
University of Bergen

Discrete hidden Markov models

with application to stock trading

algorithms

Master of Science in Actuarial Science

Andreas Hansen
January 2021

Abstract

Attempting to integrate discrete hidden Markov models into stock trading al-

gorithms by interpreting the S&P500 Index closing prize as an stock and then

separating closing prizes into distinct categories. This was successfully done by

[2] and we look to replicate these results. Additionally, we look at viability of

viewing hidden states in a stock trading algorithm as signals for the correct stock

market behaviour, where we adjust our position in the stock market accordingly

to the predicted next state.

Acknowledgements

Firstly, I would like to thank my supervisor, Andreas Stordal, for great guidance

during this thesis and always being available for questions. I would also like to

thank my family for always being such an amazing support for me, especially

during this last year, and my fellow student, for all the time we spent together

during these years of studying.

Contents

1 Introduction 4

2 Hidden Markov Models 6

2.1 Markov Process . 6

2.1.1 Discrete time . 7

2.1.2 Continuous time . 10

2.2 Hidden Markov Models . 12

3 Estimating Hidden States 14

3.1 Viterbi Algorithm . 14

3.1.1 Overview . 14

3.1.2 Accuracy . 20

3.1.3 Extending Viterbi to forecasting 26

4 Parameter estimation 27

4.1 EM-algorithms . 27

4.2 Baum-Welch Algorithm . 28

5 A Brief Introduction to the Stock Market and Financial Data 32

5.1 Time Series . 32

5.1.1 Short introduction to Time Series 32

5.1.2 Stationary time series . 34

5.1.3 Financial time series . 36

2

5.2 Stock Market . 36

5.2.1 Introduction . 36

5.2.2 Bull- and Bear market . 38

5.2.3 Investment strategies . 39

6 Application of HMMs in stock trading algorithms 41

6.1 Our Data . 41

6.2 HMM architecture . 43

6.2.1 Transforming Observations 43

6.2.2 Defining the Hidden States 44

6.2.3 Estimating hidden states and forecasting 45

6.2.4 Multiple HMMs . 46

6.2.5 Training the HMMs . 48

6.3 Decision Algorithm . 50

6.4 Results . 52

6.4.1 Overall results for testing period 52

6.4.2 Estimated HMMs . 58

7 Conclusions and future work 61

7.0.1 Future work . 63

A Working with HMMs in R 66

A.1 Generate a HMM problem . 66

A.2 Forecast the next state using Viterbi and HMMs 69

3

Chapter 1

Introduction

The goal of this thesis is to reflect on "hidden Markov models" (HMM) viability

as a component in stock trading algorithms for discrete time models. However,

before we study the application, a foundation of the theoretical principles sur-

rounding discrete time HMMs will be given.

This thesis is outlined as follows. Chapter 2 gives an overview of Markov models

in both discrete- and continuous time using discrete observations, however the

main focus is on discrete time models which gives a natural focus on the main

topic, Hidden Markov Models.

Chapter 3 revolves around decoding hidden states given a string of observations,

where we are supported by a complete HMM. This is done by using the Viterbi

algorithm.

Chapter 4 provides an approach for estimating parameters of a HMM when they

are unknown using the Baum-Welch algorithm.

Chapter 5 gives a brief overview of time series and stock market data, while

chapter 6 merge together the theory presented in previous chapters. We look at

previous attempts of including discrete time HMMs in stock trading algorithms.

On the basis of these previous attempts we have, significantly inspired by [2],

created our own algorithms. One of the algorithms are a close replica of the

4

model described in [2], while the other algorithm have some adjustments. The

main goal is to study the effects of these changes. The thesis is concluded with

a summary where we make our final notes and motivate for future work on the

basis of our results.

5

Chapter 2

Hidden Markov Models

The goal of most mathematical model is to give an explanation of a phenomenon.

The form of a mathematical model depends on the phenomenon at hand. In

this thesis the main concerned is stochastic models. Unlike deterministic models,

which predicts a single outcome from a given set of circumstances, a stochas-

tic model predicts a set of possible outcomes weighted by their likelihoods and

probabilities (M. Pinsky & S. Karlin, chapter 1, 2011)[4].

This chapter gives an overview of stochastic modeling using Markov models.

Section 2.1 introduces the criteria for a stochastic model to be a Markov model

and we discuss important characteristics revolving Markov models. In Section

2.2 hidden Markov models are introduced, where there is an added layer of ob-

servations generated from the hidden model. In this thesis we only consider

models where the state space is finite. Remark that we are only interested in

Markov with a finite state space in this thesis.

2.1 Markov Process

This section gives a brief overview Markov processes for the reader to recall the

essentials. A Markov process is memoryless, which means that the process does

6

not depend on the past. In other words, if the process find itself in a given state,

it does not matter how it got there if we are interested in forecasting the next

step(s), only the fact that the process currently find itself in that given state is

needed. Formally speaking, the Markov property is

P (Xt+1 = j|X0 = i0, ..., Xt−1 = it−1, Xt = i) = P (Xt+1 = j|Xt = i),

where t = 1, ..., T
(2.1)

and Xt is the state of the model at time t, while i, j ∈ S with S being the state

space.

2.1.1 Discrete time

A discrete time Markov Process is defined on a set of discrete time indicies,

denoted t, t + 1 etc. Everything happening between time t and time t + 1 is

considered to occur at time t+ 1. As an example, let us consider the following

transition matrix where we assume a finite set of possible outcomes

1 2 3

1 P11 P12 P13

2 P21 P22 P23

3 P31 P32 P33 ,

where Pij is the probability of the process travelling to state j at time t + 1

given that the process is in state i at time t. Intuitively, the following equality

has to hold due to the law of total probability

N∑
j=1

Pij = 1, j = 1, .., N. (2.2)

7

Classification of States

A discrete time Markov Process, with finite state space, is said to be irreducible

if the all states communicate with each other, meaning the process can not be

separated as illustrated below

1 2 3 4

1 1 0 0 0

2 0.1 0.9 0 0

3 0 0 0.5 0.5

4 0 0 0.4 0.6

The matrix above could be separated into two matrices and hence the matrix

is not irreducible. The period, denoted as d, of each state is another useful

definition. The period is defined as the shortest possible time for the process to

return to a given state. Mathematical speaking, a state have a period d = 1 if

the following fulfilled

Pii > 0. (2.3)

Futhermore, if every state in a given transition matrix have a period of d = 1,

the matrix is said to be aperiodic. The last classification introduced in this

section is recurrency. A state is said to be recurrent if fii = 1, where fii is the

probability of eventually (given an unlimited time horizon) returning to state i

given that the process currently is in state i.

The Stationary Distribution

A discrete Markov Process is generally defined at time t = 1, .., T , where T ≤ ∞.

We enter the process at a random time k, where 1 ≤ k ≤ T . The probability of

8

enter the process at any given state is determined by the stationary distribution

of the process. The stationary distribution is defined as the marginal probability

distribution P (Xt = j) independent of t. From here on we will refer to the

stationary distribution as π. The stationary distribution for an N state Markov

process is given as the vector π = (π1, .., πN). To obtain π, we have to solve the

two following equations

πi =

N∑
j=1

πjPij , i = 1, ..N, (2.4)

N∑
j=1

πj = 1. (2.5)

Equation (2.4) creates an expression for each πi expressed by the other πis. Then

the equations is solved by substituting terms and the incorporation of equation

(2.5). As an example, let us consider the following 3x3 transition matrix

1 2 3

1 0.7 0.2 0.1

2 0.1 0.6 0.3

3 0.2 0.4 0.4

From equation (2.4) we get

π1 = 0.7π1 + 0.1π2 + 0.2π3

0.3π1 = 0.1π2 + 0.2π3

π1 =
1

3
π2 +

2

3
π3

9

π2 = 0.2π1 + 0.6π2 + 0.4π3

0.4π2 = 0.2π1 + 0.4π3

0.4π2 = 0.2(
1

3
π2 +

2

3
π3) + 0.4π3

1

3
π2 =

8

15
π3

π2 =
8

5
π3

π3 = 0.1π1 + 0.3π2 + 0.4π3

0.6π3 = 0.1π1 + 0.3
8

5
π3

3

25
π3 = 0.1π1

6

5
π3 = π1

Thus, we have π = (6
5π3,

8
5π3, π3). Next we use equation (2.5). (6

5 + 8
5 + 1)π3 =

1, π3 = 5/19, and hence, π = (6
19 ,

8
19 ,

5
19) is the stationary distribution of this

Markov process.

