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Abstract 

The salmon louse, Lepeophtheirus salmonis, is a marine ectoparasite of salmonids in 

the Northern Hemisphere. At present, salmon louse infestation is considered as one of 

the biggest challenges in the salmon farming industry, causing huge economic losses, 

and also considered a threat to wild populations of salmonids. Control of salmon lice 

on farmed salmon has mainly depended on the use of chemotherapeutants. However, 

over the past few years, the salmon louse has developed resistance against most 

available chemicals. As a consequence, non-chemical treatment methods such as 

cleaner fish have been introduced in salmon farming, but the production, health and 

welfare in the cleaner fish have been challenging. It is, therefore, evident that new 

treatment methods are needed to control this parasite. For this purpose, further 

understanding of the biology of this parasite is crucial to identify new principles or 

drug targets. 

  

Lipids are an important source of energy for the growth and reproduction of animals. 

Other functions include their role in cellular signalling and as structural components 

in the cell membranes. In oviparous animals, females deposit lipids to maturing eggs 

to be utilized during embryogenesis and larval development. Transport of lipids 

through the circulation of animals to developing oocytes is facilitated by lipoproteins, 

which consist of lipids and protein components known as apolipoproteins. 

Lipoproteins carry lipids from the site of synthesis or storage to the site of 

utilization/storage while lipoprotein receptors facilitate uptake of lipoproteins. 

Previous studies in vertebrates and some insects showed that maturation of these 

lipoproteins is under the control of another protein known as microsomal triglyceride 

transfer protein (MTP). Female salmon lice produce large numbers of lipid-enriched 

eggs throughout its life span. Similar to other oviparous animals, female louse 

accumulates a large amount of lipids in developing eggs during vitellogenesis. In 

female salmon lice, transport of maternal lipids to growing oocytes of female lice has 
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not been addressed before. Presence of genes encoding MTP, apolipoproteins 

(apoLps) and lipophorin receptor (LpR) may suggest a similar mechanism of lipid 

metabolism/transport as found in other organisms. 

  

Lipoproteins require for extracellular transport of lipids to different tissues of animals 

and assembly, as well as secretion of these lipoproteins depend upon MTP. In 

oviparous species, female supply enough lipids to oocytes to secure successful 

embryogenesis and early larval development. It is likely that female salmon lice use 

similar lipoprotein based mechanism to supply maternal lipids to growing oocytes. 

Therefore it is important to study the role of MTP in the supply of lipids to growing 

oocytes. Three transcript variants of MTP were found in the salmon louse and all 

variants transcribed differently in different tissues of an adult female. Functional 

studies conducted through RNAi induced transcript knock down confirmed that 

female lice produce offspring with very low lipid contents and survival rate of 10-

30% compare to control group animals. The present study suggests that MTP has an 

important function in reproduction and lipid metabolism in salmon louse and may be 

considered in the development of a new anti-parasitic treatment method. 

 

Protein components of lipoproteins, apoLPs, are essential in the transport of lipids to 

different tissues of animals through their interaction with cell surface lipoprotein 

receptors. Similar to other oviparous animals, it is possible that female salmon louse 

use lipoproteins for the transport of maternal lipids to growing oocytes where apoLps 

of lipoproteins bind with lipoprotein receptors and release lipids to the oocytes. In 

salmon lice, two apoLps encoding genes (LsLp1 and LsLp2) were identified. 

Expression of both genes were found in the intestine and sub-cuticular tissue of adult 

female louse. RNAi mediated-knockdown of both genes in female louse confirmed 

significant reduction of transcripts levels. Female lice injected with LsLp1 double-

stranded RNA produced short egg-strings as well as significantly fewer offspring 

compared to control lice. Knockdown of LsLp2 did not show any effect on the 
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eggstring production and numbers of offspring compared with control lice. 

Functional studies were conducted through RNAi suggested that LsLp1 play an 

important role in reproduction of female lice. 

 

Previous studies in different organisms show that members of low-density lipoprotein 

receptor (LDLR) superfamily mediate the endocytosis of lipoproteins. In salmon 

louse genome database, single gene homologous to insect lipophorin receptor was 

identified and named as L. salmonis lipophorin receptor (LsLpR). The LsLpR consists 

of 16 exons and encodes a protein of 952 amino acids. Structural analysis showed 

that the predicted structure of LsLpR contains five functional domains similar to LpR 

of insects. Phylogenetic analysis placed LsLpR together with LpR of insects. The 

highest abundance of LsLR transcripts was found in copepodids and adult females. In 

the adult females, receptor transcripts and proteins were found in the ovary and 

vitellogenic oocytes. While in larvae, the LsLpR transcripts were found in the 

neuronal somata of the brain and in the intestine. Possible functions of LsLpR in 

reproduction and lipid metabolism were investigated through RNA interference. 

Knockdown in larvae decreased the transcription of LsLpR by 44-54%, and 

knockdown of LsLpR in adult female lice reduced the number of offspring with 72% 

compared with control lice. 
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1. Introduction 

In this thesis, genes involved in the metabolism and transport of lipids were 

investigated in Lepeophtheirus salmonis (L. salmonis) (Krøyer, 1837). Lipids are 

essentials for the growth, development and reproduction of animals. The research 

conducted during this study provides information about the essential roles of lipids in 

the reproduction of L. salmonis. This knowledge can be used in the future to control 

the infestation of this economically important ectoparasite in the aquaculture 

industry. In the introduction, the first part describes the parasite itself, host, life cycle 

and economical importance of this parasite in the aquaculture industry. The second 

part describe the lipid transport system in other organisms and how existing 

knowledge help us to understand the lipid metabolism and transport in this parasite. 

1.1 Salmon lice infestation in aquaculture 

The fish farming industry in Norway was started in 1960, and today Norway has the 

largest production of Atlantic salmon globally. The production of Atlantic salmon in 

Norway has grown continuously the last decades, from 630000 metric tons (2006) to 

1233619 tons in 2016
 (https://www.ssb.no, https://www.statista.com/statistics/250262/top-atlantic-salmon-producers-

from-aquaculture/)
. As the salmon farming industry is growing, the direct problems in terms 

of fish diseases as well as welfare and environmental issues have also increased. 

Among these problems, one of the major issues in aquaculture industry is the 

presence of sea lice. Sea lice is a major term which covers more than 500 species 

infecting different fish species, however, Lepeophtheirus salmonis (L. salmonis) and 

different species of Caligus are main ectoparasites of farmed as well as wild Atlantic 

salmon (Salmo salar) (1). In Norway, the infection on salmonids is dominated by L. 

salmonis while Caligus elongatus is found less frequently (2, 3). The presence of lice 

infections on farmed fish results in high economic losses for the aquaculture industry 
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in term of reduced growth, fillet quality, high mortality rate and treatment costs 

(medicinal and/or non-medicinal). In Norway only, the total cost to deal with lice in 

the year of 2014 was estimated at 351 million dollars (4). L. salmonis is commonly 

known as salmon louse due to specificity to infect salmonids. Due to the economic 

importance of L. salmonis as the major ectoparasite in salmonid farming industry of 

Norway, the thesis focused on this parasite. 

