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Abstract Oceanic quantities of interest (QoIs), for example, ocean heat content or transports, are often
inaccessible to direct observation, due to the high cost of instrument deployment and logistical challenges.
Therefore, oceanographers seek proxies for undersampled or unobserved QoIs. Conventionally, proxy
potential is assessed via statistical correlations, which measure covariability without establishing causality.
This paper introduces an alternative method: quantifying dynamical proxy potential. Using an adjoint
model, this method unambiguously identifies the physical origins of covariability. A North Atlantic case
study illustrates our method within the ECCO (Estimating the Circulation and Climate of the Ocean) state
estimation framework. We find that wind forcing along the eastern and northern boundaries of the Atlantic
drives a basin‐wide response in North Atlantic circulation and temperature. Due to these large‐scale
teleconnections, a single subsurface temperature observation in the Irminger Sea informs heat transport
across the remote Iceland‐Scotland ridge (ISR), with a dynamical proxy potential of 19%. Dynamical proxy
potential allows two equivalent interpretations: Irminger Sea subsurface temperature (i) shares 19% of its
adjustment physics with ISR heat transport and (ii) reduces the uncertainty in ISR heat transport by 19%
(independent of the measured temperature value), if the Irminger Sea observation is added without noise to
the ECCO state estimate. With its two interpretations, dynamical proxy potential is simultaneously rooted in
(i) ocean dynamics and (ii) uncertainty quantification and optimal observing system design, the latter
being an emerging branch in computational science. The newmethod may therefore foster dynamics‐based,
quantitative ocean observing system design in the coming years.

Plain Language Summary To understand the Earth's changing climate, it is important to
estimate how much heat the ocean takes up from the atmosphere and how the ocean recirculates the heat
around the globe. Directly obtaining these estimates from measurements is complicated because
oceanographers cannot measure the ocean everywhere. Ocean measurements taken from ships or freely
drifting instruments are expensive and difficult to obtain, especially in regions with ice cover or rough
weather conditions. To analyze how existing measurements can be used to estimate unmeasured aspects of
the ocean, past studies have used statistical correlations, although it is usually unclear whether correlations
have a real, physical origin. This paper introduces a new method: We replace statistical correlations by
correlations that have an underlying physical mechanism. As an example, the paper reveals that (A) a
subsurface ocean temperature measurement in the Irminger Sea helps to better estimate (B) poleward ocean
heat transport across the Iceland‐Scotland ridge, hundreds of kilometers away. (A) and (B) are related by
physics‐based correlation, which is created by a similar dynamical response of (A) and (B) to changes in the
near‐ and far‐field wind. The newmethod can be used to plan effective instrument placements in the future.

1. Introduction

Satellite altimetry and the global array of Argo floats have vastly increased the observational coverage of the
world's oceans since the early 1990s (Fu et al., 2018; Riser et al., 2016). Nevertheless, large parts of the ocean
remain undersampled in space and time, due to the high cost of instrument deployment, ongoing technical
and logistical challenges, and the fact that critically relevant processes occur on a wide range of spatial and
temporal scales (e.g., Weller et al., 2019). Therefore, many oceanographic quantities of interest (QoIs) are not
directly or continuously measured. Examples are volume, heat, and freshwater transports across many
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oceanographic passages, straits, and latitude bands, in particular, the Atlantic meridional overturning circu-
lation (AMOC). Additional QoIs may be ocean heat and freshwater content in regions not well sampled by
Argo floats, for example, near the margins or the polar ice sheets. Other examples are strongly related to
future societal concerns and key targets for climate predictions. These include future Arctic sea ice cover
or regional sea level anomalies. In oceanography, we are therefore on the quest for proxies. That is, it is desir-
able—and an active part of climate research—to employ observed quantities as proxies for QoIs that are
undersampled or unobserved.

Examples of past efforts in this direction include studies which found that anomalies in sea level (available
from altimetry) or ocean bottom pressure (available from gravimetry) can serve as a skillful proxy for AMOC
variability on interannual time scales (e.g., Bingham & Hughes, 2009; Ezer, 2015; Frajka‐Williams, 2015;
Landerer et al., 2015; McCarthy et al., 2015). Other studies suggested that, on decadal and longer time scales,
North Atlantic surface or subsurface temperature have a characteristic “fingerprint” associated with changes
in AMOC and that the (better observed) temperature fingerprint can be used as a proxy for (unobserved)
AMOC (e.g., Baehr et al., 2007; Caesar et al., 2018; Knight et al., 2005; Latif et al., 2004; Vellinga & Wood,
2004; Zhang, 2007, 2008). Consequently, available sea level and (sub)surface temperature records have been
used to reconstruct AMOC changes back in time (Ezer, 2015; Frajka‐Williams, 2015; Lopez et al., 2017; Ritz
et al., 2013; Thornalley et al., 2018; Zhang et al., 2015). Moreover, sea surface height, ocean bottom pressure,
and hydrographic observations at selected locations have been proposed as a useful observing system to
detect AMOC changes in the present ocean and under future climate change scenarios, complementing or
substituting current direct North Atlantic transbasin transport measurements, which are limited in space
and time (see Frajka‐Williams et al., 2019 for a review).

Proxy potential is typically assessed by means of statistical regression or correlation (e.g., see all AMOC
proxy studies referenced in the previous paragraph), including regression using statistical modes of variabil-
ity obtained, for example, via principal component analysis (von Storch & Zwiers, 1999). Figure 1a sketches
the concept of evaluating statistical proxy potential: One assesses covariability between an observable quan-
tity (pink time series) and an unobserved QoI (purple time series), often in model output. This method pro-
vides an empirical measure for proxy potential but does not identify causal relations. Without dynamical
underpinnings, reported dependency on model choice, forcing scenario and time period considered
(Alexander‐Turner et al., 2018; Little et al., 2019; Roberts & Palmer, 2012) complicates robust identification
of proxy potential. The goal of this work is to overcome the limitations of statistical proxy potential. Here, we
establish a new methodology that quantifies dynamical, rather than statistical, proxy potential.

Our goal is to unambiguously identify shared dynamical processes and pathways that provide a mechanistic
underpinning for what we will refer to as dynamical proxy potential (DPP). To do so, we take advantage of
the adjoint of an ocean general circulation model (GCM). The adjoint can efficiently uncover the dynamical
cause of variations in observed and unobserved ocean quantities, extracted from the equations of motion and
conservation laws governing the underlying GCM (Marotzke et al., 1999). For instance, adjoint‐derived sen-
sitivities have been used to study the dynamical cause of changes in the following QoIs: Atlantic meridional
heat transport (Heimbach et al., 2011; Köhl, 2005; Marotzke et al., 1999), AMOC (Czeschel et al., 2010;
Heimbach et al., 2011; Pillar et al., 2016; Smith & Heimbach, 2019), Labrador Sea heat content (Jones et al.,
2018), temperature in the east equatorial Pacific (Galanti & Tziperman, 2003; Galanti et al., 2002), sea level
on the Californian coast and in the Mediterranean Sea (Fukumori et al., 2007; Verdy et al., 2013), and Arctic
ocean bottom pressure (Fukumori et al., 2015). Building on previous studies, we exploit the adjoint in a novel
fashion, as sketched in Figure 1b: We identify forcings (green shading) affecting both an observed quantity
(e.g., temperature in the pink box) and an unobserved QoI (e.g., heat transport across the purple section). By
this approach, we find dynamical causes and controls of covariability between the observed and unobserved
quantity.

