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Abstract: The inclusive J/ψ elliptic (v2) and triangular (v3) flow coefficients measured

at forward rapidity (2.5 < y < 4) and the v2 measured at midrapidity (|y| < 0.9) in Pb-Pb

collisions at
√
sNN = 5.02 TeV using the ALICE detector at the LHC are reported. The

entire Pb-Pb data sample collected during Run 2 is employed, amounting to an integrated

luminosity of 750µb−1 at forward rapidity and 93µb−1 at midrapidity. The results are

obtained using the scalar product method and are reported as a function of transverse

momentum pT and collision centrality. At midrapidity, the J/ψ v2 is in agreement with

the forward rapidity measurement. The centrality averaged results indicate a positive

J/ψ v3 with a significance of more than 5σ at forward rapidity in the pT range 2 <

pT < 5 GeV/c. The forward rapidity v2, v3, and v3/v2 results at low and intermediate pT
(pT . 8 GeV/c) exhibit a mass hierarchy when compared to pions and D mesons, while

converging into a species-independent curve at higher pT. At low and intermediate pT, the

results could be interpreted in terms of a later thermalization of charm quarks compared

to light quarks, while at high pT, path-length dependent effects seem to dominate. The

J/ψ v2 measurements are further compared to a microscopic transport model calculation.

Using a simplified extension of the quark scaling approach involving both light and charm

quark flow components, it is shown that the D-meson vn measurements can be described

based on those for charged pions and J/ψ flow.
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1 Introduction

Ultra-relativistic heavy-ion collisions are the means to create under laboratory conditions

the deconfined state of strongly-interacting matter called quark-gluon plasma (QGP). This

state behaves like an ideal fluid with a shear viscosity to entropy ratio approaching the

conjectured lowest possible value of }/(4πkB) [1–3]. One of the most important observables

for studying the properties of the QGP is the azimuthal dependence of particle production,

also called anisotropic flow, quantified in terms of a Fourier expansion with respect to the

azimuthal angle of the initial state symmetry plane for the n-th harmonic Ψn as

dN

dϕ
∝ 1 + 2

+∞∑
n=1

vn cos [n(ϕ−Ψn)] , (1.1)

where vn is the n-th order harmonic coefficient and ϕ is the azimuthal angle of the particles.

The initial state spatial anisotropy of the collision overlap region is transformed into a

momentum anisotropy of the produced final state particles [4–7]. The medium response

to the initial state anisotropy (εn), which is transformed into the vn coefficients, strongly

depends on the macroscopic properties of the fireball, like the temperature dependent

equation of state and the shear and bulk viscosity.

The dominant source of anisotropy is the ellipsoidal shape of the overlap region in

non-central collisions that have a non-zero finite impact parameter (transverse distance

separating the centers of the two nuclei), which gives rise to a large second order har-

monic coefficient, v2, also known as elliptic flow. Fluctuations in the initial energy-density

profile within the overlap region are thought to be the origin of the triangular flow, v3 [8–

10]. Higher order harmonics are strongly damped, do not depend linearly on the initial
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anisotropy, and have significant contributions from the interplay of lower order harmon-

ics [11–15]. The ALICE Collaboration published extensive studies of anisotropic flow mea-

surements for identified light and strange particles [16, 17]. Flow coefficients for all particles

show, in the low pT range, an increasing trend with pT mainly attributed to the radial hy-

drodynamic expansion of the QGP, reach a maximum in the pT range 3–5 GeV/c depending

on the particle mass and species, and finally drop towards higher pT. The behavior in the

high pT region is commonly attributed to path-length dependent effects like energy loss [18–

20]. At both RHIC and LHC energies, an approximate scaling of the flow coefficients with

the number of valence quarks is observed for light and strange particles [16, 17, 21–23]. In

the low to moderate pT range (approximately 3 < pT < 8 GeV/c), this scaling is hypoth-

esized to be the consequence of the hadronization process via quark coalescence and of a

common underlying partonic flow during the hydrodynamic stage of the collision [24–28].

The production of charmonia, and especially of J/ψ, is one of the first proposed probes

of the QGP properties, in particular the deconfinement [29]. Since charm quarks are pro-

duced during the early hard partonic collisions, they experience the entire evolution of the

fireball. At the same time, their initial production cross section can be calculated in per-

turbative quantum chromodynamics (QCD). The suppression of the production of bound

charmonium states by the free color charges of the dense deconfined medium is sensitive

to both the medium bulk characteristics [30, 31] and to the microscopic ones, like the

charm-quark diffusion coefficient [32, 33]. Measurements of the J/ψ nuclear modification

factor RAA at RHIC in Au-Au collisions at
√
sNN = 200 GeV [34] indicated a strong nuclear

suppression especially for the most central collisions. At the LHC, in Pb-Pb collisions at
√
sNN = 2.76 and 5.02 TeV, the ALICE Collaboration reported a much larger RAA com-

pared to the one observed at RHIC [35–37], despite the higher energy density present in the

system. This effect is concentrated in the low-pT region, which is consistent with charmo-

nium regeneration by recombination of charm quarks, either at the QGP phase boundary

via statistical hadronization [38] or continuously throughout the fireball evolution [39–41].