  

The salmon louse cause not only huge economic losses in the aquaculture industry 

but is also considered a threat to wild salmonids (5-7). Spread of salmon lice to wild 

populations of salmonids is typically observed in the area of intense salmon farming 

(8, 9) with potential mortality of wild salmonids smolts (10, 11). However, the actual 

effect of lice originate from the farms to wild salmon population is hard to estimate 

(11). The parasitic stages of salmon louse live on the host and feed on skin, mucus 

and blood (12, 13). Due to grazing activity on the skin surface, the salmon louse 

damages the skin and cause haemorrhages typically on the head and back of their host 

(14, 15), which leads to loss of physical and microbial protective function of the 

host’s skin, secondary infections, osmoregulatory stress and also responsible of high 

mortality if remain untreated (14-17). Salmon lice hosts viruses and it has been 

hypothesized that it act as vector of different viral diseases (18, 19). 

 

Salmon lice infestations in the fish farming industry have mainly been controlled 

through medicinal compounds. These medicinal compounds include 

organophosphates, pyrethroids, avermectins, benzoyl urea and disinfectant (hydrogen 

peroxide). However, the effectiveness of most of these medicinal compounds has 

declined due to the development of resistance or reduced sensitivity in lice 

populations against these compounds (20-23). Resistance towards deltamethrin 

(Pyrethroid), azamethiphos (Organophosphate), emamectin benzoate (Avermectin) 

and hydrogen peroxide (disinfectant) has been reported along the Norwegian coast 

(24, 25). Moreover, medicinal compounds used to delouse the farmed salmon also 
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have a negative impact on other non-target species in the sea (26). Due to reduced 

sensitivity, issue of resistance and the negative environmental impact of these 

medicinal compounds, salmonid producers have also implemented alternative 

methods to control the lice infestation at the farms. These alternative methods are 

cleaner fish (27, 28), snorkel cages (29), warm and freshwater treatments (30-32) and 

anti-attachment diets. Cleaner fish are one of the most widely used methods to reduce 

lice abundance at the farm level but their welfare as well effectiveness have been 

questioned and can act as a vector for spreading other diseases (33-35). Snorkel cages 

are another preventive method to control lice where fish are kept deeper in the water 

to avoid infective lice larvae that are found mostly in the top 5 metres of the water 

column (36). However, this treatment method needs extra husbandry inputs. Warm 

and fresh water treatment has been developed to delouse the lice, however, these 

methods are not 100% effective (37) and it is possible that salmon lice may develop 

tolerance to these method (38). In conclusion, there is severe lack of efficient 

methods that also ensure good fish welfare. Medicinal compounds have been used at 

a large level to control the salmon lice; however, effectiveness of medicine itself is a 

challenging and also has negative effects of the environment. Emamectin benzoate 

was introduced in 1999 as the latest medicine to control sea lice and recently 

lufenuron (benzoyl phenyl-urea) introduced and approved in Chile but not in Norway. 

Therefore, it has become essential to look for new medicinal compounds or vaccine 

targets to control sea lice infestation in the aquaculture industry. 

1.2 The salmon louse; host and geographical distribution 

The salmon louse, Lepeophtheirus salmonis (L. salmonis) is a marine ectoparasitic 

copepod on salmonids from the genera Salmo, Oncorhynchus and Salvelinus. Two 

subspecies of L. salmonis are believed to be present in the Atlantic (Lepeophtheirus 

salmonis salmonis) and Pacific (Lepeophtheirus salmonis onchorynchii) oceans 

respectively (39). In the north Atlantic, L. salmonis has three hosts; Atlantic salmon 
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(S. salar) and sea trout (Salmo trutta (Linnaeus, 1758)) and Arctic charr (Salvelinus 

alpinus (Linnaeus, 1758)). In the Pacific Ocean, L. salmonis is commonly found on 

Oncorhynchus species such as rainbow trout, Oncorhynchus mykiss (O. mykiss 

(Walbaum, 1792)), pink salmon (O. gorbuscha (Walbaum, 1792)), chinook salmon 

(Oncorhynchus tshawytscha) sockeye Salmon  (O. nerka) and chum salmon (O. keta 

(Walbaum, 1792)). In the Pacific Ocean L. salmonis has also been reported on non-

salmonids species such as three-spine stickleback (Gasterosteus aculeatus Linnaeus, 

1758) (40). 

1.3 Life cycle, biology and interaction with host 

The life cycle of the salmon louse consists of planktonic and parasitic stages and 

comprises a total of eight stages where each stage is separated by moult (41, 42). The 

planktonic phase consists of two nauplii (I/II) stages, and the free living copepodid 

stage, whereas the parasitic phase consists of parasitic copepodids, two chalimus 

(I/II), two preadults (I/II) and one adult stage (Fig. 1) (42, 43). Development of L. 

salmonis from eggs to the adults is influenced by temperature, and it takes 

approximately 32 days for males and 51 days for females at a water temperature of 

10°C (44-46). The life cycle starts with the hatching of eggs from paired egg-strings 

carried by sexually mature adult females to produce free-swimming, non-parasitic 

nauplius I. Nauplii I larvae hatch into water columns, moult into nauplius II and 

further into infective copepodids. Both naupliar stages and the free-living copepodite 

are non-feeding, and their development and survival depend on the maternally 

deposited lipid and protein reserves within their yolk (47-50). They are passively 

transported with the water currents and can disperse over long distances, up to 100 

km or more (51-53). Planktonic stages are positively phototactic and also have 

limited vertical swimming, enable to position them in the upper layers of water 

during the day and sink deep in the water at night, which may increase the probability 

of these larvae to interact with the host (54, 55). Planktonic stages exhibit positive 
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rheotaxis behaviour which enables them to avoid salinities below 30 ppt in case of 

nauplii, however, copepodids can be found in salinity between 16 to 20 ppt and also 

use the host and non-host semiochemicals in host selection (56-58). Once free living 

copepodids find a suitable host, they attach themselves to their host through second 

antennae, feed on mucus and skin of host and start parasitic life cycle (43, 59). The 

copepodids moults into the first of two immobile chalimus stages. Chalimus (I/II) 

attaches to their host via a frontal filament and obtain nutrition eating skin and mucus 

of the host (47, 60, 61). Chalimus II moult into the first pre-adult stage. Finally, the 

pre-adult II moults into adult stage. Pre-adult and adult stages are motile and 

continuously feed on host mucus, skin and underlying tissues and cause skin lesions 

(62, 63). Female lice are larger than males but develop at a slower rate (46). Once 

males become sexually mature, they locate and engage in a pre-copula with female 

louse and deposit spermatophores on the genital complex followed by guarding of the 

female lice to prevent polyandry (43, 64). But this mate searching, pre-copula and 

guarding does not fully prevent polyandry and evidence of genetic contributions by 

many males in single egg batches appears common (65). An adult female louse can 

inseminate several batches of eggs through already deposited sperms and can produce 

at least eleven pairs of egg-strings during a reproductive lifespan (66). Each egg-

string contains several hundreds of eggs. Fertilisation takes place as the female louse 

release the egg and attaches the eggs externally to a hook. Embryos start to develop 

inside the egg-strings and as the embryos start to mature, the colour of egg-strings 

changes from light to dark. Once the larvae are fully developed, the egg-string 

membrane ruptures and the next generation of nauplii are released starting a new life 

cycle. 
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Fig. 1.Life cycle of salmon louse. The salmon louse life cycle has eight 

developmental stages. These stages consist of two planktonic naupliar stages 

(nau I and nau II), infectious copepodid (cop), two immobile chalimus stages 

(chal I and II), two mobile preadult stages (pread I and II) and finally adult 

stage (ad). The figure is taken from “SLRC Lepeophtheirus salmonis life 

cycle” by Sea Lice Research Centre which is licensed under a Creative 

Commons AttributionShareAlike 4.0 (International License). Scale bar = 

1mm 
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1.4 Brief description of the lice anatomy 

