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Abstract
In this work, we consider the transport of a surfactant in variably saturated porous media. The water flow is modelled by the
Richards equations and it is fully coupled with the transport equation for the surfactant. Three linearization techniques are
discussed: the Newton method, the modified Picard, and the L-scheme. Based on these, monolithic and splitting schemes are
proposed and their convergence is analyzed. The performance of these schemes is illustrated on five numerical examples.
For these examples, the number of iterations and the condition numbers of the linear systems emerging in each iteration are
presented.

Keywords Richards equation · Reactive transport · Linearization schemes · L-scheme · Modified Picard ·
Newton method · Splitting solvers

1 Introduction

Many societally relevant applications are involving multi-
phase flow and multicomponent reactive transport in porous
media. Examples in this sense appear in the enhanced
oil recovery, geological CO2 storage, diffusion of medical
agents into the human body, or water or soil pollution. In
many situations like these, experimental results are diffi-
cult and expensive to obtain, therefore numerical simula-
tions become a key technology. Together with laboratory
experiments and field data, they provide the key tools in
understanding such complex phenomena. The mathemati-
cal models for problems as mentioned above are (fully or
partially) coupled, nonlinear, possible degenerate partial dif-
ferential equations. In most cases, deriving explicit solutions
is not possible, whereas developing appropriate algorithms
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for finding numerical solutions is a challenge in itself. Here
we investigate robust and efficient methods for solving the
nonlinear problems obtained after performing an implicit
time discretization. The focus is on iterative, splitting, or
monolithic schemes for fully coupled flow and transport.

Of particular interest here is a special case of multiphase,
reactive flow in porous media, namely the surfactant
transport in soil [2, 19, 23, 25, 27, 33]. Surfactants, which
are usually organic compounds, are commonly used for
actively combating soil and water pollution [11, 12, 16, 38,
43]. They contain both hydrophobic and hydrophilic groups
and are dissolved in the water phase, being transported
by diffusion and convection. Typically, the surfactants are
employed in soil regions near the surface (vadose zone),
where water and air are present in the pores. Consequently,
the outcoming mathematical model accounts the transport
of at least one species (the surfactant, but often also
the contaminant) in a variably saturated porous medium.
Whereas the dependence of the species transported from the
flow is obvious, one can encounter the reverse dependence
as well when surfactants are affecting the interfacial tension
between water and air, leading to a dependency of the water
flow on the concentration of surfactant. In other words,
one has to cope with a fully coupled flow and transport
problem, and not only with a one-way coupling, i.e., when
only the transport depends on the flow, as mostly considered
in reactive transport [35].

Whereas the surfactant transport is described by a
reaction-diffusion-convection equation, water flow in vari-
ably saturated porous media is modelled by the Richards

http://crossmark.crossref.org/dialog/?doi=10.1007/s10596-020-09949-2&domain=pdf
mailto: sorin.pop@uhasselt.be
mailto: Iuliu.Pop@uib.no
mailto: Davide.Illiano@uib.no
mailto: Florin.Radu@uib.no


Comput Geosci

equation [7, 18]. The main assumption in this case is that
the air remains in contact with the atmosphere, having a
constant pressure (the atmospheric pressure, here assumed
zero). This allows reducing the flow model to one equation,
the Richards equation. In mathematical terms, this equation
is degenerate parabolic, whose solution has typically low
regularity [3].

From the above, and adopting the pressure head as the
main unknown in the Richards equation, we study here
different linearization schemes for the model

∂θ(Ψ, c)

∂t
− ∇ · (K(θ(Ψ, c))∇(Ψ + z)) = H1 (1)

and

∂θ(Ψ, c)c

∂t
− ∇ · (D∇c − uwc) + R(c) = H2, (2)

holding for x ∈ Ω (z being the vertical coordinate of
x, pointing against gravity) and t ∈ (0, T ]. Here Ω is a
bounded, open domain in R

d (d = 1, 2 or 3) having a
Lipschitz continuous boundary ∂Ω and T > 0 is the final
time. Further, θ(·, ·) denotes the water content, and is a
given function depending on the pressure head Ψ and on
the surfactant concentration c. Also, K(·) is the hydraulic
conductivity, D > 0 the diffusion/dispersion coefficient.
Finally, uw := −K(θ, c)∇(Ψ +z) is the water flux,R(·) the
reaction term, expressed as a function of the concentration
c, and H1, H2 are the external sinks/sources. Initial and
boundary conditions, which are specified below, complete
the system.

We point out that the water content and the hydraulic
conductivity, θ(·, ·) and K(·) are given nonlinear functions.
They are medium- and surfactant-dependent and are
determined experimentally (see [18]). Specific choices are
provided in Section 2.

To solve numerically the system (1)–(2) one needs to
discretize in time and space. We refer to [15] for a practical
review of numerical methods for the Richards equation.
Due to the low regularity of the solution and the need of
relatively large time steps, the backward Euler method is the
best candidate for the time discretization. Multiple spatial
discretization techniques are available, such as the Galerkin
finite element method (FEM) [5, 32, 39], the mixed finite
element method (MFEM) [4, 36, 44, 47], the multi-point
flux approximation (MPFA) [1, 6, 24], and the finite volume
method (FVM) [9, 13, 14].

Since the time discretization is not explicit, the outcome
is a sequence of nonlinear problems, for which a
linearization step has to be performed. Widely used
linearization schemes are the quadratic, locally convergent
Newton method and the modified Picard method [10]. For
both, the convergence is guaranteed if the starting point
is close to the solution. Since for evolution equations the

initial guess is typically the solution at the previous time,
this may induces severe restrictions on the time step size
(see [37]). There exist several modifications of the Newton
scheme improving this aspect, including like line-search and
trust-region methods, or Anderson acceleration techniques,
as discussed, e.g., in [15, 21, 26, 28, 45, 46, 49], or
exploiting the structure of the nonlinearity appearing in
the hyperbolic two-phase flow model, as discussed in [22].
Among alternative approaches we mention the L-scheme
(see [30, 34, 40, 48]) and the modified L-scheme [31], both
being robust w.r.t. the mesh size, but converging linearly.
In particular, the L-scheme converges for any starting point,
and the restriction on the time step, if any, is very mild. The
modified L-scheme makes explicit use of the choice of the
starting point as the solution obtained at the previous time,
and has an improved convergence behavior if the changes
in the solutions at two successive times are controlled
by the time step. Nevertheless, the modified L-scheme
involves computation of derivatives while the L-scheme
does not. Finally, the robustness of the Newton method is
significantly increased if one considers combinations of the
Picard and the Newton methods [8], and in particular of the
L-scheme and the Newton scheme [30].

We conclude this discussion by mentioning that in this
paper we adopt the FEM and the FVM, but the iterative
schemes presented here can be applied in combination
with any other spatial discretization. The focus is on
effectively solving the flow and transport system (1)–(2),
and in particular on the adequate treating of the coupling
between the two model components (the flow and the
reactive transport). The schemes are divided into three main
categories: monolithic (Mon), nonlinear splitting (NonLinS)
and alternate splitting (AltS). Subsequently, we denote,
e.g., by Mon-Newton, the monolithic scheme obtained by
applying the Newton method as linearization. The nonlinear
splitting schemes (NonLinS) should be understood as
solving at each time step first the flow equation until
convergence, by using the surfactant concentration from
the last iteration, and then with the obtained flow
solving the transport equation until convergence. The
procedure can be continued iteratively, this being the
usual or classical splitting method for transport problems.
The convergence of NonLinS does not depend on the
linearization approach used for each model component
(Newton, Picard, or L-scheme), because we assume that
the nonlinear subproblems are solved exactly, i.e., until
convergence. Finally, the alternate splitting methods (AltS)
have a different philosophy. Instead of solving each
subproblem until convergence within each iteration, one
performs only one step of the chosen linearization. For
example, AltS-NE will perform one Newton step for each
model component, and iterate. These schemes are illustrated
in Figs. 1 and 2.



