differences indicated for variables with a
significant Light by Time interaction only. Number symbols (#) indicate significant difference compared
to the first test bout (23:30 h), and asterix symbols (*) indicate significant difference between light
conditions. ##; ** = p < 0.01, ###; *** = p < 0.001.
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3.2. Task Performance

3.2.1. PVT: Effects on Sustained Attention

Analysis of both mean 1/RT and mean RT500 revealed significant main effects of Light with
faster RTs in short-wavelength light, and Time with slower RTs at 01:00 (mean 1/RT: p < 0.001;
mean RT500: p = 0.005), 02:30, 04:00 and 05:30 h (p < 0.001, all) compared to 23:30 h (Table 2).
There were also significant Light by Time interaction effects, and post-hoc comparisons revealed faster
RTs in short-wavelength light in the middle and later parts of the night shift (Figure 3D,E). Results
were similar for the number of lapses, with significant main effects of Light with fewer lapses in
short-wavelength light, and Time with more lapses at 01:00 (p = 0.002), 02:30 (p = 0.001), 04:00 and
05:30 h (p < 0.001, both) compared to 23:30 h (Table 2). There was also a significant Light by Time
interaction effect, with post-hoc comparisons showing fewer lapses in short-wavelength light in the
middle and later parts of the night shift (Figure 3F).

3.2.2. DSST: Effects on Number of Correct Responses

For the DSST n correct, there were main effects of Light with more correct responses in
short-wavelength light, and Time with fewer correct responses at 02:30 (p = 0.018), 04:00 (p < 0.001) and
05:30 h (p = 0.002) compared to 23:30 h (Table 2). There was no significant Light by Time interaction
effect for the DSST (Figure 3G).

3.3. Visual Comfort and Evaluation of Lighting Conditions

3.3.1. Visual Comfort: Effects on Headache and Eye Strain Symptoms

There were significant main effects of Light for all symptom categories, except irritability,
with reduced symptoms in short-wavelength light (Table 2). For all categories there were significant
main effects of Time with increased symptoms at 03:15 h (irritability: p = 0.032; blurred vision: p = 0.263;
all other p < 0.001) and at 06:15 (p ≤ 0.001, all) compared to 23:15 h. For eye discomfort and eye fatigue,
there were significant Light by Time interaction effects, and post-hoc comparisons showed reduced
symptoms in short-wavelength light in the middle and late parts of the night shift (Figure 4). There were
no significant Light by Time interaction effects for irritability, headache, eye strain, difficulty focusing,
difficulty concentrating or blurred vision (Figure 4).

3.3.2. Subjective Evaluation of the Lighting Conditions

Evaluation of the lighting conditions revealed a significant main effect of Light for color
(F1,60 = 124.89; p < 0.001; R2 = 0.68), with short-wavelength light (EMM = 5.58, SE = 0.20) evaluated as
colder than long-wavelength light (EMM = 2.43, SE = 0.20), brightness (F1,60 = 8.78; p = 0.004; R2 = 0.13),
with short-wavelength light (EMM = 4.60, SE = 0.23) evaluated as brighter than long-wavelength light
(EMM = 3.64, SE = 0.23), and whether the light was activating (F1,60 = 13.56; p < 0.001; R2 = 0.18),
with short-wavelength light (EMM = 4.55, SE = 0.17) evaluated as more activating than long-wavelength
light (EMM = 3.64, SE = 0.18). Note that for these variables, models were run without the random
intercept as an error showed that the Hessian matrix was not positive definite, suggesting redundant
covariance parameters. There was no significant main effect of Light for pleasantness (F1,30 = 1.31;
p = 0.262; R2 = 0.01), with similar estimates for short-wavelength light (EMM = 4.09, SE = 0.22)
and long-wavelength light (EMM = 3.81, SE = 0.21), clearness (F1,31 = 0.00; p = 0.953; R2 < 0.01),
with similar estimates for short-wavelength light (EMM = 4.15, SE = 0.20) and long-wavelength light
(EMM = 4.14, SE = 0.20), and whether the lighting was considered suitable for work (F1,29 = 2.50;
p = 0.125; R2 = −0.26), with similar estimates for short-wavelength light (EMM = 3.75, SE = 0.26) and
long-wavelength light (EMM = 3.38, SE = 0.26).
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3.4. Circadian Phase

For long-wavelength light, baseline DLMO (n = 26; mean = 21:42 h, SD = 1:09 h) ranged from
19:05 to 00:01 h, and final DLMO (n = 22; mean = 22:25 h, SD = 1:15 h) ranged from 20:35 to 01:00 h
(Figure 5A). For short-wavelength light, baseline DLMO (n = 27; mean = 21:23 h, SD = 1:13 h) ranged
from 19:08 to 00:08 h, and final DLMO (n = 20; mean = 22:46 h, SD = 1:49 h) ranged from 19:34 to 03:02 h
(Figure 5B). There was no significant difference in baseline DLMO for the 22 participants with complete
baseline DLMO estimates (short-wavelength light: mean = 21:36 h, SD = 1:09 h, long-wavelength
light: mean = 21:46 h, SD = 1:14 h; t21 = 0.91; p = 0.375). A similar result was found when analyzing
baseline DLMO for the 12 participants with complete baseline and final DLMO estimates in both light
conditions (short-wavelength light: mean = 21:26 h, SD = 0:59 h; long-wavelength light: mean = 21:41 h,
SD = 1:11 h, t11 = 1.03; p = 0.324).

For circadian phase shift, there was a significant main effect of Light (F1,24 = 5.33; p = 0.030;
R2 = 0.11) indicating larger phase shift (delay) after a night shift in short-wavelength light
(EMM = 1:26 h, SE = 0:16 h) compared to long-wavelength light (EMM = 0:36 h, SE = 0:15 h). There was
no significant correlation between the magnitude of the phase shift and baseline DLMO for either
short-wavelength (r = 0.33; p = 0.167) or long-wavelength (r = −0.33; p = 0.131) light.



Clocks&Sleep 2020, 2 515

Clocks & Sleep 2020, 2 FOR PEER REVIEW 14 

 

(Figure 5A). For short-wavelength light, baseline DLMO (n = 27; mean = 21:23 h, SD = 1:13 h) ranged 
from 19:08 to 00:08 h, and final DLMO (n = 20; mean = 22:46 h, SD = 1:49 h) ranged from 19:34 to 03:02 
h (Figure 5B). There was no significant difference in baseline DLMO for the 22 participants with 
complete baseline DLMO estimates (short-wavelength light: mean = 21:36 h, SD = 1:09 h, long-
wavelength light: mean = 21:46 h, SD = 1:14 h; t21 = 0.91; p = 0.375). A similar result was found when 
analyzing baseline DLMO for the 12 participants with complete baseline and final DLMO estimates 
in both light conditions (short-wavelength light: mean = 21:26 h, SD = 0:59 h; long-wavelength light: 
mean = 21:41 h, SD = 1:11 h, t11 = 1.03; p = 0.324).  

 

Figure 5. Phase markers for individual participants before (Baseline) and after (Final) a simulated 
night shift in (A) long-wavelength narrow-bandwidth light and (B) short-wavelength narrow-
bandwidth light. Open circles indicate salivary dim light melatonin onset (DLMO) for each 
participant. Filled diamond squares indicate estimated temperature minimum (DLMO + 7 h) for each 
participant. Lines are drawn between the baseline and final markers for each participant. The vertical 
dotted lines and colored bars indicate the start and end times of the night shift and light exposure 
(23:00–06:45 h). 

For circadian phase shift, there was a significant main effect of Light (F1,24 = 5.33; p = 0.030; R2 = 
0.11) indicating larger phase shift (delay) after a night shift in short-wavelength light (EMM = 1:26 h, 
SE = 0:16 h) compared to long-wavelength light (EMM = 0:36 h, SE = 0:15 h). There was no significant 

Figure 5. Phase markers for individual participants before (Baseline) and after (Final) a simulated night
shift in (A) long-wavelength narrow-bandwidth light and (B) short-wavelength narrow-bandwidth light.
Open circles indicate salivary dim light melatonin onset (DLMO) for each participant. Filled diamond
squares indicate estimated temperature minimum (DLMO + 7 h) for each participant. Lines are drawn
between the baseline and final markers for each participant. The vertical dotted lines and colored bars
indicate the start and end times of the night shift and light exposure (23:00–06:45 h).

4. Discussion

In this study, we investigated the effects of nocturnal short-wavelength narrow-bandwidth light
(λmax = 455 nm) compared to long-wavelength narrow-bandwidth light (λmax = 625 nm) with similar
photon density (~2.8× 1014 photons/cm2/s), administered by standard ceiling mounted LED-luminaires,
during a simulated night shift. To our knowledge, this study is the first to employ such LED-based
light conditions during night work. As expected, subjective sleepiness increased, positive mood was
reduced and task performance deteriorated during the night shift in both light conditions. However,
with short-wavelength light the increase in sleepiness and the deterioration of task performance
across the night shift was less severe than with long-wavelength light. Overall, our hypothesis of
better alertness and performance during a night shift with short-wavelength narrow-bandwidth light,
compared to long-wavelength narrow-bandwidth light, was supported. We did, however, not find
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beneficial effects of short-wavelength light on participants’ mood states. Participants’ melatonin onset
was mainly phase delayed after the night shifts, and there was a significantly larger phase delay after
the night shift with short-wavelength light compared to long-wavelength light. Hence, our hypothesis
of a greater phase delay with short-wavelength narrow-bandwidth light was supported. There were
no statistically significant differences between the light conditions in terms of participants’ evaluation
of its pleasantness and suitability for work. However, we found evidence of improved visual comfort
with short-wavelength light compared to long-wavelength light.