We illustrate the new concept of DPP for a case study in the North Atlantic, choosing heat transport across
the Iceland‐Scotland ridge (ISR) as our exemplary QoI. The ISR is the key gateway for poleward heat pro-
gression from the North Atlantic toward the Arctic Ocean (Hansen &Østerhus, 2000). WarmAtlantic waters
are carried across the ridge by the Norwegian Atlantic Current (NwAC), one of the main branches of the
North Atlantic Current (NAC; see Figure 2). While observational estimates for ISR heat transport since
the mid‐1990s exist (e.g., Berx et al., 2013; Hansen et al., 2015; Østerhus et al., 2005, 2019), cross‐ridge
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heat transport estimates remain uncertain, due to a sparse array of current meter moorings and the
sensitivity to the choice of calculation method (Berx et al., 2013; McCarthy et al., 2019). In contrast, upper
ocean temperatures are well constrained throughout the larger part of the North Atlantic basin via remote
sensing and in situ platforms. For this reason, we select our representative observed quantities as
temperature at the sea surface and at 300m depth, at two locations in the North Atlantic: in the Irminger
Current (IC) and off the Portuguese coast (Figure 2), monitored by the OSNAP (Lozier et al., 2017, 2019)
and OVIDE (Lherminier et al., 2007; Mercier et al., 2015) sections, respectively. These locations are
intentionally chosen in two branches of the NAC that are distinct from the branch crossing the ISR
(Figure 2) and are therefore not expected to be ideal placements for monitoring ISR heat transport. We
will show that these observations nevertheless provide partial constraints on the QoI through shared
adjustment physics, which are uncovered and quantified by DPP.

Here, we work within the global ECCO (Estimating the Circulation and Climate of the Ocean) Version 4
state estimation framework (Forget et al., 2015) and focus on monthly to multiannual time scales up to 5
years, since now approximately 5 years of continuous OSNAP measurements are available. We note that

Figure 1. (a and b) Two approaches to assess proxy potential of an observed quantity (pink) for an unobserved quantity
of interest (QoI, purple): (a) statistical proxy potential assesses covariability based on empirical evidence; (b) dynamical
proxy potential assesses causes (green shading) of covariability based on dynamical laws. (c) Two equivalent
interpretations of dynamical proxy potential (see section 2): via (i) shared ocean adjustment physics (pink & purple
arrows) and (ii) uncertainty quantification in ocean state estimation (black arrows).
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assessment of DPP does not require actual (here: OSNAP and OVIDE) observational data, since it
investigates dynamical relationships in the model equations, rather than observed covariability. This
paper is structured as follows. Section 2 introduces our new method that quantifies DPP. Section 3 applies
the methodology to our North Atlantic case study. In section 4, we discuss our results as well as
limitations and future directions. Section 5 presents the main conclusions.

2. Quantifying DPP

We define proxy potential of an observed quantity, Obs, for a quantity of interest, QoI, as

PPðObs; QoIÞ ¼ CovðObs; QoIÞ
σObs · σQoI

� �2

∈ ½0; 1�: (1)

Here, the operators Cov(♣,♠) and σ♣ denote covariance and standard deviation, respectively.
Conventionally, these operators are evaluated statistically, in which case we refer to Equation 1 loosely as
“statistical proxy potential”. A statistical evaluation can be performed, for instance, if time series (e.g., from
model output) are available, as sketched in Figure 1a; the right‐hand side of Equation 1 is then equal to the
squared Pearson correlation coefficient, often referred to as r2. To define and assess DPP, we require a
dynamics‐based evaluation of the operators in Equation 1. For this, we leverage the framework of ocean
state estimation and inbuilt adjoint capability, as described in the following.

Ocean state estimation seeks to infer a best estimate from uncertain (and often sparse) ocean observations
and an ocean model with uncertain inputs. The uncertain inputs are also referred to as the control variables,
collected in the vector x¼ (x1,… , xN), and typically consist of spatiotemporal varying atmospheric forcing,
initial conditions, and certain model parameters (green box in Figure 1c or Forget et al., 2015). An assigned
N×N covariance matrix B spells out assumptions on the prior uncertainty in the control variables
(Tarantola, 2005; Wunsch, 1996). Ocean state estimation then fits the model to the available observations,

Figure 2. Schematic of the North Atlantic quantities examined in our case study. The quantity of interest (QoI) is heat
transport across the Iceland‐Scotland ridge (ISR, green line). The temperature observations θA, θB, and θC are

located inside the green dots. θA and θB are subsurface (at 300 m depth), θC at the sea surface. The arrows represent
approximate pathways of major near‐surface currents carrying warm, saline Atlantic waters (orange) and cold,
fresh Arctic waters (yellow): NAC ¼ North Atlantic Current; NwAC ¼ Norwegian Atlantic Current; IC ¼ Irminger
Current; EGC ¼ East Greenland Current.
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by adjusting (or “inverting” for) the control variables within their prescribed uncertainty. In contrast, the
model state variables (within the white centered box, Figure 1c), for example, temperature and velocity,
adjust freely in response to the adjusted control variables, following the model dynamics to ensure dynami-
cal and kinematic consistency. An implicit assumption in ocean state estimation is that the control variables
comprise all possible sources of changes in the ocean state and circulation.

Ocean state estimation offers a comprehensive framework to quantify proxy potential (Equation 1) and its
dynamical origins, where the candidates for proxy origin are formally provided by the control variables.
Within this framework, the covariance between Obs and QoI is the scalar

CovðObs; QoIÞ ¼ ½∇xQoI�T B ∇xObs: (2)

Here, the gradient∇x(♣)¼ [∂(♣)/∂x1,… , ∂(♣)/∂xN]
T is the vector whose ith component is the linearized sen-

sitivity of the scalar ♣∈ {QoI, Obs} to the control variable xi, and [∇x(♣)]
T is its transpose, that is, the asso-

ciated row vector. The covariance in Equation 2 can be thought of as being computed from right to left–from
the observed quantity via the controls to the QoI–, following the black arrows in Figure 1c, by means of the
adjoint and tangent linear models (Errico, 1997). Importantly, the resulting covariance is consistent with
ocean dynamical laws. These dynamical laws are baked into the gradients in Equation 2 via the chain rule,
which passes through the equations of motion that are encoded in the underlying ocean GCM (white cen-
tered box, Figure 1c). Similarly to Equation 2, the standard deviation of the quantity ♣∈ {Obs, QoI} is

σ♣ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½∇xð♣Þ�T B ∇xð♣Þ

q
: (3)

The fact that the expressions in Equations 2 and 3 are the dynamics‐based analogue of purely statistically
derived covariance and standard deviations was established by Bennett (1985, 1990). The values computed
in Equations 2 and 3 would be entries in the so‐called representer matrix (Bennett, 2002), if both quantities,
Obs and QoI, were part of the model state variables.

