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Plasma levels of interleukin 27 in
falciparum malaria is increased
independently of co-infection with HIV:
potential immune-regulatory role during
malaria
Kari Otterdal1*, Aase Berg2,3, Annika E. Michelsen1,4, Sam Patel3, Ida Gregersen1,4, Ellen Lund Sagen1,
Bente Halvorsen1,4,5, Arne Yndestad1,4,5, Thor Ueland1,4,5,6, Nina Langeland7,8,9 and Pål Aukrust1,4,5,10

Abstract

Background: The immune response during falciparum malaria mediates both harmful and protective effects on the
host; however the participating molecules have not been fully defined. Interleukin (IL)-27 is a pleiotropic cytokine
exerting both inflammatory and anti-inflammatory effects, but data on IL-27 in malaria patients are scarce.

Methods: Clinical data and blood samples were collected from adults in Mozambique with P. falciparum infection,
with (n = 70) and without (n = 61) HIV-1 co-infection, from HIV-infected patients with similar symptoms without
malaria (n = 58) and from healthy controls (n = 52). In vitro studies were performed in endothelial cells and PBMC
using hemozoin crystals. Samples were analyzed using enzyme immunoassays and quantitative PCR.

Results: (i) IL-27 was markedly up-regulated in malaria patients compared with controls and HIV-infected patients
without malaria, showing no relation to HIV co-infection. (ii) IL-27 was correlated with P. falciparum parasitemia and
von Willebrand factor as a marker of endothelial activation, but not with disease severity. (iii) In vitro, IL-27
modulated the hemozoin-mediated cytokine response in endothelial cells and PBMC with enhancing effects on IL-6
and attenuating effects on IL-8.

Conclusion: Our findings show that IL-27 is regulated during falciparum malaria, mediating both inflammatory and
anti-inflammatory effects, potentially playing an immune-regulatory role during falciparum malaria.
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Background
Infection with Plasmodium falciparum (P. falciparum) is
associated with a marked increase in systemic and local
inflammation, potentially contributing to the pathogenesis
of malaria rather than being protective [1–3]. However,
the immune response during P. falciparum infection is ra-
ther complex, consisting of both adaptive and maladaptive
signaling [4]. Falciparum malaria infection triggers a broad
range of cytokines [Interleukin (IL)-1ra, IL-6, IL-8, IL-9,

IL-10, Eotaxin, Interferon gamma-induced protein 10 (IP-
10), monocyte chemotactic protein-1 (MCP-1), macro-
phage inflammatory protein-1β (MIP-1β) and tumor
necrosis factor (TNF)]. Of those, TNF, IL-8 and IP-10 are
associated with increased severity and IL-8 and Eotaxin
with malaria and HIV co-infection [5, 6]. Thus, in addition
to characterizing activation of inflammatory pathways that
contribute to disease severity, it is of major importance to
identify mediators that could mediate protective responses
for the host. Hence, whereas TNF is regarded as a proto-
typical inflammatory mediator during falciparum malaria
promoting organ failure and disease severity [6], the anti-
inflammatory cytokine IL-10 may be of importance in
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preventing T cell- and cytokine-mediated pathology dur-
ing potentially lethal malaria infections [7]. However, an
overwhelming anti-inflammatory response may also be
harmful for the host, and the identification of protective
and harmful mediators and the balance between these
molecules during falciparum malaria is far from clear.
IL-27 is a pleiotropic two-chain cytokine, composed of

EBI3 (Epstein-Barr virus-induced gene 3) and IL-27p28 sub-
units related to both the IL-12 and IL-6 cytokine families.
IL-27 may exert both inflammatory and anti-inflammatory
effects in a context dependent manner, partly determined by
disease category and state [8–10]. In experimental malaria,
IL-27 has been suggested to regulate protective immunity
partly through IL-27 producing CD4+ T cells [11]. However,
data on IL-27 regulation in clinical malaria is scarce, and to
this end, there are no data on IL-27 levels during falciparum
malaria in adults. Further, how co-infection with HIV influ-
ences IL-27 levels during falciparum malaria is unknown
and such knowledge would be of importance in light of a
considerable geographic overlap between the two diseases,
particularly in sub-Saharan Africa where different interac-
tions between HIV and malaria has been described [12, 13].
To examine the role of IL-27 in falciparum malaria,

plasma IL-27 was measured in a cohort of adult patients
with P. falciparum infection and related to disease severity
and parasitemia as assessed by quantitative P. falciparum
PCR analyses. The study was performed in Mozambique
which has one of the highest global incidences of co-
infection with HIV and falciparum malaria. We therefore
also examined the association between HIV infection and
IL-27 levels. Finally, to elucidate any potential conse-
quences of altered IL-27 levels during falciparum malaria
in vivo, we examined the ability of IL-27 to modulate
hemozoin-induced release of various inflammatory cyto-
kines in peripheral blood mononuclear cells (PBMC) and
endothelial cells.