The results on subjective sleepiness and task performance showed very similar patterns,
with beneficial effects of short-wavelength light emerging from 02:30 h onwards. PVT performance
was better in short-wavelength light, both in terms of generally faster RTs (mean 1/RT), faster RTs in
the optimal domain (RT500), and fewer attentional lapses (i.e., slow RTs) than in long-wavelength light.
A similar pattern was observed for DSST performance, albeit no statistically significant interaction effect
was found. Previous studies have reported beneficial effects of late evening and nocturnal exposure to
short-wavelength light on alertness level and/or task performance [14,15,18]. However, as discussed in
the introduction, those studies employed substantially lower photon densities than the current study.
As noted, the previous studies were highly controlled laboratory trials using special lighting set-ups.
The current results thus add to previous findings showing that short-wavelength narrow-bandwidth
light, administered by standard ceiling mounted LED-luminaires in a naturalistic setting, also elicits
alerting and performance enhancing responses, compared to long-wavelength narrow-bandwidth
light. In addition, the results indicate that these effects can be achieved using higher photon densities
than previously reported. As noted in the introduction, long-wavelength light may also elicit alerting
responses compared with dark conditions. In the afternoon, long-wavelength narrow-bandwidth light
(λmax = 630 nm) improved alertness, while short-wavelength narrow-bandwidth light (λmax = 470 nm)
did not improve alertness, compared to darkness [23]. These findings do not match the alerting effect of
nocturnal short-wavelength light, compared to long-wavelength light, in the present study, likely due
to the role of melatonin suppression during nighttime. We did not have an additional night shift in
dim light or in standard light conditions, hence the alerting effects of our light conditions cannot be
compared to dim light or standard light conditions.

Regarding mood states, the positive mood indicator showed no statistically significant difference
between the light conditions. For negative mood, there was a significantly higher score in short-wavelength
light compared to long-wavelength light on the first assessment at 23:30 h, a difference that vanished in
the subsequent sessions. It is not clear why this difference occurred, but it is possible that exposure to
short-wavelength light initially had a negative impact on mood, and that longer than 30 min adaptation
to the light is needed to reduce this effect. We did not assess mood prior to the light exposure. Hence,
it is possible, yet unlikely, that there was a difference in negative mood prior to the night shift between
the two light conditions. Thus, we cannot rule out that the short-wavelength light actually reduced the
negative mood score compared to the long-wavelength light.

In terms of circadian phase, the significantly larger phase delay observed with short-wavelength
light shows that overall, the participants’ circadian rhythm became more strongly entrained to night
work after a night shift in short-wavelength light compared to long-wavelength light. However,
the individual differences in circadian responses indicate that factors other than the light are also at play,
such as differences in sensitivity to light [56]. Notably, following the night shift, the melatonin rhythm
of a few participants showed the opposite phase shifting response (i.e., phase advance), although they
had a similar initial melatonin onset time. Since the light exposure in the current study was kept
constant during the whole shift, most participants were also exposed to light after their estimated
Tmin, in the phase advance part of the participants’ phase response curves (PRC) to light [57,58].
As circadian responses are sensitive to short-wavelength light, short-wavelength light exposure after
Tmin may have attenuated the phase delay to a larger degree than long-wavelength light, and/or
caused a phase advance of the melatonin rhythm. Nevertheless, the current findings are in line with
previously reported data showing a greater phase delay with short-wavelength narrow-bandwidth
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light administered before Tmin [11]. Individual differences in phase shifting responses to light have
also been noted previously [11], and a recent study found that variations in the distribution of daily
light exposure relative to the PRC accounted for a large portion of the variable rates of circadian
adaptation among real night workers [59].

Participants evaluated the short-wavelength light condition as colder, brighter, and more activating
than the long-wavelength light. The opinion of the short-wavelength light being brighter seems
somewhat remarkable, as the photopic illuminance of the long-wavelength light (195.9 lx) was
substantially higher than the short-wavelength light (60.8 lx). Nevertheless, similar findings were
reported in a study comparing brightness experiences of light with high and low correlated color
temperature [53]. This phenomenon probably reflects difficulties in subjectively comparing the
brightness of light stimuli of different colors [60]. In addition, it has been shown that brightness
perception has a short-wavelength spectral sensitivity that increases with increasing light levels [61],
which could explain the greater brightness perception of the short wavelength light in our study.
The evaluation of short-wavelength light as more activating corroborates the alerting and performance
enhancing effects of short-wavelength light.

In terms of visual comfort, the increase in HES symptoms during the shift suggests that neither the
short-wavelength nor the long-wavelength light was ideal, although there was improved visual comfort
with short-wavelength light. However, we cannot discern between these effects being related to the light
conditions alone or the night work itself. Still, the evidently reduced symptoms with short-wavelength
light compared to long-wavelength light, and the relatively large amount of explained variance
for some of the symptoms (e.g., eye fatigue), suggests that the light conditions are of importance.
Note that compared to HES symptoms reported during daytime office hours [51], the severity for most
symptoms in the current study was considerably larger in both light conditions in the middle and later
parts of the night shift. The previous study of office workers did not investigate narrow-bandwidth
light but compared strongly blue-enriched light (17,000 K) with standard white light (4000 K) [51].
Improved visual comfort with blue-enriched light was found among the office workers [51] and this
was suggested to be related to pupil responses driven by melanopsin and the ipRGCs [13], and it was
further suggested that greater pupil constriction may have contributed to the improved visual comfort.
Similar effects may explain the findings in the current study as the short-wavelength light triggered a
far higher melanopsin stimulation than the long-wavelength light. Recently, it was suggested that the
mechanisms for light exacerbating migraine headaches can be explained by responses of cone driven
retinal pathways [62]. In the current study, both the short-wavelength and long-wavelength light
stimulated the cones, but the long-wavelength light had more than twice the L-cone-opic (i.e., long
wavelength cone) irradiance than the short-wavelength light, with 38.3 and 14.6 µW/cm2, respectively.
Hence, this difference may also contribute to the increased HES symptoms experienced with the
long-wavelength light.

In the present study, subjective measures and task performance assessments were repeated
throughout the night shift in order to investigate the effects of short-wavelength and long-wavelength
narrow-bandwidth light on participants’ functioning. A crossover design was used to control for
interindividual differences in the dependent variables and interindividual variability in responses to
light [56]. To ensure no crossover effects, counterbalancing and a four-week washout period between
night shifts were applied. Unfortunately, some participants did not complete both night shifts (i.e., both
light conditions). However, despite missing data, compared to many previous trials, the current study
included a relatively large sample size in concordance with recent recommendations [43]. In addition,
the statistical analysis strategy (using LMM and GLMM analyses) allowed for missing values in the
dataset without excluding cases completely. Nevertheless, caution should be taken, particularly when
interpreting the circadian phase shift data, as there was a relatively large amount of missing DLMO
estimates. Participants were not extreme chronotypes, not allowed to nap, and were selected based
on sleep timing and duration criteria. Bearing in mind the use of a crossover design, differences in
homeostatic sleep pressure likely did not have significant impact on the results. It should be noted that
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the current sample consisted of relatively young adults. Thus, it is not clear whether the current results
can be generalized to other populations and age groups. It is known that with older age there are retinal
changes, i.e., yellowing of the lens, and light exposure can differentially impact nonvisual responses
during extended wakefulness in young and older individuals [63]. In addition, since males have shown
greater nonvisual responses to light and differ in their opinion of lighting compared to females [64],
a sample with a more even sex distribution could have given rise to somewhat different results.

The present study demonstrates a novel use of ceiling mounted LED-luminaires for administering
narrow-bandwidth light conditions during simulated night work. Furthermore, we employed relatively
high photon densities of light, which may be realistic for real-life work situations. However, the practical
relevance for night workers remains debatable. Ambient narrow-bandwidth lighting alters visibility
and color rendering (i.e., color appearance of the surroundings), hence for many workplaces the
narrow-bandwidth lighting employed in the present study may not be feasible. The novel way
of administering the narrow-bandwidth light conditions in the current study, however, offers new
opportunities for illumination that need further investigation in terms of feasibility for specific
workplaces and settings. A concern with short-wavelength light, in particular, relates to the potential
negative impact of light at night [34,35], e.g., melatonin suppression and circadian disturbance.
The present results indicate strong phase shifting effects of the short-wavelength light. While such
effects may be practical for permanent night workers, they may at the same time be regarded as
unwanted effects for rotating night workers. Another consideration, not assessed in the present paper,
is the impact of light interventions on sleep and recovery after night work, as sleep disturbances are
one of the main issues with night work [24,25]. Thus, there is a need to consider which effects of light
are most desired in specific work situations and settings, particularly for night workers.

We did not thoroughly control participants’ light exposure prior to the night shifts, as has been
done in previous laboratory studies. Light exposure in the hours (18:00–22:45) preceding the night
shifts was monitored by the light sensor on the actigraph device, indicating no significant difference
between conditions. Prior light history is known to affect nonvisual light responses, including the
alerting response [65]; hence, this may have also had an impact in the current study. However,
the relatively high latitude and time of year ensured limited daylight exposure in the hours preceding
the night shifts. Furthermore, we did not employ individually tailored light exposure, as suggested
by a recent study [30]. Due to the inter-individual differences in circadian phase timing, the fixed
work schedule, and uniformly lit work environment, the light exposure occurred at different circadian
times for different participants. Hence, individually tailored light exposure would likely lead to even
larger phase shifting effects than observed. We aimed to keep the study similar to a real-life night work
setting and put limited restraints on the participants during their spare time. It can thus be viewed as a
strength that our findings were in agreement with the previous highly controlled laboratory studies
showing alerting and phase shifting effects of duly timed short-wavelength narrow-bandwidth light.
A limitation with the present study was that the participants did not complete a baseline test bout
just prior to the light exposure. Thus, we cannot exclude that variation in the assessed parameters
(PANAS, KSS, PVT, and DSST) may have existed prior to light exposure, and that the first 30 min
of light exposure affected the parameters. However, considering the repeated measures design and
counterbalancing, it is unlikely that this greatly distorted the results.

Future studies should investigate the possibility of providing individually tailored light exposure,
using standard ceiling mounted LED-luminaires, e.g., by programming luminaires to provide favorable
light exposure at individual workplaces. Furthermore, there is a need for more studies to assess the
amount of melatonin suppression throughout the night shift under different light conditions.