1.4.1 The cuticle and sub-cuticular tissue 

A cuticle is a multifunctional rigid coat which covers the body of animals and makes 

a barrier between the animal and its external environment. Like other arthropods, 

salmon louse also contains cuticle which protects the animal from different 

pathogens, maintain body morphology, provide support to the appendages and 

internal tissues, serves as a site for the osmotic and respiratory exchanges and most 

likely also protect the animal from different pesticides (67). The cuticle is a rigid 

structure, and to grow, the animals must  molt (ecdysis). Moulting is a complex 

process controlled by hormones where the new cuticle is produced underneath the old 

one with a large size so that animal can stretch and increase in length. Production of 

new cuticle takes place at the same time as the degradation of the old cuticle (68). 

Old cuticle detaches from the underlying epidermal layers, and a gap is generated, 

which is filled with moulting fluid consisting of different enzymes such as proteases, 

peptidases, chitinases and glucosidases (68, 69). This fluid degrades the old cuticle 

and release free amino acids. These amino acids are absorbed and reused in building 

proteins along with chitin for the synthesis of the new cuticle. The new cuticle is 

initially convoluted and can be expanded once the old cuticle has been shed. The new 

cuticle undergoes sclerotinization to harden the new cuticle. 

 

The sub-cuticular tissue (Fig. 2) is a type of tissue which is distributed throughout the 

louse under the cuticle and consist of cells of variable shape, packed in an irregular 

pattern along with muscles and different glandular structures (70-72) and most 

recently renamed as sub-epidermal tissue (73). The tissue is believed to have a 

function similar to the liver or fat body and is the site of vitellogenin production (48, 

71). Moreover, gene expression associated with fatty acid metabolism and lipid 

metabolism/transport has also been reported in this tissue (49, 74). 
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Fig. 2. Dorsal view of a sexually mature female louse. The black dotted line 

shows the area where sub-cuticular tissue is situated. A white straight dash-

dotted line shows the position of the gut filled with blood. Asterisks (*) 

represent the positions of the ovaries and hashtags (#) represents the positions 

of the mature vitellogenic oocytes. Scale bar = 1mm 

 

1.4.2 Gut 

The gut (Fig. 2) of salmon louse is a tubular structure, running from the anterior part 

of the cephalothorax to the abdomen, which is composed of cuticle covered foregut, 

hindgut and long undifferentiated midgut (75, 76). Peristaltic movements occur 

continuously in the alimentary canal which moves the gut content forward and 

backwards. The midgut is the largest part of the intestine, and presence of three 

different types of cells has been identified in the epithelium of midgut (75).  The type 

1 cells contain large amounts of zymogen granules which suggest role of these cells 

in the enzyme production similar to hepatopancreatic F-cells of decapods (75, 77). 

The type II cells resemble to type I cells due to the presence of zymogen granules but 

different ultrastructure suggest that these cells perform absorptive function (75). Cells 

type III has some similarity with B-cells of decapods which suggest that these cells 

perform functions in the digestion and absorption. 
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1.4.3 Reproductive Organs 

The ovaries of female lice are paired organs located on each side of the gut, anterior 

in the cephalothorax (Fig. 2). In adult female lice, ovaries continuously produce 

oocytes that are transported through the oviducts to the genital segment (78), where 

maturation of oocytes takes place. Adult female lice store large amounts of proteins 

(48, 71) and lipids (50) (Fig. 3) in the oocytes. Maternally produced lipids stored in 

oocytes during vitellogenesis and are used as a main source of energy during 

embryonic and larval development. A method to stain the lipids in louse was 

developed during this thesis work and results show the presence of both neutral 

(TAG) and phospholipids in the egg-strings and embryos (Fig. 3). Similarly, a 

previous study also shows that egg-string of adult female lice contain TAGs as the 

main neutral lipids whereas phosphatidylcholine and phosphatidylethanolamine as the 

major polar lipids (50). In salmon louse, the maturation of eggs inside eggstrings take 

around ten days at 10 °C, and it depends on the temperature (71). Like the ovaries, 

testes in the male are also paired organs and found on each side of the coalesced eyes 

in the cephalothorax region. Sperm produced in the testes are transported through the 

vas deferens, leading from the anterior part of the testis to the spermatophore sac 

found in the genital complex. The spermatophore sacs are located slightly posterior to 

the genital complex with an opening to the exterior through gonophores (78). A pair 

of cement glands can also be seen in the genital segment with the opening into the 

spermatophore sacs. 
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Fig. 3. Staining of lipids in salmon lice. (A) Adult female louse. Lipid 

reserves in egg-strings stained with Oil red O. (B) Egg-strings were removed 

from the genital segment and stained with Nile red staining for the detection 

of neutral lipids and phospholipids. (C) Localization of lipid droplets inside 

larvae stained with Nile Red staining. Scale bars A = 1mm, B = 250µm, C = 

100µm 

1.5 Lipid Transport 

Lipids are the main source of metabolic energy. Lipids are also essential structural 

component of the cell membrane and other cellular compartments, important 

biological carrier for fat-soluble vitamins and play important roles in cell signaling. 

The three main types of lipids are triglycerides, phospholipids and sterols such as 

cholesterols. Triglycerides and cholesterols are hydrophobic in nature, whereas 

phospholipids are hydrophilic in one end. Animals obtain lipids through two different 

sources, diet or internal production by de novo synthesis pathway. In both cases, 
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lipids must circulate from site of production or storage to site of utilization to ensure 

different cellular processes. The hydrophobic lipids like triglycerides and cholesterols 

cannot pass through the blood or extracellular fluids of animals and use special lipid 

transport vehicles like lipoproteins. 

1.5.1 Lipoproteins and their compositions in different organisms 

Lipoproteins are lipid-protein complexes which consist of a hydrophobic core of 

neutral lipids, surrounded by a single layer of phospholipids, unesterified cholesterol 

and a protein component, the apolipoproteins (Fig. 4). This non-covalent assembly of 

lipids and protein act as a vehicle for the transport of lipids between different tissues 

of animals. 

 

Fig. 4. Structure of a lipoprotein. Lipoproteins are composed of a layer of 

phospholipids with cholesterol and apolipoproteins and a core containing 

different classes of lipids. Abbreviation׃ Triglyceride (TAG), diglyceride 

(DAG), cholesterol ester (CE). 