Comput Geosci

Fig. 1 The nonlinear splitting approach

All the schemes can be analyzed theoretically, and we
do this exemplary for Mon-LS, i.e., for the monolithic
approach combined with the L-scheme. Based on compar-
ative numerical tests performed for academic and bench-
mark problems, we see that the alternate methods can
save substantial computational time, while maintaining the
robustness of the L-scheme.

The remaining of the paper is organized as follows.
In Section 2, we establish the mathematical model and
the notation used and present the iterative monolithic and
splitting schemes. In Section 3, we prove the convergence
of the Mon-LS scheme and briefly discuss the convergence
of the other schemes. Section 4 presents five different
numerical examples. They are inspired by the cases already
studied in the literature [25, 30]. Section 5 concludes this
work.

2 Problem formulation, discretization,
and iterative schemes

We solve the fully coupled system (1)–(2), completed by
homogeneous Dirichlet boundary conditions for both Ψ and
c and the initial conditions:

Ψ = Ψ0 and c = c0 at t = 0.

Fig. 2 The alternate splitting approach

We use the van Genuchten-Mualem parameterization
[17]

θ(Ψ ) =
⎧
⎨

⎩
θr + (θs − θr)

(
1

1+(−αΨ )n

) n−1
n

, Ψ ≤ 0

θs, Ψ > 0,
(3)

K(θ(Ψ ))=
⎧
⎨

⎩

Ksθe(Ψ )
1
2

[

1−
(
1−θe(Ψ )

n
n−1

) n−1
n

]

, Ψ ≤0

Ks, Ψ >0,

(4)

where θr and θs represent the values of the residual and
saturated water content, θe = (θ − θr )/(θs − θr ) is the
effective water content, Ks is the conductivity, and α and n

are model parameters depending on the soil.
Observe that in the expression above for θ , the influence

of the surfactant on the water flow is neglected. As
reported in [20, 25, 42], the surface tension between water
and air does depend on the surfactant concentration c,
implying the same for the function θ above. The following
parametrization is proposed in [25]

θ(Ψ, c) :=θ (γ (c)Ψ ) , with γ (c)= 1

1 − b log(c/a + 1)
.

(5)

Here θ() is given in (3) and γ () is the surface tensions as
depending on the concentration c. The parameters a and b

depend on the fluid and the medium. We refer to [41, 42]
for details about (5).

This gives the following expressions for θ and K

θ(Ψ, c)=
⎧
⎨

⎩
θr +(θs −θr )

[
1/

(
1+

(
−α( 1

1−b log(c/a+1) )Ψ
)n)] n−1

n
, Ψ≤0

θs , Ψ>0,

(6)

K(θ(Ψ, c))=
⎧
⎨

⎩
Ksθe(Ψ, c)

1
2

[

1−
(
1 − θe(Ψ, c)

n
n−1

) n−1
n

]

, Ψ ≤ 0

Ks, Ψ > 0.

(7)

This shows that the flow component also depends on the
reactive transport, implying that the model is coupled in
both directions.

In the following, we proceed by discretizing (1) and (2) in
time and space. We will use common notations in functional
analysis. We denote by L2(Ω) the space of real valued,
squared integrable functions defined on Ω and H 1(Ω) its
subspace, containing the functions having also the first order
derivatives in L2(Ω). H 1

0 (Ω) is the space of functions
belonging to H 1(Ω) and vanishing on ∂Ω . Further, we
denote by < ·, · > the L2(Ω) scalar product (and by ‖·‖
the associated norm) or the pairing between H 1

0 and its
dual H−1. Finally, by L2(0, T ; X), we mean the Bochner
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space of functions taking values in the Banach-space X, the
extension to H 1(0, T ; X) being straightforward.

With this, we state the weak formulation of the problem
related to (1)–(2):

Problem P: Find Ψ, c ∈ L2(0, T ; H 1
0 (Ω)) ∩

H 1(0, T ; H−1(Ω)) such that

< ∂tθ(Ψ, c), v1 >+< K(θ(Ψ, c))∇(Ψ +z), ∇v1 >

= < H1, v1 > (8)

and

< ∂t(θ(Ψ, c)c), v2 > + < D∇c+uwc, ∇v2 >=<H2, v2>

(9)

hold for all v1, v2 ∈ H 1
0 (Ω) and almost every t ∈ (0, T ].

We now combine the backward Euler method with linear
Galerkin finite elements for the discretization of Problem
P. We let N ∈ N be a strictly positive natural number and
the time step τ := T/N . Correspondingly, the discrete
times are tn := nτ (n ∈ {0, 1, . . . , N}). Further, we let
Th be a regular decomposition of Ω , Ω = ∪

T ∈Th

T into d-

dimensional simplices, with h denoting the mesh diameter.
The finite element space Vh ⊂ H 1

0 (Ω) is defined by

Vh := {vh ∈ H 1
0 (Ω) s.t . vh|T ∈ P1(T ), for any T ∈ Th},

(10)

where P1(T ) denotes the space of linear polynomials on T

and vh|T the restriction of vh to T .
For the fully discrete counterpart of Problem P, we let

n ≥ 1 be fixed and assume that Ψ n−1
h , cn−1

h ∈ Vh are given.
The solution pair at time tn solves

Problem Pn: Find Ψ n
h , cn

h ∈ Vh such that for all vh, wh ∈
Vh there holds

< θ(Ψ n
h , cn

h) − θ
(
Ψ n−1

h , cn−1
h

)
, vh >

+τ < K(θ(Ψ n
h , cn

h))(∇(Ψ n
h ) + ez), ∇vh >

= τ < H1, vh > (11)

and

< θ
(
Ψ n

h , cn
h

)
cn
h − θ

(
Ψ n−1

h , cn−1
h

)
cn−1
h , wh >

+τ < D∇cn
h + un-1w cn

h, ∇wh >= τ < H2, wh > . (12)

ez denotes the unit vector in the direction opposite to gravity.

Remark 1 Observe that un-1w appears in the convective term
in (12). This choice is made for the ease of presentation.
Nevertheless, all calculations carried out in this paper
were doubled by ones where unw has replaced un-1w . The
differences in the results were marginal.

Observe that Problem Pn is a coupling system of two
elliptic, nonlinear equations. In the following, we discuss
different iterative schemes for solving this system.

2.1 Iterative linearization schemes

We discuss monolithic and splitting approaches for solving
Problem Pn, combined with either the Newton method, the
modified Picard [10], or the L-scheme [30, 34]. In the
following the index n always refers to the time step, whereas
j denotes the iteration index. As a rule, the iterations start
with the solution at the previous time, tn−1.

In the monolithic approach, one solves the two equations
of the system (11)–(12) at once, combined with a
linearization method. Formally, this becomes

Problem PMonn,j+1: Find Ψ n,j+1 and cn,j+1 such that

{
F lin
1

(
Ψ n,j+1, cn,j+1

) = 0,
F lin
2

(
Ψ n,j+1, cn,j+1

) = 0.
(13)

FLin
k is a linearization of the expression Fk (k = 1, 2)

appearing in the system (11)–(12). Depending on the used
linearization technique, one speaks about a monolithic
Newton scheme (Mon-Newton), or monolithic Picard
(Mon-Picard) or monolithic L-scheme (Mon-LS). These
three schemes will be presented in detail below.