5. Conclusions

The current study revealed beneficial effects of exposure to short-wavelength narrow-bandwidth
light (λmax = 455 nm), compared to photon matched (~2.8 × 1014 photons/cm2/s) long-wavelength
narrow-bandwidth light (λmax = 625 nm), on subjective alertness and task performance during a
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simulated night shift. Moreover, the participants’ melatonin onset was more phase delayed in
short-wavelength light compared to long-wavelength light. It was demonstrated that short-wavelength
narrow-bandwidth light can improve alertness and performance, as well as strengthen circadian
phase shifting, during simulated night work using standard ceiling mounted LED-luminaires and
relatively high light levels. Participants evaluated both light conditions as moderately pleasant and
moderately suitable for work, albeit visual comfort was higher in short-wavelength light compared to
long-wavelength light. These results show that standard LED-luminaires can be used to administer
short-wavelength narrow-bandwidth light with the potential to improve alertness and performance
among night workers. However, more studies are needed to validate these findings, e.g., in different
populations, and to investigate the applicability of such light conditions in real-life workplaces.
There is a need to further study LED-based lighting in order to develop lighting recommendations for
night workers.
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Use of blue-enriched light has received increasing interest regarding its activating
and performance sustaining effects. However, studies assessing effects of such light
during night work are few, and novel strategies for lighting using light emitting diode
(LED) technology need to be researched. In a counterbalanced crossover design, we
investigated the effects of a standard polychromatic blue-enriched white light (7000 K;
∼200 lx) compared to a warm white light (2500 K), of similar photon density (∼1.6
× 1014 photons/cm2/s), during three consecutive simulated night shifts. A total of
30 healthy participants [10 males, mean age 23.3 (SD = 2.9) years] were included in
the study. Dependent variables comprised subjective alertness using the Karolinska
Sleepiness Scale, a psychomotor vigilance task (PVT) and a digit symbol substitution
test (DSST), all administered at five time points throughout each night shift. We also
assessed dim-light melatonin onset (DLMO) before and after the night shifts, as well
as participants’ opinion of the light conditions. Subjective alertness and performance
on the PVT and DSST deteriorated during the night shifts, but 7000 K light was more
beneficial for performance, mainly in terms of fewer errors on the PVT, at the end of
the first- and second- night shift, compared to 2500 K light. Blue-enriched light only
had a minor impact on PVT response times (RTs), as only the fastest 10% of the RTs
were significantly improved in 7000 K compared to 2500 K light. In both 7000 and
2500 K light, the DLMO was delayed in those participants with valid assessment of
this parameter [n = 20 (69.0%) in 7000 K light, n = 22 (78.6%) in 2500 K light], with
a mean of 2:34 (SE = 0:14) and 2:12 (SE = 0:14) hours, respectively, which was not
significantly different between the light conditions. Both light conditions were positively
rated, although participants found 7000 K to be more suitable for work yet evaluated
2500 K light as more pleasant. The data indicate minor, but beneficial, effects of 7000 K
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light compared to 2500 K light on performance during night work. Circadian adaptation
did not differ significantly between light conditions, though caution should be taken when
interpreting these findings due to missing data. Field studies are needed to investigate
similar light interventions in real-life settings, to develop recommendations regarding
illumination for night workers.

Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT03203538.

Keywords: night work, alertness, performance, Fatigue, countermeasures, light, light emitting diode

INTRODUCTION

Night work is a common type of shift work (Eurofound, 2017),
associated with a range of adverse health effects (Kecklund
and Axelsson, 2016), as well as increased risk of occupational
injury (Fischer et al., 2017). A major challenge with night work
concerns increased sleepiness and deterioration of performance,
especially vigilant attention, during the shifts (Lim and Dinges,
2008; Åkerstedt and Wright, 2009; Ganesan et al., 2019;
Mulhall et al., 2019). The alertness and performance decrements
reflect misalignment of the circadian timing system, as well
as homeostatic build-up of sleep need due to extended time
in wakefulness (Santhi et al., 2007; Borbely et al., 2016;
Mulhall et al., 2019).

Circadian rhythms reflect processes displaying endogenous
oscillations around 24 h. They play a key role in when we sleep
and when we are awake, as well as in body temperature levels,
secretion of several hormones (e.g., melatonin, cortisol) and in
our cognitive performance throughout the day (Rajaratnam and
Arendt, 2001). Circadian rhythms are controlled and coordinated
by the pacemaker located in the suprachiasmatic nuclei (SCN),
and the light-dark cycle provides the strongest cue for entraining
the SCN to the external day and night (Roenneberg and Foster,
1997). Artificial light can mimic the effect of natural light and
can consequently be used to entrain the circadian rhythm (Khalsa
et al., 2003) and as such, if appropriately timed, can reduce
circadian misalignment and provide better adaptation to a night
work schedule (Smith et al., 2008).

In addition to circadian entrainment effects, light exposure
can also elicit acute alerting responses, especially at night when
alertness is normally low (Cajochen, 2007; Vandewalle et al., 2009;
Souman et al., 2018). These nonvisual light responses have been
shown to depend on several light characteristics (for a review
see Prayag et al., 2019) including intensity (Cajochen et al., 2000;
Zeitzer et al., 2000), exposure duration (Chang et al., 2012), and
spectral distribution (Brainard et al., 2001; Thapan et al., 2001;
Lockley et al., 2003; Cajochen et al., 2005; Lockley et al., 2006).
In addition, there is individual variability in the responses to
light exposure (Chellappa et al., 2017; Gabel et al., 2017; Phillips
et al., 2019). Supported by classical rod and cone photoreceptors,
the nonvisual light responses are mainly driven by intrinsically
photosensitive retinal ganglion cells (ipRGCs), expressing the
light-sensitive photopigment melanopsin, that project light
information to the SCN and brain areas involved in sleep
regulation, arousal, and attention (Perrin et al., 2004; Vandewalle
et al., 2009; Warthen and Provencio, 2012). The power of light

intensity in eliciting nonvisual responses such as alertness and
circadian entrainment is well known (Cajochen et al., 2000;
Zeitzer et al., 2000). However, as melanopsin is maximally
sensitive to short-wavelength light around 460–490 nm (Bailes
and Lucas, 2013), monochromatic blue and polychromatic
blue-enriched light, especially at relatively low intensities, can
also elicit larger nonvisual responses than light with longer
wavelengths (Lockley et al., 2003; Cajochen et al., 2005; Lockley
et al., 2006; Chellappa et al., 2011; Brainard et al., 2015).

Previous studies investigating nonvisual responses to
nocturnal short-wavelength light have mainly been conducted
in laboratory settings, applying monochromatic light, and
carefully controlling the participants’ environment, posture,
nutritional intake and previous light exposure (Brainard et al.,
2001; Thapan et al., 2001; Lockley et al., 2003; Cajochen et al.,
2005; Lockley et al., 2006). Similarly, a few recent laboratory
studies have included nocturnal polychromatic blue-enriched
light (Cajochen et al., 2019; Hanifin et al., 2019). Thus, more
naturalistic studies are warranted, and only a few recent studies
have investigated nonvisual responses of nocturnal blue-enriched
light during night work (Motamedzadeh et al., 2017; Sletten et al.,
2017; Kazemi et al., 2018). Light conditions used in previous
studies vary, and different ways of administering light such as
by goggles, spheres and/or light boxes may not be applicable
in practical settings. The development of cost-effective light
emitting diode (LED) technology, has provided new and flexible
strategies for illumination of workplaces (Schubert and Kim,
2005). Standard ceiling mounted LED-luminaires can easily be
installed and tuned to provide light of specific intensity (Sunde
et al., 2020), and/or specific spectral distributions (Canazei et al.,
2017). Thus, LED-based standard lighting set-ups need to be
investigated in order to elucidate if these light sources can sustain
performance during night work. To the authors’ knowledge,
only two previous studies have investigated nonvisual responses
to lighting administered by ceiling-mounted LEDs during
simulated night work (Canazei et al., 2017; Sunde et al., 2020).
In one previous study from our research group (Sunde et al.,
2020), bright light (∼900 lx, 4000 K) improved alertness and
performance compared to standard light (∼90 lx, 4000 K), while
another study by Canazei et al. (2017) found that varied reduced
portions of short-wavelength light (2166–4667 K, ∼150 lx) did
not impact alertness and performance during night shifts.

In the present study (ClinicalTrials.gov: NCT03203538) we
investigated how a standard LED-based polychromatic blue-
enriched white light (7000 K; ∼200 lx), compared to warm
white light (2500 K) of similar photon density (∼1.6 × 1014
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photons/cm2/s), affected subjective alertness and performance on
attention tests during three consecutive simulated night shifts,
as well as circadian adaptation to the night work schedule. We
also investigated participants’ opinion of the lighting conditions
and its feasibility for work. To ensure transferability to real-life
settings, we employed relatively high illuminance (∼200 lx, at eye
level in the direction of gaze) compliant with European standards
for offices (CEN, 2011), as well as putting minimal restraints on
participants during their spare time away from the laboratory
night shifts. We hypothesized that three consecutive night shifts
with 7000 K light would increase alertness and performance
during shifts, and lead to a greater phase delay of the circadian
rhythm hastening adaptation, compared to 2500 K light.

MATERIALS AND METHODS

Participants
All participants were between 19 and 30 years and reported
good to excellent health; no current or recent history of
psychiatric-, neurological-, cardiovascular-, lung-, and/or sleep
diseases/disorders; no medication use (except contraceptives);
no eye disease and no color deficiency according to the 17-
plate Ishihara Test for Color Deficiency. Female participants were
not pregnant or breastfeeding. Participants were not engaged
in night work and had no transmeridian travel in the month
prior to and/or during the study period and were not extreme
chronotypes according to the short Morningness-Eveningness
Questionnaire (Adan and Almirall, 1991). Participants reported
habitual sleep duration of 6–10 h and habitual wake time between
06:00 and 10:00 h. Participants had to refrain from alcohol use for
3 days prior to and during the simulated night shifts; caffeine use
1 week prior to and during the night shifts; and tobacco use at
least 2 h prior to and during the simulated night shifts.

Participants were mainly students invited via mass e-mail and
flyers/information at the University of Bergen. Prior to enrolment
participants were screened by an online survey to ensure that they
were eligible. A total of 33 (10 males) pre-screened individuals
attended an enrolment session at the laboratory 3 days prior to
the first simulated night shift. Written informed consent was
obtained before participants completed a set of questionnaires
(demographics) and performed a practice sequence comprising
a cognitive test battery (see section “Laboratory Procedure”).
Participants were compensated for their participation. The study
was conducted according to the Declaration of Helsinki.