Methods
Description of study design and participants
The study design has previously been described [12].
Briefly, during 7 months in two malaria peak seasons,
from 2011 to 2012 we included all patients (n = 212) ad-
mitted to the Medical Emergency Department in the
Central Hospital of Maputo, Mozambique. The inclusion
criteria in this prospective, cross-sectional study, were
age ≥ 18 years, non-pregnancy, axillary temperature ≥
38 °C and/or clinical suspected or confirmed malaria in-
fection, and consent from patient or next of kin. Clinical
suspicion of malaria was defined as a history of fever,
chills, headache, mental confusion, dyspnea, vomiting
and/or diarrhea, myalgia and/or general malaise in the
absence of other symptoms and findings indicating other
severe infections or conditions. Pregnancy was an exclusion
criteria due to the different immune response compared to

non-pregnancy [14, 15]. Of the 212 screened patients, 129
had P. falciparum malaria as assessed by qualitative PCR
and two had rapid diagnostic test (RDT) and malaria slide
positive for P. falciparum giving a total of 131 malaria pa-
tients (median age 37 years [18–84 years], 47% women, 53%
co-infected with HIV-1 [PCR and/or serological tests]). Of
the malaria patients, 92% received quinine intravenously,
4% received artemether intramuscularly, and the rest were
treated with oral artemisinin combinations [12].
Severe malaria was defined according to WHO defini-

tions [16]. Severe malaria was found in 65% (85/131) of
the patients and 13% (17/131) had very severe malaria
defined as three or more severity criteria [12]. Of the
malaria patients 7.6% died (10/128 of which 9 were co-
infected with HIV; missing data on outcome in 3 patients).
The characteristics of the patient groups at admission are
shown in Table 1, including data on CD4 T cell counts,
plasma levels of HIV RNA and antiretroviral treatment
(ART). The qualitative P. falciparum PCR in whole blood
were performed as previously described [17, 18]. Estimated
glomerulus filtration rate (eGFR) was calculated from the
abbreviated MDRD (Modification of Diet in Renal Disease)
equation based on measured serum creatinine, age, sex and
race.
For comparison, we also included 58 HIV-1-infected

patients, admitted with clinical suspicion of malaria (i.e.,
similar symptoms) as mentioned above, but where mal-
aria was excluded. These patients were diagnosed with
among others tuberculosis, bacterial pneumonia, viral
hepatitis, Pneumocystis jirovecii pneumonia, toxoplasma
encephalitis, urinary tract infection and sepsis. Fifty-two
apparently healthy HIV negative and malaria negative
volunteers with median age 29 years (18–56 years), and
40% women, were enrolled from hospital employees pro-
vided no history of chronic disease, a subjective feeling
of wellbeing and a healthy appearance evaluated by the
researchers.

Blood sampling protocol
Blood samples from patients and healthy controls were
collected from peripheral vein into pyrogenic-free EDTA-
tubes that were immediately placed on ice, and centri-
fuged within 30min at 2000 g for 20min to obtain platelet
poor plasma. Plasma was thereafter aliquoted and stored
at -80 °C. Sample 1 was done on admission and sample 2
after 48 h.

The quantitative P. falciparum PCR in plasma
The concentration of P. falciparum DNA in plasma was
measured by real-time quantitative PCR (qPCR) as previ-
ously described [17, 19]. Briefly, samples were run on Light-
Cycler® 480 Multiwell Plate 384, white (Roche Diagnostics,
Mannheim, Germany) using Primer Pf-1 (5′-ATT GCT
TTT GAG AGG TTT TGT TAC TTT-3′), primer Pf-2
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(5′-GCT GTA GTA TTC AAA CAC AAT GAA CTC
AA-3′) and probe Pf (5′-CAT AAC AGA CGG GTA GTC
AT-3′) (Applied Biosystems, Cheshire, UK). DNA quantity
for samples with P. falciparum DNA less than the Limit of
Quantification (LOQ) was set to be equal to or less than
the LOQ (estimated to ≤6.4 parasites/μl).