Within the statistical hadronization scenario, charm quarks thermalize in the QGP

and all of the charmed bound hadrons are created at the phase boundary assuming chemi-

cal equilibration [38, 42], except a small fraction created in the fireball corona that escape

the medium. In transport model approaches, where charm quarks reach only a partial

thermalization, roughly 50% of the produced J/ψ originate from the recombination pro-

cess, while the rest comes from primordial production [39–41]. In both phenomenological

approaches, it is expected that charm quarks will inherit some of the medium radial and

anisotropic flow. Indeed, a significant D-meson [43–45] and J/ψ elliptic flow [46–49] was

already observed at the LHC, indicating a hierarchy between the flow of charged particles,

D and J/ψ mesons, with the J/ψ flow being the smallest. A positive J/ψ v2 observed also

at high pT, typically underestimated by transport model calculations, might suggest the

presence of important path length dependent effects like energy loss and the survival prob-

ability in the medium [50, 51]. In addition to v2, the ALICE Collaboration also published

in ref. [48] an evidence of a positive J/ψ v3 with a statistical significance of 3.7σ.

In this paper, the measurements of inclusive J/ψ v2 and v3 at forward rapidity (2.5

< y < 4) and v2 at midrapidity (|y| < 0.9) in Pb-Pb collisions at
√
sNN = 5.02 TeV
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are discussed. Inclusive J/ψ mesons include both a prompt component from direct J/ψ

production and decays of excited charmonium states and a non-prompt component from

weak decays of beauty hadrons. The results are presented as a function of pT in several

collision centrality classes, expressed in percentages of the total hadronic cross section, and

are compared with calculations from a microscopic transport model. The analyzed data

include the full LHC Run 2 Pb-Pb data set, which improves the statistical precision with

respect to the previous results by approximately a factor of two at forward rapidity [48],

and a factor of nine (four) in central (semi-central) collisions at midrapidity [47] allowing

the experimental evidence of a statistically significant non-zero J/ψ v2 at midrapidity.

2 Experimental setup, data samples and event selection

A detailed description of the ALICE apparatus and its performance can be found in

refs. [52, 53]. At forward rapidity, J/ψ are reconstructed in the µ+µ− decay channel with

the muon spectrometer which covers the pseudorapidity range −4 < η < −2.5.1 The spec-

trometer includes five tracking stations, each composed of two planes of cathode pad cham-

bers. The third station is placed inside a dipole magnet with a 3 Tm field integral. Two

trigger stations, containing two planes of resistive plate chambers each, provide single and

dimuon triggers with a programmable single-muon pT threshold. A front absorber, made

of carbon, concrete, and steel, is placed in between the primary interaction point (IP) and

the first tracking station to remove primary hadrons from the collision. A second absorber,

made of iron, is placed in front of the trigger chambers to further reject secondary hadrons

escaping the front absorber and low-pT muons, mainly from pion and kaon decays. An addi-

tional conical absorber surrounds the beam pipe to protect the muon spectrometer against

secondary particles produced by the interaction of large-η particles with the beam pipe.

At midrapidity, J/ψ mesons are reconstructed in the e+e− decay channel using the In-

ner Tracking System (ITS) [54] and the Time Projection Chamber (TPC) [55] in the rapid-

ity range |y| < 0.9. The ITS is a cylindrical-shaped detector, consisting of 6 layers of silicon

detectors used for precision tracking, reconstruction of the primary vertex of the event and

event selection. The innermost two layers consists of pixels (SPD), the middle two are drift

(SDD), while the two outermost layers are equipped with strip detectors (SSD). The track-

lets, track segments reconstructed as pairs of hits in the SPD layers pointing to the primary

vertex, are used for the determination of the event flow vector. The TPC is the main detec-

tor used for tracking and particle identification and consists of a cylindrical-shaped gas-filled

active volume placed around the ITS. Radially, it extends between an inner radius of 0.85 m

and an outer radius of 2.5 m, with a total length of 5 m along the beam axis. Particle iden-

tification in the TPC is performed via the measurement of the specific energy loss, dE/dx.

Besides the muon spectrometer and the central barrel detectors, a set of detectors for

global event characterization are also used. Two arrays of 32 scintillator counters each,

covering 2.8 < η < 5.1 (V0A) and −3.7 < η < −1.7 (V0C) [56], are used for triggering,

1In the ALICE reference frame, the muon spectrometer covers a negative η range and consequently a

negative y range. We have chosen to present our results with a positive y notation, due to the symmetry

of the collision system.
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beam induced background rejection, and for the determination of the collision centrality.

The 32 channels are arranged in four concentric rings with full azimuthal coverage allowing

for the calculation of the event flow vector. The centrality of the events, expressed in

fractions of the total inelastic hadronic cross section, is determined via a Glauber fit to

the V0 amplitude as described in refs. [57, 58]. In addition, two neutron Zero Degree

Calorimeters [59], installed at ±112.5 m from the nominal IP along the beam axis, are

used to remove beam induced background events and electromagnetic interactions.

The analyzed data samples were collected by ALICE during the 2015 and 2018 LHC

Pb-Pb runs at
√
sNN = 5.02 TeV using different trigger strategies for the forward muon

spectrometer and the midrapidity detectors.

At forward rapidity, data were collected requiring the coincidence of the minimum bias

(MB) and unlike-sign dimuon triggers. The former is defined by the coincidence of signals

in the V0A and V0C arrays while the latter requires at least a pair of opposite-sign track

segments in the muon trigger stations. The programmable threshold of the muon trigger

algorithm was set so that the trigger efficiency for muon tracks with pT = 1 GeV/c is

50% and reaches a plateau value of about 98% at pT ≈ 2.5 GeV/c. In order to study

the background, additional samples of single muon and like-sign dimuon events were also

collected by requiring, in addition to the MB condition and the low-pT threshold, at least

one or a pair of same-sign track segments in the trigger system, respectively.

At midrapidity, data were collected using the MB trigger during the 2015 data taking

period, and the MB, central, and semi-central triggers in the 2018 period. The central and

semi-central triggers require the MB trigger to be fired but, in addition, a condition on the

total signal amplitude in the V0 detectors, corresponding to collision centralities of 0–10%

and 30–50%, respectively, was applied.