 

 Lipoproteins can be divided into different classes (Fig. 5) depending on their size and 

density, lipid composition and the presence of apolipoproteins. For example in 

vertebrates, the transport of lipids is taken care of by chylomicron, very low density 

lipoprotein (VLDL), low density lipoprotein (LDL), intermediate density lipoprotein 

(IDL) and high density lipoprotein (HDL) (79). Chylomicrons and VLDL are two 

major triglycerides (TAG) carrier lipoproteins found in vertebrates and supply TAGs 
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to different tissues of animals. Chylomicrons are produced in the intestine and 

transport dietary based TAGs throughout the animal body. The TAGs are released 

from the chylomicrons by the action of lipoprotein lipase (LPL) and convert 

chylomicrons into chylomicron remnants. VLDL is produced in the liver and 

transport endogenous TAGs from liver to different tissues. LDL is involved in the 

transport of cholesterol whereas; HDL plays an important function in the reverse 

cholesterol transport system. High amounts of cholesterol are removed from the 

peripheral tissues and transported back to liver by the action of HDLs (80). 

  

Fig. 5. Different classes of lipoproteins found in vertebrates. Lipoproteins 

differ in diameter, density, protein and lipid compositions. Chylomicrons, 

VLDL (very low density lipoprotein) and IDL (intermediate density 

lipoprotein) are enriched in triglyceride, while the LDL (low density 

lipoprotein) and HDL (high low density lipoprotein) are enriched in 

cholesterol. Density of lipoproteins increases as triglycerides (TAGs) 

percentage reduces and thus, diameter of lipoproteins is inversely proportional 

to the density.  Among all lipoproteins, chylomicron has the lowest density 

and then density gradually increases from VLDL IDL, LDL to HDL. 

 

The protein part of lipoproteins is made up of apolipoproteins. Apolipoproteins 

provide structural support to the lipoprotein, participates in lipoprotein biogenesis, 

and act as ligands for lipoprotein receptors and cofactors for enzymes involved in the 
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metabolism of lipoproteins. All lipoproteins of vertebrates contain apolipoprotein B 

(apoB) except HDLP which contain another apolipoprotein known as apoA-I (81, 

82). 

In insects, lipophorin is the main lipid transporting lipoprotein and distribute lipids 

between different tissues (83-86). In most insect species, diacylglycerol (DAG) is the 

major lipid class transport by lipophorins rather than TAG along with other lipids 

such as PL (phospholipids) and free fatty acids (87-91). In addition to the function as 

neutral lipids and PL carrier, lipophorin can also carry and distribute hydrocarbons 

and carotenoids from the site of synthesis to utilization (85). The protein component 

of insect lipophorin consist of apolipophorins II and I (apoLp-II/I). Both apoLp-II and 

I are produced from a common precursor through post-translational cleavage, where 

the molecular weight of apoLp-I is 240 kDa and apoLp-II being much smaller with a 

molecular weight of 75KDa (92). 

 

In crustaceans, high density lipoprotein/β-glucan binding proteins (HDL-BGBPs) and 

large discoidal lipoproteins (dLPs) are two major lipoproteins involved in the 

transport of lipids (93-95). Results from mass spectroscopy and sequencing revealed 

that both dLp and the HDL-BGBP are products of two proteolytic cleavages of a 

single precursor protein (95). Most lipoproteins of crustaceans belong to high density 

lipoproteins (93, 96). 

 

ApoB found in mammals, insects apoLp-II/I and dLPs of crustaceans all belong to the 

large lipid transfer protein (LLTP) superfamily. However, HDL-BGBP of crustacean 

does not belong to LLTP superfamily. In animals, LLTP protein superfamily has 

important functions in lipid transport, development, immunity, ageing and life span 

regulation (97-104). The other members of this protein family are vitellogenins and 

large subunit of microsomal triglyceride transfer protein (MTP). Vitellogenins are the 

most abundant yolk proteins found in oviparous animals, and are involved in the 

transport of nutrients to developing oocytes, including lipids. Most recent 

phylogenetic analysis of vitellogeneins in crustaceans show that they are closer to the 
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apoB of vertebrates and insects apolipophorin II/I and termed apocrustaceins (105). 

In salmon lice, two vitellogenins genes (LsVit1 and Lsvit2) has been identified (71). 

MTP is a lipid transfer protein which is found in both vertebrates and invertebrates 

and essential for the assembly and secretion of apolipoproteins and vitellogenin (106-

111). 

1.5.2 Lipoprotein Receptors 

Lipoproteins deliver lipids to the target cells through two different mechanisms: via 

endocytosis of complete lipoproteins by members of the low density lipoprotein 

(LDL) receptor (LDLR) family (Fig. 6) or through the action of lipoprotein lipases 

(112-115). This thesis will focus on the tissue uptake of lipids in lice through 

receptor-mediated endocytosis. During the endocytic process; cell surface receptor 

recognize lipoproteins and facilitate entry of lipoproteins into the cells where lipids 

are released by the process of hydrolysis and receptor recycles back to the cell surface 

for a new round of uptake (112-114). During the non-endocytic process, lipoproteins 

supply lipids to the cells by the action of lipoprotein lipases found on the surface of 

the cells. 

 

Members of LDLR family (Fig. 6) play a major role in the metabolism of 

lipoproteins, receptor-mediated endocytosis, and other biological functions (116).  In 

mammals, the LDL receptor binds to cholesterol-rich LDL to regulate cholesterol 

homeostasis, and mutations in this receptor lead to familial hypercholesterolemia 

(117-119). Other members of this superfamily include VLDL, Vg (vitellogenin) and 

Lp (lipophorin) receptors. VLDL receptor takes parts in VLDL-triglyceride 

metabolism and other functions such as cell proliferation, migration and 

differentiation (120). In oviparous animals, Vg and VLDL receptors have an 

important role in oocytes maturation because they transport Vg and VLDL into 

oocytes (121-123). The uptake of lipophorin in different tissues of insects, including 

developing oocytes is carried out by LpR (124-131). Recently, lipophorin receptors 
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have been identified in crustacean shrimp (Pandalopsis japonica) (132). LDLR 

members have five structural domains: A ligand binding domain (LBD), an epidermal 

growth factor (EGF) precursor domain, an O-linked sugar domain (OLSD), a 

transmembrane domain and a cytoplasmic domain (133). The LBD of LDLR family 

consists of ligand binding repeats and each repeat contains six cysteine residues. The 

LBD is essential for the ligand-receptor interaction (134). The second domain of 

LDLR family is called EGF precursor domain which is involved in the acid-

dependent dissociation of ligands. The EGF precursor domain also contain three (A-

C) EGF-precursor repeats and five F/YWXD tetra-peptide motifs important for the 

formation of β–propeller structure (135). The OLSD of LDLR family has unknown 

function and transmembrane domain anchors the receptor in the plasma membrane 

(113). The cytoplasmic domain is required for the clathrin-mediated internalization of 

receptor-ligand complex. 

 

Fig. 6. Schematic comparison of members of low density lipoprotein 

receptor (LDLR) family in different organisms. All members consist of 

five identical structural domains. Vertebrates VLDLR/VgR contain eight 

ligand binding repeats in ligand binding domain (LBD). LDLR of vertebrates 

has seven repeats in LBD. Insects have two different LpRs based on the 

numbers of Ligand binding repeats. One type of LpR has seven whereas other 

has eights ligand binding repeats in LBD. Insect has longer VgR compared to 

vertebrates VgR due to the presence of two two LBD and EGF-precursor 

domains where first LBD contain six repeats and second LBD has eight 

ligand binding repeats. 
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The mechanism of lipid transport has been studied extensively in vertebrates and 

insects. In crustaceans, several lipoproteins has been found, however, it is not fully 

clear how they deliver lipids to different tissues of these animals. This is also the case 

in salmon louse where lipid transport system has not yet been studied in detail. 