The stationary distribution can be considered the initial/starting distribution,

given the assumption that the process is constantly running. For instance, let

us assume the weather in a city can be described as an discrete Markov process,

which is measured in either rainy days or not rainy days. We arrive to this city

without information of the weather the previous day. This leads to us arriving

at any random day of this discrete Markov process and thus the probability of

arriving at a rainy day is equivalent to the long term proportions of rainy days.

2.1.2 Continuous time

Here, we briefly discuss continuous time Markov models. Fundamentally, the

difference compared to the discrete Markov model is the state transition times.

Unlike the discrete time Markov model, which only transition at distinct time

points t, where t = 0, 1, 2, ..., T , the continuous Markov model can one from one

state to another for any t > 0, where t can be any real number on the interval

10

from 0 to T . Let S = (1, ...N) be the finite state space. The transition proba-

bility Pij(t) for a continuous Markov process satisfies

(a)Pij ≥ 0,

(b)
∑N
j=0 Pij(t) = 1, i, j ∈ S,

(c)Pik(s+ t) =
∑N
j=0 Pij(s) · Pjk(t) for t, s ≥ 0,

(d) limt→0+ Pij = 1, i = j, limt→0+ Pij = 0, i 6= j.

(2.6)

Equation (2.6 (c)) is known as the Chapman-Kolmogorov relation[4]. In contin-

uous time Markov models, the transition probabilities can no longer be defined

in a static manner given the possibility of transitioning at any time, thus two

new definitions are introduced

limt→0+
1−Pii(t)

t = qi,

limt→0+
Pij(t)
t = qij .

(2.7)

The interpretation of qi is the rate of which the process leaves state i and qij is

the rate of which the process transitions from state i to state j. Now, let ∆t→ 0

and Xt denote the state at time t, then we obtain the following equations

P (Xt+∆t = i|Xt = i) = 1− qi ·∆t+ o(h), (2.8)

P (Xt+∆t = j|Xt = i) = qij ·∆t+ o(h),

for i 6= j.
(2.9)

Equation (2.8) and Equation (2.9) is famously known as the infinitesimal de-

scription of the continuous Markov process. The infinitesimal matrix is an

commonly a preferred way of describing the state transition process when deal-

ing with continuous Markov models. Given Equation (2.6 (a)), the process will

inevitably leave state i. Thus, the we define pij = qij/qi, i 6= j as the proba-

bility of jumping from state i to state j. The infinitesimal matrix for a three

11

state continuous Markov model is defined as follows

A =
−q1 q12 q13

q21 −q2 q23

q31 q32 −q3 .

In Section 2.1.1, the stationary distribution of a discrete time Markov model was

discussed. For a continuous Markov model, stationary distribution is obtained

by solving πA = 0.

2.2 Hidden Markov Models

A Hidden Markov Model (HMM) is a Markov model that have latent, unob-

served states and is the underlying driver of the visible observation process. In

other words, in conjunction with the now hidden State transition process there

is also an Observation emission process. In this section we will introduce the

framework of a HMM.

In addition to the characteristics of a Markov Model, which were explained in

the previous sections, we now have the added layer of observations generated by

the states. An observation emission process with the following observation space

Y = (A,B,C), generated by hidden states following state space S = (s1, s2, s3)

can be described in a matrix format in the following way.

A B C

s1 P [Y = A|S = 1] P [Y = B|S = 1] P [Y = C|S = 1]

s2 P [Y = A|S = 2] P [Y = B|S = 2] P [Y = C|S = 2]

s3 P [Y = A|S = 3] P [Y = B|S = 3] P [Y = C|S = 3]

12

Figure 2.1: Illustration of a HMM behaviour over two time periods

The state transition matrix have the same characteristics that were presented

in section 2.1, but now we are not able to observe it. The observation emission

matrix is the connecting piece between the observed sequence and the hidden

state process.

In Chapter 3, algorithms for determining the hidden states are discussed. Often,

the parameters of the HMM are unknown and have to be estimated. This is dis-

cussed in detail in Chapter 4. Many real world situations could be interpreted

as a HMM environment. In Chapter 6 we will make case for interpreting stock

prices as a HMM environment, where we assume there is a hidden state process

generating the changes in stock prizes.

13

Chapter 3

Estimating Hidden States

The previous chapter introduced the framework of a HMM where we have the

state transition matrix and the corresponding observation emission matrix. This

chapter describes an algorithm for estimating the hidden states at each time

point using the information given by the model in conjunction with a sequence

of observations, famously known as the Viterbi algorithm.

3.1 Viterbi Algorithm

The Viterbi Algorithm was first introduces in (A. Viterbi, 1967)[5] and has be-

come popular in many fields of application since. This section gives a theoretical

overview of the algorithm followed by an application example. Furthermore, the

accuracy of the algorithm is evaluated on several different HMMs.

3.1.1 Overview

The Viterbi Algorithm is a tool for estimating the state of a HMM by finding

the most probable path given the observations at hand, the state matrix and

the observation matrix. The stationary distribution is a requirement as well.

The probability of each sequence of states can be computed using the Markov

properties and the conditional probabilities of the observations, however, this

14

grows exponentially with time and space. The Viterbi Algorithm solves this

by using dynamic programming. In general, the observation sequence can get

very large, hence the probabilities of the paths converges to zero. The Viterbi

algorithm circumvents this by log-transform to the probabilities. The path with

the highest log-transformed value is the solution of the Viterbi algorithm, since

the logarithm is a monotone transformation and thus have the same optimum.

Algorithm 1: Viterbi Algorithm
Initial values: State space S = (s1, s2, ..., sK), observation space

O = (o1, o2, ..., oN), state transition matrix A where akj is the

transition probability from state i to state j, observation emission

matrix B where bi(on) is the probability of seeing on in state i, initial

state distribution π0 and the observed sequence Y . v is a matrix

storing the most likely path in state j log-transform probability at

each time point, pj(yi|t = i) denotes the probability of observing yi at

time t = i in state j.

for j ≤ K do
pj(y1|t = 1) < − log(π0[j] · bj(y1))

v[j,1] <- pj(y1|t = 1)

end

while 2 ≤ i ≤ N do

for j ≤ K do
pj(yi|t = i) < − log(bj(yi)) ·maxk=1,..,K(v[k, t− 1] + log(akj))

backpointer[i-1,j] <- arg maxk(v[k, t− 1] · akj)

v[j,i] <- pj(yi|t = i)

end

end

Backtrack the best path for the most probable state at t = N using the

backpointer all the way to t = 1.

Result: Most probable path X = (x1, x2, ..., xN)

15

The algorithm starts by evaluating the first observation and calculate the

likelihood of being in each state sj , j = 1, ...,K, given by (3.1). These calcu-

lations are saved in a matrix format v for calculating the remain stages of the

paths

pj(y1|t = 1) = pj(y1) · π0[j]. (3.1)

From this point, the goal is to find the optimal path. To obtain the optimal

path we have to calculate all paths that might lead to the most likely path at

t = N , ignoring paths without the potential of being optimal. This is done as

following

pj(yi|t = i) = pj(yi) · max
k=1,...,K

(v[k, t− 1] ·Akj). (3.2)

The difference between (3.1) and (3.2) is the second factor. When t = i, i =

2, ..., N , the algorithm finds a best previous state for each sj , which is deter-

mined by which state at time t = i− 1 maximizes the probability of being in sj

at time t = i. To obtain which state at t = i−1 is the best for sj , the algorithm

calculates the product of v[k|i− 1] and Akj , v[k|i− 1] is the probability of the

most likely path ending in sk at t = i− 1 and Akj is the transition probability

from sk to sj given by the transition matrix A. The best previous estimate for

each state is stored in another matrix (backpointer in Algorithm 1) and will be

used later for backtracking to find the most likely path.

Once Viterbi is done calculating for all t, we inevitably end up with a most

likely state at t = N for our paths. The state corresponding to the highest

value is chosen as xN .

xN = arg max
j=1,...,K

(pj(yN |t = N)). (3.3)

It is important to take notice of what this value actually describes, which is the

16

probability of the candidate path which ends up in xN . This is not the overall

probability of being in that given state at t = N .

The algorithm moves backwards in time, starting with the solution for xN we

find the solution for xi, i = N − 1, N − 2, ..., 1. Starting from xN−1 and working

our way backwards, we use the backpointer to assign the xi’s. We have now

obtained the most likely path.

xi−1 = backpointer[i, arg maxxi], i = 2, .., N (3.4)

A simple example

Let us consider case with three hidden states, S = (Z1, Z2, Z3), and three pos-

sible observations, O = (A,B,C). The transition matrix, T , is given by

T =

Z1 Z2 Z3

Z1 0.5 0.3 0.2

Z2 0.3 0.6 0.1

Z3 0.2 0.2 0.6 ,

and the corresponding emission matrix, E, given by

E =

A B C

Z1 0.7 0.1 0.2

Z2 0.2 0.6 0.2

Z3 0.1 0.1 0.8 .