Of the 33 enrolled participants, two withdrew before the
first night shift and one participant was excluded from both
study periods due to wake times after 10:00 h and/or sleep
duration < 6 h during the three baseline sleep periods/nights at
home (see section “Design and Procedure”). Three participants
had their first study period excluded, one due to illness, and two
due to wake times after 10:00 h during baseline sleep. The final
data set comprised 30 (10 males) participants (Table 1) with 29
(9 males) completing the night shifts in 7000 K light, and 28 (8
males) completing the night shifts in 2500 K light. A total of 27 (7
males) participants had valid data included for all six night shifts.

TABLE 1 | Descriptive characteristics of the participants, and baseline sleep
measured with actigraphy.

N total (males) 30 (10)

Age [Mean (SD)] 23.3 (2.9)

Body mass index [Mean (SD)] 23.2 (3.0)

Self-reported health (%)

Excellent 30.0

Very good 53.0

Good 17.0

Short-MEQ (%)

Moderately morning type 10.0

Neither type 60.0

Moderately evening type 30.0

7000 K light (n = 29)
Mean (SD)

2500 K light (n = 28)
Mean (SD)

Baseline sleep (hh:mm)

Lights off 23:56 (1:11) 23:54 (0:57)

Sleep onset latency 0:17 (0:16) 0:14 (0:12)

Wake time 08:11 (0:55) 08:28 (1:15)

Time in bed 8:21 (1:10) 8:35 (1:18)

Short-MEQ, short Morningness-Eveningness Questionnaire. Baseline sleep:
average for three nights prior to the first night shift (including one night with
scheduled saliva sampling until 1 h after usual bedtime). There were no significant
differences between the light conditions (p > 0.05).

Female participants reported their last menses onset and their
usual menstrual cycle length. Using similar procedures as Vidafar
et al. (2018), the menstrual phase (follicular, luteal) during the
study periods was estimated. Three participants were in different
menstrual phases during the two study periods, hence the vast
majority (n = 17) were in the same menstrual phase during
both study periods.

Design and Procedure
The study was conducted from January to April 2018 and
included two study periods, separated by 4 weeks, each
containing three consecutive simulated night shifts (23:00–
06:45 h) performed during a weekend (Friday evening to Monday
morning) in a laboratory (see Figure 1). The study was conducted
at a latitude (∼60◦N) and at a time of year with relatively
limited daylight exposure in the hours before and after the
night shifts. Participants were allocated into four groups of 7–
9 participants, and a counterbalanced crossover design with
repeated measurements was employed. Thus, each participant
performed night shifts under both light conditions, with about
half of the participants starting in the 7000 K light condition and
the other half starting in the 2500 K light condition. Participants
slept at home and were instructed to keep a regular sleep schedule
prior to the first night shift in accordance with their habitual sleep
timing. The baseline sleep 3 days prior to the first night shift
(Table 1) was monitored by sleep diaries and actigraphy to ensure
that participants did not “turn night into day” before starting
the simulated night work period. Bedtime on Thursday evening
was not habitual due to hourly saliva sampling for estimation
of dim-light melatonin onset (DLMO), which lasted until 1 h
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FIGURE 1 | Double-raster plot of the simulated night work protocol. Clock hour is indicated on the x-axis and study day on the y-axis. The night work protocol
included two study periods with three simulated night shifts (from 23:00 to 06:45 h) performed in a laboratory with different lighting conditions. (A) 2500 K light.
(B) 7000 K light. The study periods were separated by 4 weeks and the order of conditions was counterbalanced. White bars indicate enrollment and practice
session (before the first study period only) in the laboratory. Black bars indicate assumed baseline sleep at home. Colored bars indicate night shifts in the laboratory.
Gray hatched bars indicate assumed daytime sleep at home. Black dots indicate primary test bouts including the Karolinska Sleepiness Scale (KSS), a Psychomotor
Vigilance Task (PVT), and a Digit Symbol Substitution Test (DSST). White diamonds indicate salivary dim-light melatonin sampling at home.

after usual bedtime. Napping was allowed before the night shifts,
but not after 20:00 h and/or longer than 2 h. After completing
the night shift in the laboratory participants went home to sleep
ad libitum and with no restrictions concerning other activities,
before meeting at the laboratory to complete the next night shift.

Sleep diaries and actigraphy indicated that napping was
similar across study conditions. In 7000 K light, 18, 12, and
8 participants napped prior to the first, second, and third
night shift, respectively. In 2500 K light, 14, 12, and 11
participants napped prior to the first, second, and third night
shift, respectively. The duration of napping across conditions
was also similar, with an overall mean napping duration of
1:14 (SD = 0:36) h and 1:21 (SD = 0:41) h in 7000 and 2500
K light, respectively. Most participants’ napping behavior was
consistent for both study periods, and in terms of differences in
napping between the light conditions, counterbalancing ensured
that napping was very similar for both light conditions.

Laboratory and Light Exposure
The laboratory (30 m2) had no windows and the temperature
was kept constant at ∼22◦C. There were nine workplaces,
each separated by partition walls, with identical desktop
computers and screens fitted with a filter (Metolight SFG-10;
Asmetec, Germany) blocking all light wavelengths < 520 nm.
The laboratory was equipped with 20 ceiling mounted LED-
luminaires (Modul R 600 LED CCT/RGB MP; Glamox
Luxo Lighting AB, Sweden). Participants were exposed to

FIGURE 2 | Spectral distribution of the 7000 K light (solid line) and the 2500 K
light (dotted line).

polychromatic full-spectrum light with a color temperature of
∼7000 and ∼2500 K, respectively. The photopic illuminance
was ∼200 lx in the vertical plane at eye level (∼600 lx in the
horizontal plane), with similar photon density (∼1.6 × 1014

photons/cm2/s) for both light conditions. The color rendering
index (Ra) was > 80, and both light conditions were compliant
with European standards for most interior areas, e.g., offices
(CEN, 2011). Figure 2 shows the average spectral distribution of
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the light conditions measured at each workplace in the vertical
plane, at eye level while seated (120 cm from the floor), using a
spectroradiometer (GL Spectis 1.0 T Flicker; GL Optic, Poland).
The photometric information of the light conditions is reported
in Table 2, estimated using the Lucas et al. (2014) toolbox.

Laboratory Procedure
The simulated night shifts started at 23:00 h with a 30 min
preparation and adaptation period in the laboratory. At 23:30 h
the first of five repeated main test bouts (23:30, 01:00, 02:30,
04:00, and 05:30 h) commenced. Each test bout lasted ∼20 min
and included the Karolinska Sleepiness Scale (KSS) (Åkerstedt
and Gillberg, 1990), a computerized Psychomotor Vigilance
Task (PVT) (Dinges and Powell, 1985), and a computerized
Digit Symbol Substitution Test (DSST) (Jaeger, 2018). During
testing participants were seated at their designated workplace and
wore noise canceling headsets (BOSE QuietComfort 25, BOSE
Corporation, United States) to ensure undisturbed performance.
Between the main test bouts participants performed other tests
and had breaks allowing quiet activities such as reading and
conversation. A researcher was present throughout the night
shifts to ensure adherence to the protocol. Water was available
ad libitum during the night shift, and at about 02:00 h and 05:00 h
a small standardized meal/snack (∼200 kcal) was provided.

Alertness and Performance Measures
The KSS assesses subjective alertness/sleepiness (Åkerstedt and
Gillberg, 1990), and was completed at the beginning and end of
each test bout with participants indicating their current level of
sleepiness on a 9-point Likert scale ranging from 1, “very alert,”
to 9, “very sleepy, fighting sleep, strenuous to keep awake.” We
analyzed the average KSS rating for each test bout as a measure of
the participants’ subjective alertness level.

The PVT assesses the ability to sustain attention and is a
sensitive measure for detecting sleep loss and sleep deprivation
effects (Lim and Dinges, 2008; Basner and Dinges, 2011). The
PVT shows minor aptitude and learning effects and is thus

TABLE 2 | Lighting parameters (380–780 nm inclusive) for nine workplaces.

7000 K light
Mean (SD)

2500 K light
Mean (SD)

Correlated color temperature (K) 6953 (260) 2455 (43)***

Irradiance (µW/cm2) 61 (6) 55 (5)*

Photon flux (photons/cm2/s) 1.65 × 1014

(1.55 ×‘1013)
1.61 × 1014

(1.37 × 1013)

Photopic illuminance (lx) 197 (19) 206 (18)

Human retinal photopigment
weighted illuminance (α-opic lx)

Cyanopic 220 (23) 40 (4)***

Melanopic 192 (19) 86 (8)***

Rhodopic 195 (19) 113 (11)***

Chloropic 196 (19) 160 (54)***

Erythropic 190 (18) 206 (18)

Light measured 120 cm from the floor in the vertical plane. Values calculated
according to the Lucas et al. (2014) toolbox. *p < 0.05; ***p < 0.001, compared
to 7000 K light.

suitable for repeated administration (Lim and Dinges, 2008).
A 10 min version was used in the present study, and participants
were instructed to respond with their dominant hand on the
space bar when presented with a visual stimulus (a counting
timer) on the screen. The interstimulus interval varied randomly
from 2 to 10 s including 1 s feedback on response time (RT) after
each trial. If no response was given after 30 s, a sound was played
to alert the participant before a new trial began. RTs < 100 ms was
considered false starts. The mean number of trials per PVT was
95 (SD = 6). The primary outcome metrics comprised the mean
1/RT (reciprocal RTs) and the number of lapses (RTs ≥ 500 ms)
as suggested by Basner and Dinges (2011), but also the number
of false starts (responses without stimulus), the fastest 10% RT
(mean RT for the 10% fastest responses) and the slowest 10%
1/RT (mean 1/RT for the 10% slowest responses) were reported.

The DSST was administered directly following the PVT and
provided a second performance measure sensitive to changes
in cognitive function (Jaeger, 2018). Performance on the DSST
improves with repeated administrations (Jaeger, 2018). To
minimize these learning effects participants practiced the DSST
once during the enrollment session 3 days prior to the first
night shift, and the symbol-digit pairs were randomized for each
administration. A 2 min version was used, and participants were
instructed to pair nine randomly presented symbols with their
corresponding digit as fast as possible without making errors.
Target symbols were presented at the center of the screen and
participants selected the corresponding digit from a symbol-digit
array, displayed at the bottom of the screen continuously during
the test. Participants used the mouse pointer to select the digits,
and if no response was recorded after 5 sec, the next trial began.
The mean number of trials per DSST was 81 (SD = 9), and the
number of correct responses was used as the outcome metric.