Isolation and culturing of PBMC
To obtain PBMC, heparinized blood from healthy controls
was subjected to Isopaque-Ficoll gradient centrifugation
and seeded in 48-well trays (106/mL; Thermo Scientific)
in RPMI 1640 (PAA Laboratories, Pasching, Austria) sup-
plemented with 10% fetal bovine serum (FBS; Gibco,
Grand Island, NY) as previously described [20]. The cells
were cultured with recombinant human (rh)IL-27 (100
ng/mL; R&D Systems, Minneapolis, MN) in RPMI 1640
supplemented with 10% FBS for 1 h before stimulated
with different concentrations of chemically synthesized
hemozoin (Invivogen, San Diego, CA) for 22 h.

Endothelial cell culture
Primary Human Aortic Endothelial cells (HAoECs) were
obtained from PromoCell GmbH, Heidelberg, Germany.
The cells were cultured in Endothelial Cell Growth
Medium MV2 (PromoCell), passaged by treatment with
Trypsin/EDTA (0.04%/0.03%; PromoCell) and grown in
48-well plates (Thermo Scientific, Roskilde, Denmark)

coated with 1% gelatin (Sigma, St Louis, MO). The cells
were plated one or two days before experimental start
aiming 90% confluence. The cells were stimulated in the
manner as described for PBMC using Opti-MEM re-
duced serum medium (Gibco) supplemented with 5%
FBS. For evaluation of possible cell toxicity, different
concentration of hemozoin was tested in both HAoEC
and PBMC cultures where lactate dehydrogenase was
quantified in fresh cell supernatants using Cytotoxicity
Detection Kit from Sigma Aldrich (St. Louis, MO). In
the HAoEC cultures cytotoxicity was observed with the
highest hemozoin concentration tested (200 μg/mL) and
this hemozoin concentration was therefore excluded in
further experiments with endothelial cells.

Supernatant and plasma analyses
Plasma levels of IL-27 and IL-6 and IL-8 levels in cell su-
pernatants were measured by enzyme immunoassays
(EIAs) from R&D Systems. von Willebrand factor (vWF)
levels in plasma were measured by EIA with antibodies
from Dako Cytomation (Glostrup, Denmark). The intra-
and interassay coefficient of variation were < 10% for all
assays.

Real-time quantitative RT-PCR for in vitro samples
Total RNA was obtained from HAoEC and PBMC and
real-time qPCR analyses were performed as previously

Table 1 Clinical characteristicsa) of the patient population at admissionb)

HIV only Malaria only Malaria and HIV

N 58 61 70

Age, years 39 (22–84) 40 (18–79) 40 (20–65)

Sex, females (%) 50 (29/58) 41 (25/61) 50 (35/70)

Hemoglobin (g/dL) 8.9 (2.9–15.2) 11.2 (3.2–17.0) 9.4 (2.5–15.7)

Leukocytes (× 109/L) 8.2 (0.3–25.4) 6.9 (1.3–15.5) 7.8 (0.9–21.8)

Platelets (×109/L) 220 (13–682) 124 (11–452) 90 (8–330)

Se-Creatinine (μmol/L) 161 (41–873) 127 (57–357) 223 (62–1529)

Se-Glucose (mmol/L) 6.1 (3.3–10.6) 8.7 (3.6–40.5) 6.12 (1.5–27.0)

Liver failure (%)c) 5 (4/57) 5 (3/61) 17 (12/70)

Coagulation disturb. (%)d) 0 2 (1/61) 13 (9/70)

Cerebral affection (%) e) 33 (19/58) 25 (15/61) 31 (22/70)

Systolic blood pressure 115 (90–160) 122 (70–240) 115 (80–170)

Respiratory rate 29 (12–56) 22 (12–68) 24 (16–42)

CD4 T-cells (106/l)f) 120 (10–196) 0 221 (14–632)

HIV-RNA (copies/ml) 2.6 × 104 (0–5.1 × 105) 0 4.2 × 104 (0–8.3 × 105)

ART before admission 29 (17/58) 0 19 (13/70)

Effective ARTg) 17 (10/58) 0 13 (9/70)