The task is to find the optimized path given an observation sequence Y =

(B,B,A,C,A,A,C), were one observation occur for each t = 1, .., 7. Following

17

the Viterbi algorithm we start by estimating the most likely state at t = 1.

Next, the stationary distribution is calculated π0 = (0.342, 0.391, 0.269). Now

we have to solve (3.1), however with the Viterbi algorithm recall that in most

real life scenarios log-transform the probabilities to avoid computational error

when the observation sequence become long and each path might converge to

zero. We solve the log-transformed equation (3.5) for every state in S.

log(pj(y1|t = 1)) = log(pj(y1)) + log(π0[j]) (3.5)

We obtain pZ1(B|1) = −3.3745, pZ2(B|1) = −1.4492 and pZ3(B|1) = −3.6157.

Likewise we log-transform (3.2) which result in equation (3.6)

log(pj(yi|t = i)) = log pj(yi) + log(max
k=1,...,K

(v[k, t− 1] · Tkj)) (3.6)

When t = 2 we find the best previous state for each of the three states de-

termined by which previous state that maximizes v[k, t − 1] · Tkj , which turns

out to be Z2 for all states and thereby Z2 is stored in the backpointer ma-

trix for each state. The complete Viterbi calculations are pZ1
(B|2) = −4.9558,

pZ2
(B|2) = −2.4709 and pZ3

(B|2) = −6.0544. We repeat this process for every

t = 1, ..., 7, ending up with pZ1(C|7) = −10.7363, pZ2(C|7) = −11.2471 and

pZ3
(C|7) = −10.2663. Hence, the most likely path is in state Z3 at t = 7.

Now we use the backpointer matrix to conclude the most probable path. The

previous state that maximized pZ3
(C|7) is Z1 and the previous state that max-

imized pZ1(A|6) is Z1. Tracking the optimal previous state all the way back to

t = 1 gives us the most likely hidden state sequence

X = (Z2, Z2, Z1, Z1, Z1, Z1, Z3)

The table below gives an illustration of the backtracking process. The coloured

cells represent the current states best previous states.

18

Figure 3.1

Backtracker Matrix

Best previous state t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

For Z1 Z2 Z2 Z1 Z1 Z1 Z1

For Z2 Z2 Z2 Z2 Z2 Z1 Z1

For Z3 Z2 Z2 Z1 Z3 Z1 Z1

It is note to remark that the most probable path do not correspond exactly

with the most probable states for every t (presented in Figure 3.1) and why

that is the case. In Figure 3.1 we see that state Z3 represent the most probable

state sequence at t = 4 however in our solution we are in state Z1 when t = 1.

The reason being is simply that the most probable path at t = 4 might not lead

to the most probable path at t = 7, hence why we use the backpointer matrix

to store information.

19

3.1.2 Accuracy

The previous section described how the Viterbi algorithm finds the most prob-

able path. A question yet to be answered, however, is how well this approach

actually performs. We start by taking a look at the state transition matrix T and

the emission matrix E from the previous example. The observation sequences

length increased to 50 observations. We use R to create a state sequence and

an observation sequence and use this state sequence (see Appendix) to evaluate

the performance of the Viterbi Algorithm.

Figure 3.2: Grey line represents the true hidden state sequence generated in R
(see Chapter A.1), while the red line is the most likely state sequence obtained
by the Viterbi algorithm

The Viterbi solution illustrated in Figure 3.2 had an accurate classification rate

of 68%. The miss-classifications are represented were the red line deviates from

the grey line. However this particular hidden state sequence is not necessar-

ily representative for the average performance of the Viterbi Algorithm, so we

create 1000 different random state sequences, still using the same T and E as

before with an observation sequence length t = 1, ..., 50, illustrated in Figure

3.3.

20

Figure 3.3: The rate of which the Viterbi path corresponds with the true hidden
state

We conclude from the simulation that the Viterbi solution predicts the correct

hidden state for an arbitrary t on average 67, 628% for this given HMM. The

worst correct classification rate by the Viterbi algorithm observed in this sim-

ulation was 42%. The best performance on the other hand achieved a 92%

correct classification of the hidden states. Keep in mind that this is only for

hidden state sequences and observation sequences generated for T and E, with

all observation sequences having a length of 50. Different HMMs will lead to

different levels of success with the Viterbi algorithm. The degree of which an

emission matrix correlates the observations to the hidden states inevitably dic-

tates our classification success, which also is true for the number of expected

state transfers (dictated by the state transition matrix). Furthermore, we have

to pay attention to the number of states and possible observations. The bottom

line is that the success of the Viterbi Algorithm is largely dependent by level of

complexity in the relevant HMM. The following plots at the end of this section

shows how some different HMMs and different observation sequence lengths (n)

21

Figure 3.4: For a 3x3 state transition matrix T and a 3x3 emission matrix E
with n = 50, where both T and E have a diagonal of 0.8 and the other element
of the matrix equals 0.1. Mean success of 83, 288%

influence the success of the Viterbi Algorithm.

In this small scale study of the Viterbi performance there are a few key take-

aways. Firstly, we would much rather prefer the state transition matrix to have

a random behaviour pattern than the emission matrix. If we compare Figure

3.6 and Figure 3.7 this is evident. Comparing these two results with Figure 3.4,

the case with the less polarized state transition matrix only experience a slight

drop in success, however the case with the less polarized emission matrix hardly

preforms better than we would expect a pure random guess strategy. Secondly,

the length of the observation sequence does not seem to impact the mean success

22

Figure 3.5: For a 3x3 state transition matrix T and a 3x3 emission matrix E
with n = 100, where both T and E have a diagonal of 0.8 and the other element
of the matrix equals 0.1. Mean success of 83, 672%

Figure 3.6: For a 3x3 state transition matrix T and a 3x3 emission matrix E
with n = 50, where T have a diagonal of 0.8 and the other element of the
matrix equals 0.1 while E have a diagonal of 0.4 and the other elements equals
0.3. Mean success of 36, 068%

23

Figure 3.7: For a 3x3 state transition matrix T and a 3x3 emission matrix E
with n = 50, where T have a diagonal of 0.4 and the other element of the
matrix equals 0.3 while E have a diagonal of 0.8 and the other elements equals
0.1. Mean success of 79, 906%

Figure 3.8: For a 4x4 state transition matrix T and a 4x4 emission matrix E
with n = 50, where both T and E have a diagonal of 0.7 and the other element
of the matrix equals 0.1. Mean success of 55, 868%

24

Figure 3.9: For a 4x4 state transition matrix T and a 4x4 emission matrix E
with n = 100, where both T and E have a diagonal of 0.7 and the other element
of the matrix equals 0.1. Mean success of 56, 054%

Figure 3.10: For a 4x4 state transition matrix T and a 4x4 emission matrix
E with n = 100, where both T and E have a diagonal of 0.85 and the other
element of the matrix equals 0.05. Mean success of 69, 597%

25

very significantly when we change from n = 50 to n = 100, however the variance

reduces drastically. If we compare variances from the case in Figure 3.8 and the

case in Figure 3.9, the mean success variance reduces from 0.01414 to 0.00765.

Thirdly, an increased state space and observation space gives an lower expected

successful classification rate of the hidden states. None of these takeaways are

very surprisings of nature, however the scale of them are interesting.

3.1.3 Extending Viterbi to forecasting

So far our only concern have been predicting hidden states of the past. In this

section we will introduce two forecast algorithms. The first algorithm forecasts

the next hidden state, while the second algorithm forecasts the observation Both

of these algorithms are applied in Chapter 6.

Algorithm 2: Forecast Algorithm I
1) Run the Viterbi Algorithm

2) Solve x∗T+1 := arg max(v[j, T] · aji), i, j ∈ S.

Result: Forecast x∗T+1 to be the next state.

Algorithm 3: Forecast Algorithm II
1) Run the Viterbi Algorithm

2) Solve y∗T+1 := arg max(v[j, T] · aji · bik), i, j ∈ S, k ∈ O.

Result: Forecast y∗T+1 to be the next observation.

The forecast algorithms makes use of the Viterbi path for t = 1, ..., T and

makes an prediction for t = T + 1 by combining the Viterbi calculations with

the transition- and emission matrix of the HMM.

26

Chapter 4

Parameter estimation

This chapter revolves around estimating the underlying parameters of HMMs.