Both forward and midrapidity analyses require to have a primary vertex position within

±10 cm from the nominal IP along the beam axis. Events containing more than one collision

(pile-up) are removed by exploiting the correlations between the number of clusters in the

SPD, the number of reconstructed SPD tracklets, and the total signal in the V0A and

V0C detectors. At midrapidity, events with pile-up occurring during the drift time of the

TPC are rejected in the offline analysis based on the correlation between the number of

SDD and SSD clusters and the total number of clusters in the TPC. The beam-induced

background is filtered out offline by applying a selection based on the V0 and the ZDC

timing information [60].

The integrated luminosity of the analyzed data samples is about 750 µb−1 for the

dimuon analysis. For the measurements at midrapidity, the total luminosity recorded

depends on the centrality range due to the centrality triggers, and amounts to 93 µb−1, 41

µb−1, and 20 µb−1 for the central, semi-central, and MB triggers, respectively.

3 Data analysis

The vn coefficients are obtained using the scalar product (SP) method [2, 61]. This is a

two-particle correlation technique based on the scalar product between the unit flow vector

for a given harmonic n, un = einϕ, of the particle of interest (here a dilepton) and the
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Dilepton analysis Three sub-event technique, detectors used Corresponding gap between

J/ψ → l+l− A B C un and QA
n

µ+µ− 2.5<yµµ< 4 SPD V0A V0C |∆η|>1.1

e+e− |yee|< 0.9 V0C TPC V0A |∆η|>0.8

Table 1. Summary of the details concerning the dimuon and dielectron analyses, corresponding to

the forward and midrapidity region, respectively. The detectors cited in this table are described in

section 2, and the details concerning the three sub-event technique is presented in section 3.

complex conjugate of the event flow vector in a subdetector A, QA∗
n . The flow coefficients

are thus defined as

vn{SP} =

〈
unQ

A∗
n

/√
〈QA

nQ
B∗
n 〉〈QA

nQ
C∗
n 〉

〈QB
nQ

C∗
n 〉

〉
``

, (3.1)

where QB
n and QC

n are the n-th harmonic event flow vectors measured in two additional

subdetectors, B and C, respectively, which are used to correct the event flow vector via

the three sub-event technique [62]. The star (∗) represents the complex conjugate and the

bracket 〈. . .〉`` indicates the average over dileptons from all events in a given pT range,

dilepton invariant mass (m``), and centrality interval. The brackets 〈. . .〉 in the denomina-

tor denote the average over all events in a narrow centrality interval containing the event

under consideration. The V0A and V0C detectors are used in the analysis at both rapidi-

ties, while the analysis at forward rapidity uses the SPD as the third subdetector, and the

analysis at midrapidity uses the TPC. As detector A, the SPD is chosen for the forward

analysis and the V0C for the midrapidity one. The V0A and V0C event flow vectors are cal-

culated using the energy deposition measured in the individual channels. For the SPD and

TPC event flow vectors, the reconstructed tracklets and the tracks are used, respectively.

The effects of non-uniform acceptance of the detectors used for the flow vector deter-

mination are corrected through the procedure described in ref. [63]. As was discussed in

section 2, the three detectors used for the event flow determination cover distinct pseudo-

rapidity ranges, allowing for pseudorapidity gaps ∆η between the sub-events used for flow

vector determination and dilepton reconstruction. The pseudorapidity gap between un and

QA
n , corresponding to |∆η| > 1.1 and |∆η| > 0.8 for the dimuon and dielectron analysis,

respectively, suppresses the short-range correlations originating from resonance decays or

jets (non-flow effects), not related to the global azimuthal anisotropy.

In the dimuon analysis, J/ψ candidates are formed by combining pairs of opposite-

sign tracks reconstructed in the geometrical acceptance of the muon spectrometer using

the tracking algorithm described in ref. [64]. The same single-muon and dimuon selection

criteria used in previous analyses [48, 65] are applied. Namely, each muon track candidate

should have −4 < ηµ < −2.5, a radial transverse position at the end of the front absorber

in the range 17.6 < Rabs < 89.5 cm, and must match a track segment in the muon trigger

chambers above the 1 GeV/c pT threshold. The rapidity of the muon pair should be within

the acceptance of the muon spectrometer (2.5 < y < 4.0).
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At midrapidity, J/ψ mesons are reconstructed in the dielectron decay channel. Electron

candidates are required to be good quality tracks matched in both the ITS and the TPC,

and to have a pT > 1 GeV/c and |η| < 0.9. Tracks are selected to have at least 70

space points in the TPC, out of a maximum of 159, and a χ2/Ndof < 2 for the track fit

quality. At least one hit in either of the two SPD layers is required to reject secondary

electrons from photons converted in the detector material and to improve the tracking

resolution. Secondary electrons are further rejected by requiring the distance-of-closest-

approach (DCA) to the collision vertex to be smaller than 1 cm and 3 cm in the transverse

and longitudinal directions, respectively. Electrons are identified via their specific energy

loss in the TPC gas, dE/dx, by selecting a band of ±3σ around the expectation value, with

σ being the dE/dx measurement resolution. To reduce further the hadronic contamination,

candidate tracks compatible within ±3.5σ with the pion or proton hypothesis are rejected.

The flow coefficients are extracted from sequential fits to the dilepton invariant mass

distribution, m``, and the vn as a function of m``, which include the superposition of a J/ψ

signal and a background contribution, using the function

vn(m``) = α(m``) v
J/ψ
n + [1− α(m``)] v

bkg
n (m``). (3.2)

Here, v
J/ψ
n denotes the J/ψ v2 or v3 and α(m``) is the signal fraction defined as S/(S + B).