Case fatality rate (%) 27.8 (15/54) 1.7 (1/59) 13.0h) (9/69)
a) Values in mean (min-max) or percentage and proportion. b) The 52 healthy controls are not included. c) Defined as jaundice/ bilirubine> 50 μmol/L d) Defined as
bleeding disturbances/ hemolysis e) Defined as GCS ≤ 11, convulsions or confusion f)CD4 T-cell count were only obtained in 8 (HIV only) and 11 (HIV +malaria)
patients. g) Effective ART is defined as undetectable HIV-RNA levels. h) One patient died of non-malarial cause, he was excluded
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described [20]. mRNA detection of gp130 and reference
genes GAPDH and β-actin was assessed with SybrGreen
primers (Sigma Aldrich, St. Louis, MO 63103): gp130,
forward primers (FP): CATCGCACCTATTTAAGAGG
GAACT, reverse primers (RP): CCTTTGGAAGGTGG
AGCTTGT; GAPDH, FP: GCCCCCGGTTTCTATAA
ATTG, RP: GTCGAACAGGAGGAGCAGAGA; β-actin,
FP: AGGCACCAGGGCGTGAT, RP: TCGTCCCAGT
TGGTGACGAT. Sequence specific TaqMan primers
and probes were used for detection of IL-27Rα mRNA
(Assay-ID: Hs00945029_m1; Applied Biosystems). The
relative mRNA level of each transcript was calculated by
the ΔΔCt-method and normalized to controls.

Statistical analyses
The distribution of inflammatory markers was skewed and
nonparametric statistics were used throughout. For com-
parison between the diagnostic groups, Kruskal-Wallis
was used a priori followed by Dunn’s multiple comparison
test between individual groups. Wilcoxon matched-pairs
signed rank test was used to compare changes from base-
line to follow-up within each diagnostic group. Compari-
son of IL-27 in patients with and without severe malaria
was performed using the Mann-Whitney U-test. Spear-
man correlation was used to assess associations between
variables. In the ex vivo experiments Student’s t test was
used. A two-sided p < 0.05 was considered significant.

Results
IL-27 in P. falciparum infection with and without HIV
infection
As can be seen in Fig. 1a, IL-27 was significantly in-
creased in both the malaria groups as compared with
healthy controls and HIV-infected patients with similar

febrile symptoms, but without malaria. There were no
differences between patients with falciparum malaria
with and without co-infection with HIV, indicating that
the elevated IL-27 levels are mainly associated with mal-
aria. In the malaria patients as a whole, IL-27 levels were
negatively correlated with platelets count independently
of co-infection with HIV, indicating an association with
platelet activation (Table 2). In malaria patients IL-27
levels were also negatively correlated with eGFR, reach-
ing statistical significance in those co-infected with HIV.
In contrast, there was no correlation between IL-27 and
leukocyte counts, lymphocyte counts or granulocyte
counts with the same pattern in the two malaria groups
(Table 2).

IL-27 in relation to degree of parasitemia, clinical disease
severity and endothelial cell activation
In 93 of the 131 malaria patients, the degree of malaria
parasitemia could be assessed by qPCR (38 patients had
plasma levels below the detection limit of the assay). As
shown in Table 2, IL-27 was strongly correlated with the
degree of parasitemia with the same pattern in those
with and those without co-infection with HIV. In con-
trast, IL-27 was not associated with disease severity as
assessed by the WHO definition [16] in either of the two
malaria groups. Thus, no differences within the malaria
group (without vs severe): median 8.2 [25th 3.8, 75th
16.9] ng/mL vs. 9.9 [4.8, 26.1] p = 0.66 were observed
and no differences were found within the HIV +malaria
group (without vs severe): 12.6 [9.0, 15.9] vs. 9.6 [6.8,
16.2] p = 0.29. In the malaria group as a whole, no differ-
ences with regard to severity were observed (without vs
with): 10.7 [5.1, 16.4] vs. 9.7 [5.9, 17.0] p = 0.90.

Fig. 1 Plasma levels of IL-27 in the patient groups. a shows plasma levels of IL-27 in patients with HIV infection with febrile symptoms but
without malaria (n = 58), patients with falciparum malaria without (n = 61) and with HIV infection (n = 70). b shows plasma levels of IL-27 during
baseline and follow-up that were available in 49 patients with HIV infection without malaria and in patients with falciparum malaria without (n =
6) and with HIV infection (n = 22) at admission (before) and 48 h thereafter (after). Data are given as median and 25-75th percentiles. **p < 0.01
and ***p < 0.001 versus HIV without malaria. ##p < 0.01 versus levels at admission. The horizontal dashed line and shaded area represent median
levels and 25-75th percentiles in healthy controls (n = 52). IL-27 levels were significantly raised compared with levels in controls in all three
groups of patients (p < 0.001 for all comparisons)
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Falciparum malaria affects endothelial cells, and as shown
in Fig. 2a, all three groups of patients (HIV only, malaria
only and HIV +malaria) had increased levels of vWF, as a
reliable marker of endothelial cell activation compared with
healthy controls, with the highest levels in those with both
infections (Fig. 2a). Interestingly, plasma levels of IL-27
were positively correlated with vWF in patients with mal-
aria alone and in HIV-infected patients without malaria
(r= 0.54, p < 0.001), but not in those that were co-infected
with HIV and malaria (Fig. 2b), potentially indicating some
interactions between HIV and falciparum malaria that
affects the pattern of endothelial cell activation.