Inserting Equations 2 and 3 into Equation 1, and rearranging terms, leads to the notion of DPP, defined as

DPPðObs; QoIÞ ¼ σ−1
QoI · B

1=2 ∇xQoI
h i
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼ q

•
σ−1
Obs · B

1=2 ∇xObs
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼ v

0
BBB@

1
CCCA

2

∈ ½0; 1�; (4)

where B1/2 is the N ×N matrix, which satisfies B1/2 B1/2¼ B, and • denotes the dot product in RN . The
bounds in Equation 4 correspond to the cases for which Obs provides no information (DPP¼ 0) and serves
as a perfect proxy (DPP ¼ 1) for the QoI, similar to the statistics‐derived r2. The vectors q and v (defined in
Equation 4) contain the sensitivities of QoI and Obs to all controls, allowing for two equivalent interpreta-
tions: (i) q and v reveal the dynamical adjustment mechanisms of QoI and Obs, respectively (sections 3.2
and 3.3); (ii) q specifies the information required to recover the QoI, while v is the information captured by
the observed quantity. Interpretation (ii) is rooted in Hessian uncertainty quantification (UQ) and optimal
observing system design within ocean state estimation. This link to UQ is derived in the supporting informa-
tion (Text S1) and further explored in a forthcoming paper. In the definition of q, v (Equation 4), multiplica-
tion with the matrix B1/2 (prior‐)weights the sensitivity vectors ∇x(♣), and division by the scalar σ♣ acts as
normalization. Indeed, Equation 3 can be rewritten as the l2‐norm of the weighted sensitivity vector:

σ♣ ¼ B1=2 ∇xð♣Þ (5)

Figure 1c offers a schematic summary of understanding DPP(Obs;QoI) in line with our two equivalent inter-
pretations. DPP of an observed quantity, Obs (pink box), for an unobserved QoI (purple box), measures the
following:

(i) the similarity between the ocean adjustment physics for the observed versus unobserved quantity (pink
vs. purple arrows) in response to changes in forcing (green box), on a scale from 0% (no similarity) to
100% (identical);

10.1029/2020JC016112Journal of Geophysical Research: Oceans

LOOSE ET AL. 5 of 22



(ii) the relative uncertainty reduction in the QoI that would be achieved if the observation were to be added
without noise to the state estimation framework in Figure 1c (see Text S1). The flow of information and
uncertainty reduction within the state estimation framework—from the observation via the controls to
the QoI—is delineated by the black arrows.

3. Application to the North Atlantic

This section illustrates our method for a case study in the North Atlantic. Section 3.1 describes the experi-
mental setup, including our choice of QoI and observations. Sections 3.2 and 3.3 present the adjustment
mechanisms of the QoI and observations. Section 3.4 assesses the degree to which these adjustments are
shared and quantifies the DPP of the observations for the QoI.

3.1. Experimental Setup

We perform our experiments using the ECCO Version 4 Release 2 (ECCOv4r2; Forget et al., 2015) solution.
The Massachusetts Institute of Technology GCM (MITgcm, Marshall, Adcroft, et al., 1997; Marshall, Hill,
et al., 1997) serves as the dynamical core in ECCO and is configured at a nominal horizontal resolution of
1° with 50 vertical levels. The optimized state provides an acceptable fit to most available oceanographic data
and has been used extensively for mechanistic investigations of ocean variability, including in the North
Atlantic (e.g., Buckley et al., 2014; Jones et al., 2018). We refer the reader to Forget et al. (2015) for details
on the model configuration and estimated ocean state.

To quantify DPP and its origins, one requires the linear sensitivities of the QoI and observed quantities to all
control variables (∇xQoI and ∇xObs; Equation 4). To perform these sensitivity calculations, we take advan-
tage of the flexible ECCOv4 adjoint modeling framework (Forget et al., 2015). Algorithmic differentiation,
through source‐to‐source code transformation with the commercial tool Transformation of Algorithms in
Fortran (TAF; Giering & Kaminski, 1998), produces the code for our adjoint models. Ice‐covered regions
are masked in the sensitivity calculation.
3.1.1. QoI and Observations
The QoI in our case study is heat transport across the ISR, denoted by HTISR. We investigate three different
temperature observations in the North Atlantic, located inside the green dots in Figure 2 and labeled by θA,
θB, and θC. Observations θA and θC are located in the Irminger Sea at (40°W, 60°N), while observation θB is
situated in the eastern North Atlantic off the Portuguese coast at (12°W, 41°N). θA and θB are subsurface
observations, situated at 300m depth, and θC is a surface observation.

We quantify the DPP of the 5 year mean of the observations for the 5 year mean of our QoI, for zero lag.
Sensitivities of the QoI and observations (Equation 4) are computed from the final 5 years (2007–2011) of
the ECCOv4r2 state estimate. Dependence on the specific evaluation period and background state is weak,
given that HTISR, θ

A, θB, and θC depend approximately linearly on the control variables (Appendix A).

The QoI, as simulated by the model, is diagnosed as follows:

HTISR ¼ ρ0 cp
Δt

Z 2011

2007

Z top

bottom

Z
L
ðθ − θrefÞ v⊥ dL dz dt ðWÞ: (6)

L denotes the Iceland‐Faroe‐Scotland line segment, Δt ¼ ∫20112007dt the length of the integration period,
ρ0¼ 1,029 kg/m3 the reference density, and cp¼ 3994 J/(kg·K) the specific heat capacity of water. θ denotes
potential temperature, and v⊥ the velocity perpendicular to the line segment L; sign convention is such
that positive v⊥ corresponds to positive northward and eastward velocity. Note that since L is only a partial
line segment, rather than a closed boundary, heat transport in Equation 6 has to be defined relative to a
reference temperature θref (Schauer & Beszczynska‐Möller, 2009). Consistent with many observational stu-
dies (e.g., Berx et al., 2013; Hansen et al., 2015; Østerhus et al., 2005), we choose θref¼ 0°C, motivated by
the observation that southward flow across the ISR is close to this temperature (Hansen et al., 2003).

For ⋆∈ {A, B, C}, the observation θ⋆ is diagnosed as the mean potential temperature

θ⋆ ¼ 1
Δt ·V⋆

Z 2011

2007

Z h⋆1

h⋆0

Z
A⋆

θ dx dy dz dt ð∘CÞ: (7)

(h0)
⋆, (h1)

⋆, and A⋆ denote the lower and upper boundaries, and the horizontal area, of the model grid
cell in which the respective observation θ⋆ is located. For the subsurface observations (⋆¼A, B), we
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have (h0)
⋆¼ −325m and (h1)

⋆¼ −275m. For the surface observation, we choose the uppermost two
model grid cells as a representative depth range, corresponding to (h0)

C¼ −20 m and (h1)
C¼ 0m. The

area of AA ¼ AC is approximately (52 km)2 and the area of AB is approximately (84 km)2. In

Equation 7, θ(x, y, z, t) denotes potential temperature, Δt ¼ ∫20112007 dt the length of the integration period,

and V⋆ ¼ ∫h
⋆
1

h⋆0
∫A⋆dx dy dz the volume of interest.

3.1.2. Control Variables and Weights
Table 1 lists the set of control variables that is chosen in this work: the spatially varying forcing fields Fm(i, j)
of net upward surface heat flux, Qnet,↑, net surface freshwater flux, EPR, and zonal and meridional wind
stress, τx and τy, respectively. Consistent with assessing DPP of the 5 year mean of the observations for the
5 year mean of the QoI, only adjustments to changes in the 5 year mean of the forcing fields are considered
(fourth column, Table 1). For the sake of a simpler presentation, initial conditions and model parameter
fields are omitted, even though they are part of the uncertain inputs in a full ocean state estimation frame-
work (green box, Figure 1c). The four two‐dimensional forcing fields are flattened and concatenated into a
long vector, x¼ (x1,… , xN). The length of the vector, N, is O(106), equal to 4 times the number of model sur-
face grid cells covering the global ocean.