The latter is extracted from fits to the dilepton invariant mass distribution as described

below. The vbkgn (m``) corresponds to the dilepton background v2 or v3. In the dimuon

analysis, the J/ψ signal is parameterized using an extended Crystal Ball (CB2) function and

the background with a Variable Width Gaussian (VWG) function [66]. In the fit, the J/ψ

peak position and width are left free, while the CB2 tail parameters are fixed to the values

reported in ref. [67]. The signal of the ψ(2S) is not included in the fit of the vn coefficients

due to its marginal significance. At midrapidity, the signal fraction is obtained from the

dielectron invariant mass distribution in two steps. First, the combinatorial background is

estimated using an event mixing technique, where pairs are built from different events with

similar collision centrality, flow-vector orientation, and longitudinal position of the event

vertex, and then subtracted from the same-event dielectron invariant mass distribution.

The combinatorial background normalization is obtained from the ratio of the number of

same-event to mixed-event like-sign pairs. Second, the remaining distribution is fitted using

a component for the signal and one for the residual background. For the J/ψ signal shape,

the dielectron invariant mass distribution obtained from Monte Carlo simulations is used.

The residual background, originating mainly from semileptonic decays of cc and bb pairs

(correlated background) and imperfect matching between the same-event and mixed-event

distributions, is parameterized using either a third order polynomial function at low pT or

an exponential function at high pT.

The vn extraction method employed in this work is described in detail in ref. [48],

where the vbkgn (m``) distribution is obtained using an event mixing technique. There, it

was first demonstrated that the flow coefficients of the background can be obtained from
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Figure 1. (Color online) Invariant mass distribution (top panels a1, b1) and v2(m``) (bottom

panels a2, b2) for dimuons in the ranges 2 < pT < 3 GeV/c (top left) and for dielectrons in

0 < pT < 4 GeV/c (top right), for the 30–50% centrality interval. Fit functions of the invariant

mass distributions and v2(mµµ), as discussed in section 3, are also shown. Bottom panel, invariant

mass (c1) and v3(mµµ) (c2) distributions for dimuons in the pT range 2 < pT < 5 GeV/c for the

0–50% centrality interval. The vn(mµµ) and v2(mee) distributions are plotted with the background

flow obtained from the event-mixing procedure and the fit function, as discussed in the text. Only

statistical uncertainties are shown.

the flow coefficients of the single leptons used to form the background dileptons as

vbkgn (m``) =
〈v(1)n cos[n(ϕ(1) − ϕ)] + v

(2)
n cos[n(ϕ(2) − ϕ)]〉m``

〈1 + 2
∞∑

m=1
v
(1)
m v

(2)
m cos[m(ϕ(1) − ϕ(2)]〉m``

, (3.3)

where v
(1)
n (ϕ(1)) and v

(2)
n (ϕ(2)) are the flow coefficients (azimuthal angles) of the two

leptons, respectively, and ϕ is the dilepton azimuthal angle. The brackets 〈· · · 〉m``
denote

an average over all dileptons belonging to the given m`` interval. Here, it is worth to note

that the denominator in eq. (3.3) represents the modification of the dilepton yields induced

by the flow of single leptons. Then, when background dileptons are built using the event
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mixing technique, the numerator in eq. (3.3) is given by〈
〈u(1)

n Q
(1),A∗
n 〉

R
(1)
n

cos[n(ϕ(1) − ϕ)] +
〈u(2)

n Q
(2),A∗
n 〉

R
(2)
n

cos[n(ϕ(2) − ϕ)]

〉
m``

. (3.4)

Here, u
(1)
n and u

(2)
n are the unit vector of the two leptons, Q

(1),A
n and Q

(2),A
n are the event

flow vectors, reconstructed in detector A, of the events containing the two leptons, and R
(1)
n

and R
(2)
n their respective event flow factors (corresponding to the denominator of eq. (3.1)).

Since the event flow vectors of the mixed events are not correlated, the mixed-event dilepton

yield is not modified by the flow of the single leptons.

Examples of fits to the invariant mass distribution (top panels corresponding to a1,

b1, c1) and to vn(m``) (bottom panels related to a2 for v2(mµµ), b2 for v2(mee), and c2 for

v3(mµµ)) are shown in figure 1 for the dimuon and dielectron analyses. The background,

which is mostly combinatorial, especially in central events, is well reproduced with the event

mixing technique. In the absence of correlated background, the background flow vbkgn is

directly given by the mixed-event flow. At forward rapidity, the effect of the unknown flow

contribution of the correlated background and residual mismatches between the same-event

and mixed-event background flow, is considered as a systematic uncertainty and is discussed

in section 4. In the default approach, the flow of the correlated background is assumed

to be negligible, and thus the denominator of eq. (3.3) is given by the ratio Nbkg
+− /N

mix
+−

between the number of background unlike-sign dileptons Nbkg
+− and the number of unlike-

sign dileptons from mixed events Nmix
+− , which is obtained after a proper normalization

involving like-sign dileptons as described in ref. [48]. At midrapidity, due to the smaller

signal-to-background ratio, the difference between mixed and same event background flow

is taken into account by considering in the fit function an additional term which accounts

for the flow of the correlated background and imperfections of the mixed event procedure.

This term is parameterized using a second order polynomial and acts as a correction to the

background flow obtained from the mixed event procedure.

4 Systematic uncertainties

The systematic uncertainties related to the vn extraction procedure, the track and event

selection criteria, residual detector effects, and non-flow contributions are evaluated as de-

scribed below and summarized in table 2. A quadratic sum of the systematic uncertainties

from the independent sources is used as final systematic uncertainty on the measurements.