In the iterative splitting approach one solves each
equation separately and then iterates between these, using
the results previously obtained. We distinguish between
two main splitting ways: the nonlinear splitting and the
alternate splitting. These are schematized in Figs. 1 and 2
respectively. The former becomes :

Problem PNonLinSn,j+1: Find Ψ n,j+1 and cn,j+1 such
that
{

F1
(
Ψ n,j+1, cn,j

) = 0, followed by
F2

(
Ψ n,j+1, cn,j+1

) = 0.
(14)

For the linearization of F1 and F2, one can use one of the
three linearization techniques mentioned before. In contrast,
in the alternate splitting, one performs only one linearization
step per iteration (see also Fig. 2). The alternate splitting
scheme becomes

Problem PAltSn,j+1: Find Ψ n,j+1 and cn,j+1 such that

{
F lin
1

(
Ψ n,j+1, cn,j

) = 0, followed by
F lin
2

(
Ψ n,j+1, cn,j+1

) = 0.
(15)

Depending on which linearization is used, one speaks about
alternate splitting Newton (AltS-NE), alternate splitting
Picard (AltS-Picard), or alternate splitting L-scheme (AltS-
LS). The schemes are presented in detail below.
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2.1.1 The monolithic Newtonmethod (Mon-Newton)

We recall that the Newton scheme is quadratically, but only
locally convergent. The monolithic Newton method applied
to (11)–(12) gives

Problem PMon-Newtonn,j+1: Let Ψ n−1
h , cn−1, Ψ

n,j
h , c

n,j
h

∈ Vh be given, find Ψ
n,j+1
h , c

n,j+1
h ∈ Vh such that for all

vh, wh ∈ Vh one has

< θ
(
Ψ

n,j
h , c

n,j
h

)
− θ

(
Ψ n−1

h , cn−1
h

)
, vh >

+ <
∂θ

∂Ψ

(
Ψ

n,j
h , c

n,j
h

) (
Ψ

n,j+1
h − Ψ

n,j
h

)
, vh >

+τ < K
(
θ

(
Ψ

n,j
h , c

n,j
h

)) (
∇Ψ

n,j+1
h + ez

)
, ∇vh >

+τ < K ′ (θ
(
Ψ

n,j
h , c

n,j
h

)) ∂θ

∂Ψ

(
Ψ

n,j
h , c

n,j
h

)

×
(
∇Ψ

n,j
h + ez

) (
Ψ

n,j+1
h − Ψ

n,j
h

)
, ∇vh >

= τ < H1, vh > (16)

and

< θ
(
Ψ

n,j
h , c

n,j
h

)
c
n,j+1
h − θ

(
Ψ n−1

h , cn−1
h

)
cn−1
h , wh >

+ <
∂θ

∂c

(
Ψ

n,j
h , c

n,j
h

) (
c
n,j+1
h − c

n,j
h

)
, vh >

+τ < D∇c
n,j+1
h + un-1w c

n,j+1
h , ∇wh >

= τ < H2, wh > . (17)

For the ease of presentation, here a simplified monolithic
formulation is given, involving only the derivative of θ with
respect toΨ in (16), and only the derivative of θ with respect
to c in (17). In the full monolithic approach, both partial
derivatives should be involved for all nonlinear functions,
e.g.,

θ
(
Ψ

n,j+1
h , c

n,j+1
h

)
→ θ

(
Ψ

n,j
h , c

n,j
h

)

+
(

∂θ

∂Ψ

)(
Ψ

n,j
h , c

n,j
h

) (
Ψ

n,j+1
h − Ψ

n,j
h

)

+
(

∂θ

∂c

)(
Ψ

n,j
h , c

n,j
h

) (
c
n,j+1
h − c

n,j
h

)
. (18)

However, we have carried out computations with the
full monolithic approach and the results were practically
showing no difference.

2.1.2 The monolithic Picard method (Mon-Picard)

The modified Picard method was initially proposed by Celia
[10] for the Richards equation. It is similar to the Newton
method in dealing with the nonlinearity in the saturation,
but not in the permeability. Being a modification of the
Newton method, the modified Picard method is only linearly
convergent [37]. The monolithic Picard method applied to
(11)–(12) becomes

Problem PMon-Picardn,j+1: Let Ψ n−1
h , cn−1

h , Ψ
n,j
h , c

n,j
h

∈ Vh be given, find Ψ
n,j+1
h , c

n,j+1
h ∈ Vh such that for all

vh, wh ∈ Vh, one has

< θ
(
Ψ

n,j
h , c

n,j
h

)
− θ

(
Ψ n−1

h , cn−1
h

)
, vh >

+ <
∂θ

∂Ψ

(
Ψ

n,j
h , c

n,j
h

) (
Ψ

n,j+1
h − Ψ

n,j
h

)
, vh >

+τ < K
(
θ

(
Ψ

n,j
h , c

n,j
h

)) (
∇Ψ

n,j+1
h + ez

)
, ∇vh >

= τ < H1, vh > (19)

and

< θ
(
Ψ

n,j
h , c

n,j
h

)
c
n,j+1
h − θ

(
Ψ n−1

h , cn−1
h

)
cn−1
h , wh >

+ <
∂θ

∂c

(
Ψ

n,j
h , c

n,j
h

) (
c
n,j+1
h − c

n,j
h

)
, wh >

+τ < D∇c
n,j+1
h + un-1w c

n,j+1
h , ∇wh >

= τ < H2, wh > . (20)

As before, a Picard iteration for the full monolithic approach
would involve both partial derivatives of θ .

2.1.3 The monolithic L-scheme (Mon-LS)

The monolithic L-scheme for solving (11)–(12) becomes

Problem PMon-LSn,j+1: Let Ψ n−1
h , Ψ

n,j
h , cn−1

h , c
n,j
h ∈

Vh be given and with L1, L2 > 0 large enough (as
specified below), find Ψ

n,j+1
h , c

n,j+1
h ∈ Vh s.t. for all

vh, wh ∈ Vh

< θ
(
Ψ

n,j
h , c

n,j
h

)
− θ

(
Ψ n−1

h , cn−1
h

)
, vh >

+L1 < Ψ
n,j+1
h − Ψ

n,j
h , vh >

+τ < K
(
θ

(
Ψ

n,j
h , c

n,j
h

)) (
∇Ψ

n,j+1
h + ez

)
, ∇vh >

= τ < H1, vh >, (21)

< θ
(
Ψ

n,j
h , c

n,j
h

)
c
n,j+1
h − θ

(
Ψ n−1

h , cn−1
h

)
cn−1
h , wh >

+L2 < c
n,j+1
h − c

n,j
h , wh >

+τ < D∇c
n,j+1
h + un-1w c

n,j+1
h , ∇wh >

= τ < H2, wh > . (22)

The parameters L1 and L2 should be large enough to ensure
the convergence of the scheme (see Section 3). In practice,
the values ofL1 andL2 are connected to the maximal values
of ∂Ψ θ and ∂cθ (recall that θ is assumed increasing in Ψ and
in c).

The L-scheme does not involve the computations of
derivatives, and the linear systems to be solved within each
iteration are better conditioned compared with the ones
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given by Newton or Picard methods (see [30]). Moreover,
this scheme is (linearly) convergent for any initial guess for
the iteration. Finally, the classical full monolithic approach
is obtained by involving L1 and L2 in both of the equations.

2.1.4 The nonlinear splitting approach (NonLinS)

The nonlinear splitting approach for solving (11)–(12)
becomes

Problem PNonLinSn,j+1: Let Ψ n−1
h , cn−1, Ψ

n,j
h , c

n,j
h ∈

Vh be given, find Ψ
n,j+1
h ∈ Vh s.t.