For each of the four forcing fields, Fm, we set a spatially constant prior standard deviation, ΔFm (last column,
Table 1). Further, we assume the decorrelation length in the surface forcing to be less than the grid scale
(∼1°). Meanwhile, ECCOv4r2 uses spatially varying prior standard deviations, estimated based on the spread
between different reanalysis products (Chaudhuri et al., 2013) and sets a decorrelation length of 3 times the
grid scale within the same forcing field (but no cross correlations between distinct forcing fields, Forget et al.,
2015). Our choices correspond to a diagonal prior covariance B, and its square root is the diagonal N ×N
matrix

B1=2 ¼ diag
ΔF1; …; ΔF1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
N=4 times

;
ΔF2; …; ΔF2|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
N=4 times

;
ΔF3; …; ΔF3|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
N=4 times

;
ΔF4; …; ΔF4|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
N=4 times

 !
: (8)

Our assumption of spatially uniform weights ΔFm and no prior spatial cross correlations implies that the
sensitivity projection (Equation 4) for each individual forcing field is fully determined by the adjustment
physics, and not by the forcing weights. Our simplified choice of forcing covariance therefore adds clarity
to the presentation in this paper, whose primary goal is to explain the new concept of DPP.

3.2. Adjustment Mechanisms of the QoI

Figures 3a–3d show the weighted and normalized sensitivities of the 5 year mean heat transport across the
ISR (HTISR):

qjFmði; jÞ ¼ σ−1
HT

∂ðHTISRÞ
∂Fmði; jÞΔFm; m ¼ 1; 2; 3; 4: (9)

Here, Fm(i, j) are the 5 year mean atmospheric forcing fields from Table 1, and ΔFm their spatially uniform
weights. The normalization factor, σHT¼ 6TW, is computed according to Equations 5 and 8, with♣¼HTISR.
The weighted and normalized sensitivities of HTISR in Equation 9 (or Figures 3a–3d) assemble the vector q
(cf. Equations 4 and 8), which has two equivalent interpretations (section 2): (i) q reveals all adjustment
mechanisms of HTISR, as will be discussed in the following paragraphs; (ii) q is the information required

Table 1
Control Variables and Weights in our Case Study.

m Forcing Fm(i,j) Symbol Time average ΔFm

1 Net upward surface heat flux Qnet,↑ 5 years 50W/m2

2 Net surface freshwater flux EPR 5 years 5 · 10−8 m/s
3 Zonal wind stress τx 5 years 0.05 N/m2

4 Meridional wind stress τy 5 years 0.05 N/m2
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to recover HTISR, our QoI. The bar chart in Figure 3e shows the relative importance of the four forcings Fm
for impacting HTISR. Relative importance is measured by the ratios

qjFm

��� ���2 ¼ σ−2
HT

∑
i; j

∂ðHTISRÞ
∂Fmði; jÞΔFm

� �2

; m ¼ 1; 2; 3; 4; (10)

equivalent to integrating the sensitivities in Figures 3a–3d around the globe (in the l2‐norm). Figure 3e
demonstrates that the influence of wind stress, τx and τy, prevails over the influence of buoyancy forcing,
Qnet,↑ and EPR.

The positive sensitivity of HTISR to τy along the western African and European coast (Figure 3d) is consistent
with the following dynamical mechanism. An increase in northward wind stress along the western African
and European coast induces Ekman onshore convergence and a positive pressure anomaly along the coast.
Boundary waves (e.g., Marshall & Johnson, 2013) propagate the positive pressure anomaly cyclonically
around the North Atlantic basin (Figure 5a). When the positive pressure anomaly reaches the eastern end

Figure 3. Sensitivities of 5 year mean heat transport across the Iceland‐Scotland ridge (HTISR), to changes in the 5 year
mean (a) upward surface heat flux Qnet,↑, (b) surface freshwater flux EPR, (c) zonal wind stress τx and (d) meridional

wind stress τy. The sensitivities are weighted and normalized (thus unitless) and assemble the vector q (Equation 9).
Red (blue) colors indicate that an increase in (a) heat loss to the atmosphere, (b) surface salinification, (c) eastward wind
stress, and (d) northward wind stress would lead to a subsequent increase (decrease) in HTISR on a 5 year time scale.
The solid black‐yellow contour in (a)–(d) delineates the ISR. The bar chart in (e) shows the relative contributions of
Qnet,↑, EPR, τx and τy to HTISR sensitivity, when integrating the sensitivities in (a)–(d) around the globe (Equation 10).
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of the ISR (within amonth, seeMovie S1), it leads to an increased along‐ridge pressure gradient and, by geos-
trophic balance, a strengthened HTISR. While the HTISR anomaly develops rapidly (after a few months,
Figure A1b), it persists for as long as the wind stress perturbation is maintained (here: for 5 years). The sen-
sitivity to zonal wind stress along the western African and European coastline (Figure 3c) is due to the same
mechanism. Here, the sensitivity sign alternates because it is determined by the orientation of the coastline.

The wind stress sensitivities of HTISR around Iceland and the United Kingdom (U.K.) that emerge in
Figures 3c and 3d can be explained similarly. By way of illustration, negative sensitivity of HTISR to τy along
the western coast of Iceland (Figure 3d) is consistent with the following mechanism. An increase in north-
ward wind stress along the western Icelandic coast drives Ekman onshore convergence, resulting in a posi-
tive pressure anomaly at the Icelandic coast. Through clockwise wave propagation around the Icelandic
coastline, the positive pressure anomaly is rapidly communicated to the western end of the ISR (Figure 5b
and Movie S7). The resulting negative anomaly in the along‐ridge pressure gradient leads to a weakening
of HTISR and, consequently, colder temperatures in the Norwegian Sea (Figure 5d). As before, the HTISR
anomaly develops rapidly but persists for 5 years (Figure A1d). This mechanism also explains the sign of
the τx sensitivities around Iceland: increased eastward (westward) wind stress along the southern (northern)
coast of Iceland (Figure 3c) drives Ekman offshore divergence, resulting in a negative pressure anomaly at
the Icelandic coast and a subsequent increase in HTISR. Since the U.K. coastline delivers pressure signals
to the eastern (rather than the western) end of the ISR, U.K.‐originated pressure anomalies increase
HTISR if they are positive (rather than negative). This explains the fact that the sensitivity dipoles around
Iceland and the U.K. are of opposite sign (Figures 3c and 3d).

HTISR shows positive sensitivity to Qnet,↑ and EPR to the west of the ISR, around Iceland, and negative sen-
sitivity to the east of the ISR, along the western European coast (Figures 3a and 3b). This sensitivity dipole
across the core of the NAC is consistent with a strengthening of the cross‐ridge geostrophic transport in
response to a negative perturbation of the density gradient along the section. The sensitivity of HTISR to
Qnet,↑, relative to the remaining forcing fields, is surprisingly small: only 3% (Figure 3e). We note that even
if we tripledΔQnet in Table 1, while keeping the weights for the remaining forcings unchanged, HTISR would
still be less sensitive to Qnet,↑ than to any of the remaining three forcing fields in Figure 3e. This is consistent
with previous observation‐ and model‐based studies, which found that on seasonal to multiannual time
scales ISR heat transport variability is predominantly driven by velocity fluctuations, rather than tempera-
ture fluctuations (Årthun & Eldevik, 2016; Asbjørnsen et al., 2019; Orvik & Skagseth, 2005).

3.3. Adjustment Mechanisms of the Observations

The weighted and normalized sensitivities of the 5 year mean temperature observations θ⋆, ⋆¼A, B, C, are
given by

v⋆
jFmði; jÞ ¼ σ−1

⋆
∂θ⋆

∂Fmði; jÞΔFm; m ¼ 1; 2; 3; 4; (11)

similar to Equation 9. The normalization factors σ⋆ are computed according to Equations 5 and 8, with
♣¼ θ⋆, giving σA¼ 0.05°C, σB¼ 0.06°C, and σC¼ 0.23°C. Note that σC is much larger than σA and σB since
the surface temperature θC is more sensitive to atmospheric forcing than the subsurface temperatures
θA,θB. Figures 4a–4f show the weighted and normalized sensitivities (Equation 11) for two of the four for-
cings, F1¼Qnet,↑ and F4¼ τy. The vector v⋆, composed of the weighted and normalized sensitivities in
Equation 11, has again two equivalent interpretations: (i) v⋆ reveals the adjustmentmechanisms of θ⋆, which
will be discussed in the following; (ii) v⋆ is the information captured by the observation θ⋆. The bar charts in
Figures 4g–4i show the relative importance of the four forcings Fm for impacting θ⋆, for⋆¼A,B,C. Relative
importance is measured as in Figure 3e, by the ratios in Equation 10, where q is substituted by v⋆.