Previously we have consider models where all the parameters of interest was

given. This is however not always the case in real life problems. We need some

techniques for instances where our information about the underlying processes

are limited.

4.1 EM-algorithms

The Expectation-Maximization (EM) algorithm is a method to estimate un-

known variables in a model. It contains of an E-step and a M-step. In the

E-step, we make an initial guess of the model’s parameters. We then obtain

newly observed data. In the M-step, we fit these observations into our initial

guesses and thus update the parameters of model. We have now return to the

E-step and we are provided with more new observations that further updates

our model to fit the data. This process is continued until we have converged to

solution.

EM-algorithm will always improve, final model might only be a local maximum

and not the global maximum. Therefore it is common to run an EM algorithm

for several initial guesses and for there choose the one with largest likelihood as

27

guess for θ. In the next section, we will provide the mathematical properties for

an special case of the EM-algorithm; the Baum-Welch algorithm.

4.2 Baum-Welch Algorithm

The Baum-Welch Algorithm is a special case of the EM-algorithm. This algo-

rithm is used to estimate the unknown parameters of a HMM. It is sometimes

referred to as the Forward-Backward Algorithm.

To proceed with the Baum-Welch algorithm, an observation sequence is needed.

The goal is to find the underlying parameters that generate the observations.

First, pick the starting values θ = (A,B, π), where A is the state transition

matrix and B is the emission matrix. These values are the initial estimates

of the HMM and can be selected at random, however, some prior information

about the underlying model may give a more accurate initial guess which can

have the potential find a better solution than purely random starting values.

The Baum-Welch algorithm converges to a local optimum which might not be

global optimum, hence, it is important to run this algorithm several times with

different initial values to find the optimal estimate of the HMM.

Once θ is defined, the estimation of the HMM can start. The Baum-Welch

algorithm contains of forward calculation procedure and a backwards procedure.

The goal of the forward procedure is to calculate probability of being in state i

at time t given the observation sequence and current estimate θ. The forward

calculations defined as follows

αi(t) = P (Y1 = y1, .., Yt = yt, Xt = i|θ),

where i is the current state at time t ,
(4.1)

αi(1) = πibi(y1), (4.2)

28

αi(t+ 1) = bi(yt+1)

N∑
j=1

αj(t)aji, (4.3)

where aji is the current estimate of the probability of transition from state j

to state i from one time point to the next and bi(yt) is current estimate of the

probability of observing yt in state i.

The goal of the backwards procedure is to calculate the probability of observ-

ing the sequence y = (yt+1, ..., yT) when starting from state i at time t. The

backwards calculations are defined as following

βi(t) = P (Yt+1 = yt+1, ..., YT = yT |Xt = i, θ),

where i is the current state at time t,
(4.4)

βi(T) = 1, (4.5)

βi(t) =

N∑
j=1

βj(t+ 1)aijbj(yt+1), (4.6)

where bj(yt) and aij follows the same definition as in the forward calculation.

After the calculations are done, the next objective is to update the parame-

ters of the HMM. Thus, two new variables , γi(t) and ξij(t) are created. γi(t)

is the new estimation of the probability of being in state i at time t, given the

calculations done up to this point and is defined as follows

γi(t) = P (Xt = i|Y, θ) =
P (Xt = i, Y |θ)

P (Y |θ)
=

αi(t)βi(t)∑N
j=1 αj(t)βj(t)

. (4.7)

The other new variable, ξij(t), is the new estimation of the probability of going

from state i to state j from on time point to the next given the calculations

done in the forward- and backwards procedure, as well as the current estimate

29

of the HMM and is defined as follows

ξij(t) = P (Xt = i,Xt+1 = j|Y, θ) =
P (Xt = i,Xt+1 = j, Y |θ)

P (Y |θ)
=
αi(t)aijβj(t+ 1)bj(yt+1)∑N

j=1 αj(t)βj(t)
.

(4.8)

The last step, after calculating γi(t) and ξij(t), is updating the HMM parame-

ters. Calculating the new estimates of the HMM as follows

π∗i = γi(1), (4.9)

a∗ij =

∑T−1
t=1 ξij(t)∑T−1
t=1 γi(t)

, (4.10)

b∗i (ok) =
∑T

t=1 1yt=ok
γi(t)∑T

t=1 γi(t)
,

where 1yt=ok = 1 if yt = ok, 0 otherwise.
(4.11)

π∗ is the new estimate of the stationary distribution, where π∗i is the estimated

relative frequency of time spent in state i. a∗ij is the new estimated of the tran-

sition probability from state i to j. b∗i (vk) is the new estimate of the probability

of seeing the observation ok in state i, ok ∈ O where O is the observation space.

This process is repeated until the algorithm have converged to a solution. Con-

vergence is determined by a set tolerance value δ. The difference of transition

and emission parameters must be smaller than δ to have reached convergence

and thus terminate the algorithm.

30

Algorithm 4: Baum-Welch Algorithm
Initial values: State space S = (s1, s2, ..., sK), observation space

O = (o1, o2, ..., oN), initial guess θ = (A,B, π), a tolerance δ and the

observed sequence Y .

Set A = A∗, B = B∗, π = π∗.

while change in parameters ≤ δ do
αi(1)← π∗i b

∗
i (y1)

αi(t+ 1)← b∗i (yt+1)
∑N
j=1 αj(t)a

∗
ji

βi(T)← 1

βi(t)←
∑N
j+1 βj(t+ 1)a∗ijb

∗
j (yt+1)

γi(t)← αi(t)βi(t)∑N
j=1 αj(t)βj(t)

ξij ←
αi(t)a

∗
ijβj(t+1)b∗j (yt+1)∑N
j=1 αj(t)βj(t)

π∗i ← γi(1)

a∗ij ←
∑T−1

t=1 ξij(t)∑T−1
t=1 γi(t)

b∗i (ok)←
∑T

t=1 1yt=ok
γi(t)∑T

t=1 γi(t)

end

Result: Local optimum θ∗ = (A∗, B∗, π∗)

31

Chapter 5

A Brief Introduction to the

Stock Market and Financial

Data

Before we apply HMM to a stock market trading algorithm, we need to give a

short introduction financial data and the stock market.

5.1 Time Series

5.1.1 Short introduction to Time Series

A time series is a collection of observations indexed by time [8]. The only

requirement for a collection of observations to be considered a time series is

that the collection of observations are of the same phenomenon in the same

environment over time. As an example, an observation sequence of the mean

temperature in London over the last 30 days meets this requirement and can

be considered a time series. If you change the city each day, it would no longer

be considered a time series, rather a collection of 30 different observations not

32

observing the same phenomenon.

Time series can be classified into two different types; stock- and flow time series

[9]. The difference between the two classes is in the method of measuring a

phenomenon.

Stock time series := Collections observations at distinct times.

Flow time series := Collects observations continuously throughout a given time frame.

A time series is usually broken down into three components; trend, season and

irregularity [9]. The trend is the long term trajectory of the time series. The

season of a time series is the systematic behaviour related to a calendar event

(time of year, time of month, time of day etc.)[9]. The irregularity component

is the noisy short term fluctuations of the time series. Two typical models of an

observed time series (which are just two of many possible relationships between

the components) are given by [9].

Observed Series = Trend + Season + Irregularity,

Ot = Tt + St + It.
(5.1)

Observed series = Trend · Season · Irregularity,

Ot = Tt · St · It.
(5.2)

Hence, we can also rewrite (5.1) or (5.2) if we want to explore one of the com-

ponents in the relevant model. A seasonal adjusted model on form of (5.1) can

be written as

Seasonally adjusted series = Observed series− Seasonal Component

= Trend + Irregularity,

SAt = Ot − Ŝt = Tt + It,

(5.3)

33

where Ŝt is the observed seasonality [9]. Not all time series have a seasonal

component, which corresponds to St = 0 in equation (5.1), hence

No seasonal component −→ Ot = Tt + It. (5.4)

(a) A trend component of an observed series and
the corresponding series.

(b) A time series with corresponding season ad-
justed model.

Figure 5.1

5.1.2 Stationary time series

Stationarity is an important concept in time series. Let Xt be a time series and

define
µX(t) := the mean function of Xt,

γX(r, s) := the covariance function of Xt,

where r and s are time points.

A time series Xt is (weakly) stationary if µX(t) is independent of t and if

γX(t + h, t) is independent of t for every h [10]. When we talk about a time

series being stationary in this thesis, we always refer to the weakly definition. In

other words, a stationary series is a time series with a neutral trend component

and without a seasonal component, making the mean value independent of time.