< θ
(
Ψ

n,j+1
h , c

n,j
h

)
− θ

(
Ψ n−1

h , cn−1
h

)
, vh >

+τ < K
(
θ

(
Ψ

n,j
h , c

n,j
h

)) (
∇Ψ

n,j+1
h + ez

)
, ∇vh >

= τ < H1, vh > (23)

holds true for all vh ∈ Vh. Then, with Ψ
n,j+1
h obtained, find

c
n,j+1
h ∈ Vh such that for all wh ∈ Vh, it holds

< θ
(
Ψ

n,j+1
h ,c

n,j+1
h

)
c
n,j+1
h −θ

(
Ψ n−1

h ,cn−1
h

)
cn−1
h ,wh >

+τ < D∇c
n,j+1
h + un-1w c

n,j+1
h , ∇wh >

= τ < H2, wh > . (24)

As for the monolithic schemes, one can apply the different
linear iterative schemes to obtain fully linear versions of
the splitting approach. This is done first to solve (23) and,
once a solution to (23) is available, this is employed in the
linearization of (24).

2.1.5 The alternate Newtonmethod (AltS-Newton)

In the alternate Newton method applied to (11)–(12), one
solves

Problem PAltS-Newtonn,j+1: Let Ψ n−1
h , cn−1, Ψ

n,j
h , c

n,j
h

∈ Vh be given, find Ψ
n,j+1
h ∈ Vh s.t.

< θ
(
Ψ

n,j
h , c

n,j
h

)
− θ

(
Ψ n−1

h , cn−1
h

)
, vh >

+ <
∂θ

∂Ψ

(
Ψ

n,j
h , c

n,j
h

) (
Ψ

n,j+1
h − Ψ

n,j
h

)
, vh >

+τ < K
(
θ

(
Ψ

n,j
h , c

n,j
h

)) (
∇Ψ

n,j+1
h + ez

)
, ∇vh >

+τ < K ′ (θ
(
Ψ

n,j
h , c

n,j
h

)) ∂θ

∂Ψ

(
Ψ

n,j
h , c

n,j
h

)

×
(
∇Ψ

n,j
h + ez

) (
Ψ

n,j+1
h − Ψ

n,j
h

)
, ∇vh >

= τ < H1, vh > (25)

holds true for all vh ∈ Vh. Then, with Ψ
n,j+1
h obtained

above, find c
n,j+1
h ∈ Vh such that for all wh ∈ Vh, one has

< θ
(
Ψ

n,j+1
h , c

n,j
h

)
c
n,j+1
h − θ

(
Ψ n−1

h , cn−1
h

)
cn−1
h , wh >

+ <
∂θ

∂c

(
Ψ

n,j+1
h , c

n,j
h

) (
c
n,j+1
h − c

n,j
h

)
, vh >

+τ < D∇c
n,j+1
h + un-1w c

n,j+1
h , ∇wh >

= τ < H2, wh > . (26)

2.1.6 The alternate Picard method (AltS-Picard)

The alternate Picard method applied to (11)–(12) becomes

Problem PAltS-Picardn,j+1: Let Ψ n−1
h , cn−1, Ψ

n,j
h , c

n,j
h

∈ Vh be given, find Ψ
n,j+1
h ∈ Vh s.t.

< θ
(
Ψ

n,j
h , c

n,j
h

)
− θ

(
Ψ n−1

h , cn−1
h

)
, vh >

+ <
∂θ

∂Ψ

(
Ψ

n,j
h , c

n,j
h

) (
Ψ

n,j+1
h − Ψ

n,j
h

)
, vh >

+τ <K
(
θ

(
Ψ

n,j
h ,c

n,j
h

))(
∇

(
Ψ

n,j+1
h

)
+ ez

)
,∇vh >

= τ < H1, vh > (27)

hold true for all vh ∈ Vh. Then, withΨ
n,j+1
h obtained above,

find c
n,j+1
h ∈ Vh such that for all wh ∈ Vh, one has

< θ
(
Ψ

n,j+1
h , c

n,j
h

)
c
n,j+1
h − θ

(
Ψ n−1

h , cn−1
h

)
cn−1
h , wh >

+ <
∂θ

∂c

(
Ψ

n,j+1
h , c

n,j
h

) (
c
n,j+1
h − c

n,j
h

)
, wh >

+τ < D∇c
n,j+1
h + un-1w c

n,j+1
h , ∇wh >

= τ < H2, wh > . (28)

2.1.7 The alternate L-scheme (AltS-LS)

The alternate L-scheme for solving (11)–(12) becomes

Problem PAltS-LSn,j+1: Let Ψ n−1
h , cn−1, Ψ

n,j
h , c

n,j
h ∈

Vh be given, find Ψ
n,j+1
h ∈ Vh s.t.

< θ
(
Ψ

n,j
h , c

n,j
h

)
− θ

(
Ψ n−1

h , cn−1
h

)
, vh >

+L1 < Ψ
n,j+1
h − Ψ

n,j
h , vh >

+τ <K
(
θ

(
Ψ

n,j
h , c

n,j
h

)) (
∇Ψ

n,j+1
h + ez

)
, ∇vh >

= τ < H1, vh > (29)

hold true for all vh ∈ Vh. Then, withΨ
n,j+1
h obtained above,

find c
n,j+1
h ∈ Vh such that for all wh ∈ Vh, one has

< θ
(
Ψ

n,j+1
h , c

n,j
h

)
c
n,j+1
h − θ

(
Ψ n−1

h , cn−1
h

)
cn−1
h , wh >

+L2 < c
n,j+1
h − c

n,j
h , wh >

+τ <D∇c+un-1w c
n,j+1
h , ∇wh >= τ <H2, wh > . (30)
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Remark 2 (Stopping criterion) For all schemes (monolithic
or splitting), the iteration is stopped if for some small
numbers ε1, ε2 > 0 one has
∥
∥
∥Ψ

n,j+1
h − Ψ

n,j
h

∥
∥
∥ ≤ ε1, and

∥
∥
∥c

n,j+1
h − c

n,j
h

∥
∥
∥ ≤ ε2,

later in the numerical section we will consider ε1 = ε2.

3 Convergence analysis

In this section, we analyze the convergence of the
monolithic L-scheme introduced through Problem PMon-
LSn,j+1. We restrict the analysis to this iteration, but
mention that the convergence analysis for the other
(monolithic and splitting) schemes introduced above can be
done in a similar fashion. We start by defining the errors

e
j+1
Ψ := Ψ

n,j+1
h − Ψ

n,j
h and e

j+1
c := c

n,j+1
h − c

n,j
h , (31)

obtained at iteration j +1. The scheme is convergent if both
errors vanish when j → ∞.

The convergence is obtained under the following
assumptions:

(A1) There exist αΨ > 0 and αc ≥ 0 such that for any
Ψ1, Ψ2 ∈ R and c1, c2 ∈ R+

< θ(Ψ1, c1) − θ(Ψ2, c2), Ψ1 − Ψ2 >

+ < c1θ(Ψ1, c1) − c2θ(Ψ2, c2), c1 − c2 >

≥ αΨ ‖θ(Ψ1, c1) − θ(Ψ2, c2)‖2 + αc ‖Ψ1 − Ψ2‖2 .
(32)

Furthermore, there exist two constants θm ≥ 0 and
θM < ∞ such that θm ≤ θ(Ψ, c) ≤ θM, ∀ Ψ, c ∈ R

(A2) The function K(θ(·, ·)) is Lipschitz continuous,
with respect to both variables, and there exist two
constants Km and KM such that 0 ≤ Km ≤ K ≤
KM < ∞.

(A3) There exist also Mu, MΨ , Mc ≥ 0 such that∥
∥unw

∥
∥

L∞ ≤ Mu, ‖∇Ψ n‖L∞ ≤ MΨ and ‖cn‖L∞ ≤
Mc for all n ∈ N.