The relative importance ofQnet,↑ is high for the surface observation θC (Figure 4i), but low for the subsurface
observations θA and θB (Figures 4g and 4h). The high sensitivity of θC to Qnet,↑ is concentrated at the
observed site (Figure 4c), due to the strong influence of local air‐sea heat fluxes on surface temperature.
All temperature observations show weak negative Qnet,↑ sensitivity upstream of the respective observed sites
(Figures 4a–4c), as an increased upward heat flux locally cools surface waters, which are then advected to the
observed locations (Figure 2). For all three temperature observations, the relative importance of EPR is very
small (Figures 4g–4i). Wind stress is important for all three observations (Figures 4g–4i), and the remainder
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of this section is devoted to wind stress sensitivities. For the sake of brevity, we focus on τy sensitivities,
which can be regarded as representative for τx sensitivities, too. Indeed, τx and τy sensitivities emerge
along the same pathways (not shown) due to the same wind‐driven adjustment mechanisms.

All observations are characterized by a sensitivity dipole local to the observed site, consistent with Ekman
dynamics. For instance, at (12°W, 41°N), right where θB is located, a sensitivity dipole is visible, with positive
sensitivities to the west and negative sensitivities to the east (Figure 4e), interrupting the otherwise positive
sensitivities along the eastern boundary of the North Atlantic. Here, Ekman theory predicts that a wind
stress perturbation matching the sensitivity dipole (i.e., increased northward wind stress to the west and
increased southward wind stress to the east) causes Ekman downwelling and pumps warm surface waters
down to the subsurface observation, which increases θB.

The large‐scale wind stress sensitivity patterns of θC (Figure 4f) are very similar to the ones of θA (Figure 4d),
except that they are of much weaker amplitude. The similarity of the patterns suggests that the surface obser-
vation θC is sensitive to similar remote wind‐driven adjustment mechanisms as the subsurface observation

Figure 4. (a–c) Sensitivities of 5 year mean (a) subsurface temperature in the Irminger Sea (θA), (b) subsurface
temperature off the Portuguese coast (θB), and (c) surface temperature in the Irminger Sea (θC), to changes in 5 year

mean upward surface heat flux Qnet,↑. (d–f) Same as (a)–(c), but sensitivities to meridional wind stress τy. The
sensitivities are weighted and normalized (thus unitless) and assemble the vector v⋆ (Equation 11). Red (blue) colors
indicate that an increase in (a)–(c) heat loss to the atmosphere and (d)–(f) northward wind stress would lead to a
subsequent increase (decrease) in (a and d) θA, (b and e) θB, and (c and f) θC on a 5 year time scale. The yellow dots mark

the respective locations of the temperature observation. The bar charts in (g)–(i) show the relative contributions of Qnet,↑,

EPR, τx, and τy to (g) θA, (h) θB, and (i) θC sensitivity, computed as in Figure 3.
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θA. However, local forcing massively dominates the surface temperature response, as indicated by the strong
sensitivities concentrated near (40°W, 60°N) in Figures 4c and 4f.

For all three temperature observations, positive sensitivity to northward wind stress emerges along the wes-
tern African and European coastline (Figures 4d–4f), similar to what was seen for HTISR in section 3.2. To
explain the underlying mechanism, we perform a perturbation experiment, in which the final 5 years of
the ECCOv4r2 solution serve as our control simulation. We increase northward wind stress in the region
highlighted in Figures 5a and 5c, along the western African coast, by 0.05 N/m2, and maintain the perturba-
tion over the full 5 year period. Figure 5c shows the response anomalies in subsurface temperature, at a
depth of 300m, time‐averaged over the 5 year experiment. We see that, in response to the positive northward
wind stress anomaly along the western African coast,the northeast Atlantic (north of 25°N) experiences
anomalous high temperatures.

The responsible mechanism operates exactly as demonstrated by Jones et al. (2018), see their Figure 10. The
northward wind stress anomaly creates a positive pressure anomaly along the eastern boundary of the North
Atlantic, which, after cyclonic propagation around the basin, sets up an anomalous pressure gradient

Figure 5. Anomaly in North Atlantic (a and b) bottom pressure (normalized by density, p/ρ) and (c and d) potential
temperature at 300m depth, in response to a positive northward wind stress anomaly of amplitude 0.05 N/m2 along
the (a and c) western African coast and (b and d) western Icelandic coast. The wind stress perturbations are imposed
inside the green contour in (a)–(d) and maintained over 5 years. The anomalies shown are time‐averaged over the same 5
year time period. The black line marks the (a and b) 1,000m, (c and d) 300m depth contour. The yellow dots and
black‐yellow line show the locations of the temperature observations θA, θB, and the Iceland‐Scotland ridge. Movies of
the monthly evolution of these anomalies are shown in the supporting information (Movies S1, S7, S3, and S9).
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between the Nordic Seas and the North Atlantic (Figure 5a and Movie S1). The basin‐scale pressure gradient
along the northern boundary of the North Atlantic spins up the subpolar gyre (Movie S2), leading to a warm-
ing of the subpolar North Atlantic after 1–2 years (Figures 5c and A1a and Movie S3). The large‐scale warm-
ing in the subtropical North Atlantic, north of 25°N (Figure 5c), is the result of baroclinic Rossby waves
propagating a warm temperature anomaly from the eastern boundary westward (Movies S3 and S4). The
anomalous warming includes the locations of the temperature observations θA, θB, and θC (yellow dots,
Figure 5c), explaining the consistently positive sensitivities along the western African coast in
Figures 4d–4f. Other accompanying temperature adjustments—most notably, the cooling in the subtropical
gyre south of 20°N (Figure 5c and Movies S3 and S6)—do not impact the temperature observations (nor the
QoI, HTISR) on a 5 year time scale but may come into play on longer time scales.

The Irminger Sea observations also show sensitivity to wind stress in the northeastern Atlantic, between
50°N and 70°N (Figures 4d and 4f). In this region, τy sensitivities of θ

A, θC (Figures 4d and 4f) have a similar
pattern as τy sensitivities of HTISR (Figure 3d), except that sensitivities of θA, θC are of opposite sign to those
of HTISR (see Figures 6c and 6d for a side‐by‐side comparison). To explain the opposite signs, we perform a
second perturbation experiment similar to the one presented in Figures 5a and 5c. In the second experiment,
we increase northward wind stress along the western Icelandic coast, in the region highlighted in Figures 5b
and 5d, where θA and θC show positive sensitivity (Figures 4d and 4f) and HTISR shows negative sensitivity
(Figure 3d). Figure 5d shows the response anomaly in subsurface temperature, at a depth of 300 m. The
Irminger and Labrador Seas experience a warming, while the Norwegian Sea cools.