In the dimuon analysis, the signal fraction α(mµµ) is estimated by fitting the invariant

mass distribution with standard signal and background functions. The systematic uncer-

tainty on the determination of α(mµµ) is estimated by varying the signal and background

functions, as well as the mass fit range. For the signal, in addition to a CB2, a pseudo-

Gaussian with a mass-dependent width [66] is also used. The tail parameters were fixed

to the values obtained in Monte Carlo simulations or in other analyses with better signal

significance [37, 67]. For the background, the VWG function was changed to a fourth

order Chebyshev polynomial. The invariant mass fit range is varied from the standard
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µ+µ− e+e−

Sources v2 (pT) v3 (pT) v2 (Centrality) v3 (Centrality) v2 (pT)

Extraction method 0–0.003 0–0.002 0.001–0.004 0.001–0.006 negl

Centrality-Rn determination 1% 3% 2% 3% negl

Non-flow estimation <1% negl <1% negl

Reconstruction efficiency 0.001–0.002 0–0.001 0–0.002 0–0.001 negl

Correlated background shape 0–0.009 0–0.015 0–0.010 0–0.011

TPC electron 0.010

identification selection to 0.023

Table 2. Summary of absolute and relative (in % of vn) systematic uncertainties of the J/ψ v2 and

v3 coefficients, for the dimuon and dielectron analyses. The uncertainties vary within the indicated

ranges depending on the pT bin, or centrality interval.

2 − 4 GeV/c2 to 2.6 − 4.6 GeV/c2 in steps of 200 MeV/c2. The corresponding systematic

uncertainty for each pT bin, evaluated as the RMS of the results of the various tests, does

not exceed 0.003 for v2 and 0.002 for v3. In the dielectron analysis, the fit ranges of the

residual background fit are varied. No significant changes of the extracted elliptic flow are

observed and no uncertainty due to the J/ψ signal extraction is assigned.

The non-uniformity in the detector acceptance could lead to a residual effect in the

calibration of the event flow vector Qn. The cross-term products of the event flow vector,

〈Qx,A × Qy,B〉, are evaluated to verify that values are negligible compared to the linear

products. In addition, possible impacts on the vn are checked by calculating the cross-

term products between the components of the Qn vector and the unitary vector un of

the J/ψ candidates. No clear pT or centrality dependence is found for this contribution,

and the corresponding systematic uncertainty is estimated to be less than 1%. Additional

uncertainties related to the calculation of the reference flow vector are evaluated as the

difference between the event flow factor Rn obtained using MB events or dimuon-triggered

events. For the dimuon analysis it amounts to 1% for R2 and up to 3% for R3.

The variation of the J/ψ reconstruction efficiency with the local occupancy of the

detector could bias the measured vn. At forward rapidity, this effect is evaluated using

azimuthally isotropic simulated J/ψ → µ+µ− decays embedded into real Pb-Pb events.

A maximum effect of 0.002 for v2 and 0.001 for v3 is observed in non-central collisions

with no clear pT dependence. At midrapidity, the strongest dependence of reconstruction

performance on the local detector occupancy is caused by the TPC particle identification

(PID). A data driven study, using a clean electron sample from photon conversions, shows

that the largest variation of the TPC electron PID response between the region along

the event flow vector and the region orthogonal to it is approximately 2% of the dE/dx

resolution. This leads to a decrease of the observed v2 by less than 1% and is thus neglected.

The presence of a correlated background and its unknown flow contribution can af-

fect the vn extraction. The contribution of the correlated background to the flow of the

background can be introduced in eq. (3.3) by replacing the denominator Nbkg
+− /N

mix
+− by
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Nbkg
+− /(N

mix
+− + β(Nbkg

+− −Nmix
+− )), where β represents the relative strength of the correlated

background flow with respect to the combinatorial background flow. The systematic un-

certainty is defined as the difference between the default fit, equivalent to β = 0, and the

modified fit with β left as a free parameter. This uncertainty is, as expected, negligible for

central collisions and low pT but becomes significant for peripheral collisions and high-pT.

The estimated systematic uncertainty for the v2 and v3 extraction reaches a maximum of

about 0.01 for peripheral collisions and at high-pT.

In the dielectron analysis, the signal-to-background ratio can vary significantly de-

pending on the TPC electron identification selection and centrality, which may impact the

J/ψ v2 fits. Thus, the v2 was extracted for a set of nine electron PID cuts where both

the electron selection and the hadron rejection were varied such that the J/ψ efficiency is

changed by approximately 50%. The RMS of the v2 obtained from all of these selections

is assigned as a systematic uncertainty, which ranges between 0.010 and 0.023 depending

on the centrality and pT interval, while the average value is taken as central value. In

addition, the fit range of the v2(mee) is varied by either making it narrower or wider, but

no significant systematic effects are observed.

5 Results and discussions

The J/ψ elliptic flow coefficient measured by ALICE in Pb-Pb collisions at
√
sNN =

5.02 TeV at forward and central rapidity is shown in figure 2 as a function of pT, for

the centrality intervals 0–10%, 10–30%, 30–50% and 0–50%. Systematic uncertainties, ob-

tained as described in the previous section, are shown as boxes around the data points,

while the statistical uncertainties are shown as error bars. Here, and in all figures as a

function of pT, the J/ψ data points are located at the average pT of the reconstructed

J/ψ. These results are compared with the midrapidity v2 measurements for charged pions

by ALICE [17] and prompt D mesons by ALICE [68] and CMS [43]. At forward rapid-

ity and for all centrality intervals, the J/ψ v2 values increase with pT, possibly reaching

a maximum at intermediate values of pT, and decreasing or saturating towards high pT.