Remark 3 (A2) is satisfied in most realistic situations. (A3)
is a pure technical requirement, being satisfied when data is
sufficiently regular, which is assumed to be the case for the
present analysis. The inequality (32) in (A1) is a coercivity
assumption. It is in particular satisfied if θ only depends on
Ψ , and for common relationships θ − −Ψ encountered in
the engineering literature.

Theorem 1 Let n ∈ {1, 2, . . . N} be given and assume
(A1)–(A3) be satisfied. If the time step is small enough (see
42 below), the monolithic L-scheme in (29)–(30) is linearly
convergent for any L1 and L2 satisfying (41).

Proof We follow the ideas in [30, 34] and start by
subtracting (11) from (29) to obtain the error equation

< θ
n,j
h − θn

h , vh > +L1 < Ψ
n,j+1
h − Ψ

n,j
h , vh >

+τ < K
n,j
h ∇e

n,j+1
Ψ , ∇vh >

+τ < (K
n,j
h − Kn

h)∇Ψ
n,j+1
h , ∇vh >

+τ < (K
n,j
h − Kn

h)ez, ∇vh >= 0, (33)

where θ
n,j
h := θ(Ψ

n,j
h , c

n,j
h ), θn−1

h := θ(Ψ n
h , cn

h), K
n,j
h :=

Kh(θ
n,j
h ) and Kn

h := Kh(θ
n
h ). Testing now the above

equation with vh = e
j+1
Ψ , one obtains

< θ
n,j
h − θn

h , e
j+1
Ψ > +L1

+τ < Kn,j∇e
n,j+1
Ψ , ∇e

j+1
Ψ >

+τ < (K
n,j
h − Kn

h)∇Ψ
n,j+1
h , ∇e

j+1
Ψ >

+τ < (K
n,j
h − Kn

h)ez, ∇e
j+1
Ψ >= 0. (34)

By (A2) and after some algebraic manipulations, we further
get

< θ
n,j
h − θn

h , e
j
Ψ > +L1

2

∥
∥
∥e

j+1
Ψ

∥
∥
∥
2 + L1

2

∥
∥
∥e

j+1
Ψ − e

j
Ψ

∥
∥
∥
2

+τKm

∥
∥
∥∇e

j+1
Ψ

∥
∥
∥
2

≤ L1

2

∥
∥
∥e

j
Ψ

∥
∥
∥
2 − < θ

n,j
h − θn

h , e
j+1
Ψ − e

j
Ψ >

−τ < (K
n,j
h − Kn

h)∇Ψ
n,j+1
h , ∇e

j+1
Ψ

> −τ < (K
n,j
h − Kn

h)ez, ∇e
j+1
Ψ > . (35)

Using now (A1), (A3), the Lipschitz continuity of K , and
twice the Young and Cauchy-Schwarz inequalities, for any
δ0 > 0 and δ1 > 0, from (35), one obtains

< θ
n,j
h − θn

h , e
j
Ψ > +L1

2

∥
∥
∥e

j+1
Ψ

∥
∥
∥
2

+ L1

2

∥
∥
∥e

j+1
Ψ − e

j
Ψ

∥
∥
∥
2 + τKm

∥
∥
∥∇e

j+1
Ψ

∥
∥
∥
2

≤ L1

2

∥
∥
∥e

j
Ψ

∥
∥
∥
2 + δ0

2

∥
∥
∥θ

n,j
h − θn

h

∥
∥
∥
2 + 1

2δ0

∥
∥
∥e

j+1
Ψ − e

j
Ψ

∥
∥
∥
2

+τ(M2
Ψ + 1)L2

k

2δ1

∥
∥
∥θ

n,j
h − θn

h

∥
∥
∥
2 + τδ1

∥
∥
∥∇e

j+1
Ψ

∥
∥
∥
2
. (36)

Similarly, subtracting (12) from (30) and choosing wh =
e
j+1
c in the results, one gets

< c
n,j+1
h θ

n,j
h − cn

hθn
h , e

j+1
c > +L2 < e

j+1
c − e

j
c , e

j+1
c >

+τ < D∇e
j+1
c + un-1w e

j+1
c , ∇e

j+1
c >= 0. (37)
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This can be rewritten as

< c
n,j
h θ

n,j
h −cnθn

h , e
j
c >+< θ

n,j
h e

j+1
c , e

j+1
c >

+L2

2

∥
∥
∥e

j+1
c

∥
∥
∥
2 + L2

2

∥
∥
∥e

j+1
c − e

j
c

∥
∥
∥
2

+τD < ∇e
j+1
c , ∇e

j+1
c >

= L2

2

∥
∥
∥e

j
c

∥
∥
∥
2 + < θn

h cn
h − θ

n,j
h c

n,j
h , e

j+1
c − e

j
c > −τ

< un-1w e
j+1
c , ∇e

j+1
c > . (38)

Using again (A1), (A3), and the Cauchy-Schwarz and
Young inequalities, from (38), it follows that for any
δ2, δ3, δ4 > 0, one has

< c
n,j
h θ

n,j
h − cn

hθn
h , e

j
c > +θm

∥
∥
∥e

j+1
c

∥
∥
∥
2 + L2

2

∥
∥
∥e

j+1
c

∥
∥
∥
2

+L2

2

∥
∥
∥e

j+1
c − e

j
c

∥
∥
∥
2 + τD

∥
∥
∥∇e

j+1
c

∥
∥
∥
2

≤ L2

2

∥
∥
∥e

j
c

∥
∥
∥
2 + δ2

2

∥
∥
∥θn

h − θ
n,j
h

∥
∥
∥
2 + δ3

2

∥
∥
∥e

j
c

∥
∥
∥
2

+
(

M2
c

2δ2
+ θ2M

2δ3

)
∥
∥
∥e

j+1
c − e

j
c

∥
∥
∥
2 + τ

M2
u

2δ4

∥
∥
∥e

j+1
c

∥
∥
∥
2

+τ
δ4

2

∥
∥
∥∇e

j+1
c

∥
∥
∥
2
. (39)

Adding (36) to (39) and using (A1), one gets

αΨ

∥
∥
∥θn

h − θ
n,j
h

∥
∥
∥
2 + L1

2

∥
∥
∥e

j+1
Ψ

∥
∥
∥
2

+L1

2

∥
∥
∥e

j+1
Ψ − e

j
Ψ

∥
∥
∥
2 + τKm

∥
∥
∥∇e

j+1
Ψ

∥
∥
∥
2

+αc

∥
∥
∥e

j
c

∥
∥
∥
2 + θm

∥
∥
∥e

j+1
c

∥
∥
∥
2 + L2

2

∥
∥
∥e

j+1
c

∥
∥
∥
2

+L2

2

∥
∥
∥e

j+1
c − e

j
c

∥
∥
∥
2 + τD

∥
∥
∥∇e

j+1
c

∥
∥
∥
2

≤ L1

2

∥
∥
∥e

j
Ψ

∥
∥
∥
2 +

(
δ0

2
+ τ(M2

Ψ +1)L2
k

2δ1
+ δ2

2

)
∥
∥
∥θ

n,j
h − θn

h

∥
∥
∥
2

+ 1

2δ0

∥
∥
∥e

j+1
Ψ − e

j
Ψ

∥
∥
∥
2 + τδ1

∥
∥
∥∇e

j+1
Ψ

∥
∥
∥
2 + L2

2

∥
∥
∥e

j
c

∥
∥
∥
2

+δ3

2

∥
∥
∥e

j
c

∥
∥
∥
2 +

(
M2

c

2δ2
+ θ2M

2δ3

)
∥
∥
∥e

j+1
c − e

j
c

∥
∥
∥
2

+τ
M2

u

2δ4

∥
∥
∥e

j+1
c

∥
∥
∥
2 + τ

δ4

2

∥
∥
∥∇e

j+1
c

∥
∥
∥
2
. (40)