The underlying mechanism is the following: the northward wind stress anomaly along the western Icelandic
coast drives Ekman onshore convergence and a positive pressure anomaly, as discussed in section 3.2. The
positive pressure anomaly is rapidly communicated along the entire Icelandic coastline, resulting in an
across‐bathymetry pressure gradient (Figure 5b and Movie S7), which drives an anomalous clockwise baro-
tropic circulation around Iceland (Movie S8). The anomalous clockwise circulation around Iceland weakens
the northward transport across the ISR by the NwAC as well as the southward transport through Denmark
Strait by the EGC, while strengthening the IC (cf. Figure 2). The weakened northward transport of warm
Atlantic waters across the ISR leads to the anomalous cold temperatures that are seen in the Norwegian
Sea in Figure 5d (and Movie S9) and is consistent with a reduced HTISR, as predicted by the negative sensi-
tivities in Figure 3d. The weakened southward transport of cold Arctic waters through Denmark Strait,
together with the strengthened IC, results in the anomalous warming that is seen in the Irminger and
Labrador Seas in Figure 5d (see also Figure A1c and Movie S9). The increased temperature in the
Irminger Sea is consistent with the positive sensitivities along the western Icelandic coast in Figures 4d
and 4f.

The perturbation experiment presented in Figures 5b and 5d explains the opposite sign in the sensitivities
along the western Icelandic coast in Figure 3d versus Figure 4d. The fact that in Figure 3d versus
Figure 4d, sensitivities are consistently of opposite sign in the northeast Atlantic between 50°N and 70°N
can be understood similarly. The sensitivity patterns in this region are characterized by topographically
steered bands, which connect to Iceland or the ISR (Figures 3d and 4d). The sensitivity patterns have oppo-
site sign in Figure 3d versus Figure 4d because wind stress in this region creates pressure anomalies that are
transported to the Icelandic coastline. Once there, the pressure anomalies drive a simultaneous strengthen-
ing (or weakening) of the NwAC and EGC, as described before, which results in opposite temperature
responses in the Irminger versus Norwegian Sea, similarly as in Figure 5d.

3.4. Assessing Shared Adjustment Mechanisms

This section quantifies the DPP of each of the three temperature observations, θA, θB, and θC, for our QoI,
heat transport across the ISR (HTISR). Quantification is via the pointwise projection of sensitivities:

q • v⋆ ¼ ∑
4

m¼1
∑
i; j

σ−1
HT

∂ðHTISRÞ
∂Fmði; jÞΔFm

� �
· σ−1

⋆
∂θ⋆

∂Fmði; jÞΔFm

� �
; (12)

for ⋆¼A, B, C, see Equations 4, 9, and 11. Shared adjustment physics result in strong projections, elucidat-
ing the dynamical origins of proxy potential.
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Figure 6. Projection (•) of weighted and normalized sensitivities (Equation 12) of the QoI, HTISR (q, left column), and
the observed quantity, θA (vA, right column). All shown sensitivity maps are replots of subpanels in Figures 3 and 4, as
indicated by the yellow labels, and are composed of patterns that are established by the dynamical adjustment
mechanisms of HTISR and θA, respectively. Shared adjustment physics result in a strong projection (or “pattern
correlation”), elucidating the dynamical origins of proxy potential. The color shading in each of the shown model grid
cells (inlets in (c) and (d)) corresponds to an entry in either of the two sensitivity vectors, q and vA, associated with the
forcing variable τy. The three cases (+), (−), and (0), resulting from the elementwise projection, are discussed in the text.
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Figure 6 shows the projection in Equation 12 for the case⋆¼A. Note that the projection can be regarded as a
pattern correlation, where the patterns in Figure 6 are established by dynamical adjustment mechanisms
and pathways (sections 3.2 and 3.3). We highlight three cases (Figures 6c and 6d) resulting from the point-
wise projection in Equation 12:
(+) overlapping sensitivities of equal sign, resulting in a positive contribution to q • vA;
(−) overlapping sensitivities of opposite sign, resulting in a negative contribution to q • vA;
(0) nonoverlapping sensitivities, resulting in no contribution to q • vA.

Figure 7i is a quantitative summary of Figure 6, showing total positive (case (+)) and negative (case (−)) con-
tributions to the projection q • vA, for the four different forcings. The maximum absolute value for the pro-
jection is equal to 1, due to normalization by σHT, σ⋆ (Equation 12).

For all observations considered, the generation of proxy potential is dominated by existence of wind‐driven
adjustments that are shared with those for HTISR (Figures 7i–7k). Minor importance of Qnet,↑ and EPR is not
surprising when recalling the fact that HTISR is relatively insensitive to Qnet,↑ and EPR (Figure 7a). Note that
even for the surface temperature observation θC, which is highly sensitive to surface heat fluxes (Figure 7d),
the Qnet,↑ contribution to the projection in Equation 12 is negligible (Figure 7k).

Positive τy contributions to q • vA arise along the eastern boundary of the subtropical North Atlantic (solid
box, Figure 7f), where both HTISR and θA exhibit a band of positive sensitivity along the western African
and European coast (Figures 7e and 7f), due to the shared pressure adjustment mechanism discussed in sec-
tions 3.2 and 3.3 and Figures 5a and 5c. Negative τy contributions to q • vA arise in the northeast Atlantic
(dashed box, Figure 7f), where wind stress sensitivities are of large amplitude and of opposite sign for
HTISR (Figure 7e) and θA (Figure 7f), as discussed in section 3.3 and Figure 5d. The negative projection in
the northeast Atlantic exceeds the positive projection in the eastern Atlantic waveguide (Figure 7i). Total
positive and negative contributions sum to q • vA¼−0.44 (Figure 7i). Here, partial cancellation between
the positive and negative projections leads to a value reduced by cA¼ 0.29. For ⋆¼A,B,C, cancellation is
quantified as

c⋆ ¼ qj j•jv⋆j−jq•v⋆j ≥ 0 (13)

where |w| denotes the vector whose entries are the absolute values of the respective entries of the vectorw,
forw¼ q, v⋆. As an example, if all contributions shown in Figure 7i were either consistently positive or con-
sistently negative (in which cases no cancellation occurred), the absolute value of the projection q • vAwould
be increased by the addition of cA, resulting in an absolute value of 0.44 + 0.29¼ 0.73.

Positive wind stress contributions to q • vB (Figure 7j) are of similar magnitude as positive wind stress con-
tributions to q • vA (Figure 7i), due to the pressure adjustment mechanism in the eastern Atlantic wave-
guide, shared among θB, HTISR (and θA). The total overlap of HTISR sensitivity with θB sensitivity
(Figure 7j) is much smaller than with θA sensitivity (Figure 7i), since θB does not show any sensitivity north
of 55° (Figure 7g). For the Irminger Sea surface observation θC, proxy origins are similar as for the Irminger
Sea subsurface observation θA (boxes in Figures 7f and 7h), but contributions from each forcing are reduced
by a factor of about 0.25 (Figures 7i ans 7k), due to relatively weaker excitation of surface temperature by
remote forcing, as discussed in section 3.3.

The DPP (Equation 4) of θ⋆ for HTISR is given by q • v⋆ squared. The result is shown in Figures 7l–7n: The
DPP of θA forHTISR is 19%,while theDPPs of θ

B and θC forHTISR are only 1%. These values can be interpreted
either in terms of (i) shared ocean adjustment physics or (ii) uncertainty quantification (cf. Figure 1c). As for
(i), HTISR shares 19% of its dynamical causes with θA, but only 1% with θB and θC. As a result, θA (θB, θC) cap-
tures 19% (1%, 1%) of the variability of HTISR, taking into account all potential forcing scenarios. As for (ii),
DPP predicts that uncertainty in HTISR would get reduced by 19% (1%, 1%), if a noise‐freemeasurement value
of θA (θB, θC) was added to the state estimation framework that was described in section 3.1.