Circadian Phase and Sleep
To provide a measure of circadian phase before and after
each night work period, we assessed salivary DLMO on
Thursday evening (“baseline DLMO”) and Monday evening
(“final DLMO”). Hourly saliva sampling (six samples) was
performed at home, using Salivette tubes (Sarstedt AG & CO,
Germany), following a similar protocol previously described
(Saxvig et al., 2013). Baseline DLMO sampling started 4 h
before and lasted until 1 h after participants’ habitual bedtime,
while final DLMO sampling was delayed by 1 h relative to the
baseline DLMO sampling (Figure 1). To ensure dim light during
sampling, participants were instructed to wear dark sunglasses
(Uvex Athletic ISO 9001, Uvex Winter Holding GmbH & Co.
KG, Germany) from 1 h prior to, and during, the whole sampling
period. The lenses of these glasses reduce light intensity to
<1.0% (Saxvig et al., 2013). Participants labeled the samples with
clock time and stored them in their domestic refrigerator before
delivery at the laboratory for storage at – 70◦C.

Samples were assayed with enzyme-linked immunosorbent
assay kit (EK-DSM, Bühlman Laboratories, Switzerland). The
detection limit of the assay kit is 0.5 pg/mL and the
functional sensitivity is 1.6–20.5 pg/mL. Samples were analyzed
using a Wallac 1420 Multilabel counter (Perkin Elmer Inc.,
United States). The inter-assay variation was 13.4% for the low
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and 12.3% for the high control, with mean (SD) melatonin values
of 5.3 (0.7) and 15.5 (1.9) pg/mL, respectively. The DLMO was
defined as the time salivary melatonin concentration reached 4
pg/mL. Linear interpolation between adjacent samples was used
to calculate DLMO, and if levels reached 3 pg/mL but not 4 pg/mL
linear extrapolation was used (Keijzer et al., 2011). The difference
between baseline DLMO and final DLMO was calculated to
estimate the magnitude of the circadian phase shift after the three
consecutive night shifts. In accordance with previously reported
procedures (Smith et al., 2008), we also estimated the temperature
minimum (Tmin) for each participant by adding 7 h to the
DLMO. The phase angle after the night shifts was estimated based
on the final DLMO and sleep onset and sleep offset of the daytime
sleep after the third night shift. We excluded one participant’s
phase angle for sleep onset, and one participant’s phase angle
for sleep offset, due to social commitments interfering with the
daytime sleep after the third night shift.

The circadian phase shift could only be calculated for a subset
of the participants due to missing DLMO data. For 7000 K light,
phase shifts were estimated for 20 (69.0%) of the 29 included
participants, and for 2500 K light phase shifts were estimated for
22 (78.6%) of the 28 included participants. Five (16.7%) of the
30 participants had no valid phase shift estimates, while complete
phase shift estimates (for both light conditions) were available for
17 (56.7%) participants. The main reason for missing DLMO data
was that salivary melatonin concentration did not reach 3 pg/mL
during DLMO sampling. For 7000 K light, two (6.9%) and six
(20.7%) participants did not reach 3 pg/mL during baseline and
final DLMO sampling, respectively. For 2500 K light, one (3.6%)
and three (10.7%) participants did not reach 3 pg/mL during
baseline and final DLMO sampling, respectively.

Sleep data were derived from wrist actigraphy (Actiwatch
2, Philips Respironics Inc., United States), worn on the non-
dominant hand. Data were recorded in 30 s epochs with medium
wake threshold sensitivity (40 counts/min), and time of inactivity
for sleep onset and wake time set to 10 min (Actiware version
6.0, Phillips Respironics Inc., United States). As recommended
(Smith et al., 2018), the start and end of rest intervals were
manually scored based on a standardized inspection of the raw
data and sleep diaries.

Evaluation of Lighting Conditions
To assess participants’ subjective evaluation of the lighting
conditions, a questionnaire comprising a semantic differential
scale adapted from Smolders and de Kort (2014, 2017) was used.
The scale consists of nine adjective items on a 7-point scale.
The first four items comprised the subscale “pleasantness” of the
lighting (“unpleasant–pleasant,” “uncomfortable–comfortable,”
“disturbing–not disturbing,” and “causing glare–not causing
glare”) which was internally reliable with Cronbach’s α = 0.82,
similar to that reported by Smolders and de Kort (2014, 2017).
Four single items were used to assess the “clearness” (“unclear–
clear”), “color” (“warm–cold”), “brightness” (“dim–bright”), and
if the lighting was “activating” (“relaxing–stimulating”). One
item was used to assess if the lighting was “suitable for work”
(“unsuitable for work–suitable for work”). The evaluation of
lighting conditions was completed at the beginning (∼23:15 h)

of the first night shift and at the end (∼06:15 h) of the third night
shift in both light conditions.

Statistical Analysis
To analyze the KSS, PVT mean 1/RT, fastest 10% RT, slowest
10% 1/RT and DSST we used linear mixed models (LMM). Three
LMMs for each of the dependent variables were modeled. In a
random effect model participant was included as a random effect.
In a main effects model, light (7000 K vs. 2500 K), shift (night
1, night 2, and night 3) and time (23:30, 01:00, 02:30, 04:00, and
05:30 h) were entered as fixed factors. In the interaction effects
model light × shift, light × time, shift × time, and light × shift
× time were entered. Time was treated as a fixed factor due to
the fixed timing of the main test bouts, and that there were some
protocol differences in tasks and occurrences between the test
bouts (e.g., provision of a standardized snack). The LMMs were
run with a maximum likelihood estimation, enabling comparison
of the fit of successive models using -2 times the log of the
likelihood (-2LL) to conduct a likelihood ratio test (LRT). The
difference in -2LL between the random effect model and the
main effects model, and between the main effects model and
the interaction effects model was compared to the chi-square
distribution. The degrees of freedom (df ; with Satterthwaite
approximation) used for comparison were equal to the difference
in the number of parameters between the compared models. If
there were significant interaction effects, but the LRT indicated
poorer model fit, we trimmed the interaction effects model by
removing non-significant interaction effects before conducting a
second LRT, comparing the main effects model and the trimmed
interaction effects model. The residuals from the final LMM were
tested for normality with Shapiro-Wilk tests and by assessment of
normality plots to ensure that assumptions were met. F-statistics
are reported and pseudo R2 statistics (reduction in variance given
as: % explained variance) were calculated for the models with the
best fit. Multiple comparisons were performed using Bonferroni
corrections to evaluate the difference between light conditions,
shifts and time points. To visualize the findings for the KSS, PVT
mean 1/RT and the DSST, we plotted the estimated marginal
means (EMM) and the standard errors (SE) for the light × shift
× time interaction, although the interaction effects model did
not have the best fit. The PVT fastest 10% RT and slowest 10%
1/RT were plotted as a function of light and time, as the trimmed
interaction effects model including the light × time interaction
had the best model fit for the fastest 10% RT.

The number of PVT lapses and false starts were analyzed
using generalized linear mixed models (GLMM) with a negative
binominal distribution, as features of these count variables
showed overdispersion and a distribution skewed toward zero.
A corresponding modeling approach as described for the LMM
(random effect model, main effects model and interaction effects
model) was used for the GLMM. We employed Satterthwaite
approximation for the df and robust estimation of standard
errors (SE). The GLMM analyses use restricted maximum
likelihood estimation, thus the LRT approach for testing model
fit is not appropriate for comparing these models. The Akaike’s
information criterion (AIC) and the Schwarz’s Bayesian criterion
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(BIC) were instead used for comparison of models (the model
with the smallest AIC/BIC values was preferred).

To assess the effect of light condition on the magnitude of
the circadian phase shift, we used an LMM with participant
included as a random effect and light entered as a fixed factor.
We used similar settings as described for the previous analyses
and comparison with Bonferroni adjustments were made to
evaluate the difference in effect between light conditions. Initial
differences in baseline DLMO between the light conditions were
investigated by paired samples t-tests. The difference in baseline
DLMO was also investigated including only participants with
complete DLMO estimates (n = 17) in both light conditions. To
assess if baseline DLMO correlated with phase shift magnitude,
we calculated Pearson’s product-moment correlation coefficients.
We also assessed, using t-tests, the differences between light
conditions for the baseline sleep and phase angle variables.
Daytime sleep after the night shifts was analyzed with LMMs
using similar procedures as described previously. Participant was
included as a random effect and light, shift, and the light × shift
interaction were entered as fixed factors.

To analyze the evaluation of light conditions, LMMs were used
in a similar modeling approach (and settings) as described above.
For each of the six dependent variables (pleasantness, clearness,
color, brightness, activating, and work suitability), a random
effect model with participant included as a random effect; a main
effects model with light entered as a fixed factor; and a time-
interaction effects model with time [time 1 (start of first shift) vs.
time 2 (end of last shift)] and the light × time interaction entered
as fixed factors were computed. LRTs were used to assess model fit
(random to main effects model; df = 1, main to time-interaction
effects model; df = 2), and multiple comparisons with Bonferroni
corrections were conducted to investigate the difference between
light conditions.

All statistical analysis was performed using IBM SPSS
Statistics, version 25 (IBM Corp., United States).

RESULTS

Karolinska Sleepiness Scale (KSS)
For KSS (Table 3) there were significant main effects of light
with reduced sleepiness/increased alertness in 7000 K compared
to 2500 K light; shift with increased alertness on night 2
(EMM = 6.29; SE = 0.16, p = 0.003) and night 3 (EMM = 5.84;
SE = 0.16, p < 0.001) compared to night 1 (EMM = 6.59;
SE = 0.16); and time with reduced alertness at 01:00 (EMM = 5.71;
SE = 0.17, p < 0.001), 02:30 (EMM = 6.05; SE = 0.17, p < 0.001),
04:00 (EMM = 6.99; SE = 0.17, p < 0.001) and 05:30 h
(EMM = 7.50; SE = 0.17, p < 0.001) compared to 23:30 h
(EMM = 4.95; SE = 0.17). The main effects model had the
best fit (df = 7, LRT = 462.53) and explained 32.3% of the
variance in KSS scores. There were no significant interaction
effects (Figure 3A).