Choosing δ0 = δ2 = αΨ

2
, δ1 = Km

2
, δ3 = θm and δ4 = D

2
in (40), and assuming that

L1 ≥ 2

αΨ

and L2 ≥ 2M2
c

αΨ

+ θ2M

θm

, (41)

and the time step τ satisfies the mild conditions

αΨ − 2τ
τ(M2

Ψ + 1)L2
k

Km

≥ 0 and

θm + 2αc + τD

CΩ

− 2τM2
u

D
≥ 0, (42)

where CΩ denotes the Poincare constant; then, we obtain

L1

2

∥
∥
∥e

j+1
Ψ

∥
∥
∥
2+τ

Km

2

∥
∥
∥∇e

j+1
Ψ

∥
∥
∥
2+

(
L2

2
+ θm − τ

M2
u

D

)

×
∥
∥
∥e

j+1
c

∥
∥
∥
2 + τ

D

2

∥
∥
∥∇e

j+1
c

∥
∥
∥
2

≤ L1

2

∥
∥
∥e

j
Ψ

∥
∥
∥
2 +

(
L2

2
+ θm

2
− αc

)∥
∥
∥e

j
c

∥
∥
∥
2
. (43)

Finally, by using the Poincare inequality two times we get
from (43)

(

L1+τ
Km

CΩ

) ∥
∥
∥e

j+1
Ψ

∥
∥
∥
2+

(

L2 + 2θm+τ
D

CΩ

−2τ
M2

u

D

)

×
∥
∥
∥e

j+1
c

∥
∥
∥
2

≤ L1

∥
∥
∥e

j
Ψ

∥
∥
∥
2 + (L2 + θm − 2αc)

∥
∥
∥e

j
c

∥
∥
∥
2
. (44)

From (42), (44) implies that the errors are contracting
and therefore the monolithic L-scheme (29)–(30) is
convergent.

Remark 4 The convergence rate resulting from (44) does
not depend on the spatial mesh size. Also, observe that this
convergence is obtained for any initial guess. Based on this,
the method is globally convergent, which is in contrast to
the Newton and (modified) Picard schemes, converging only
locally. It can be observed that, larger the time step and
smaller constants L1 and L2, result in a faster convergence.
For small steps instead the convergence rate can approach
1. On the other hand, if the time step is small enough, one
may reach the regime where the Newton scheme becomes
convergent (see [37]). Alternatively, one may first perform
a number of L-scheme iterations, and use the resulting as an
initial guess for the Newton scheme (see [30]), or consider
the modified L-scheme in [31]. In either situations, the
convergence behavior was much improved.

Remark 5 The convergence of the modified Picard and
Newton method applied to the Richards equation has been
already proved in [37]. Such results can be extended to the
coupled problems considered here.
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Table 1 Parameters involved in all examples

L1 0.1

L2 0.1

D 1e−3

Van Genuchten parameters

θs 0.42

θr 0.026

n 2.9

α 0.551

a 0.44

b 0.0046

Ks 0.12

Accuracy requirement

ε1 = ε2 10−06

4 Numerical examples

In this section we consider five test cases for the proposed
linearization schemes, inspired by the literature [25, 30].
The schemes have been implemented in the open source
software package MRST [29], an open source toolbox based
on Matlab, in which multiple solvers and models regarding
flows in porous media are incorporated.

Example 1A: Flow and transport in a strictly unsaturated
medium

For the first example, a van Genuchten parametrization
is considered, with the parameters given in Table 1. The
domain Ω is the unit square. To define the initial pressure,
Ω is divided into two sub-regions: Ωup = (0, 1) ×
[1/4, 1) and Ωdown = (0, 1) × (0, 1/4). In Ωup, the
source term, in the Richards equation, is H1(x, y) =
0.06 cos(4/3πy) sin(x) and H2(x, y) = 0, in the transport.
The lower sub-domain Ωdown contains no external sources,
i.e., H1 = H2 = 0.

We impose Ψ = −2 on �D = [0, 1] × 1, c = 1 on
�D \ �C , where �C = [1/3, 2/3] × 1, c = 4 on �C

and no-flow Neumann boundary conditions for both model
components on �N = ∂Ω \ �D . At t = 0 the initial
pressure in the two sub-domains is Ψ 0

up = −2 and Ψ 0
down =

−y − 1/4, respectively. The initial concentration is c0 = 1.
The simulations are performed on regular meshes, con-

sisting of squares with sides dx = 1/10, 1/20, and 1/40.
The time steps are τ = 1/10, 1/20, and 1/40. Figure 3 dis-
plays the pressure and concentration profiles at the final time
T = 1. Note that in this example the flow is always partially
saturated, implying that the Richards equation does not
degenerate. Furthermore, the flow is completely dominated
by the source termH1 while, for the transport, we can notice
both diffusion and advection effects.

The total number of iterations and the condition numbers
of the linear systems associated to each solving algorithms
are presented in Tables 2 and 3. The condition numbers
are computed using the L1 norm and we report here the
averaged values over the full simulation. A segment (−)

in these tables implies that the method failed to converge
for the particular combination of time step size and mesh.
Table 2 gives the results obtained for the time step τ =
1/10 and for different mesh sizes, dx = 1/10, 1/20
and 1/40. In this case we can observe that the L-scheme
based solvers converges for each mesh. The splitting solvers
obtained instead thanks to the Newton and modified Picard
linearizations, fail to converge in case of finer meshes.
Furthermore, the numbers of iterations for the L-schemes is
mesh independent, which agrees with the theory.

Similarly, Table 3 provides the results for a constant
dx = 1/40, and for τ = 1/10, 1/20, and 1/40. Observe
that for the smaller time steps all schemes converge,
whereas for τ = 1/10, the Newton and Picard-based
variants of the splitting schemes diverge. This is in line with
the results reported in Table 2, where a finer spatial mesh
has led to the divergence of these schemes. Since the number
of iterations is added per each time step, this number is

Fig. 3 Example 1A: pressure
and concentration at the final
time, T = 1. The simulations
were performed for dx = 1/100
and τ = 1/10. a Pressure profile
at T = 1. b Concentration
profile at T = 1
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Table 2 Example 1A: Iterations and condition numbers for fixed τ = 1/10

Monolithic NonLinS AltLinS

Newton Newton Newton

cond. no. cond. no.
dx No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations
1/10 40 492.7535 24 - 44 153.3064 2.6810 44 159.4131 2.6760
1/20 64 2.3911e+03 26 - 94 597.8236 5.9056 94 626.5425 5.8943
1/40 189 1.2294e+04 − − − − − −

L Scheme L Scheme L Scheme
cond. no. cond. no.

dx No. of Condition No. No. of Richards Transport No. of Richards Transport
iterations iterations iterations

1/10 124 349.9054 82 - 119 106.9132 1.9051 124 106.9216 1.8867
1/20 125 1.5698e+03 80 - 110 427.3669 3.5700 120 427.3894 3.5920
1/40 125 7.1229e+03 79 - 100 1.7114e+03 8.7182 120 1.7114e+03 8.9720

Picard Picard Picard
cond. no. cond. no.

dx No. of Condition No. No. of Richards Transport No. of Richards Transport
iterations iterations iterations

1/10 43 667.9851 25 - 44 153.4789 2.6762 44 159.2404 2.6712
1/20 67 3.1574e+03 26 - 94 600.0477 5.8927 94 626.1294 5.8814
1/40 189 1.5969e+04 − − − − − −

Table 3 Example 1A: Iterations and condition numbers for fixed dx = 1/40

Monolithic NonLinS AltLinS

Newton Newton Newton

cond. no. cond. no.
τ No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations
1/10 189 1.2294e+04 − − − − − −
1/20 201 6.3754e+03 42 - 319 1.4157e+03 8.8062 320 1.4641e+03 8.8233
1/40 259 3.2828e+03 72 - 320 782.6252 4.9460 320 808.0468 4.9264

L Scheme L Scheme L Scheme
cond. no. cond. no.