1.5.3 Brief description of lipid transport system in vertebrates 

In vertebrates, different types of lipoproteins carry and distribute lipids through the 

animal body. For example, mammals have two TAG carry lipoproteins: apoB-48 

containing chylomicrons produce in the intestine and deliver exogenous TAGs along 

with cholesterol, whereas apoB-100 containing VLDLs produce in the liver and 

transport endogenous TAGs and cholesterol (Fig. 7). Both chylomicrons and VLDLs 

pass through the circulation, hydrolyzed mainly by lipoprotein lipases found on the 

luminal surface of the endothelial cells and release fatty acids to peripheral tissues 

(Fig. 7) (136). Once lipids have been released, the chylomicrons are converted into 

chylomicron remnants whereas VLDL is converted into IDL and further to LDL. 

Chylomicron remnants and LDL particles become enriched in cholesteryl ester (CE) 

and are taken up by the liver or peripheral tissues through the LDL receptor (112, 

113, 137-139). The LDLR interact with LDL through apoB while VLDL and IDL 

bind with LDLR via the apoE (140, 141). In this process of lipid delivery to the cells 

by LDLR, the degradation of apoB along with lipid component take place in the 

lysosomes while apoE containing remnants are recycled back (142, 143). 

Furthermore, during conversions of these lipoproteins, HDL act as donor or acceptor 

for exchangeable apolipoproteins and HDL also recycle the cholesterol back from the 

peripheral tissues to the liver through a procedure known as reverse cholesterol 

transport (144-147). Assembly and secretion of chylomicrons from the intestine and 

VLDL from the liver need large subunit of microsomal triglyceride transfer protein 

(MTP) (107, 148). MTP does not act as a vehicle for lipid transport and thus restrict 

to the intracellular compartment of the secretory pathway where it promotes the 

secretion of lipoproteins. 
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Fig. 7. Overview of the lipid transport system in the mammals. Lipids 

from the intestine and liver are transported in the extracellular fluids to the 

peripheral tissues through TAG-enriched lipoproteins. Assembly and 

secretion of these TAG-enriched lipoproteins from intestine and liver depend 

upon another protein known as MTP. 

 

1.5.4 Brief description of lipid transport system in insect 

Insects like other animals obtain lipids either through external dietary sources or 

synthesize de novo. The midgut of insects is the main site of lipid digestion (149-

152). In insects, the main lipid carrying lipoproteins known as lipophorins produce 

and secrete from the fat body into the hemolymph to transport lipids from midgut 

(153, 154) to different tissues such as somatic tissues, ovaries and developing oocytes 

either for storage or utilization (Fig. 8) (84, 87, 90, 155, 156). Lipophorins can be of 

high or low densities depending on their lipid and protein compositions (86, 157). 
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High-density lipophorin (HDLp) is composed of two apolipoproteins: apolipoprotein 

I (apoLp-I) and apolipoprotein II (apoLp-II) with a lipid content of 30-50% (86, 92, 

158). Low-density lipophorin (LDLp) has higher lipid content (up to 62%) with 

several molecules of a third apolipoprotein, apoLp-III in addition to apoLp-II/I (155, 

159, 160). The production of LDLp occurs when large amounts of lipids need to be 

mobilized (86, 155). 

 

Lipophorin shuttles lipids different tissues with or without the use of receptor 

mediated mechanisms and also without being accumulated or degraded inside the 

cells (115, 131, 161, 162). However, accumulation of lipophorin has been observed 

inside yolk of some insect species (163, 164). In the fat body cells of insects, 

lipophorin (HDLp) supply lipids through receptor mediated endocytosis (153, 162, 

165, 166). On the other hand, the supply of lipids to muscle cells through lipophorin 

takes place without the lipophorin receptor. During insect flight, muscle cells need 

large amounts of lipids and LDLp supply a large number of stored lipids from the fat 

body to muscle cells. For high demands of lipids to muscle cells, adipokinetic 

hormone (AKH) releases large numbers of DAGs from the fat body cells (167). The 

released DAGs are then taken up by the extracellular HDLps and convert into LDLp 

(168). LDLp reaches to the muscle cells, release fatty acids by the action of 

lipoprotein lipase and converts into HDLp (115, 169-171). The process of lipid 

uptake from the gut or fat body to lipophorin is not well documented, but existence 

and activity of another lipoprotein, lipid transfer particle (LTP) may explain this 

lipidation process (172, 173). 
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Fig. 8. The lipid transport system in an insect. Lipophorin obtains lipids 

from the midgut, circulate them through the hemolymph and so that they 

reach to different organs for the supply of lipids. 

 

During oogenesis, females deposit large amounts of lipids to the yolk as a main 

source of energy during embryo and larval development. The capacity of the oocytes 

to synthesize fatty acids is limited, and therefore obtains most of their lipids from 

maternal gut or fat body cells (86, 174, 175). In insects, vitellogenin facilitates about  

8-15% of total supply of maternal lipids to oocytes (86). Thus major supply of 

maternal lipids to oocytes is facilitated by lipophorin either in the form of HDLp or 

LDLp depend upon the insect species (86, 175, 176). HDLp supply lipids to 

developing oocytes through receptor mediated endocytosis and specific receptor of 

HDLp has been found in several insect species (124, 125, 177-179). Although HDLp 

has effective role in the supply of lipids to oocytes, but contribution in total supply of 

oocytes lipids is lesser than LDLp, however, LDLP is not taken up by oocytes 
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through receptor  mediated endocytosis mechanism (175). Lipoprotein lipases (LPL) 

hydrolyze neutral lipids of both HDLp and LDLp, but LPL has a high affinity 

towards LDLp, and therefore LDLp is consider more effective than HDLp in the 

delivery of lipids to oocytes (175, 180). LDLp is not produced in all insect species, 

and therefore changes in the density of HDLp have been observed. For example, in A. 

aegypti high demand of oocytes lipids is fulfilled through the increased levels of 

HDLp (179, 181, 182). HDLp which is taken up by oocyte through receptor mediated 

endocytosis, release lipids inside oocytes and recycle back for another round (179, 

183). 
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2. Aims of the study 

The salmon louse Lepeophtheirus salmonis is a marine ectoparasitic copepod of 

salmonid fish that causes significant economic losses in the salmon farming industry 

and represent a threat to wild populations of salmonids. Control of salmon lice at the 

farm level has historically mainly relied on a few available chemical compounds. 

Recently reduced sensitivity towards most of these chemical compounds has caused 

serious problems in management of this parasite. Therefore, there is a need to 

accumulate more information about the biology of this parasite to identify new 

methods and principles for the control of lice. Lipids are important for the growth and 

reproduction of lice. Lipids are crucial components of cell membranes, essential 

energy source and play an important role during cell signalling. Female lice also 

accumulate large amounts of lipids in oocytes where it is utilized for embryogenesis 

and larval development. However, the transport of lice lipids to various tissues, 

particularly oocytes, has not been studied in detail. Lack of accumulation of lipids in 

oocytes may cause arrest in the process of embryogenesis which ultimately leads to a 

broken lifecycle. Therefore, identification of key components of lipid metabolism and 

study transport of lipids in lice especially to oocytes, may provide insight that can be 

used in future development of means to control this parasite in the aquaculture 

industry. 