Psychomotor Vigilance Task (PVT)
For mean 1/RT (Table 3) there were no significant main effects
of light or shift, but there was a significant main effect of time

with slower RTs at 01:00 (EMM = 3.14; SE = 0.08, p < 0.001),
02:30 (EMM = 3.04; SE = 0.08, p < 0.001), 04:00 (EMM = 2.91;
SE = 0.08, p < 0.001) and 05:30 h (EMM = 2.78; SE = 0.08,
p < 0.001) compared to 23:30 h (EMM = 3.31; SE = 0.08). The
main effects model had the best model fit (df = 7, LRT = 218.68)
and explained 9.9% of the variance in mean 1/RT. There were no
significant interaction effects (Figure 3B).

For number of lapses (Table 3) there were no significant main
effects of light or shift, but there was a significant main effect
of time with more lapses at 01:00 (EMM = 3.37; SE = 0.73,
p < 0.001), 02:30 (EMM = 4.84; SE = 1.07, p < 0.001), 04:00
(EMM = 7.32; SE = 1.31, p < 0.001) and 05:30 h (EMM = 9.84;
SE = 1.79, p < 0.001) compared to 23:30 h (EMM = 1.79;
SE = 0.40). There were also significant interaction effects of shift
× time with fewer lapses at 04:00 (EMM = 5.92; SE = 1.31,
p = 0.005) and 05:30 h (EMM = 7.05; SE = 1.53, p = 0.001)
on night 3 compared to 04:00 h (EMM = 8.53; SE = 1.39)
and 05:30 h (EMM = 12.35; SE = 2.15) on night 1; and light
× shift × time (Figure 3C). The interaction effects model
(AIC, BIC = 2717, 2722) had smaller AIC/BIC values than the
main (AIC, BIC = 2741, 2746) and random (AIC, BIC = 2819,
2824) effects model.

For number of false starts (Table 3) there were no significant
main effects of light or shift, but there was a significant main effect
of time with more false starts at 05:30 h (EMM = 4.01; SE = 0.657,
p = 0.001) compared to 23:30 h (EMM = 1.66; SE = 0.26). There
were also significant interaction effects of light × time with fewer
false starts at 05:30 h with 7000 K (EMM = 3.33; SE = 0.57,
p = 0.040) compared to 2500 K (EMM = 4.83; SE = 0.93) light; and
light × shift × time (Figure 3D). The interaction effects model
(AIC, BIC = 2636, 2641) had smaller AIC/BIC values than the
main (AIC, BIC = 2676, 2681) and random (AIC, BIC = 2880,
2884) effects model.

On the fastest 10% RT (Table 3) there was no significant
main effect of light, but there were significant main effects of
shift with shorter RTs on night 2 (EMM = 258.08; SE = 4.61,
p < 0.022) and night 3 (EMM = 256.18; SE = 4.61, p < 0.001)
compared to night 1 (EMM = 261.58; SE = 4.61); and time with
longer RTs at 01:00 (EMM = 255.60; SE = 4.67, p < 0.001), 02:30
(EMM = 258.45; SE = 4.67, p < 0.001), 04:00 (EMM = 264.69;
SE = 4.67, p < 0.001) and 05:30 h (EMM = 267.33; SE = 4.67,
p < 0.001) compared to 23:30 h (EMM = 247.00; SE = 4.67). There
was a significant interaction effect of light × time (Figure 4A).
The trimmed interaction effects model, including the light × time
interaction, had a better model fit than the main effects model
(df = 4, LRT = 11.56) and explained 6.0% of the variance in the
fastest 10% RT.

On the slowest 10% 1/RT (Table 3) there were no significant
main effects of light or shift, but there was a significant main
effect of time with longer RTs at 01:00 (EMM = 2.05; SE = 0.09,
p < 0.001), 02:30 (EMM = 1.89; SE = 0.09, p < 0.001), 04:00
(EMM = 1.71; SE = 0.09, p < 0.001) and 05:30 h (EMM = 1.51;
SE = 0.09, p < 0.001) compared to 23:30 h (EMM = 2.29;
SE = 0.09). The main effects model had the best model fit
(df = 7, LRT = 217.73) and explained 13.2% of the variance
in the slowest 10% 1/RT. There were no significant interaction
effects (Figure 4B).
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FIGURE 3 | Estimated marginal means and standard error plotted as a function of light condition (2500 K vs. 7000 K light), night shift, and time of testing. (A) Rating
on the Karolinska Sleepiness Scale (KSS). (B) Mean reciprocal response time (1/RT) on the Psychomotor Vigilance Task (PVT). (C) Number of lapses (RTs ≥ 500 ms)
on the PVT. (D) Number of false starts (response without stimulus) on the PVT. (E) Number of correct responses on the Digit Symbol Substitution Test (DSST).
*p < 0.05 between light conditions (only for variables with significant light × night × time interactions).

Digit Symbol Substitution Test (DSST)
For the number of correct responses on the DSST (Table 3) there
were significant main effects of light with more correct responses
in 7000 K compared to 2500 K light; shift with more correct

responses on night 3 (EMM = 82.24; SE = 1.15, p < 0.001)
compared to night 1 (EMM = 79.74; SE = 1.15); and time with
fewer correct responses at 02:30 (EMM = 80.67; SE = 1.18,
p < 0.001), 04:00 (EMM = 79.89; SE = 1.18, p < 0.001) and
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FIGURE 4 | Estimated marginal means and standard error plotted as a
function of light condition (2500 K vs. 7000 K light) and time of testing (all
night shifts included). (A) Response times (RT) for the 10% fastest RTs on the
Psychomotor Vigilance Task (PVT). (B) Mean resiprocal RTs (1/RT) for the
10% slowest RTs on the PVT. *p < 0.05 between light conditions.

05:30 h (EMM = 79.33; SE = 1.18, p < 0.001) compared to 23:30 h
(EMM = 83.02; SE = 1.18). There was also a significant interaction
effect of shift× time with more correct responses at 02:30 h on
night 2 (EMM = 82.26; SE = 1.32, p = 0.015) compared to night 1
(EMM = 79.36; SE = 1.32), at 01:00 h on night 3 (EMM = 83.78;
SE = 1.32, p = 0.006) compared to night 1 (EMM = 80.57;
SE = 1.32) and at 05:30 h on night 3 (EMM = 82.69; SE = 1.32,
p < 0.001) compared to night 1 (EMM = 76.56; SE = 1.32).
There were fewer correct responses at 02:30 (EMM = 79.36;
SE = 1.32, p < 0.045) and 05:30 h (EMM = 76.56; SE = 1.32,
p < 0.001) compared to 23:30 h (EMM = 82.29; SE = 1.32) on
night 1, and at 04:00 (EMM = 78.60; SE = 1.32, p < 0.001)
and 05:30 h (EMM = 78.75; SE = 1.32, p < 0.001) compared to
23:30 h (EMM = 83.55; SE = 1.32) on night 2. The interaction
effects model had the best model fit (df = 22, LRT = 50.43)
and explained 6.2% of the variance in the number of correct
responses. However, there were no significant interaction effects
of light × time or light × shift × time (Figure 3E).

Circadian Phase and Sleep
All participants, except one in each light condition, showed a
relatively robust circadian phase delay (≥30 min) after working
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FIGURE 5 | Phase markers for individual participants before (baseline) and
after (final) three consecutive night shifts. (A) Night shifts in 2500 K light.
(B) Night shifts in 7000 K light. Open circles indicate salivary dim-light
melatonin onset (DLMO) for each participant. Filled diamond squares indicate
estimated temperature minimum (DLMO + 7 h) for each participant. Lines are
drawn between the baseline and final markers for each participant with
complete baseline and final markers. The vertical dotted lines and the
horizontal bars indicates the start and end times of the night shifts and light
exposure.

three consecutive night shifts (Figure 5). For 7000 K light, the
baseline DLMO (n = 26) ranged from 19:18 to 00:19 h, and
for the final DLMO (n = 22) the range was 20:16–02:33 h. For
2500 K light, the baseline DLMO (n = 26) ranged from 19:37 to
00:09 h, and for the final DLMO (n = 23) the range was 21:13–
02:33 h. In Table 4, DLMO and sleep statistics are provided
for participants with complete data. Eleven participants had a
larger phase delay after night shifts in 7000 K than in 2500 K
light, while six participants showed an opposite effect. The LMM
estimated mean phase delay of DLMO was 2:34 (SE = 0:14) h
and 2:12 (SE = 0:14) h in the 7000 and 2500 K light conditions,
respectively. However, there was no significant main effect of
light (F1,23 = 1.58; p = 0.222). There was no significant difference
in the initial timing of baseline DLMO before the night shifts

TABLE 4 | Daytime sleep and circadian phase markers. Clock time (hh:mm).

n 7000 K light Mean (SD) 2500 K light Mean (SD)

Daytime sleep

Sleep onset 27 07:45 (0:28) 07:45 (0:32)

Sleep onset latency 27 0:06 (0:06) 0:05 (0:06)

Wake time 27 13:47 (0:57) 13:28 (1:00)

Sleep duration 27 6:01 (0:57) 5:43 (0:58)

Circadian phase

Baseline DLMO 23 21:27 (1:10) 21:30 (1:06)

Final DLMO 18 23:54 (1:23) 23:36 (1:31)

Phase shift (delay) 17 2:43 (1:04) 2:12 (1:14)

Phase angle

Phase angle sleep onset 16 7:36 (1:07) 7:47 (1:27)

Phase angle sleep offset 16 13:37 (2:35) 13:38 (1:55)

Participants with complete data for each variable. Sleep variables derived from
averaged actigraphy of the three daytime sleep periods after the night shifts. DLMO,
dim-light melatonin onset. Baseline DLMO sampled in the evening one day prior to
the first night shift; Final DLMO sampled in the evening on the day after the third
night shift. Phase angle calculated as the time interval from final DLMO to sleep
onset and offset, derived from actigraphy of the previous daytime sleep period
(after the third night shift). There were no significant differences between the light
conditions (p > 0.05).

across the two conditions (Table 4). Similar results were found
when analyzing baseline DLMO for the 17 participants who had
complete DLMO estimates in both light conditions (7000 K:
M = 21:13; SD = 0:55, 2500 K: M = 21:27; SD = 1:03, t16 = 1.21;
p = 0.243). The magnitude of phase shift and baseline DLMO
did not correlate in either of the conditions (7000 K: r = 0.111;
p = 0.640, 2500 K: r = 0.108; p = 0.632).