τ No. of Condition No. No. of Richards Transport No. of Richards Transport
iterations iterations iterations

1/10 125 7.1229e+03 79 - 100 1.7114e+03 8.7182 120 1.7114e+03 8.9720
1/20 244 3.7562e+03 162 - 209 932.0422 4.9942 235 932.0541 5.0758
1/40 471 1.9522e+03 331 - 419 480.1427 3.0668 463 480.1378 3.1478

Picard Picard Picard
cond. no. cond. no.

τ No. of Condition No. No. of Richards Transport No. of Richards Transport
iterations iterations iterations

1/10 189 1.5969e+04 − − − − − −
1/20 201 8.4667e+03 44–316 1.4103e+03 8.7983 316 1.4650e+03 8.7777
1/40 258 4.4183e+03 72–318 782.3317 4.9358 320 808.3800 4.9126
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increasing as the time step is reduced. This is justified by
the fact that smaller τ implies more time steps.

We point out that the alternate splitting schemes are
converging much faster than the classical ones, for which
we report the iterations required by the flow and the
transport equations, separately. Note the differences in the
condition numbers, the L-scheme-based algorithms being
better conditioned. Observe also that for the splitting
schemes, the condition numbers for the Richards equation
are much larger than for the transport model component.
This is due to the fact that the former is nonlinear and
possibly degenerate, whereas the latter has a fairly simple
structure. Finally, one can observe that finer meshes results
in higher condition numbers while smaller time steps give
better conditioned systems.

Example 1B: Flow and transport in a variably saturated
porous medium

The situation given above is changed slightly, so that
the fully saturated regime is achieved. Specially, we take
Ψ 0

up = −2 and Ψ 0
down = −y + 1/4. By this, Ψ 0

down

becomes positive in Ωdown, where the medium is fully
saturated. Consequently, the Richards equation degenerates
to an elliptic one, making the numerical simulation more
challenging. The L parameters are L1 = L2 = 0.2.

Tables 4 and 5 present the iterations and condition
numbers for each of the implemented algorithms, and for
different mesh diameters and time steps. Note that in this
case, only the L-scheme-based algorithms are converging.
It is also interesting to observe the difference in the
number of iterations between the more commonly used
nonlinear splitting approach (NonLinS) and the alternate
splitting (AltLinS) approach. The latter appears to be a valid
alternative to the common formulation. It produces equally
accurate results, requiring fewer iterations.

Finally, we observe as the Newton and Picard-based
schemes fail to converge in all situations. This is due to
the degeneracy of the Richards equation. The L-scheme-
based iterations did converge in all cases. The convergence
behavior is as predicted by the theory: the number of
iterations increases for smaller time steps, while the mesh
size has no influence on the number of iterations.

Example 2A: Well in an unsaturated porous medium
The next example is inspired from [25]. We still

consider the unit square-domain, the initial conditions and
the parameters as in Example 1A. The medium results
again strictly unsaturated. Now Ωup includes a well, and
water with a given surfactant concentration is injected.
The pressure at the well is set to ΨW = −1/4 and the

Table 4 Example 1B: Iterations and condition numbers for fixed τ = 1/10

Monolithic NonLinS AltLinS

Newton Newton Newton

cond. no. cond. no.

dx No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/10 − − − − − − − −
1/20 − − − − − − − −
1/40 − − − − − − − −

L Scheme L Scheme L Scheme

cond. no. cond. no.

dx No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/10 228 204.8977 180 - 206 58.9991 1.8625 242 58.9938 1.9066

1/20 226 879.2575 175 - 182 233.6193 3.3333 236 233.5856 3.6303

1/40 228 4.0163e+03 175 - 150 932.4226 7.1687 230 932.3206 8.2482

Picard Picard Picard

cond. no. cond. no.

dx No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/10 − − − − − − − −
1/20 − − − − − − − −
1/40 − − − − − − − −
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Table 5 Example 1B: Iterations and condition numbers for dx = 1/40

Monolithic NonLinS AltLinS

Newton Newton Newton

cond. no. cond. no.

τ No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/10 − − − − − − − −
1/20 − − − − − − − −
1/40 − − − − − − − −

L Scheme L Scheme L Scheme

cond. no. cond. no.

τ No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/10 228 4.0163e+03 175 - 150 932.4226 7.1687 230 932.3206 8.2482

1/20 457 2.1063e+03 362 - 326 480.1123 4.2676 481 480.1165 4.5628

1/40 877 1.0751e+03 724 - 668 241.9597 2.7304 944 241.9634 2.7427

Picard Picard Picard

cond. no. cond. no.

τ No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/10 − − − − − − − −
1/20 − − − − − − − −
1/40 − − − − − − − −

concentration of the surfactant to cW = 2. We impose
no-flow boundary conditions for both model components
on ∂Ω . The simulations are performed on regular meshes,
consisting of squares with sides dx = 1/10, 1/20, and
1/40. The time steps are τ = 1/25, 1/50, and 1/100.
Furthermore, a reaction term is included in the transport
equation, R(c) := 1e − 3 ∗ c/(1 + c). For the iteration

j + 1, this is linearized as R(cn+1,j+1) → 1e − 3 cn+1,j+1

1+cn+1,j .
The L parameters are L1 = L2 = 0.2.

Figure 4 shows the pressure and the concentration at
the final time step (T = 1). As for the first example,
the medium being partially saturated, the Richards equation
does not degenerate and almost all the schemes converge.
The monolithic Newton method requires smaller time steps,
as observable in Table 7. We remark, from both Tables 6
and 7, that the alternate splitting approach (AltLinS), once
more, requires fewer iterations than the classical splitting
algorithm (NonLinS). The linear systems resulting by

Fig. 4 Example 2A: pressure
and concentration at the first
time steps and final times. The
simulations were performed for
dx = 1/80 and τ = 1/10. a
Pressure at final time T1. b
Concentration at final time T1
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Table 6 Example 2A: Iterations and condition numbers for fixed τ = 1/25

Monolithic NonLinS AltLinS

Newton Newton Newton

cond. no. cond. no.

dx No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/10 59 1.1597e+03 57 - 32 3.5250e+03 1.6216e+05 − − −
1/20 − − 57 - 35 3.5250e+03 1.6216e+05 − − −
1/40 − − 57 - 33 3.9905e+04 2.4845e+06 − − −

L Scheme L Scheme L Scheme

cond. no. cond. no.

dx No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/10 368 9.4574e+04 209 - 315 395.8757 7.8808e+03 338 397.4869 7.9035e+03

1/20 364 7.6020e+03 222 - 327 2.8139e+03 9.0509e+04 346 2.8220e+03 9.0971e+04

1/40 368 9.4574e+04 223 - 332 3.0786e+04 1.3442e+06 348 3.0861e+04 1.3515e+06

Picard Picard Picard

cond. no. cond. no.

τ No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/10 106 2.1274e+03 61 - 50 426.0623 1.2673e+04 74 416.8809 1.2985e+04

1/20 105 2.1056e+04 70 - 50 3.4855e+03 1.5665e+05 84 3.3929e+03 1.6001e+05

1/40 105 2.7185e+05 84 - 50 3.9872e+04 2.3954e+06 86 3.9462e+04 2.4544e+06

Table 7 Example 2A: Iterations and condition numbers for dx = 1/20

Monolithic NonLinS AltLinS

Newton Newton Newton

cond. no. cond. no.

τ No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/25 − − 57 - 35 3.5250e+03 1.6216e+05 − − −
1/50 109 1.5493e+03 106 - 56 1.1707e+03 4.3558e+04 − − −
1/100 207 795.5026 207 - 105 433.1146 1.2761e+04 − − −

L Scheme L Scheme L Scheme

cond. no. cond. no.