34

Figure 5.2: Illustration of a stationary time series (red) and non-stationary time
series (green)

35

There plenty of material available on how to model both stationary and non-

stationary times in a "traditional" manner, however that is outside the scope of

this thesis. In chapter 6 we introduce our approach to model a (financial) time

series using stochastic modeling.

5.1.3 Financial time series

The term financial time series refers to an observed series of a financial quantity.

Some examples would be daily/monthly/yearly revenue of a company, changes

in oil price etc. In this thesis however, we are mainly concerned with financial

time series observing phenomenons in the stock market.

(a) (b)

Figure 5.3: The Amazon stock value from 01 January 2019 to 01 January 2021.

5.2 Stock Market

5.2.1 Introduction

A stock is a security that represents the ownership of a fraction of a corporation

[12]. These entities are first sold buy corporation itself, often to raise capital,

growing the business, pay of depth etc [13]. Stocks can be traded privately,

36

although they are most commonly traded in the stock market.

After stocks are sold by the corporation, stocks on the stock market can be

bought and sold continuously given that a buyer and a seller can agree on a

price. Often these tradings are done by stockbrokers. You request a price for

each of the stocks you are buying/selling and the stockbroker will complete the

transfer when a seller/buyer is willing to trade at the requested price. There

are many platforms available to trade stocks. However, there is an expense

related to trading stocks, which is the commission. Commission is a fraction

buying/selling price of the stocks traded which differs depending on which plat-

form you use. As an example, the platform "Nordnet" normally takes a 0, 049%

commission of the buying/selling price when trading stocks within the Nordic

countries.

So far we have introduced what a stock is, but what drives the stock prize?

There are techniques to evaluate what a stock should be worth, by assessing

a company’s earnings and expenditures. Ultimately however, the actual stock

prize is determined by the supply and demand on that stock at that given time

in the market[14].

A stock index measures the stock market by taking a subset of stocks in market

and observe them over time[15]. Some indexes take a subset of stocks from the

entire market (S&P500, Dow Jones Industrial Average etc.), other look take

subsets from a given country (OSEBX etc.) and some indexes look specifically

on a subset of stocks from given industries (NASDAQ Biotechnology Index etc.).

Historically, the stock market have on average continued to raise in value with

time, although there have been some down periods at certain time intervals.

37

Figure 5.4: S&P500 Index over the last 20 years. Days is open trading days.

5.2.2 Bull- and Bear market

Although the stock market showed a positive trend throughout time, there are

quite a few periods where the stock market have seen a negative trend. Times

of negative and positive trends are commonly separated into bull market and

bear market.

Bull Market := The stock market have an overall positive trend.

Bear Market := The stock market sees an overall decreasing trend.

A bull market is often a case of investors showing great confidence and trading

volumes are high. On the flip side, a bear market is usually the case of investors

being quite pessimistic about the near economical future, stock prizes falls or

stagnates and overall trading volumes are low[16].

38

5.2.3 Investment strategies

For every individual trading stocks, not matter the scale, it is useful to have

a specific trading strategy, or at the very least have an basic understanding of

the nature of stock prizes. The simplest strategy is simply to buy and hold a

diversified portfolio. Your portfolio is simply put your collection of stocks. The

reason for diversifying your portfolio is to minimize the risk associated with

investing in stocks. We can never perfectly predict the future of a stock and

any stock can see an unexpected turn for the worse not matter how bright we

anticipates its future to be. Combining a number of stocks in your portfolio will

decrease this risk, especially when they are diversified in different industries [17].

Another way to run the buy-and-hold strategy is to diversify your portfolio

in one specific industry. This is associated with more risk due to the fact that

stocks in the same branches tend to be bought and sold for much of the same

reason, namely that investors believe in that particular industry. Although more

risky, this approach may lead to a larger profit when a certain industry succeeds.

As an example, the fund "DNB Teknologi A" which mainly diversifies stocks in

the technology branch, have seen over 500% return over the last ten year. This

is significantly more than more the average return, measured by the S&P500

Index, in the same time frame.

We can choose to take an more active approach compared to the buy-and-hold

approach by investing in stocks for a shorter time period and try to sell them at

the most profitable time. There is also the option to combine these strategies of

course, buying some stocks for the long term and others trying to make a short

term profit. Two usual approaches to take when buying a stock is refer to as

taking a Long Position or taking a Short Position[2].

Long Position := Buy an asset hoping for an increase in price.

Short Position := Buy an asset hoping for a decrease in price.

39

It is quite intuitive how the long position is profitable when successfully exe-

cuted. The short position is profitable we buy stocks falling in value and then

other stockholders start buying more stocks to cover some of their average re-

turn per individual stock. If successful, this "panic" behaviour leads to the stock

increasing in value again and hence a profit is made.

Following an active investment strategy I think most will agree it requires a

good understanding of the stock market and underlying factors that in part

drives stock prizes, a good chunk of time and a some degree of luck to go with it

to succeed. In the next chapter we will look at a case study applying stochastic

modeling in an investment strategy using discrete hidden Markov models.

40

Chapter 6

Application of HMMs in

stock trading algorithms

This chapther is a case study in the usage of HMM-based stock trading algo-

rithms. We will introduce two candidate algorithms, named Algorithm I and

Algorithm II respectively. The work is influenced by the model in [2] but made

from scratch. Algorithm I is a close remake of the model in [2], while Algorithm

II have been modified to contain four states as opposed to three. Furthermore,

Algorithm II is constructed to examine the effects of defining the hidden states

as stock trading signals, rather than making predetermined signals based on the

forecast of the next day close prize behaviour.

6.1 Our Data

In this case study we will use the S&P500 index as our "stock" of interest. The

S&P500 index includes over 500 of the leading companies in world economy and

is regarded as one of the most popular indexes in the stock market [3].

Although the S&P500 index is not a stock, rather a multitude of stocks, we

41

Figure 6.1: Illustrating the extraction of close prices from the SP500 index.
Illustration taken from [2]

will assume that it behaves like a stock in this case study. We will only evaluate

the closing prices and exclude the other values (open price, highest price, lowest

price and volume). The data was downloaded from [19] and only consider days

were stock exchanges are done.

(a) (b)

Figure 6.2: Image (a) illustrates how the S&P500 closing price have evolved
from 03.01.2000 to 30.09.2020. Image (b) shows the change in close price from
the previous day in the same time period.

Figure 6.2 is an illustration of the S&P500 index closing price over the last 20

years. Figure 6.2 (a) shows that before the financial crisis [6] hit global economy,

the closing price seems to be oscillating around a value in the 1200-1300 range

42

and in Figure 6.2 (b) that the daily changes seems to have a decreasing trend.

Since the financial crisis however, the closing price have seen a tremendous in-

crease with very few periods of negative trend. Finally, we can see the breakout

of the corona pandemic destabilized the closing price the most (measured in

daily total change, not necessarily in relative change), where the closing price

dropped drastically and then lately surpass the pre-pandemic values.

In this chapter we will create two separate trading algorithms using HMMs,

as mentioned in the introduction of this chapter. All of these HMMs will be

trained in the time period from 10.01.2003 to 09.01.2007 and then tested from

12.01.2009 to 12.01.2017, following the training- and test periods from [2]. We

will test the two algorithms by comparing their achieved rate-of-return (ROR)

over the testing period. The results will be compared to the ROR achieved by a

passive buy-and-hold strategy, which buys one unit of the stock and then keeps

it throughout the testing period.

6.2 HMM architecture

In this section we will discuss the setup of our HMMs. The HMMs role in this

trading algorithm is to create an (hopefully good) understanding how the SP500

index closing prices are driven.

6.2.1 Transforming Observations

The stock market trades in continuous values and one may think that it would

make sense to pursue the task of predicting stock prizes in a continuous man-

ner. When we try to forecast stock prizes using continuous observations, the

task becomes to predict the exact prize the next day. If we follow an approach

using discrete observations, we change the task from predicting the stock prize

43

to predicting the direction of the stock prize, whether it raises, maintains or

falls. We can split the observations type further by splitting raises/falls in price

into strong/weak/moderate categories as well as choosing how strict/loose we

want to define the maintenance term.

As briefly mentioned above, we have some options how to categorize the close

prize observations. In this thesis we will rely on the study made in [2], which

suggests that using three types of observations yields the best results. The ob-

servations are separated into three categories, "Rise", "Decrease" and "Strict

Maintenance". We define Pt = closing price at trading day t. We separate the

observations into categories the follow way

Rise ← Pt+1 − Pt > 0,

Decrease ← Pt+1 − Pt < 0,

Strict Maintenance ← Pt+1 − Pt = 0.