IL-27 levels in relation to clinical presentation of patients
with severe malaria
Whereas there were no association between IL-27 levels
and cerebral malaria (Glascow Coma Score ≤ 11), renal

dysfunction (serum creatinine > 265 μM) and pulmonary
oedema, IL-27 levels were significantly higher in those
with severe anemia (< 5 g/dl) as compared with those
without this manifestation (Table 3). Importantly, however,
the number of patients in each subgroup was low, and all
these data must be interpreted with caution. Moreover,
statistical analyses were not performed for clinical manifes-
tations that were seen in ≤5 patients (severe hypoglycemia
and liver failure).

The association of plasma levels of IL-27 and other
inflammatory markers
We have previously shown that interferon-γ-induced pro-
tein 10 (IP-10/CXCL10), IL-8, soluble CD25 (sCD25) and
terminal complement complex (TCC) are related to disease
severity in this cohort [5, 19, 21]. We therefore next exam-
ined the association of IL-27 with these inflammatory
markers. Whereas IL-27 levels were correlated with TCC in
patients with falciparum malaria with and without HIV, but
not in HIV-infected patients without malaria, IL-27 were
correlated with IL-8 only in the latter group and notably,
IL-27 levels were significantly correlated with IP-10 and
sCD25 in all the three subgroups of patients (malaria only,
malaria+HIV and HIV only) (Table 4). Both IP-10 (effects
on T cells) and sCD25 (released from T cells upon activa-
tion) are related to T cell function/activation and these data
further link IL-27 to T cell pathology during falciparum
malaria.

IL-27 levels during follow-up
In 77 patients (HIV without malaria [n = 49], malaria
only [n = 6], malaria and HIV [n = 22]) we also had
follow-up samples taken in hospital 48 h after admission
(Fig. 1b). Whereas there was a significant decline in IL-

Table 2 Correlation between IL-27 and clinical data in malaria
patients with (n = 70) and without (n = 61) HIV and in HIV
infected patients without malaria (n = 58)

Malaria Malaria+HIV HIV only

n r n r n r

qMalPCR 60 0.63** 67 0.62** – –

eGFR 45 −0.27 60 −0.29* 43 −0.20

Platelets 53 −0.47** 63 −0.36** 47 −0.46**

Neutrophils 42 0.15 43 − 0.08 39 0.39*

Lymphocytes 32 −0.21 32 −0.06 20 −0.37

WBC 53 0.08 64 0.07 48 −0.16

Not all data were available in all patients. eGFR estimated glomerular filtration
rate, qMalPCR quantitative PCR of falciparum malaria in plasma; severity,
disease severity according to WHO classification, WBC White blood cell counts.
*Correlation is significant at the 0.05 level (2-tailed). **Correlation is significant
at the 0.01 level (2-tailed)

Fig. 2 Plasma levels of von Willebrand factor (vWF) in the patient groups at admission. a shows plasma levels of vWF in patients with HIV
infection with febrile symptoms but without malaria (n = 58), patients with falciparum malaria without (n = 61) and with HIV infection (n = 70).
Data are given as median and 25-75th percentiles. ††p < 0.01 versus HIV without malaria and malaria without HIV. The horizontal dashed line and
shaded area represent median levels and 25-75th percentiles in healthy controls (n = 52). vWF levels were significantly raised compared with
levels in controls in all three groups of patients (p < 0.001 for all comparisons). b shows the correlation between plasma levels of IL-27 and vWF
in patients with falciparum malaria with (n = 70) and without (n = 61) co-infection with HIV
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27 levels after 48 h, levels were still significantly increased
as compared with HIV-infected patients without malaria
and healthy controls. Importantly, patients with HIV in-
fection without co-infection with malaria show no signifi-
cant changes in IL-27 levels during follow-up (Fig. 1b).