Aims of the thesis are׃ 

 To characterize the function of microsomal triglyceride transfer protein (MTP), as an 

essential protein for the assembly of lipoprotein and lipid metabolism  

 To identify the apolipoproteins in the salmon louse and characterise function in egg-

development through knock-down studies. 
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 To characterise the lipoprotein binding receptor (LsLpR) transcript and protein 

expression patterns and investigate its role through RNAi in the reproduction of 

female salmon louse. 
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3. Abstract of the Papers 

3.1 Microsomal triglyceride transfer protein (MTP) in the 

salmon louse 

Microsomal triglyceride transfer protein (MTP) is an endoplasmic reticulum resident 

protein which plays an important role in lipid metabolism and transport. MTP has 

been investigated mostly in mammals and in some egg-laying animals, however no 

studies reported on crustaceans. The aim of this study was to investigate the 

importance of L. salmonis MTP (LsMTP) in the reproduction and lipid metabolism of 

adult female lice. 

 

During reproduction, adult female salmon louse (Lepeophtheirus salmonis) produces 

a large number of eggs with high lipid contents. Lipids deposit into oocytes is used as 

an source of energy and lipids for embryos and larvae. Like in other oviparous 

organisms (86, 184, 185), female lice are likely to transport these lipids through the 

hemolymph using lipoproteins. Current studies suggest that assembly and secretions 

of lipoproteins are under the influence of intracellular protein known as MTP (186). 

In salmon lice, we identified three L. salmonis MTP (LsMTP) transcript variants with 

a capacity to encode two different protein isoforms. Homology modelling of LsMTP 

predicted three β-sheets (N, C, and A) and a central helical domain as found in MTPs 

from other species (107, 187). In adult female lice, differential transcription of 

LsMTPs was found in the sub-cuticular tissues, the intestine, the ovary, and in the 

maturing eggs. The function of MTP in the reproduction and lipid metabolism of 

female lice was studied through RNA interference (RNAi). RNAi-mediated 

knockdown of LsMTP in lice shows that females produced offsprings with 

significantly less neutral lipids in their yolk and with only 10-30% survival of 

copepodids. These results suggest that LsMTP has an important role in the 
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reproduction and lipid metabolism of adult female L. salmonis and can be used as a 

target to control this important, challenging parasite in the aquaculture industry. 

3.2 Characterization of lipophorin receptor at the 

molecular level in the female salmon lice  

The aim of this study was to characterize the lipoprotein binding receptor (LsLpR) in 

the salmon louse at the molecular level and investigate its role through RNAi in the 

reproduction of female salmon louse. 

 

In oviparous animals, the sexually mature female transport maternal lipids to 

developing eggs, where lipoprotein receptor found on the surface of oocytes play a 

vital role in the uptake of these lipids (129, 131). In female salmon lice, most 

probably similar mechanism exists; however, it has not been reported before. In this 

study, a full-length lipoprotein receptor, named as L. salmonis lipophorin receptor 

(LsLpR) was identified from the genome. RACE, cDNA sequencing and RT-PCR 

analysis predicted the gene extends over 16 exons with transcript length of 4007 

nucleotides and predicted ORF of 952 amino acids.  A protein structural analysis 

showed five functional domains, very similar to LpRs from insects and decapods 

(132, 133, 188). Phylogenetic analysis grouped the LsLpR with LpRs from decapods 

and insects. Expression analysis at various stages of lice confirmed that the highest 

expression of LsLpR transcripts were found in the copepodids and adult female lice. 

In adult females, both LsLpR transcript and protein were found in the ovary and 

vitellogenic oocytes. In larvae, LsLpR transcripts were found in the neuronal somata 

of the brain and the intestine. Lipid staining, Oil Red O confirmed the storage of 

neutral lipids in vitellogenic oocytes and ovaries of adult females and the yolk of 

larvae. The RNA interference (RNAi) was performed to confirm the function of 

LsLpR in reproduction and lipid metabolism of L. Salmonis. In larvae knockdown of 
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LsLpR, transcript levels were decreased by approximately 50% while silencing of 

LsLpR in female lice produced 72% less off spring when compared to control groups. 

3.3 RNAi-mediated silencing of apolipoproteins and their 

role in the reproduction of female lice 

In salmon lice, the role of apolipoproteins in the lipid transport and during 

reproduction has never been described before. The aim of this study was to identify 

apolipoproteins and uncover their function in the supply of lipids to oocytes during 

their development inside the female genital segment. 

  

Apolipoprotein associated lipoproteins facilitate the transport of lipids in  animals 

(79). In oviparous organisms such as insects, the role of apolipoprotein in the 

transport of lipids to reproductive organs has been described in detail (90, 109, 156). 

In salmon lice, the female likely uses similar apolipoproteins as found in other 

oviparous animals for the supply of lipids, particularly to oocytes.  In the present 

study, two apolipoprotein encoding genes (LsLp1 and LsLp2) were identified from 

the salmon lice genome and their roles in the reproduction of female lice were 

studied. RT-qPCR analysis at various stages of lice confirmed the expression of 

LsLp1 and LsLp2 throughout all tested stages, particularly high expression levels in 

adult stages. In-situ hybridization and RT-PCR confirmed the transcription of LsLp1 

and LsLp2 in sub-cuticular tissue and intestine of adult female lice. Silencing of 

LsLp1 and LsLp2 in female lice using RNA interference resulted in reduced 

expression of both transcripts. Knockdown of LsLp1 in female lice produced 

significantly less offspring as compared to control lice, whereas knockdown of LsLp2 

in female lice caused no reduction in the number of offspring. These results suggest 

that LsLp1 has an important role in female reproduction. 
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4. General Discussion 

In animals, lipids (triglycerides, phospholipids and cholesterol) function as an energy 

reserve, provide structural support to cell membranes and serve as a precursor for 

hormones. Lipoproteins are lipid carrying vehicles that mediate transport of dietary 

and endogenous lipids between different tissues in animals. Lipoproteins are made up 

of different classes of lipids and protein components known as apolipoproteins.  

Apolipoproteins belong to the LLTP superfamily and includes apolipophorin of 

insects, vitellogenins of vertebrates and invertebrates, apolipocrustacein and 

mammalian apolipoprotein B (apoB) (86, 189-193). Apolipoproteins are not only 

involved in the development and reproduction of animals (98, 99, 194), but also 

performs other functions related to immunity, ageing and regulation of lifespan (100, 

103, 195, 196). Another member of this LLTP superfamily is known as MTP and 

according to sequence and structural similarities; its role in the biogenesis of 

lipoproteins has been described in several vertebrates and invertebrates species (109, 

111, 197-199). 

  

Genes involve in the biogenesis of lipoproteins such as MTP (Paper I), 

apolipoproteins (Paper III) and ligand to apolipoprotein, lipophorin receptor (Paper 

II) have been well studied in different organisms. However, the information in 

crustaceans is limited, particularly their importance related to reproduction and 

embryogenesis. Here, these genes were characterized at the molecular level and their 

importance in the reproduction of female salmon lice was assessed through RNAi 

knock down studies. 
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4.1 Microsonal triglyceride transfer protein (MTP) in the 

salmon lice 

A member of LLTP superfamily, MTP (Paper I) involved in lipid metabolism by 

performing its role in the biosynthesis of lipoproteins was identified in the genome of 

salmon lice. 