Also, the J/ψ v2 values increase when decreasing centrality from the 0–10% to 10–30%,

then to 30–50%. This behavior is qualitatively similar to the one for light hadrons and

D mesons. The J/ψ v2 measurement at midrapidity is statistically compatible to the one

at forward rapidity in both centrality intervals within uncertainties. Considering all the

midrapidity data points as statistically independent measurements, it was found that the

J/ψ v2 is larger than zero with a significance of approximately 2.5 standard deviations in

both centrality intervals. It is worth to remark that the ALICE apparatus is undergoing

an ambitious upgrade programme in preparation of Runs 3 and 4 of the LHC that will

enable the separation of the prompt and non-prompt J/ψ contributions to the measured

flow coefficients, thus providing valuable information on both the charmonium and open

beauty hadron production dynamics.

As also noted previously [48], a clear mass hierarchy of the v2 values is seen in the low-

pT region (pT < 6 GeV/c) for the light hadrons and D mesons measured at midrapidity

and inclusive J/ψ, with the J/ψ exhibiting the lowest elliptic flow. Here, it is important to
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Figure 2. (Color online) Inclusive J/ψ v2 as function of pT in different centrality intervals (0–

10%, 10–30%, 30–50% and 0–50%) in Pb-Pb collisions at
√
sNN = 5.02 TeV. Both midrapidity

and forward rapidity J/ψ v2 measurements are shown. The results are compared with the v2
coefficients at midrapidity for charged pions [17] and prompt D0 mesons [43, 68]. The statistical

and systematic uncertainties are shown as bars and boxes, respectively. The shaded cyan boxes

represent the systematic uncertainties from the contribution of non-prompt D0 mesons.

note that in the considered η range, the η dependence of the v2 at a given pT is expected

to be negligible, as shown by the CMS measurement for charged particles [69], albeit in a

somewhat narrower η range. At high-pT (pT > 8 GeV/c), the v2 coefficients from all species

converge into a single curve suggesting that, in this kinematic range, the anisotropy for all

particles arises dominantly from path-length dependent energy-loss effects [70]. However,

in the case of the much heavier J/ψ, one may also consider that the hydrodynamic flow,

which arises from a common velocity field, still contributes significantly even at high pT, as

can be expected from the particle mass dependence of the pT range where the flow reaches

its maximum.

In figure 3, the pT-dependent inclusive J/ψ triangular flow coefficient measured at

forward rapidity is shown in each of the considered centrality intervals. For most of the

centrality and pT intervals, the measured inclusive J/ψ v3 is positive and with no significant

centrality dependence. In the 0–50% centrality range, the triangular flow coefficient is larger

than zero (0.0250 ± 0.0045 (stat.) ± 0.0020 (syst.) in 2 < pT < 5 GeV/c) corresponding

to a significance of 5.1σ, calculated adding quadratically the statistical and systematic un-

certainties. The positive v3 indicates that the initial state energy-density fluctuations, the

dominant source of v3, are reflected also in the anisotropic flow of charm quarks. Also shown

in figure 3 are similar measurements for charged pions [17] and D mesons [43, 68] obtained at
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Figure 3. (Color online) Inclusive J/ψ v3 at forward rapidity as function of pT in different cen-

trality intervals (0–10%, 10–30%, 30–50% and 0–50%) in Pb-Pb collisions at
√
sNN = 5.02 TeV.

The results are compared to the v3 coefficients at midrapidity for charged pions [17] and prompt

D0 mesons [43, 68]. The statistical and systematic uncertainties are shown as bars and boxes,

respectively. The shaded bands represent the systematic uncertainties from the contribution of

non-prompt D0 mesons.

midrapidity. The mass hierarchy observed for v2 holds also in the case of v3. Together with

the J/ψ v2, these observations provide a strong support for the hypothesis of charm quark

being, at least partially, kinetically equilibrated in the dense and deconfined QGP medium.

The ratio of the triangular to elliptic flow coefficients, v3/v2, as a function of pT is

shown in the left panel of figure 4 for the inclusive J/ψ at forward rapidity, D mesons and

charged pions at midrapidity. In this ratio, the statistical uncertainties are considered to

be uncorrelated due to the weak correlation between the orientation of the Q2 and Q3 flow

vectors [71], while the systematic uncertainties related to α(mµµ) and to the reconstruction

efficiency discussed in section 4, cancel in the ratio. The same hierarchy observed for the

individual v2 and v3 measurements is also observed in the v3/v2 ratio, which suggests

that higher harmonics are damped faster for heavy quarks than for the light ones. At

RHIC [72, 73] and LHC [74, 75], it was observed that the flow coefficients of light particles

from different harmonics follow a power-law scaling as v
1/n
n ∝ v1/mm up to about 6 GeV/c, for

most centrality ranges, but the 0–5%, independently of the harmonics n and m. The ratio

v3/v
3/2
2 in the right panel of figure 4 illustrates such a scaling. Furthermore, the v3/v

3/2
2

for pions, D and J/ψ mesons tend to converge, although the J/ψ values are systematically

lower than the ones of pions.
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Figure 4. (Color online) Ratio of v3 to v2 of inclusive J/ψ (left panel) and v3/v
3/2
2 (right panel)

at forward rapidity as a function of pT for the 0–50% centrality interval in Pb-Pb collisions at√
sNN = 5.02 TeV. The results are compared with the flow coefficients of charged pions [17] and

prompt D0 mesons at midrapidity [43]. The statistical and systematic uncertainties are shown as

bars and boxes. The shaded bands represent the systematic uncertainties from the contribution of

non-prompt D0 mesons.
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Figure 5. (Color online) Inclusive J/ψ v2 as function of pT at forward rapidity for semi-central

(20–40%) Pb-Pb collisions at
√
sNN = 5.02 TeV. Calculations from a transport model [39, 40] are

also shown.