Participants had a mean daytime sleep duration after night
shifts of 6:01 h in 7000 K light and 5:43 h in 2500 K light,
which did not amount to a significant difference. Likewise, for
the other daytime sleep variables, there were no significant
differences between light conditions (Table 4). Also, the phase
angle relationship for sleep onset and sleep offset did not differ
significantly between the light conditions. In Figures 6A–D,
estimates of daytime sleep after each night shift are provided.
There was no significant main effect of light nor an interaction
effect of light × shift for any of the sleep variables, and for sleep
onset latency and wake time there were no significant effect of any
of the fixed factors. For sleep onset there was a main effect of shift
[F(2, 139) = 6.14; p = 0.003] with later sleep onset for daytime sleep
after night 3 (EMM = 08:01 h; SE = 0:06 h) compared to daytime
sleep after night 1 (EMM = 07:40 h; SE = 0:06 h, p = 0.013) and
night 2 (EMM = 07:38 h; SE = 0:06 h, p = 0.006). The main
effects model explained 5.5% of the variance in sleep onset. For
sleep duration there was a main effect of shift [F(2, 139) = 8.23;
p < 0.001] with shorter sleep duration for daytime sleep after
night 3 (EMM = 5:31 h; SE = 0:12 h) compared to daytime sleep
after night 1 (EMM = 6:03 h; SE = 0:12 h, p = 0.046) and night 2
(EMM = 6:24 h; SE = 0:12 h, p < 0.001). The main effects model
explained 8.1% of the variance in sleep duration.

Light Evaluation
For all the light evaluation items there was a significant main
effect of light (Table 5). Participants evaluated 2500 K as more
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FIGURE 6 | Estimated marginal means and standard error plotted as a function of light condition (2500 K vs. 7000 K light) and daytime sleep period (after night shift
1–3). Sleep variables were derived from actigraphy. Estimates are provided as clock time (hh:mm) for (A,C) and duration (h:mm) for (B,D). No statistically significant
differences between light conditions were found.

TABLE 5 | Evaluation of light conditions estimates, and F-statistics for fixed factors.

7000 K light 2500 K light Light Time Light*Time Variance (%) explained by light

EMM (SE) EMM (SE) F (df) p F (df) p F (df) p

Pleasantness 4.64 (0.17) 5.13 (0.17) 5.27 (1.88) 0.024 0.13 (1.85) 0.725 5.29 (1.85) 0.024 3.9

Clearness 5.51 (0.23) 3.95 (0.23) 41.27 (1.85) <0.001 0.21 (1.83) 0.651 1.08 (1.83) 0.301 18.5

Color 5.62 (0.22) 3.08 (0.22) 75.19 (1.86) <0.001 1.58 (1.82) 0.213 0.41 (1.82) 0.525 38.3

Brightness 4.73 (0.19) 3.67 (0.19) 29.10 (1.81) <0.001 1.82 (1.79) 0.181 0.49 (1.79) 0.484 13.4

Activating 5.11 (0.22) 3.24 (0.22) 60.90 (1.84) <0.001 1.21 (1.82) 0.275 2.94 (1.82) 0.090 26.8

Suitable for work 5.72 (0.20) 4.21 (0.21) 35.08 (1.86) <0.001 0.01 (1.3) 0.908 0.10 (1.83) 0.758 20.4

EMM, estimated marginal means. SE, standard error. Pleasantness is a scale comprising four single items (pleasant, comfortable, disturbing and glary). All measures were
derived from a 7-point semantic differential questionnaire completed at the beginning of the first night shift (time 1) and at the end of the last night shift (time 2). Estimates
and statistics were calculated using linear mixed models. Adding the factors “time” and “light × time” interaction did not improve the model fit (Likelihood Ratio Test) for
any of the variables. Significant findings are indicated in bold.

pleasant than 7000 K light, while 7000 K was evaluated as
clearer, colder, brighter, more activating and more suitable for
work than 2500 K light. Adding light as a factor significantly
improved the model fit (LRT) compared with the random effects

model for all measures (see explained variance in Table 5). For
pleasantness, a significant interaction of light × time indicated
that participants evaluated the 2500 K light as more pleasant than
the 7000 K light only at time 2 (at the end of the third night shift).
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However, the LRT indicated that the time-interaction model did
not significantly improve the model fit for any of the variables
compared with the main effects model.

DISCUSSION

In the current trial we applied novel strategies for administration
of workplace lighting during three consecutive simulated night
shifts, comparing blue-enriched (7000 K) and warm (2500
K) white light with similar photon density (∼1.6 × 1014

photons/cm2/s). As expected, subjective and behavioral alertness
deteriorated throughout the night shifts. Blue-enriched light was
more beneficial for alertness during night shifts compared to
2500 K light, but the differences were not clear-cut and mainly
manifested as fewer PVT performance errors (lapses and false
starts) at the end of the first and second night shift. Overall,
subjective alertness was higher with 7000 K, compared to 2500 K
light, but there were no significant interaction effects of light and
time. Similarly, for the DSST there were more correct responses
with 7000 K light, but no significant interaction of light and time.
For the PVT mean 1/RT there were indications of shorter RTs
with 7000 K light in the mid–late parts of the night shifts, albeit
not statistically significant. However, for the fastest 10% RT, there
were significantly shorter RTs with 7000 K light at 02:30 and
04:00 h, compared to 2500 K light. Altogether, our hypothesis
that 7000 K compared to 2500 K light would increase alertness
and performance during night shifts received partly support. For
those with valid phase shift estimates (n = 20 (69.0%) and n = 22
(78.6%) in 7000 and 2500 K light, respectively], the melatonin
rhythm was phase delayed after the night shifts. However, there
was no significant difference in terms of circadian phase shifts
between the two light conditions. Due to missing data the latter
finding is inconclusive.

Monochromatic short-wavelength (i.e., blue) light has been
shown to elicit alerting responses (Cajochen et al., 2005; Lockley
et al., 2006). Although responses to polychromatic light may
differ from responses to monochromatic light (Revell et al.,
2010; Figueiro et al., 2018), polychromatic blue-enriched (6500
K; 40 lx) light has also been found to induce alertness compared
to warm (2500 K; 40 lx) light in the evening (Chellappa et al.,
2011). Likewise, we found evidence of alerting responses to
blue-enriched light during simulated night work.

In a recent study, LED-based room lighting (∼150 lx) with
high (4667 K), moderate (3366 K), and low (2166 K) color
temperature during simulated night work, however, did not
differentially impact perceived alertness and performance on
a 25 min visual PVT (Canazei et al., 2017). The relatively
lower color temperature employed in that study may explain
the lack of differences between light conditions compared to
the present study. Additionally, the PVT’s comparability with
the version used in the present study is limited, as there were
considerably fewer stimuli and substantially longer interstimulus
intervals in the PVT applied by Canazei et al. (2017). Two other
recent studies, using fluorescent light sources, assessed effects
of nocturnal blue-enriched light on alertness and performance
among real night workers (Motamedzadeh et al., 2017; Sletten

et al., 2017). Similar to our findings concerning sleepiness, Sletten
et al. (2017) found no differences between night workers exposed
to blue-enriched light (17000 K; 89 lx) compared to standard
light (4000 K; 84 lx). In addition, no differences regarding PVT
performance was reported (Sletten et al., 2017). Sletten et al.
(2017) did not use a crossover design, and between-subject
differences may have confounded comparisons across conditions.
The study by Sletten et al. (2017) also differed from the present
study, as the light intervention commenced during one simulated
night shift, following at least two consecutive night shifts at the
participants’ usual occupation. Enhanced alertness with blue-
enriched light was reported by Motamedzadeh et al. (2017),
with lower subjective sleepiness among control room operators
during 12 h night shifts with medium (6500 K) and high (17,000
K) blue-enriched light (∼350 lx), compared to standard light
(4000 K; ∼350 lx). On a Continuous Performance Test, blue-
enriched light did not affect errors of commission, but 6500
and 17,000 K light favored attention in terms of shorter RTs,
and for 17,000 K light there were also fewer errors of omission
(Motamedzadeh et al., 2017). Similarly, the present study found
fewer PVT lapses (i.e., errors of omission) in the later parts of
the first and second shift with 7000 K light, but also fewer PVT
false starts (i.e., errors of commission). In addition, there were
indications of shorter RTs with 7000 K light, as performance
in the optimal (i.e., fastest 10% RT) domain of the PVT was
improved with 7000 K light compared to 2500 K light. While
slow PVT RTs (i.e., lapses) have been associated with activation
of brain regions involved in the default mode network (i.e.,
resting state), performance in the optimal domain of the PVT
has been associated with activation of regions involved in the
fronto-parietal sustained attention network (Drummond et al.,
2005), suggesting modulation by the nonvisual system via the
blue light sensitive ipRGCs (Vandewalle et al., 2009; Chellappa
et al., 2011; Warthen and Provencio, 2012). Contrary to the
findings by Chellappa et al. (2011), we also found beneficial effects
of blue-enriched light regarding PVT lapses, hence the nonvisual
system may also modulate the default mode network related to
slow RTs and lapses (Drummond et al., 2005).

None of the previous studies investigating blue-enriched light
assessed performance using DSST. However, in a recent study
we found that performance on the DSST during simulated night
work may be improved by nocturnal bright (4000 K; ∼900 lx)
compared to standard (4000 K; ∼90 lx) light (Sunde et al.,
2020). The DSST is sensitive to change in cognitive function, and
both attention and working memory are required for optimal
performance (Jaeger, 2018). In the study by Motamedzadeh
et al. (2017), a working memory test (n-back) revealed more
correct responses with 17,000 K compared to 4000 K light,
although Canazei et al. (2017) found no differences between light
conditions on a working memory task.