Effects of IL-27 on cytokine release in hemozoin-exposed
endothelial cells
Hemozoin is formed when plasmodium, during invasion
of the red blood cells, digest hemoglobin [22]. To eluci-
date any possible consequences of the increased IL-27
levels in falciparum malaria, we examined the effect of
IL-27 on the release of prototypical inflammatory cyto-
kines (i.e., IL-6 and IL-8) in hemozoin-exposed HAoEC.
Hemozoin caused a dose-dependent release of IL-6 that
was further enhanced when co-incubated with rhIL27
(Fig. 3a-b). rhIL-27 also induced a release of IL-6 in un-
stimulated cells (Fig. 3b). Hemozoin also promoted a
dose-dependent increase in IL-8 release, but in contrast
to the effects on IL-6, rhIL-27 reduced the spontaneous
and hemozoin-induced release of IL-8 from these cells
(Fig. 3c-d). As seen in Fig. 3, the maximal effect of rhIL-
27 in hemozoin-exposed cells was observed at different
concentrations of hemozoin depending on the actual
cytokine (i.e., 100 μg/mL for IL-6 and 10 μg/mL for IL-
8), illustrating different sensitivity for IL-27-mediated
modulation of hemozoin-effects on these cytokines.

Effects of IL-27 on cytokine release in hemozoin-exposed
PBMC
PBMC from healthy controls was examined in the same
manner as for endothelial cells. Also here, hemozoin

caused a dose-dependent release of IL-6 and as in HAoEC,
rhIL-27 further enhanced the IL-6 release when co-
incubated with hemozoin (50 μg/mL) (Fig. 4a-b). Moreover,
hemozoin dose-dependently increased the release of IL-8,
and as in HAoEC, rhIL-27 attenuated IL-8 release when
co-incubated with hemozoin (200 μg/mL) (Fig. 4c-d). As in
HAoEC, the maximal co-effect of rhIL-27 in hemozoin-
exposed PBMC was observed at different concentrations of
hemozoin depending on the actual cytokine (i.e., 50 μg/mL
for IL-6 and 200 μg/mL for IL-8). The different concentra-
tions in HAoEC as compared with PBMC suggest the
sensitivity for the IL-27-mediated modulation of hemozoin-
effects is not only dependent on the measured cytokine but
also on cell type.

Hemozoin upregulate IL-27Rα and gp130 expression in
PBMC and HAoEC
Our findings show an interaction between hemozoin
and IL-27 resulting in enhancing effects of IL-27 on
hemozoin-induced IL-6 release and attenuating effect on
IL-8 release. As shown in Fig. 5, hemozoin increased
mRNA levels of both IL-27Rα and its co-receptor gp130
in PBMC and HAoEC. However, the effects were rather
modest, and the effect on gp130 in PBMC was only bor-
derline significant (p = 0.051).

Discussion
Falciparum malaria is still a major challenge to the soci-
ety in the developing countries and co-infection with
HIV seems to worsen the disease course particular in
pregnant women [23–25]. Here we show that plasma
levels of IL-27 are markedly up-regulated in patients
with falciparum malaria compared with HIV-infected
patients with similar clinical symptoms but without mal-
aria, and healthy controls, with no differences between
those with and without co-infection with HIV. More-
over, whereas IL-27 levels were significantly correlated
with P. falciparum parasitemia as assessed by qPCR in
plasma and vWF as a marker of endothelial cell activa-
tion, we found no significant association with disease se-
verity. Our in vitro experiments show that IL-27
modulated the hemozoin-mediated cytokine response in
both endothelial cells and PBMC with enhancing effects
on IL-6 and attenuating effects on IL-8. Our findings

Table 3 IL-27 levels in relation to clinical presentation of patients with severe malaria

Without affection With affection p

N N

Cerebral malaria 38 9.49 (5.92–16.15) 37 9.78 (5.53–18.57) 0.910

Renal dysfunction 47 9.10 (5.46–13.79) 18 14.65 (7.05–22.08) 0.182

Pulmonary oedema 53 10.09 (5.65–18.73) 22 9.09 (6.82–12.14) 0.534

Severe anemia 61 10.58 (7.48–20.05) 13 5.46 (3.81–8.61) 0.004

Cerebral malaria (Glascow Coma Score < 11), renal dysfunction (serum creatinine > 265 μM), severe anemia (< 5 g/dl). Data given as median (25th–75th)

Table 4 The association of plasma levels of IL-27 and other
inflammatory markers in malaria patients with (n = 67) and
without (n = 60) HIV and in HIV only (n = 58)