We have only considered the use of a "strict" maintenance term in this thesis

based on the study in of observation types in [2]. Only using strict maintenance

leads to very few observations in this category and could be considered as an

excessive category, however, we do not have to worry about categorizing static

behaviour as either a "rise" or a "decrease".

6.2.2 Defining the Hidden States

Here, we present two experiments. Algorithm I will use three hidden states,

similar to the model in [2], while Algorithm II will use four hidden states. We

will now justify the approach taken in Algorithm II.

The definition of hidden states are inherently difficult and there is no clear

rules how to do so. In fact, many approaches have tried with varying results

44

[2].That being said, when I first did some research for this thesis looking at-

tempts of implementing HMMs in stock trading algorithms and read through

[2] for the first time, my intuitive thought was that the hidden states was the

true state of the stock in the sense that the state had an concrete action as-

sociated with it. In the stock market, signals are often given by stock trading

experts based on their assumptions on how a given stock prize will evolve for a

period of time. In Algorithm II, we define the states as trading signals, namely

"Strong Buy", "Hold", "Sell" and "Strong Sell". The potential benefit with this

approach is that we have some previous knowledge before we train the HMMs

using the Baum-Welch algorithm. To illustrate this statement, it would not

be far fetched to suggest that a "Strong Buy" state would indicate a positive

trend, "Hold" a steady trend, "Sell" and "Strong Sell" would indicate negative

trends. These four states was chosen because these are the exact signals used

in Algorithm I. We will elaborate on this in Section 6.3.

6.2.3 Estimating hidden states and forecasting

In this thesis we use the Viterbi Algorithm to estimate the hidden states, which

was introduced in Chapter 3. The estimations achieved by the Viterbi Algo-

rithm will then be used in the calculations leading to the forecast.

Using the Viterbi Algorithm, we have to provide an string of input observa-

tions. This leads to the question; can we find an optimal input window that

maximizes the probability of obtaining the right state at the current time? Esti-

mating the right state at the current time would thus lead to the best prediction

for the next closing price direction and the best prediction for the next state. In

Section 3.1.2 we had a brief look at this question. When we compared HMMs

which only differed in the length of the observation sequences (one with length

of 50, the other with a length of 100), the one with the longer observation se-

quence had only marginal better correct estimation rate. This study was of

course very limited and the HMM parameters was quite different than the ones

45

Figure 6.3: Case study done in [2] showing rate-of-return, prediction error and
sharpe ratio for different number of observation sequence lengths in DHMMs
(referred to as Window Sizes).

we are dealing with in this chapter, thus we rely on the case study in [2], which

is summarized in Figure 6.3. As seen in Figure 6.3, a 60-day window gives the

highest rate of return (ROR) according to [2], with 30-, 40- and 50-day windows

also producing RORs over 20%. In these experiments, we will therefore consider

HMMs with 30 and 60 observation inputs. Why exactly these two sizes will be

explained in the next section when we introduce the usage of multiple HMMs.

An improved estimate of the hidden states, ultimately leads forecast. How-

ever, the Viterbi Algorithm is only concerned with estimating the past and the

present. For Algorithm II, we want to forecast the next state which is then used

as a signal for adjusting/maintaining our market position (see Section 6.3). This

is done by following Forecast Algorithm I from Section 3.1.3. For Algorithm I,

we want to forecast next observation rather than the next state. This is done

by following the steps of Forecast Algorithm II from Section 3.1.3.

6.2.4 Multiple HMMs

We have previously discussed the number of states and number of observations

that we will be using in our stock trading experiments. Now we will introduce

another layer of complexity to our algorithm; multiple HMMs. Following a case

study done in [2], using two daily HMMs with a 30 and 60 observation window in

46

Figure 6.4: Case study done in [2] showing rate-of-return, prediction error and
sharpe ratio for double daily DHMMs using different observation lengths (re-
ferred to as Window Sizes).

conjunction with one weekly HMM with a 60 week observation window seemed

to yield the best results.

The goal of using multiple DHMMs is to further improve the estimation and

forecast. For the two daily HMMs, we only consider a prediction valid if the

30-day HMM and the 60-day HMM gives an unanimous prediction. In addition

to the two daily HMMs, there is also the weekly HMM, using a 30-week window.

This model used in [2] and we will adopt this strategy. Thus, the predictions

are either made by the two daily HMMs or weekly HMM. Following the model

in [2], we will use Relative Strength Index (RSI) to decide which of HMMs are

being used. The RSI value is calculated using the values Average Loss (AL)

and Average Gain (AG). AL and AG are defined as follows

AG =
sum of price increases over time period

Time Period
, (6.1)

AL =
sum of price decreases over time period

Time Period
. (6.2)

47

The RSI calculation then follows

RSI = 100− 100

1 + AG
AL

. (6.3)

A stock is consider overbought when the RSI value surpasses 70 and likewise

oversold when the RSI value is reaches below 30 [2][7]. An overbought stock is

viewed as being overvalued and may experience a pullback in price soon, while

an oversold stock is considered an undervalued asset and might experience a

positive trend in the near future [2]. The RSI value can be calculated using

different time periods, however, a 14 day period is commonly used. We will

follow the standard approach in this thesis, setting the time period to 14 days

[7].

The RSI value is applied in our thesis to give a criteria for when to switch be-

tween the weekly and daily HMMs. This is entirely motivated by a case study

in [2], comparing three different technical indicators and the performance of the

HMMs using each of these. In our experiments, we start using the the two daily

HMMs by default. We use the daily HMMs until we have a RSI value below

30. When this occurs, we switch over to the weekly HMM and continue using it

until get an RSI value above 70. If that is the case, we switch back to the daily

HMMs and repeat this evaluation process continuously through the experiment

period.

6.2.5 Training the HMMs

In this study, train the HMMs using Baum-Welch algorithm. This is done for

the HMMs in Algorithm I by choosing some random values. Remember, we do

not attempt to interpret the states in Algorithm I. For Algorithm II, we choose

48

Figure 6.5: Daily RSI values from 03.01.2000 to 30.09.2020 calculated and gen-
erated from R. The two horizontal lines is set at the values 30 and 70.

Figure 6.6: Illustrating the process of choosing which DHMM to use. Illustration
credit to L. Andrade (2017)[2]

49

values which seems to make sense for the different states. Here, we have defined

the states as "Strong Buy", "Hold", "Sell" and "Strong Sell". We then evaluate

the results and repeat the Baum-Welch algorithm with new starting values until

we have achieved desirable estimates for the HMMs. We used the the function

’baumWelch()’ for the R-package ’HMM’[18] to do these calculations.

6.3 Decision Algorithm

In this section we are going to show how we integrate the HMMs into a complete

stock trading algorithms, namely Algorithm I and Algorithm II.

Following the algorithm in [2], we consider three different positions in the mar-

ket. The three positions are out-of-market, long position and short position,

which were all defined in chapter 5. Both when we hold a long position and a

short position, we are in the market which means we are invested in the stock.

In this thesis we will only buy one unit of the stock each we enter the market.

When we leave the market, we sell this unit.

Before we describe how me move between the different positions, we have to

clarify the signals given by the prediction core in Algorithm I. The HMMs

in conjunction with the Viterbi algorithm makes an forecast of the next price

direction, following Forecast Algorithm II from Section 3.1.3. Based on the fore-

cast, one of the four following signals are given; "Strong Buy", "Hold", "Sell",

"Strong Sell". These signals are made based on the forecast the following way

Strong Buy←− A "Rise" prediction is made.

Strong Sell←− A "Decrease" prediction is made using daily DHMMs.

Sell←− A "Decrease" prediction is made using weekly DHMM.

Hold←− Using the daily DHMMs, an inconclusive prediction is made.

Algorithm II interpreter the hidden states as signals, thus we forecast the state

50

Figure 6.7: The investment process. Illustration credits to L. Andrade (2017)[2].

rather than the observation when working with that algorithm. The forecast is

made using Forecast Algorithm I from Section 3.1.3. The next state prediction

is regarded as the signal and we adjust our position accordingly.

We always start our investment period out-of-market. We stay there until a

prediction other than "Hold" is made. When the prediction "Strong Buy" is

made, we switch to a long position. If a "Sell" or "Strong Sell" prediction is

made, we move to a short position. When we hold a short position, we stay there

until we get a "Strong Buy" prediction and then we move to a long position. In

a long position, we adjust to a short position when the prediction "Strong Sell"

is made and we move out of market if we get an "Sell" prediction. A "Strong

Buy" or a "Hold" signal has a neutral effect when in the long position. This

all following the model in [2]. A diagram illustrating the investment strategy is

given in Figure 6.6.