Compared to the present study, the color temperature (17,000
K) was higher in the study by Sletten et al. (2017), yet
the illuminance (89 lx) was substantially lower. Overall, the
melanopic illuminance of the 7000 K light (192 lx) in the
present study was higher than in the 17,000 K (129 lx) light in
Sletten et al. (2017). However, the relative difference between
the compared light conditions within the present study and
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the study by Sletten et al. (2017) was similar, with the blue-
enriched light having about twice the melanopic illuminance as
the control condition. Sletten et al. (2017) suggested that lack
of differences between light conditions may reflect saturating
light levels. Likewise, a highly controlled laboratory based study
reported no differences in sleepiness between 9000 and 2800
K light (250 lx) and suggested that saturating light levels were
used, and that spectral distribution is more important at lower
light levels < 200 lx (Cajochen et al., 2019). Since in the present
study higher illuminance was used than in Sletten et al. (2017),
it cannot be ruled out that light saturation also influenced the
current results. Still, in the study by Motamedzadeh et al. (2017),
beneficial effects of blue-enriched light were found although the
illuminance (∼350 lx) was even higher than in the present study.

It should be noted that previous studies concerning
polychromatic light with different spectral distribution during
night work (Canazei et al., 2017; Motamedzadeh et al., 2017;
Sletten et al., 2017) have mainly used similar illuminance levels
between the light conditions rather than being photon-matched.
In the present study, however, the light conditions had similar
photon density (∼1.6 × 1014), thus being the first blue-enriched
light during night work study that has directly assessed the
effectiveness of short-wavelength compared to long-wavelength
light whilst correctly controlling for light intensity/photon
density. Photon-matching was also used in a recent and
highly controlled (e.g., participants were studied in a time-free
environment for 7 days) laboratory trial (Hanifin et al., 2019),
assessing alerting effects of nocturnal 6.5 h exposure to blue-
enriched (17,000 K; 96 lx; 1.00 × 1014 photons/cm2/s) compared
to standard (4000 K; 123 lx; 1.01 × 1014 photons/cm2/s) light.
Subjective sleepiness was reduced with 17,000 K light compared
to standard light, but 17,000 K light did not affect PVT measured
RTs or lapses during light exposure (Hanifin et al., 2019). Hanifin
et al. (2019) applied lower illuminance and a different spectral
distribution compared to the present study. However, in the
study by Hanifin et al. (2019) the melanopic illuminance in the
standard (79 lx) light was only slightly lower than in the 2500 K
(86 lx) light used in the present study, while the 17,000 K (133 lx)
light in Hanifin et al. (2019) had lower melanopic illumination
than the 7000 K (192 lx) light in the present study. Thus, it is
a little surprising that we did not find stronger effects of 7000
K light on subjective alertness/sleepiness, as the mechanism
is thought to be mediated by melanopsin expressing ipRGCs
projecting to brain areas important for alertness and arousal
regulation (Vandewalle et al., 2009; Warthen and Provencio,
2012). Still, compared to our study, much more rigorous control
of participants’ exposure was taken, e.g., an ophthalmologic head
holder was used to maintain a fixed head position and gaze,
and light history was controlled with dim light and blindfolds
prior to light exposure (Hanifin et al., 2019). As we found
beneficial effects of 7000 K compared to 2500 K light on PVT
measures, it is somewhat surprising that no effects were found
during blue-enriched light exposure in the more controlled
study by Hanifin et al. (2019).

In terms of polychromatic blue-enriched light, recent studies
have not found greater phase delay with blue-enriched (17,000 K)
compared to photon-matched standard (∼4000 K) light (Smith

and Eastman, 2009; Hanifin et al., 2019), similar to the results in
the present study. In the study by Smith and Eastman (2009), the
blue-enriched light had a much higher illuminance (∼4000 lx)
than in the current study and is thus not directly comparable.
In the study by Hanifin et al. (2019), the light levels (1 ×

1014 photons/cm2/s) were lower and more comparable to the
current study. Although the current results are in line with
the findings by Hanifin et al. (2019), the study protocols differ
substantially. Importantly, in the current study the light exposure
was kept constant throughout the night shifts, hence a portion
of light exposure occurred after the estimated Tmin for most
participants. In line with the phase response curve to light (Khalsa
et al., 2003; Revell et al., 2012), and the fact that 7000 K light
had about twice the melanopic illuminance than 2500 K light,
it is likely that 7000 K light exposure after Tmin attenuated the
phase delay to a larger degree than 2500 K light. Despite the
fact that there were no significant differences in the phase delay
magnitude between 7000 and 2500 K light, we observed beneficial
effects of 7000 K light for PVT performance measures. Thus,
blue-enriched light, as administered in the present study, may
improve behavioral alertness without inducing larger phase delay
than warmer light. This can be regarded as beneficial because
circadian adaption to night work, implies that one later would
also need to readapt to a day work schedule. Hence, for short-
term night work (no more than 3 nights) it is not desirable to
fully adapt during the night work period.

Participants evaluated 7000 K light as colder, brighter and
more activating than 2500 K light, similar to a previous study of
fluorescent light (6000 K vs. 2700 K light) during daytime office
hours (Smolders and de Kort, 2017). Participants’ evaluation of
7000 K light as more activating than 2500 K light, contrasts
the findings for the sleepiness and performance measures, where
only minor advantages were found for 7000 K light. Thus, there
may be some mismatch between subjective impressions of light
effects and the actual test data on alertness and performance. In
line with Smolders and de Kort (2017), participants evaluated
2500 K as more pleasant than 7000 K light. In contrast to lack
of perceived differences during daytime office hours (Smolders
and de Kort, 2017), 7000 K light was evaluated as clearer
and more suitable for night work than 2500 K light. Thus,
visual perception and appraisal of light conditions may differ
during daytime and nighttime, possibly due to circadian and/or
homeostatic processes also affecting subjective preferences for
lighting. Noticeably, although there were differences in the
evaluation of the pleasantness of the lights and their suitability
for work, the participants evaluated both 7000 and 2500 K light
as fairly pleasant and suitable for work.

Some limitations of the present study should be noted.
Caution should be taken when interpreting the circadian phase
shifting responses in the present study, as several participants
(6 with 7000 K light and 3 with 2500 K light) did not reach
the 3 pg/mL threshold during DLMO sampling after the night
shifts, possibly because the light may have phase delayed DLMO
beyond the fixed sampling time. Hence, it is possible that
the 7000 K light caused a larger phase delay than could be
measured, and the findings should be considered inconclusive.
As for alertness and performance, saturating light levels may
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also explain lack of significant phase shift differences. In terms
of external validity, several factors need to be considered when
interpreting the present results. Most participants were females
and given that male participants have shown greater responses
to blue-enriched light (Chellappa et al., 2017), the results
may not be generalizable to populations with a different sex
distribution. Although menstrual phase is known to impact PVT
performance (Vidafar et al., 2018), only three female participants
were estimated to be in a different menstrual phase during the
two study periods. However, as these were rough estimates based
on self-report, we cannot completely rule out that menstrual
phase may have affected the results. None of the participants had
color vision deficiency according to the Ishihara test, but some
females can be tetrachromatic, i.e., express a fourth cone pigment
(Jacobs, 2018), and we do not know if such alterations occurred or
may have affected the results. The crossover and counterbalanced
design, however, reduced this impact. We only studied young
healthy participants and, as age differences in the responses to
blue-enriched polychromatic light have been reported (Gabel
et al., 2017), the transferability to real-life settings including older
workers is not clear. Another point is that the present study was
conducted at a latitude and at a time of year where daylight
exposure was limited in the hours before and after the night shifts.
Thus, the generalizability to other latitudes and/or other seasons
can be questioned, as prior light exposure may affect the alerting
responses to light (Chang et al., 2013). In addition, reduced
exposure to morning light after night shifts (e.g., during the
commute home) can hasten circadian adaptation to night work
(Smith et al., 2008). We did not tailor an individually adapted
light intervention which could be beneficial considering the large
variability in individuals’ circadian timing (Stone et al., 2018), and
that individual differences in responses to light have been found
(Phillips et al., 2019). However, in a real workplace, individually
adapted light exposure using standard room lighting may be
impractical, hence the current light intervention is generally
more feasible and practical for workplaces. Still, it is now possible
using modern LED technology to locally adjust the intensity
and spectral distribution to facilitate desired nonvisual responses
for individual workers. This should thus be explored in future
studies. An issue regarding the use of LED-based blue-enriched
light are potential hazards to the eyes, such as photochemical
damage to the retina (Bullough et al., 2019), due to the blue-
light exposure. However, reasonable foreseeable usage of LEDs
is not expected to cause acute retinal damage, though possible
long-term effects of exposure to new light sources need further
research (International Commission on Non-Ionizing Radiation
Protection, 2020).

In terms of study strengths we employed light conditions
that are suitable for real-life application, and both conditions
complied with European lighting standards for offices (CEN,
2011). Hence, compared to many previous studies of blue-
enriched light (e.g., Chellappa et al., 2011; Hanifin et al., 2019),
the current light conditions may be more suitable for a real-
life workplace. We did not put requirements on participants’
behavior during spare time away from the laboratory, e.g.,
in terms of activities, sleep timing and light exposure, as we
wanted to employ a protocol that was transferable to a real

work schedule as much as possible which may be viewed as
an asset in terms of generalizability. The light sources were
photon-matched thus the effect of spectral composition was not
confounded by differences in light intensity. Furthermore, light
conditions were administered using standard ceiling mounted
LED-luminaires that can easily be installed at a real workplace. In
addition, the crossover design adjusted for individual differences
that otherwise could have exerted a strong effect on the
outcome variables.

CONCLUSION

The present study indicated that standard LED-based
polychromatic blue-enriched light (7000 K; ∼200 lx) compared
to warm white light (2500 K) of similar photon density (∼1.6
× 1014 photons/cm2/s), had significant and beneficial, albeit
minor impact on the alertness and performance decrements
experienced during simulated night work. The circadian phase
was delayed with both light conditions with no significant
differences between conditions. However, the circadian phase
shift findings were inconclusive due to missing data. Participants’
opinions of both light conditions were fairly positive, although
7000 K light was evaluated as more suitable for work, while 2500
K light was evaluated as more pleasant. In conclusion, LED-based
blue-enriched light may facilitate alertness and performance
during night work. More studies are needed to validate this
conclusion, e.g., in different populations.

We encourage further research that makes full use of
tunable LEDs, to elucidate lighting conditions favorable
for night workers. Light interventions should be carefully
planned to consider the various effects (e.g., subjective,
cognitive and entrainment) of different light intensities and
spectral distributions, and future studies in real workplaces are
warranted to develop recommendations regarding illumination
for night workers.
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