In figure 5, the inclusive J/ψ v2 as a function of pT in the 20–40% centrality interval

is compared with the microscopic transport calculations by Du et al. [39, 40]. In this

model, the J/ψ are created both from the primordial hard partonic interactions but also

from the recombination of thermalized charm quarks in the medium, which accounts for

roughly 50% of all J/ψ at low pT. Non-prompt J/ψ mesons, created in the weak decays

of beauty hadrons, are also included in the model. The amplitude of the inclusive J/ψ

v2 in the calculations is in good agreement with the experimental measurements for pT <

4 GeV/c. However, the overall trend of the model calculation does not describe the data

well, especially in the intermediate pT range, 4 < pT < 10 GeV/c, where the J/ψ flow
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is largely underestimated. The primordial J/ψ component, which is sensitive mainly to

path length dependent effects, like survival probability, exhibits a monotonically increasing

trend from low towards high pT, with this mechanism becoming the dominant source of

the anisotropic flow for pT larger than 8 GeV/c. Path length dependent energy loss, widely

seen as a major source of anisotropy at large pT, is not implemented for J/ψ mesons in

this calculation. It is worth noting that this model provides a qualitative good description

of the centrality and transverse momentum of the J/ψ nuclear modification factor [37, 76].

Figure 6 shows the centrality dependence of the inclusive J/ψ v2 (top panels) and v3
(bottom panels) for a low-pT interval (0 < pT < 5 GeV/c) on the left, and a high-pT
one (5 < pT < 20 GeV/c) on the right. Here, due to the large integrated pT range, the

vn coefficients are corrected for the J/ψ acceptance and efficiency A × ε. Each dimuon

pair is weighted using the inverse of the pT and y dependent A× ε factor before filling the

invariant mass and vn(mµµ) distributions. The pT and y dependent A×ε map was obtained

from the embedded simulations discussed in section 4. Any possible systematic uncertainty

related to the A × ε corrections is already included in the systematic uncertainty due to

the dependence of the reconstruction efficiency on the local detector occupancy. The J/ψ

results are compared with the flow coefficients of charged pions for a pT value similar to

the corrected J/ψ 〈pT〉, published by ALICE in ref. [17]. In addition, the ratio vπ2 /v
J/ψ
2 is

computed and shown in the bottom sub-panels. Both at low pT (1.75 < pT < 2 GeV/c) and

high pT (6 < pT < 7 GeV/c), the v2 of π± increases from central to semi-central collisions,

reaching a maximum at 40–50% centrality, and then decreases towards peripheral collisions.

For the J/ψ at low pT, while the centrality trend is qualitatively similar, the maximum

(or even saturation) of v2 seems to be reached for more central collisions than for the

pions. This is more clearly emphasized by the increasing trend of the ratio vπ2 /v
J/ψ
2 , from

central to peripheral collisions, which deviates from unity by a significance of 8.5σ. In

the framework of transport models, this could be understood by the increasing fraction of

regenerated J/ψ at low pT when moving from peripheral to central collisions. Alternatively,

and independently of the regeneration scenario, the increase of the vπ2 /v
J/ψ
2 from central to

peripheral collisions, could also be understood in terms of partial or later thermalization

of the charm quarks compared to light quarks. The decrease in energy density and lifetime

of the system is counterbalanced by the increase of the initial spatial anisotropy towards

peripheral collisions. The v2 of the J/ψ will therefore reach its maximum at more central

collisions compared to light particles because charm quarks require larger energy densities

to develop flow [33, 77–79]. At high pT, J/ψ mesons and charged pions seem to exhibit

the same centrality dependence, although the v2 coefficients are systematically lower for

the J/ψ mesons than for the pions. Such a similar centrality dependence could indicate a

similar mechanism at the origin of the flow for both J/ψ mesons and pions at high pT.

The centrality dependence of the v3 coefficient at low pT is less pronounced than that

of the v2 for both pions and J/ψ, as expected since initial state fluctuations only weakly

depend on centrality. Also, the J/ψ v3 is smaller relative to the one of charged pions, in

both the pT intervals considered.

The flow of light and strange particles was shown to approximately scale with the

number of constituent quarks (NCQ scaling) at both RHIC and LHC energies [80, 81].
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Figure 6. The inclusive J/ψ v2 and v3 as function of the centrality of the collision, at forward

rapidity, for the low-pT range 0 < pT < 5 GeV/c (left panel) and high-pT range 5 < pT < 20 GeV/c

(right panel). The results are compared to the vn coefficients of midrapidity π± [17] at low and

high-pT corresponding to 1.75 < pT < 2 GeV/c and 6 < pT < 7 GeV/c, respectively. The ratio of

midrapidity π± v2 to inclusive J/ψ v2 is also shown.