4.1.1 Sequence and structural analysis of MTP 

Three transcript variants of MTP were identified in salmon lice and all contain 

variable sizes of 5’ UTRs (Fig. 1, Paper 1). Two of the three transcripts encoded 

identical proteins of same lengths (819 amino acids) while the third transcript 

encodes a slightly larger protein (827 amino acids) harbouring a different N-terminal 

signal peptide. Splice variants of MTP have been reported in other organisms like 

mice and human (200-203). Mice contain two isoforms, although with similar lipid 

transfer activity (200, 201). A recent study in human confirmed the presence of two 

splice variants known as MTP-B and MTP-C (203). In MTP, the process of alternate 

splicing plays important function to regulate cellular levels of MTP through the 

introduction of distinct promoter regions and unique 5’ UTRs. Moreover, these 

promoter regions and unique 5’ UTRs contain elements that change the translational 

efficiency and thus enable the cell to optimize the activity of MTP. The amino acid 

sequence of salmon louse MTP has relatively little similarity (approximately 22% 

identity) to MTP orthologues in other species. Similarly, also other organisms have 

large variation in MTP at the sequence level. For example MTP of invertebrates and 

vertebrates have less than 25% primary sequence identity, however, the secondary 

and tertiary structures of the MTP orthologues apparently remain conserved 

throughout evolution (187). Analysis of predicted secondary and tertiary structures 

shows that MTP of the salmon louse has similar domain composition (N-terminal β-

sheet, central helical domain, C and A β-sheets) to what have been predicted in MTPs 

from other species (Fig. 2 and Supplementary Fig. 1, Paper I). 
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4.1.2 Role of MTP in the biosynthesis of lipoproteins 

MTP orthologues have been found in many organisms; particularly in vertebrates 

(109, 111, 199, 204-207) and their role in the assembly and secretion of lipoproteins 

have been acknowledged. In mammals, apoB containing lipoproteins are produced in 

the intestine (chylomicrons) and liver (VLDL) where MTP control synthesis and 

secretion of these lipoproteins. 

  

In oviparous animals, the role of MTP has been confirmed in the production of 

vitellogenins and lipophorins. In Xenopus laevis, MTP is involved in the biogenesis 

of vitellogenin (197). In Drosophila, MTP is essential for the lipidation of the fat 

body originating lipoprotein called lipophorin (109) which transport phospholipids as 

a major lipid class rather than triglycerides (199, 208). The lipidation of lipophorin in 

Drosophila occurs in two steps. Initially, lipophorin is produced and secreted from 

the fat body as a phospholipid-rich particle and its lipidation is dependent of MTP 

whereas, in the second step phospholipid-rich lipophorin are recruited to the gut and 

further loaded with sterols and diacylglycerols in the presence of another lipid 

carrying particle known as large lipid transfer particle (109). Defecation suppressor of 

Clk (DSC-4) is a homolog of MTP found in the intestine of nematode, 

Caenorhabditis elegans (C. elegans) (111). In worms, the intestine is not only a 

digestive organ but also act as a secretory organ for yolk proteins, vitellogenins. In C. 

elegans, mutations and RNAi of dsc-4 suppress the germline delay and egg-laying 

but no change has been observed in the rate of postembryonic development. 

 

In salmon lice, MTP transcripts were found in sub-cuticular tissue, intestine, oocytes 

and ovaries (Fig. 3, Paper I). Sub-cuticular tissue of salmon lice is functionally 

similar to the liver (74) and previous studies showed that production of yolk 

precursors such as vitellogenins and yolk associated protein (LsYAP) occur in this 
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tissue (48, 71). Recently we have shown that two apolipoproteins (Fig.3, Paper 3) in 

salmon lice are also transcribed in the sub-cuticular tissue and in the intestine. 

Production of MTP in the apolipoprotein producing tissues has been described 

previously in mammals and oviparous animals. In salmon lice presence of 

apolipoproteins and MTP transcripts in sub-cuticular tissue and intestine may suggest 

that apolipoproteins based lipid transport system exist in these tissues and produces 

lipoproteins for delivery of lipids to various tissues in the lice. 

4.1.3 Knockdown of MTP reduce egg production and larval 

survival 

Salmon louse obtains all nutrients by feeding on its host. In salmon louse, the main 

site of lipid storage has been observed in the developing eggs of female (Fig. 3B) and 

yolk of larvae (Fig. 3C). Previous studies in salmon lice showed that the main lipids 

in eggs are triacylglycerol (TAG) and cholesterol followed by polar lipids such as 

phosphatidylcholine and phosphatidylethanolamine (209). Lipids inside the 

developing eggs of lice are deposited during the process of vitellogenesis. In salmon 

lice, delivery of lipids from intestine to developing oocytes is not documented, but 

like other animals it is believed that lipoproteins are involved in the transport of lipids 

from intestine to other tissues including eggs of lice. In intestine of mammals, 

lipidation and secretion of chylomicrons depend upon MTP. 

  

Several studies confirm the role of MTP in the lipoprotein biogenesis; additionally, a 

few studies have demonstrated its essential function in the transport of lipids to 

developing embryos. For example, homozygous knockout of the MTP gene in mice is 

lethal to the embryo (210). In MTP-knockout mice, embryonic lethality is caused by 

the lack of lipoproteins in the yolk sac (210) because of loss of lipids supply to 

developing embryos. In C. elegans, disruption of dsc-4 through RNAi or mutation 

reduces germline delay and egg-laying (111). Here in salmon lice, MTP transcript 

was knocked down in both preadult and adult female lice and effects were studied on 
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the import of lipids to the developing oocytes and further in embryogenesis and larval 

development. Knockdown of MTP in preadult female resulted in egg-strings of 

shorter length (Paper 1, supplementary Fig. 2) and 90% less hatched embryos as 

surviving embryos compared to female from control group. Results of this 

experiment confirmed that MTP does play a critical role in embryogenesis egg 

production, most probably by supplying lipids, the main energy source during 

embryogenesis and larval development. The second RNAi experiment, which was 

carried out in newly molted adult female lice confirmed that knock down of MTP 

results in the production of larvae with drastically lower levels of lipids (Paper 1, 

Fig. 6) compared to animals in the control group. Here, knockdown studies of MTP 

confirm its importance in the female salmon lice reproduction and lipid metabolism, 

however, the role of MTP in the biogenesis of lipoproteins was not studied. For this 

purpose, further information on types of lipoproteins, lipid composition and 

associated apolipoproteins in the salmon lice is needed. 

4.2 Apolipoproteins of salmon lice 

Apolipoproteins bind to lipids to form lipoproteins and are involved in the transport 

of lipids through circulation to various tissues of animals. In salmon lice 

aplolipoproteins were identified and their role in the reproduction of female lice was 

studied. 