4. Discussion

The design of effective climate observing systems relies on a both physical and quantitative understanding of
which QoIs that capture important aspects of the climate system can be informed by existing or future
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Figure 7. (a–h) Replots of subpanels in Figures 3 and 4, as indicated by the yellow labels. (i–k) Contributions from the
forcings Fm¼Qnet,↑, EPR, τx, τy to the projection q • v⋆ (Equation 12), where (i) ⋆¼A, (j) ⋆¼ B, and (k) ⋆¼ C.
The projections are computed as shown in Figure 6. That is, in each of the subpanels (i–k), the τy contribution is

computed by projecting the sensitivity map σ−1
HT

∂ðHTISRÞ
∂τyði; jÞ Δτy (shown in (e)) onto the respective sensitivity map σ−1

⋆

∂θ⋆

∂τyði; jÞ Δτy (shown in (f) for ⋆¼A, (g) for ⋆¼ B, and (h) for ⋆¼ C). Positive (negative) τy contributions arise in the

Atlantic subregion inside the black solid (dashed) box in (f) for ⋆=A, (g) for ⋆= B, and (h) for ⋆= C, inside
which sensitivities correlate (anticorrelate) with those in panel (e). The value for q • v⋆ (bottom of panels (i)–(k)) is
obtained by summing up all upward and downward pointing bars in the respective subpanel. Here, destructive
interference is quantified by c⋆ (Equation 13). (l–n) Dynamical proxy potential of (l) θA, (m) θB, and (n) θC for HTISR,

computed by DPPðθ⋆; HTISRÞ ¼ q•v⋆ð Þ2 (see Equation 4).
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observations. Toward this goal, we introduced the concept of DPP by establishing a parallel between (i)
ocean dynamical principles and (ii) Hessian uncertainty quantification (UQ). Hessian UQ is currently being
explored in the computational sciences as a tool for optimal observing system design (Alexanderian et al.,
2016; Bui‐Thanh et al., 2012, 2013; Flath et al., 2011; Isaac et al., 2015) but has so far not been applied in
the context of global ocean state estimation. With its two interpretations, DPP provides a means to optimally
design climate observing systems, while giving insight into the governing physical mechanisms.

In the following, we summarize the results from our North Atlantic case study (section 4.1), discuss our
method in the context of related work in oceanography (section 4.2), point out limitations (section 4.3),
and provide directions for future work (section 4.4).

4.1. Summary of Shared Pathways

On a 5 year time scale, our example QoI, heat transport across the ISR (HTISR), and the examined Irminger
Sea subsurface temperature observation, θA, are most sensitive to changes in wind forcing in two main
regions: (I) along the eastern boundary of the subtropical North Atlantic and (II) in the northeast Atlantic
and the Nordic Seas. Wind forcing in Region (I) excites a pressure adjustment mechanism, which strength-
ens (or weakens) both the ISR geostrophic transport and the IC, leading to anomalies in HTISR and θA of
equal sign. Wind forcing in Region (II) drives an anomalous barotropic circulation around Iceland which
simultaneously strengthens (or weakens) the Norwegian Atlantic and East Greenland Currents, leading to
anomalies in θA and HTISR of opposite sign.

DPP measures the degree of shared adjustment physics between the QoI and observation under considera-
tion, taking into account the effects of constructive and destructive interference of information propagation
(Figure 7). Destructive interference of information occurs because wind forcing in Region (I) leads to
responses in HTISR and θA of equal sign, while wind forcing in Region (II) leads to responses in HTISR
and θA of opposite sign. Considering the 5 year mean of the two quantities, we find that the DPP of θA for
HTISR is 19%. DPP allows two equivalent interpretations: θA (i) shares 19% of its adjustment physics with
HTISR; (ii) reduces the uncertainty in HTISR by 19%, if θA is added without noise to the ECCO state estimate.

4.2. Relation to Previous Work

Complete sensitivity information, enabled by the adjoint of an ocean GCM, is the cornerstone of quantifying
DPP. In previous work, adjoint‐derived sensitivity information has been proposed to support observing sys-
tem design in a distinct fashion: Marotzke et al. (1999), Köhl and Stammer (2004), and Heimbach et al.
(2011) suggest that regions in which a given QoI shows highest sensitivity to hydrographic state variables
are to be prioritized when deploying new hydrographic observations. The philosophy of these studies is to
discover direct cause and effect relationships between changes in observations and changes in the QoI.
DPP looks further: by employing sensitivity information of not only the QoI but also of the observations,
DPP quantifies dynamics‐based covariability of the QoI and observations, driven by local or remote forcings.
As a result, DPP can exploit that multiple distinct QoIs may be connected by basin‐wide dynamical adjust-
ments and thus well constrained by limited instrumentation in this shared adjustment pathway. Moreover,
unlike DPP, the adjoint‐based studies referenced above do not provide a quantitative estimate on how well
the QoI is constrained by the suggested observations (and how much information is missing). Instead, the
previous studies provide only a relative estimate by suggesting that some observations may bemore informa-
tive than others.

A similar description to DPP can be obtained through the method of representers (Bennett, 1985, 2002; see
also our section 2). In the context of variational data assimilation, a representer assesses the impact of an
assimilated observation on the estimated model state (e.g., Bennett, 1985, 1990; Kurapov et al., 2009).
Representer‐based methods have been used to evaluate observing systems and strategies in regional settings
on short (daily to weekly) time scales (e.g., Moore et al., 2017; Zhang et al., 2010). DPP, as introduced in this
work, views representers from a new perspective, with themerit to highlight the important role of dynamical
pathways and adjustment processes (Figures 6and 7) in establishing and quantifying the information con-
tent of an observation for a QoI. Moreover, DPP operates—for the first time—within global ocean state esti-
mation, focusing on climate observing systems, longer (monthly to multiannual) time scales, and large‐scale
ocean circulation.
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In the context of Arctic observing system design, Kaminski et al. (2015, 2018) utilized a method related to
DPP. A key difference is that the authors handle sensitivity information averaged over large regions (e.g.,
Figure 2 in Kaminski et al., 2015). While spatially averaged sensitivity enables numerically efficient quanti-
fication of the constraint from large‐scale data acquisitions (e.g., from satellite or aircraft), it could entail
large aggregation errors (Kaminski et al., 2001). Furthermore, we argue that it inhibits clear understanding
of proxy origins, by grouping information from dynamically distinct regions. This is especially true for har-
nessing proxy potential from shared wind‐driven adjustments, for which resolution of the coastal wave
guides is key.

4.3. Limitations

While the adjoint model provides comprehensive sensitivity information throughout the entire model
space‐time domain, adjoint‐derived sensitivity is limited by the linear approximation and inexactness of
the adjoint (Czeschel et al., 2010; Errico, 1997; Hoteit et al., 2005). Nevertheless, perturbation experiments
with the full nonlinear model dynamics in Appendix A show that the adjoint‐derived sensitivities in our case
study reliably capture the basin‐wide adjustment mechanisms that are excited by wind stress perturbations
in Regions (I) and (II). However, estimation errors in the predicted response amplitudes can reach up to
20%—partly due to the linear approximation, and partly due to the inexactness of the adjoint. This empha-
sizes that we must keep validating the accuracy of adjoint‐derived sensitivity information and that improv-
ing the exactness of the adjoint would add great value to dynamics‐based observing system design.

A second shortcoming of the methodology presented here is that DPP may be dependent on the
underlying ocean GCM. Global ocean GCMs are typically too coarse (here: nominally 1° horizontal
resolution) to accurately represent important processes including density‐driven gravity currents (e.g.,
across overflow regions in the subpolar North Atlantic), deep convection, and narrow boundary cur-
rents. Inability to test model dependency, due to unavailable adjoints for almost all GCMs, is a limiting
factor.