This was typically interpreted to arise naturally in hadronization scenarios based on quark

coalescence in which the flow of bound mesons and baryons depends solely on the collective

flow of light and strange quarks (assumed to be identical) and the number of valence

quarks [24, 28]. In the case of charmed hadrons, the NCQ scaling assuming a flavor

independent flow would obviously not work due to the large observed differences between

the flow of light-flavor particles, D and J/ψ mesons. However, this scaling can be extended

by assuming that the much heavier charm quark has a different flow magnitude [25] and

that it can be derived from the flow of the J/ψ via the usual NCQ formula, v
J/ψ
n (p

J/ψ
T ) =

2 · vcn(p
J/ψ
T /2). Then it is straightforward to show that the flow of the D meson can be

constructed as the sum of the flow coefficients for light and charm quarks as

vDn (pDT) = vqn(pqT) + vcn(pcT), (5.1)

where pqT and pcT are the pT of the light and charm quarks, respectively, corresponding

to the D-meson pT, pDT. The light quark flow is obtained by interpolating the measured

charged pions flow using vπn (pπT) = 2 · vqn(pπT/2). Figure 7 shows a comparison of the D-

meson v2 and v3 as a function of pT, derived assuming the above described procedure, to

the D-meson vn measured by the CMS Collaboration [43].

The red dashed curves show fits to the J/ψ vn employing an ad-hoc function, a third

order polynomial at low-pT and a linear function at high-pT, used to extract the flow
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Figure 7. (Color online) Elliptic (left panels) and triangular (right panels) flow of inclusive J/ψ, D

mesons [43] and charged pions as a function of pT for the centrality intervals 0–10% (top), 10–30%

(middle) and 30–50% (bottom). The continuous curves show the calculated D-meson flow based

on different values of the pT fraction carried by the light quark (see text). The red dashed curves

show the fits to the J/ψ vn using ad-hoc functions (see text).

of charm quarks needed to obtain the scaled D-meson flow according to eq. (5.1). The

scaled D-meson flow is found to be very sensitive to the fraction of pT carried by each

of the constituent quarks. In coalescence-like models, constituent quarks must have equal

velocities which leads to a sharing of the D-meson pT proportional to the effective quark

masses. This implies that by far the largest fraction of pT should be carried by the charm

quark. Based on the simplistic and naive approach described here, a pT sharing between

light and charm quarks [25, 82] where the ratio pqT/p
D
T = 0.2 (black curve), is clearly

disfavored by the data. Surprisingly, it was found that a good description of the D-meson

flow measurement, as illustrated by the blue curves in figure 7, is obtained when the light

quark carries a relatively large fraction of the D-meson pT (dark blue and green curves).

The best agreement with the D-meson data of the CMS Collaboration [43] is obtained when

the light-quark pT fraction has a value of pqT/p
D
T = 0.4 (dark blue curve), but a rather good

description of the data is observed also when assuming that the light and charm quarks

share equally the D-meson pT (green curve). Within uncertainties, the scaling seems to

work well for both v2 and v3 over the entire covered pT range and in all centrality intervals.
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6 Conclusion

In summary, the inclusive J/ψ v2 at forward and midrapidity and the J/ψ v3 at forward

rapidity were measured in Pb-Pb collisions at
√
sNN = 5.02 TeV using the scalar product

method. In non-central collisions, the J/ψ v2 values are found to be positive up to the last

interval corresponding to 12 < pT < 20 GeV/c and reach a maximum of approximately

0.1 around a pT of 5 GeV/c. The J/ψ v3 values at forward rapidity reach 0.04 around a

pT of 4 GeV/c and are positive in the 0–50% centrality interval for 2 < pT < 5 GeV/c

with a significance of 5.1σ. The mass hierarchy observed for v2, v2,π > v2,D > v2,J/ψ, seems

to also hold in the case of v3 and will be the subject of more detailed studies with the

Run 3 and Run 4 data. At high pT, the v2 for all particles converge to similar values,

suggesting that path-length dependent effects become dominant there. The measured J/ψ

v3/v2 ratios exhibits the same hierarchy indicating that higher harmonics are damped faster

for charmonia compared to lighter particles. The pT-integrated v2 coefficient in a low and

a high-pT region is in both cases dependent on centrality and reaches a maximum value of

about 0.1, while the v3 has no clear centrality dependence. Both J/ψ pT-integrated v2 and

v3 coefficients, either at low-pT or at high-pT are found to be lower than the ones of charged

pions at a pT similar to the J/ψ average pT. At low pT, the ratio of the charged pions v2 to

those of pT-integrated J/ψ increase from central to peripheral collisions, compatible with

a scenario in which charm quarks thermalize later than the light ones. At high pT, this

ratio is compatible with unity without any statistically significant centrality dependence.

Using an extension of the well known number of constituent quark scaling, the mea-

sured charged pion and J/ψ vn can be used as proxies in order to derive the D-meson v2
and v3 as a combination of the flow of light and charm quarks. Within this procedure,

it is surprising to observe that the measured D-meson v2 and v3 can be described if one

considers that the light and charm quarks share similar fractions of the D-meson pT, which

is counterintuitive in a coalescence approach. The fact that such a simple scaling works

suggests that the flow of charmonia and open charm mesons can be effectively explained

assuming a common underlying charm quark flow in addition to the flow of light quarks.
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S. Bagnasco59, X. Bai107, R. Bailhache68, R. Bala101, A. Balbino30, A. Baldisseri137, M. Ball43,

S. Balouza105, D. Banerjee3, R. Barbera27, L. Barioglio25, G.G. Barnaföldi145, L.S. Barnby94,
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22 Dipartimento di Fisica dell’Università ‘La Sapienza’ and Sezione INFN, Rome, Italy
23 Dipartimento di Fisica dell’Università and Sezione INFN, Cagliari, Italy
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30 Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy
31 Dipartimento di Scienze e Innovazione Tecnologica dell’Università del Piemonte Orientale and
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65 Institute of Physics, Homi Bhabha National Institute, Bhubaneswar, India
66 Institute of Physics of the Czech Academy of Sciences, Prague, Czech Republic
67 Institute of Space Science (ISS), Bucharest, Romania
68 Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
69 Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
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