51

6.4 Results

In this section we provide the empirical results of our stock trading algorithms

along with our interpretations of the results.

6.4.1 Overall results for testing period

The results shows that we were not able to reproduce the exact results in [2] with

our similar algorithm named Algorithm I. However, Algorithm I still achieved

a slightly better ROR than the buy-and-hold strategy. Our other algorithm,

Algorithm II, were able to outperform both Algorithm I and the buy-and-hold

strategy by a substantial margin. Below, the empirical results will be given in

the form of plots and tables. In addition, some interpretations and remarks of

the data will be provided.

52

Figure 6.8: Rate of return for testing period. The black line is the buy-and-hold
strategy, the blue line is Algoirthm I and the red line represents Algorithm II.

53

(a)

(b)

Figure 6.9: Evolution of ROR achieved by Algorithm II (a) and Algorithm I
(b), relative to the ROR of the Buy-and-Hold strategy.

54

(a)

(b)

Figure 6.10: Size of individual returns made by Algorithm II (a) and Algorithm
I (b).

55

Buy-and-hold Algorithm I Algorithm II

Overall ROR 160, 89% 169, 85% 356, 62%

Days out of market 0 17 296

Days in short position 0 338 17

Days in long position 2016 1661 1703

Table 6.1: Overall ROR and positions taken on trading days

An interesting result of this study, is the fact that usage hidden states as signal

seems to have merit in stock trading algorithms based on the empirical data in

this study. Algorithm II found an active approach to outperform both Algorithm

I, using predefined signals, and the passive buy-and-hold strategy. Although the

empirical data heavily suggests using hidden states as signals rather than using

predefined signals, we have to remember that [2] achieved a great ROR for the

same time period and the same "stock" used in our study. Hence, we might not

have converged to the global optimum in Algorithm I. In Table 6.1, it is clear

to see that Algorithm II converged to a solution taking a more active approach

than Algorithm I. This is evident when inspecting Figure 6.9.

Algorithm I Algorithm II

"Strong Buy" signals 1649 1058

"Hold" signals 13 773

"Sell" signals 222 185

"Strong Sell" signals 132 0

Table 6.2: Showcasing the number signals made for both algorithms.

Table 6.2 provides answers for the positions taken during the test period for our

two algorithms. Algorithm I produced more "Sell" signals than Algorithm II,

which perhaps sounds counter intuitive given that the "Sell" signal is the only

signal that moves the algorithms from an in-market position (long- or short po-

sition) to an out-of-market position. This suggests that the vast majority of the

56

"Sell" signal given by the prediction core in Algorithm I came in a short posi-

tion. Furthermore, Algorithm I did only receive 13 "Hold" signals. Compared

to the 773 "Hold" signal given in Algorithm II, it seems like the "Hold" signal

is an important piece of the puzzle to obtain a high ROR.

Algorithm I Algorithm II

No decision made 13 4

Prediction error 45, 39% -

Table 6.3: Number of days where no decision was made due to the 30-day
HMM and the 60-day HMM made different forecasts. This table also include
the prediction error of Algorithm I. Remark that there is no prediction error
listed for Algortihm II, because we have no way know the true hidden states.

Elaborating further, the "Hold" signal is given in Algorithm I when the two

DHMMs makes two different forecast of the closing price direction. We can see

that even though Algorithm I only failed to make a forecast 13, Algorithm II

only encountered an inconclusive prediction 4 times. Keep in mind, Algorithm

I predicts the next close prize direction while Algorithm II predicts the next

hidden states, where the hidden states are defined to be the signal output which

dictates the next action done by the algorithm. This may suggest that the def-

inition of producing "Hold" signals in Algorithm I is sub optimal. Inspecting

Table 6.2 further, it seems that less frequent "Strong Buy" signal is beneficial.

We are yet to comment on the lack of "Strong Sell" signal given in Algorithm

II. In this thesis, our main goal is to showcase how using the hidden states as

trading signals performed, versus the signal strategy using close prize directions

and predefined actions given these signals inspired by [2]. Thus, we stuck with

a framework of four hidden states in Algorithm II. Given the fact Algorithm II

gave zero "Strong Sell" signals, suggest two things. First, having two signals

related to a negative close price directions might not be necessary. Having only

one signal related to positive close prize directions, might have played a part

in this. Secondly, four states might not be optimal for modeling stock prize

57

behaviour. Algorithm II achieved a high ROR compared to Algorithm I and

the buy-and-hold strategy, however, there can potentially be a way to define the

hidden state which would have been even more precise. Of course, one could

argue the other way and suggest that the "Strong Sell" simply did not occur

in the test period, given positive trend throughout, as showcased in Figure 6.2

(a). All we can do for now is speculate and motivate for further studying of this

topic.

6.4.2 Estimated HMMs

For recreational purposes, the estimated HMMs for both algorithms displayed

in this subsection. We obtained these solutions by trying numerous different

starting values. We obtained a lot of solutions sub optimal to the ones showcased

in this chapter. Throughout this processes of modifying the starting values, we

observed that using a tolerance level δ = 0.005 produced the estimates which

achieved the highest rate of return. This suggest that δ = 0.005 is close to an

optimal value in the bias/flexibility dilemma, where the more flexible a model is

makes it adjust more to the training values and the more biased a model is makes

it adjust less to the training values. We conclude this chapter by providing the

estimated HMMs. Transition matrices are denoted Tz,i and emission matrices

are denoted Ez,i. z = (D,W), D when a daily HMM and W when weekly, and

i = (1, 2), where i = 1 represents Algorithm I and i = 2 represents Algorithm II

TD,1 =

Z1 Z2 Z3


Z1 0.1303045 0.6236142 0.2460813

Z2 0.3841310 0.4297123 0.1861567

Z3 0.1277891 0.2114254 0.6607855 ,

58

ED,1 =

Rise Decrease Strict Maintenance


Z1 0.9333173 0.06651228 0.0001704367

Z2 0.2858130 0.71365954 0.0005275002

Z3 0.5148470 0.48448983 0.0006631487 ,

TW,1 =

Z1 Z2 Z3


Z1 0.01163584 0.6737522 0.3146119

Z2 0.33771812 0.4822758 0.1800061

Z3 0.11921039 0.1494697 0.7313199 ,

EW,1 =

Rise Decrease Strict Maintenance


Z1 0.9522560 0.04774396 0

Z2 0.1675475 0.83245251 0

Z3 0.6474784 0.35252161 0 ,

TD,2 =

Strong Buy Hold Sell Strong Sell


Strong Buy 0.3290894 0.09408954 0.30335348 0.27346754

Hold 0.1769126 0.49889887 0.20788678 0.11630174

Sell 0.3016659 0.23435906 0.40660242 0.05737264

Strong Sell 0.6945444 0.15147877 0.05473665 0.09924022 ,

59

ED,2 =

Rise Decrease Strict Maintenance


Strong Buy 0.7693822 0.2302596 3.581568e− 04

Hold 0.5733093 0.4265616 1.291195e− 04

Sell 0.3968491 0.6018816 1.269266e− 03

Strong Sell 0.1018850 0.8981099 5.118758e− 06 ,

TW,2 =

Strong Buy Hold Sell Strong Sell


Strong Buy 0.4752889 0.1160113 0.2810055 0.12769431

Hold 0.1714853 0.5284784 0.2187428 0.08129354

Sell 0.2354395 0.2322489 0.4777731 0.05453847

Strong Sell 0.3685638 0.1628444 0.1191914 0.34940038 ,

EW,2 =

Rise Decrease Strict Maintenance


Strong Buy 0.6309107 0.3690893 0

Hold 0.5527548 0.4472452 0

Sell 0.4567159 0.5432841 0

Strong Sell 0.3846103 0.6153897 0 .

60

Chapter 7

Conclusions and future work

The main goal of this thesis was to examine the use of discrete time HMMs in

stock trading algorithms. Furthermore, we also wanted to examine the use of

hidden states as stock trading signals as opposed to the model in [2].

We defined a discrete time Markov model. We also gave a briefly description of

a continuous time Markov model, before introducing a discrete time HMM with

discrete observations.

We explained the mathematical properties two famous techniques used to solve

problems related to discrete time HMMs with discrete observations, namely the

Viterbi algorithm and the Baum-Welch algorithm. For the Viterbi algorithm,

a simple example was given to illustrate the algorithm in practice. We also

attempted a small scale study, where we saw the estimation accuracy for a few

different HMMs. The true hidden state process had to be known to estimate the

accuracy, thus we generated the process using R. In Appendix A.1, how to do

this is explained. Two forecasting algorithms based on the Viterbi calculations

were give as well. We also provided a short introduction to stock market data.