Malaria Malaria + HIV HIV only

r p r p r p

IL-8 0.144 0.271 0.139 0.261 0.590 < 0.001

IP-10 0.577 < 0.001 0.515 < 0.001 0.624 < 0.001

TCC 0.366 0.004 0.317 0.009 0.072 0.592

sCD25 0.740 0.001 0.300 0.015 0.580 < 0.001

Data are given as r and p-values
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show that IL-27 is regulated during falciparum malaria
in adults, potentially mediating both inflammatory and
anti-inflammatory effects.
Decreased levels of IL-27 have been found in infants with

severe falciparum malaria [26]. IL-27 levels are elevated in
placental and cord blood compared with peripheral blood
immediately following delivery in falciparum infected
women [15], while no clear pattern was found during P.
vivax malaria [27]. This is, however, the first report of IL-
27 levels in adult patients with falciparum malaria demon-
strating increased plasma levels as compared with healthy
controls and HIV-infected patients with similar febrile
illness, independent of co-infection with HIV. Interestingly,
plasma IL-27 concentrations have been reported to be
significantly decreased in untreated HIV-infected patients
compared to healthy controls with a gradual increase after
initiation of ART, potentially being involved in immune
reconstitution following such therapy [28]. A larger study,
however, found no change in plasma levels of IL-27 during
HIV infection [29]. In addition, IL-27 levels seem to be in-
creased during sepsis, and at least in children, potentially
giving prognostic information in these patients [30, 31]. In

this study, however, co-infection with other microbes such
as those seen in the HIV-infected patients without malaria
(e.g., tuberculosis, bacterial pneumonia and sepsis), did not
seem to influence IL-27 levels to the same degree as co-
infection with falciparum malaria. IL-27 appears mainly to
be produced by antigen-presenting cells such as dendritic
cells, macrophages and B cells. Interestingly, in a recent
experimental study in mice infected with P. berghei ANKA,
Kimura et al. identified a unique population of IL-27 pro-
ducing regulatory CD4+ T cells [11]. Herein, we have no
data on the cellular sources of IL-27 in human falciparum
malaria, but notably, IL-27 levels were strongly correlated
with plasma levels of IP-10 and sCD25 in patients with fal-
ciparum malaria, further suggesting a relation of IL-27 to
T cell activation in malaria. However, these correlations
were also seen in HIV-infected patients without falciparum
malaria.
IL-27 has been demonstrated to possess both inflam-

matory (e.g., induction of Th1 related cytokines like
interferon-γ) and anti-inflammatory (e.g., suppression of
Th17 cells) responses [10], and more recently, IL-27 has
been linked to enhanced IL-10 production in regulatory

Fig. 3 Effects of IL-27 on IL-6 and IL-8 release from hemozoin-exposed human aortic endothelial cells (HAoECs). Endothelial cells were primed
with recombinant (rh)IL-27 (100 ng/mL, 90 min) and incubated with 10 and 100 μg/mL hemozoin (Hz) (indicated as Hz10 and Hz100) for 22 h. IL-6
(a and b) and IL-8 (c and d) was measured in supernatants from the cells with EIA. Data are presented as mean and SEM of four (IL-6 data) and
five (IL-8 data) separate experiments and shown as fold change from control. *p < 0.05 and ***p < 0.001 versus unstimulated cells (US) (white bar),
and †p < 0.05 versus Hz (blue bar)
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T cells [32]. Moreover, Kimura et al. have found that
malaria-specific Foxp3−CD4+ T cells produced IL-27 and
regulated IL-2 production and clonal expansion of effector
CD4+ T cells during experimental malaria infection in mice
[11]. In the present study we also, in our in vitro experi-
ments, found both inflammatory and anti-inflammatory
effects of IL-27. Thus, whereas IL-27 enhanced the spon-
taneous and hemozoin-induced release of IL-6, a cytokine
related to IL-27, in both PBMC and endothelial cells, it
attenuated IL-8 release in the same cells. The clinical rele-
vance of these findings is unclear, but notably, we have
shown markedly enhanced IL-8 levels in these patients with
falciparum malaria, associated with disease severity and
outcome [5]. Based on experimental studies, it has been
suggested that IL-27, potentially induced by the parasite it-
self, could play a regulatory role in the maintenance of the
balance between anti-malaria protective and host damaging
immune responses [11, 33]. Our findings herein could po-
tentially support such a notion by showing both inflamma-
tory and anti-inflammatory responses of IL-27. Whereas
the strong correlation of IL-27 with parasitemia could re-
flect enhancing effect on P. falciparum dissemination, it
could also reflect a counteracting mechanism induced by

the parasites. The reason for the lack of association of IL-
27 levels with disease severity is at present not clear, but
could in fact reflect the dual and regulatory properties of
this cytokine, mediating both inflammatory and anti-
inflammatory effects.
While endothelial cells seem to be a cellular source of