As a third drawback, important limiting assumptions entering the calculation of DPP are the choice of con-
trol variables and associated prior covariance (or weights). The control variables should include all uncertain
elements in the model, that is, the parts that are not determined by the known governing equations
(Figure 1c). The associated weights reflect prior uncertainties in the control variables. In the choice of uncer-
tain control variables and weights, DPP follows the assumptions of ocean state estimation (while in our case
study, we simplified controls andweights, for the sake of adding clarity to our presentation, see section 3.1.2).
It is important to note that, while the sensitivities, utilized for the computation of DPP, uncover all dynamical
adjustment processes (independent of the weights), the relative importance of these mechanisms is deter-
mined by the weights.

4.4. Future Directions

In our case study, we investigated how changes in time‐mean forcing affect the time means of temperature
observations and QoI, on 5 year time scales. Thereby, we identified key forcings, adjustment pathways, and
mechanisms for observations and QoI, but did not disentangle whether the dominating mechanisms operate
on monthly, annual, or multiannual (<5 years) time scales. Future work should consider time‐variable
changes in forcing and investigate the variability of observations and QoIs on shorter (e.g., interannual) time
scales. A further important extension of the work presented here is to account for observational noise as well
as data redundancy and complementarity between multiple observations. This objective will be pursued in a
forthcoming paper.

5. Conclusions

The oceanographic community would strongly benefit from a synergistic, quantitative approach to codesign
a cost‐effective, long‐term, and sustained ocean observing system (National Academies of Sciences, 2017).
Motivated by this objective, we have introduced the concept of DPP, a dynamics‐based alternative to statis-
tical correlation analysis and conventional observing system simulation experiments (OSSEs). Our main
conclusions are the following.

(1) In contrast to statistical proxy potential, DPP only accounts for covariability that has a dynamical
underpinning, by tracing variability back to common causal forcings. Wind‐driven adjustment
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mechanisms along the ocean boundaries, similar to the ones identified in this study (section 4.1), have
been shown to be key for many distinct oceanic quantities (Fukumori et al., 2007, 2015; Heimbach et al.,
2011; Jones et al., 2018; Marotzke et al., 1999; Pillar et al., 2016; Smith &Heimbach, 2019). By identifying
these common dynamical pathways and mechanisms via DPP assessment, we elucidate the physical
cause of observed covariability in the North Atlantic.

(2) Our method accounts for all dynamically feasible pathways between observation and QoI, and with the
potential for constructive and destructive interference of information propagation. Unraveling construc-
tive and destructive contributions to DPP, as performed here, paves the way for extracting complemen-
tary information from observations. By targeting information that is complementary to existing
observing systems, the notion of DPP can support the design of efficient and effective future observing
systems.

(3) In order to evaluate DPP, one does not require actual observational data, since DPP investigates the
dynamical relationships between observation and QoI in the model. DPP gains its full power for obser-
ving system design through the following fact. Independent of the measurement value (potentially taken
by a future observing system), inclusion of the observation in the underlying state estimation framework
will reduce uncertainty in the QoI by the predetermined value of DPP.

(4) Based on endpoint geostrophy, moorings that are to be informative for cross‐section transports would
be located along the section itself. Here, we demonstrated that remote hydrographic observations can
provide strong constraints on cross‐section transports due to large‐scale oceanic teleconnections. This
result highlights the importance of further probing the dynamical constraints contained within the
existing observational database.

Finally, the fact that the efficiency of observing systems depends on the targeted QoIs highlights the
importance of an ongoing community discussion on which climate QoIs are most important to
constrain.

Appendix A: Linear Approximation and Inexactness of the Adjoint
The adjoint of an ocean GCM provides comprehensive sensitivity information, which is the key ingredient of
DPP (Equation 4). Caveats are that (i) adjoint‐derived sensitivities provide only a linear approximation and
that (ii) the adjoint may be inexact, for example, due to artificially increased viscosity compared to the for-
ward model, which is often a requirement to stabilize the adjoint (Forget et al., 2015; Hoteit et al., 2005,
2010). Here, we verify adjoint‐derived sensitivities against perturbation experiments with the nonlinear for-
ward model. Our control simulation covers the final 5 years of the ECCOv4r2 state estimate. We focus on
meridional wind stress perturbations inside the two green regions in Figure 5, along the western African
coast and the western Icelandic coast.

For each of the two chosen regions, we perform two separate perturbation experiments, imposing meridio-
nal wind stress anomalies of Δτy¼±0.05 N/m2 inside the region, respectively. We maintain the wind stress

perturbation over the full 5 year period. For J ∈ fθA; θB; HTISRg (Equations 6 and 7), we then compute the
differences

Δ±
fwdJ ¼ J± − J0: (A1)

Here, J0 denotes the quantity J in the control simulation, and J+ and J− the same quantity in the simula-
tion with the positive and negative perturbation, respectively. Δþ

fwdJ and −Δ−
fwdJ are identical if J depends

linearly on τy inside the chosen perturbation region. Even if a resemblance of Δþ
fwdJ and −Δ−

fwdJ suggests
a linear response, the adjoint‐derived anomalies can still deviate from the forward anomalies, due to
inexactness of the adjoint. Therefore, we next compare the forward anomalies Δþ

fwdJ and −Δ−
fwdJ to the

adjoint estimate

Δþ
adjJ ¼

∂J
∂τy

· Δτy; (A2)

where Δτy now denotes the positive meridional wind stress anomaly (+0.05 N/m2) inside the chosen
region.
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In Figure A1, we see notable deviations between Δþ
fwdJ and −Δ−

fwdJ in two cases: for the anomalies in

J¼ θB in response to a τy perturbation along the western African coast (green solid vs. dashed horizontal
lines, Figure A1a), and for the anomaly in J¼ θA in response to a τy perturbation along the western
Icelandic coast (orange solid vs. dashed horizontal lines, Figure A1c). In both cases, the amplitudes of
the time‐evolving forward anomalies start to develop an offset after 1–2 years. Since anomalies in θA

and θB are the time‐integrated result of ocean transport anomalies, the offset tends to becomes larger over
time. In contrast, Δþ

fwdHTISR and −Δ−
fwdHTISR coincide (Figures A1b and A1d), suggesting that HTISR is

linear as a function of τy in the tested perturbation regions. Note, however, that, despite the suggested lin-
earity, Δþ

adjHTISR slightly differs from the forward anomalies in Figure A1d, due to an inexact adjoint. A

similar situation occurs in Figure A1a for the response anomalies in θA. In all cases shown in Figure A1,
the adjoint estimate Δþ

adjJ predicts the response anomalies in J with the correct sign. Moreover, predicted

amplitudes are generally close to those of the forward anomalies, although, in few cases, they can be off
by up to 20%.

Figure A1. Anomalies in (a and c) J¼ θA,θB and (b and d) J¼HTISR, in response to meridional wind stress (τy)
perturbations along the (a and b) western African coast and (c and d) western Icelandic coast. The solid versus
dashed, thick, horizontal lines show the 5 year mean of the anomaliesΔþ

fwdJ versus−Δ−
fwdJ (Equation A1), diagnosed from

the nonlinear forward perturbation experiments. The corresponding thin lines present the monthly evolution of Δþ
fwdJ

versus −Δ−
fwdJ, as a function of years since the start of the perturbation. The thick, horizontal lines with black

triangles show the adjoint‐derived (5 year mean) anomalies Δþ
adjJ (Equation A2). In (c), the response anomaly in θB is

invisible because it is 2 orders of magnitude smaller than the response anomaly in θA.
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