These topics was then implemented together in a stock trading algorithm. This

was done by transforming continuous data, namely the historic closing prizes to

61

the S&P500 Index, into the discrete categories "Rise", "Decrease" and "Strict

Maintenance". We then created two separate stock trading algorithms. Both

used the Baum-Welch algorithm to obtain estimates of HMMs and the Viterbi

algorithm to estimate the hidden state given the observation input. Both al-

gorithms was measured comparing them to an third algorithm following the

passive approach, namely the buy-and-hold approach.

The first algorithm, Algorithm I, was inspired by [2] and was supposed to be a

close replica. We used the same number of states and the same criteria for pro-

ducing signals which was then interpreted by the trading algorithm. We used

the Viterbi calculations in conjunction with the estimated HMM to forecast the

next day closing prize direction.

The second algorithm, Algorithm II, was developed by interpreting the hid-

den states as stock market signals, rather making predetermined rules of action

based on the close prize direction forecast. Thus, a four state HMM with three

observations was created, using the predicted state at the next time point as

the determining factor for stock market behaviour. This was predicted using

the Viterbi calculations and the estimated state transition matrices.

Examining the empirical results, it is evident that both trading algorithms man-

aged to outperform the buy-and-hold strategy. This was measured comparing

their rate-of-return. Algorithm I, though outperforming the buy-and-hold strat-

egy, did not achieve a ROR close to the one achieved in [2]. Algorithm II outper-

formed both Algorithm I and the buy-and-hold strategy by a substantial margin.

The main conclusion of this thesis, made by analyzing the results, is that defin-

ing and interpreting the hidden states as signals for stock market adjustments

turned out to be a good choice for this particular "stock". Forecasting states

rather than forecasting observations gave an increased frequency of taking no

action, which seems to have been beneficial. However, we can not entirely dis-

miss the approach of making stock market adjustments based on the predicted

closing prize direction for the next day. After all, this approach had a larger

ROR than the passive approach. Furthermore, this approach gave impressive

62

results in [2]. This suggests that we might not obtained the optimal solution for

the HMMs in Algorithm I.

7.0.1 Future work

On the basis of the results in this thesis, we will now give some recommendations

for future work.

• The main conclusion in this thesis is that defining the hidden states as

signal for stock market behaviour had merit when applied to the S&P500

Index close prizes. Try to apply this algorithm to an actual stock rather

than a index for further knowledge of the potential utilization for this

approach.

• Apply these two approaches other data from the stock market. It can be

another index or a stock. Examine which approach provides the better

rate of return in that instance.

• Try to apply the approach of Algorithm II in Chapter 6, using a different

state space. In Table 6.2, we can see that the "Strong Sell" state was

predicted zero times during my experiment. This could suggest that the

state space used is sub optimal, which should be investigated.

63

References

[1] José Pedro Alves. Forex Market Prediction Using Multi Discrete Hidden

Markov Models. 2015.

[2] Luis Andrade. Stock Market Index Trading Algorithm Using Discrete Hidden

Markov Models and Technical Analysis. 2017.

[3] https://www.spglobal.com/spdji/en/indices/equity/sp-500/overview. Down-

load time: 06.01.2021, 16:29.

[4] Mark A. Pinsky, Samuel Karlin. An introduction to Stochastic Modeling, 4th

edition. 2011.

[5] Andrew J. Viterbi. Error bounds for convolutional codes and an asymptoti-

cally optimum decoding algorithm. 1967.

[6] Kevin Rudd. The global financial crisis [on-

line]. The Monthly. Feb 2009: 20-29. Availability:

<https://search.informit.com.au/documentSummary;dn=610838417780601;res=IELAPA>

ISSN: 1832-3421. [cited 12 Jan 21]..

[7] Jason Fernando. Relative Strength Index (RSI). Udpated Nov 17, 2020. Avail-

ability: <https://www.investopedia.com/terms/r/rsi.asp> [cited 19 Jan 21].

[8] Robby Sneiderman. https://www.towardsdatascience.com/a-quick-

introduction-to-time-series-analysis-d86e4ff5fdd. Download time: 19.01.2021,

17:39.

64

[9] Australian Bureau of Statistics.

https://www.abs.gov.au/websitedbs/d3310114.nsf/home/time+series+analysis:+the+basics.

Download time: 20.01.2021, 13:43.

[10] Peter J. Brockwell, Richard A. Davis. Introduction to Time Series and

Forecasting, Third Edition. 2016.

[11] Tzveta Iordanova. https://www.investopedia.com/articles/trading/07/stationary.asp.

Download time: 20.01.2021, 16:14.

[12] Adam Hayes. https://www.investopedia.com/terms/s/stock.asp. Download

time: 21.01.2021, 10:57.

[13] https://www.upcounsel.com/why-do-corporations-sell-stock. Download

time: 21.01.2021, 12:03.

[14] David R. Harper. https://www.investopedia.com/articles/basics/04/100804.asp.

Download time: 21.01.2021, 14:17.

[15] James Chen. https://www.investopedia.com/terms/i/index.asp. Download

time: 21.01.2021, 15:11.

[16] Aaron Levitt. https://www.investopedia.com/articles/investing/040313/how-

adjust-your-portfolio-bear-or-bull-market.asp. Download time: 21.01.2021,

17:21.

[17] Barclay Palmer. https://www.investopedia.com/articles/03/072303.asp.

Download time: 21.01.2021, 17:39.

[18] Dr. Lin Himmelmann. Package "HMM". CRAN-package. 2015.

[19] https://finance.yahoo.com/quote/%5EGSPC/history/.

[20] Olivier Cappé, Eric Moulines, Tobias Ryden. Inference in Hidden Markov

Models. 2005.

65

Appendix A

Working with HMMs in R

R has been the preferred programming language in this thesis. R provides us

with a very comprehensive library of statistical packages that makes program-

ming very efficient and I have benefited greatly from a lot of these packages

such the "hmm" package. Even with all these tools available, I still needed to

create a lot of the programming from scratch. This Appendix provides you with

some programming techniques I used throughout the thesis. I have limited this

chapter to what I think would be of most common usage and left out the part

which is very specific to this thesis only.

A.1 Generate a HMM problem

First we have to create the state transition matrix and the emission matrix,

as well as calculating the stationary distribution. This is done very straight-

forwardly, however to understand the notation further on I have included this

part as well.

Now we need to make a random state sequence. We draw a random uniform

variable on a interval from 0 to 1. The value we obtain is an indicator that tells

us what the next state should be. For the first observation we compare this

66

Figure A.1: Creating the matrices. We calculate the stationary distribution,
where "pi" is the placeholder

value to the stationary distribution. If the random uniform variable is lesser or

equal to the fraction of time spent in the first state, we assign the hidden state

at t = 1 to the first state. If not, we have check if the random uniform variable

is lesser or equal to the fraction of time spent in the first two states. We can do

this because we know that the variable is larger than the fraction of time spent

in the first state, otherwise we would have already assign the hidden state to the

first state. We continue with this logic until we have assign the first state for

the hidden state sequence. The later states are determined using the transition

matrix instead of the stationary distribution. Code illustration in Figure A.2.

We have generated a state sequence given our HMM. Next up we have to create

a observation sequence in conjunction with our state sequence. This is done

i a similar fashion, using a random uniform variable and the emission matrix.

Code Illustration in Figure A.3.

We have now successfully generated a HMM problem. In this particular illus-

tration of the program we used a 3x3 state transition matrix and a 3x3 emission

matrix, however you can use any dimensions provided you tweak the for-loop

accordingly.

67

Figure A.2: Creating state sequence. Note that small x is the vector that
contains the state sequence and needs to be initialized as a numeric of length =
n before this for-loop. You need to determine n (length of hidden state sequence)
beforehand as well.

Figure A.3: Creating an observation sequence. Note that small is the observa-
tion sequence, which similarly to small x needs to be initialized before starting
this loop

68

A.2 Forecast the next state using Viterbi and

HMMs

The ’HMM’ package in R is great tool. However, when using the ’viterbi()’

function, only a string of estimated hidden states are returned. Including the

Viterbi calculations in our forecasts, we had to develop a function from scratch

to solve this issue. The code used in the function will be showcased below.

Standard Viterbi calculations

69

Figure A.4: Keep in mind, this is defined for a three state HMM

Figure A.5

Figure A.6

70

Figure A.7: Forecast next state

Forecasting using viterbi calculations

71

Figure A.8: Forecast next observation

72