IL-27 [34], only a few studies have examined the effects of
IL-27 on these cells reporting both activating (i.e., en-
hanced TNF-mediated effects on adhesion molecules) and
attenuating (i.e., inhibiting lymphatic endothelial cell prolif-
eration) effects on cell activation [35, 36]. Herein we show
both inflammatory (increased spontaneous and hemozoin-
induced IL-6 release) and anti-inflammatory (attenuated
spontaneous and hemozoin-induced IL-8 release). The
strong correlation between IL-27 and vWF as a marker of
endothelial cell activation also support a link between
endothelial cells and IL-27 in vivo during falciparum mal-
aria, either as a cellular source, cellular target or both.
There are several in vitro studies examining the inter-

action between hemozoin and different cell models
showing at least in some degree different results. Several
factors could have influenced these apparently discrep-
ancies. Synthetic hemozoin has been shown to possess

Fig. 4 Effects of IL-27 on IL-6 and IL-8 release from hemozoin-exposed peripheral blood mononuclear cells (PBMCs). PBMCs were primed with
recombinant human (rh)IL-27 (100 ng/mL, 90 min) and incubated with different concentrations of hemozoin (Hz) ranging from 10 to 200 μg/mL
(indicated as Hz10, Hz50, Hz100 and Hz200) for 22 h. IL-6 (a and b) and IL-8 (c and d) was measured in supernatants from the cells with EIA. Data
are presented as mean and SEM of three (IL-6 data) and five (IL-8 data) separate experiments. ***p < 0.001 versus unstimulated (US) cells (white
bar), and †p < 0.05 and ††p < 0.01 versus Hz (blue bar)
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adjuvant properties that differ depending on the method
of synthesis [37]. Native hemozoin can be purified from
infected red blood cells in culture, and in order to obtain a
pure product it needs to be further treated to remove any
proteins, lipids, and other materials from disrupted para-
sites which may interfere with its stimulating profile. In
contrast, synthetic hemozoin is totally free for parasite
material, as for example malarial DNA, which has been
shown to induce activation of Toll-like receptor 9 [38].
Synthetic hemozoin may have a larger crystal size than the
native one, but the crystal size may differ dependent on
the solvent used in the preparation procedure [37], and
importantly, the crystal size will differently affect the pro-
duction of inflammatory cytokines [37, 39, 40]. Further,
sonicated hemozoin suspensions result in a stronger in-
duction of cytokines than non-sonicated suspensions [37].
Herein, we used 10–200 μg/mL hemozoin which also has
been used by others [41]. Lower concentrations has been
suggested to be biological relevant [42], but it is not incon-
ceivable that the hemozoin concentrations that were used
in the present study could be found in clinical falciparum
malaria at the site of inflammation with interactions be-
tween infected and ruptured erythrocytes and endothelial

cells. Taken together, there are many factors that will
affect the outcome of in vitro experiments, not only the
use of synthetic or native hemozoin, but also in which way
the hemozoin is synthesized, if sonication of hemozoin
suspension is performed, the concentration of the crystals
and also which cell model that is used. These issues must
be taken into consideration in the interpretation of such
in vitro data.
The present study has some limitations such as lack of

clinical outcome data, and lack of in vitro experiments on
cells obtained from the patients. Moreover, the lack of la-
boratory data on the control group as well as lack of CD4
T cell counts in the majority of the HIV-infected patients
are also important limitations. The loss of malaria patients
to follow-up at the 48-h time point, because of death, dis-
charge or denial of second sampling, could have introduced
confounding. Moreover, correlation data do not necessarily
mean any causal relationship. Finally, we lack data that
confirm similar in vitro data when using native hemozoin.

Conclusions
Our data suggest that IL-27 is regulated during falciparum
malaria independently of co-infection with HIV mediating

Fig. 5 Effects of hemozoin on IL-27Rα and gp130 gene expression in HAoEC and PBMC. The cells were incubated with different concentrations
of hemozoin (Hz) ranging from 10 to 200 μg/mL (indicated as Hz10, Hz50, Hz100 and Hz200) for five (a) and 22 (b-d) hours. Gene expression
analyses were done by qPCR, related to reference gene β-actin/TaqMan reference probes and normalized to unstimulated cells (US). The figure
shows mRNA levels of IL-27Rα and gp130 in HAoEC (a and b) and in PBMC (c and d). Results are representatives of minimum three experiments
and data are presented as mean and SEM. *p < 0.05 and **p < 0.01 versus unstimulated cells (white bar)
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both inflammatory and anti-inflammatory effects, poten-
tially playing an immune-regulatory role during falcip-
arum malaria. Our data may also support previous data
from experimental studies on a regulatory role of IL-27
during malaria infection [11]. However, in relation to hu-
man malaria infection, this will have to be confirmed in
larger clinical studies that also include studies on freshly
isolated cells from the patient groups as well as data on
clinical outcome.
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