τ No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/25 364 7.6020e+03 222 - 327 2.8139e+03 9.0509e+04 346 2.8220e+03 9.0971e+04

1/50 685 2.3560e+03 436 - 610 994.2747 2.5259e+04 656 996.9713 2.5397e+04

1/100 1284 792.0927 836 - 1133 406.9732 7.8582e+03 1220 408.0727 7.8911e+03

Picard Picard Picard

cond. no. cond. no.

τ No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/25 105 2.1056e+04 70 - 50 3.4855e+03 1.5665e+05 84 3.3929e+03 1.6001e+05

1/50 206 6.4247e+03 135 - 100 1.1871e+03 4.2339e+04 146 1.1586e+03 4.3126e+04

1/100 406 2.1116e+03 238 - 168 443.2937 1.2691e+04 254 435.4151 1.2755e+04
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Table 8 Example 2B: Iterations and condition numbers for τ = 1/25

Monolithic NonLinS AltLinS

Newton Newton Newton

cond. no. cond. no.

dx No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/10 − − − − − − − −
1/20 − − − − − − − −
1/40 − − − − − − − −

L Scheme L Scheme L Scheme

cond. no. cond. no.

dx No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/10 681 446.0156 271 - 659 275.7570 8.0058e+03 680 275.5587 8.0092e+03

1/20 676 1.5730e+03 270 - 686 740.6757 8.5552e+04 698 739.6510 8.5630e+04

1/40 681 6.7119e+03 256 - 679 2.7866e+03 1.3095e+06 694 2.7602e+03 1.3121e+06

Picard Picard Picard

cond. no. cond. no.

dx No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/10 − − − − − − − −
1/20 − − − − − − − −
1/40 − − − − − − − −

Table 9 Example 2B: Iterations and condition numbers for dx = 1/20

Monolithic NonLinS AltLinS

Newton Newton Newton

cond. no. cond. no.

τ No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/25 − − − − − − − −
1/50 − − − − − − − −
1/100 − − − − − − − −

L Scheme L Scheme L Scheme

cond. no. cond. no.

τ No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/25 676 1.5730e+03 270 - 686 740.6757 8.5552e+04 698 739.6510 8.5630e+04

1/50 1253 812.6783 514 - 1285 431.5091 2.4385e+04 1298 430.5647 2.4399e+04

1/100 2350 448.3554 988 - 2388 275.5439 8.0075e+03 2938 275.4834 8.0092e+03

Picard Picard Picard

cond. no. cond. no.

τ No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/25 − − − − − − − −
1/50 − − − − − − − −
1/100 − − − − − − − −
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Fig. 5 Example 3: A highly
heterogeneous domain. a
Porosity of the domain 
. b
Permeability of the domain 
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applying the L-scheme-based solvers are better conditioned
compared to the other solvers. Finally, we can observe as
the introduction of a nonlinear reaction term has drastically
increased the condition numbers of the system associated to
the transport equation.

Example 2B: Well in a variably saturated porous medium
As in Example 1B, now the initial condition for the

pressure is changed, leading to a variably saturated porous
media. The pressure at the well is fixed equal to 1/4 and
the concentration and boundary conditions are defined as in
the Example 2A. The L parameters are now L1 = 0.2 and
L2 = 0.5.

As for Example 1B, since the Richards equation degen-
erates, many of the considered schemes show convergence
problems. Tables 8 and 9 present the convergence of the
schemes and the condition numbers for the associated linear
systems. The results are very similar to those in the previ-
ous examples, with the L-scheme-based solvers being the
most robust ones and the only converging for all cases. Fur-
thermore, the alternate method is faster than the classical
splitting scheme.

Example 3: A heterogeneous porous medium
In more realistic situations, the porous medium is often

heterogeneous. In this example we consider again the unit-
square domain but with highly heterogeneous properties
(porosity and permeability), as presented in Fig. 5. Next
to this, the problem is similar to the one in Example 2B,
including the same initial conditions and parameters. The
well is now located in the lower right part of the domain
where we observe larger porosity and permeability. Due to
the initial pressure Ψ 0, the domain results to be variably
saturated and the problem degenerates. The L parameters
are L1 = L2 = 0.7.

Figure 6 present the pressure and concentration at the
final time step. We can observe as, particularly the former,
has increased in the regions with higher permeability.
Similarly we can observe how the structure of the media has
influence the diffusion of the external component.

Tables 10 and 11 present the total numbers of iterations
for each algorithm and the condition numbers of the
associated linearized systems. For this particular problem,
it is interesting to notice that the L-scheme converges,
again, for every time step and mesh investigated. In this

Fig. 6 Example 3: Pressure and
concentration at the final time.
The simulations are performed
for dx = 1/40 and τ = dx/10.
a Pressure at the final time T . b
Concentration at the final time T
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Table 10 Example 3: Iterations and condition numbers for τ = 1/10

Monolithic NonLinS AltLinS

Newton Newton Newton

cond. no. cond. no.

dx No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/10 − − − − − − − −
1/20 − − − − − − − −
1/40 − − − − − − − −

L Scheme L Scheme L Scheme

cond. no. cond. no.

dx No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/10 777 326.5548 433 - 208 71.9066 257.0406 938 71.9110 256.4755

1/20 775 3.9276e+03 433 - 212 678.4042 3.0834e+03 940 678.4266 3.0742e+03

1/40 775 5.1305e+04 433 - 215 8.2423e+03 4.5823e+04 940 8.2423e+03 4.5697e+04

Picard Picard Picard

cond. no. cond. no.

dx No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/10 − − − − − − − −
1/20 − − − − − − − −
1/40 − − − − − − − −

Table 11 Example 3: iterations and condition numbers for dx = 1/10

Monolithic NonLinS AltLinS

Newton Newton Newton

cond. no. cond. no.

τ No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/10 − − − − − − − −
1/20 − − − − − − − −
1/40 − − − − − − − −

L Scheme L Scheme L Scheme

cond. no. cond. no.

τ No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/10 777 326.5548 433 - 208 71.9066 257.0406 938 71.9110 256.4755

1/20 1478 119.8774 751 - 362 32.6411 89.7378 1792 32.6459 89.6573

1/40 2861 50.2801 1241 - 611 18.0060 38.7625 3342 18.0085 38.7304

Picard Picard Picard

cond. no. cond. no.

τ No. of Condition No. No. of Richards Transport No. of Richards Transport

iterations iterations iterations

1/10 − − − − − − − −
1/20 − − − − − − − −
1/40 − − − − − − − −
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case, neither the Newton method nor the modified Picard,
converged, even when smaller time steps were investigated.
Smaller values were not tested because the resulting number
of iterations would have been much larger than the one
obtained with the original τ and the L-scheme. These
results are coherent with the ones previously investigated.
Whenever the Richards equation degenerate, both Newton
and modified Picard present convergence problems.

5 Conclusions

In this paper, we studied different algorithms for the
numerical solution of a surfactant transport model in
variably saturated porous media. The water flow and the
transport are fully coupled. Three linearization techniques
were considered: the Newton method, the modified Picard
and the L-scheme. Based on these, monolithic and splitting
schemes were designed, analyzed and tested numerically.
We conclude that the only quadratic convergent scheme is
the monolithic Newton, that the L-scheme-based solvers are
the most robust ones and produce well-conditioned linear
systems and that the alternative schemes are often faster
than the classical splitting approaches.

Although acknowledging the existence of improved
Newton solvers, having a more robust convergence behav-
ior, the present study shows that the L-scheme is a viable
alternative. It can be particularly useful in the degenerate
cases, or whenever large time steps have to be considered.
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