4.2.1 Sequence and domain organization of apolipoproteins  

The domain analysis (Fig. 8A Paper III) of apolipoproteins confirms the presence of 

N-terminal LpD_N domain (SM00638), DUF1943 (SM001169), DUF1081 

(pfam06448). In addition to these described domains, many members of LLTP 

superfamily does contain a single Von Willebrand domain (vWD) which is found 

near the C terminus. Here in salmon lice two cDNA sequences (Fig. 9B) encoding 

apolipoprotein 1 (LsLp1) and apolipoprotein 2 (LsLp2) were identified based on 
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sequence and domains structural similarities. The genomic organization revealed that 

LsLp1 gene has 11 exons and span nearly 14 kbp, whereas LsLp2 gene is composed 

of 7 exons and span nearly 12 kbp (Fig. 9B). Further analysis revealed that both 

LsLp1 and LsLp2 reside on the same super contig of the L. salmonis genome with a 

distance between them of 16 kb. The amino acid sequences of both salmon lice 

apolipoproteins have 56 to 61% similarities with apolipoproteins from other species. 

Domain organization revealed that LsLp1 contain all domains except the C-terminal 

vW domain whereas LsLp2 does contain only vW domain.  

 

Fig. 9. Members of LLTP superfamily and organization of two 

apolipoproteins of L. salmonis. Domain organization of apolipoproteins, 

vitellogenin and MTP.  (B) Exon-intron organization of LsLp1 and LsLp2. 

LsLp1 consists of 11 exons, whereas, LsLp2 has seven exons and six introns. 

Boxes represent the exons and protein-coding region of each gene is shown as 

black. The white box in the predicted LsLp2 transcript represents the 5’-UTR. 

The domains from the L. salmonis apolipoproteins were predicted by the 

SMART algorithm and CD database, and further compared with other 

members of LLTP superfamily.  
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The presence of single vW domain in the LsLp2 and three domains (LpD_N domain, 

DUF1943 and DUF1081) in LsLp1 was suggesting perhaps both proteins are 

translated from the same single gene. Multiple RACE experiments in combination 

with PCR attempts were carried out to combine both LsLp1 and LsLp2 transcripts. 

However, initial RACE and PCR experiments did not provide any clue which 

supports that LsLp1 and LsLp2 encoded by one gene. Moreover, expression levels of 

both LsLp1 and LsLp2 were evaluated in different developmental stages of lice by 

using qRT-PCR analysis. Results showed that LsLp1 has relatively higher expression 

in all the developmental stages of lice as compared to LsLp2 (Fig. 2, Paper III). 

However, localization of both LsLp1 and LsLp2 transcripts were found in sub-

cuticular tissue and intestine (Fig. 3, Paper III) of female lice. The functions of both 

transcripts were evaluated through knock down of both cDNA in RNAi experiments 

and results showed that LsLp1 knocked down animals have short egg-strings and 

produce lower numbers of copepodids as compared to control animals. While knock 

downed of LsLp2 in female louse fail to provide any abnormal phenotype such as 

short egg-strings or reduce number of offspring compared with control female lice. 

On the base of results collected from expression and functional studies concluded that 

LsLp1 and LsLp2 are two independent transcripts. 

4.2.2 Expression of apolipoproteins in sub-cuticular tissue and 

intestine of salmon lice 

Lipoproteins distribute lipids from the site of synthesis or storage to different tissues 

of animals. As mentioned previously, lipoproteins are complexes of different classes 

of lipids and proteins called apolipoproteins. Apolipoproteins not only direct these 

lipoproteins, but also provide essential structural support, which means that in the 

absence of these apoproteins, the lipidation of these particles does not take place. 

Relevant examples like mammalian liver/ intestine originated apoB (211) and insects 

fat body based apoLp-II/apoLp-I are involved in the secretion and transport of 

lipoproteins between different tissues (85, 212, 213). In crustaceans, two major 

lipoproteins, high density lipoprotein/β-glucan binding proteins (HDL-BGBPs) and 
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large discoidal lipoproteins (dLPs) have been found. The expression of HDL-BGBPs 

has been found in hepatopancreas, intestine and muscles (214, 215). In case of dLP, 

tissue specific expression has not been studied yet, however it is suggested that dLP 

would has the same expression sites since dLP is derived from the same precursor 

together with HDL-BGBP (93). In salmon lice, the expression of both LsLp1and 

LsLp2 was found in sub-cuticular tissue and intestine of adult female (Paper III, 

Figure 3A-3C). Antibodies against LsLp1and LsLp2 were not available and 

therefore it is unclear if proteins are also expressed in the same tissues of female lice. 

However, mRNA expression studies suggested that LsLp1and LsLp2 both produced 

in intestine and sub-cuticular tissues and perhaps secrete into the hemolymph for the 

supply of different classes of lipids to various tissues of adult female lice. 

4.2.3 Knock down of LsLp1 reduces reproductive capacity of 

female lice  

Some functional studies in insects have suggested that lipophorin have a role in the 

lipid metabolism and embryo development. In the tsetse fly, knockdown of apoII/I 

causes low levels of lipids in the hemolymph, delay in the development of oocytes 

and extended larval gestation (216). In Drosophila, the blockage of Lp (lipid 

transporter) reduces levels of lipids in the hemolymph whereas, levels of lipids 

increases in the midgut (109). In Anopheles, silencing of the apolipophorin precursor 

known as retinoid and fatty-acid binding glycoprotein (RFABG) showed its 

involvement in egg development and survival of motile zygotes (ookinetes) (217). 

Several lipoproteins have been found in crustaceans. However, unlike insects and 

vertebrates, functional studies of lipoproteins in crustaceans have not been available 

in detail. Similarly in salmon lice, functional studies of lipoproteins have not been 

documented before.  Here we identified two apolipoprotein homologs in salmon lice 

and described their role in the reproduction of the female lice through RNAi. Two 

genes, LsLp1and LsLp2 were identified as apolipoproteins. RNAi based knockdown 

confirmed that females injected with LsLp1 dsRNA alone or in combination with 
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LsLp2, produce short egg-strings compared to control groups (Paper 3, Figure 7). 

Similarly, numbers of copepodids produced from eggstrings of female injected with 

LsLp1 dsRNA were also significantly reduced (Paper 3, Figure 7). These results 

suggest that adult female lice need LsLp1 for egg production. Furthermore during 

RNAi experiments it has also been observed that complete stop in the development of 

eggs or embryos were not achieved. Therefore, it is important to conduct more 

functional studies in female lice to check the protein levels of LsLp1during it’s 

silencing. It is possible that during the period of  LsLp1 knock downed, the levels of 

mRNA reduced but protein levels were not reduce to that level where complete stop 

in the development of eggs or embryos can be achieved. Moreover in salmon lice, it 

is possible that other lipoproteins may also be involved in the transport of lipids along 

with LsLp1. In insects, both lipophorin and  vitellogenin supply maternal lipids to the 

insect eggs (86). In female salmon lice, viellogenins and vitellogenins like proteins 

(71) have been found and it is possibility that they may be involved in the supply of 

maternal lipids to oocytes for successful embryogenesis and larval development.  

4.3 Lipoprotein receptor (LpR) in salmon lice 

Lipoprotein receptors (Fig. 6) are well characterized evolutionarily ancient cell 

surface proteins involved in the recognition and internalization of lipoproteins for the 

supply of lipids to different tissues of animals. In mammals, the LDL receptor is 

required for cholesterol-rich LDL endocytosis (112-114). In egg-laying vertebrates 

such as chicken; VLDL/Vg receptor is involved in the uptake of VLDL/Vg during 

oocytes development and thus recognized as essential for female reproduction. (218). 

In insects, lipophorin is the main lipid transfer particle in the hemolymp, and its 

internalization is facilitated by LpR through receptor-mediated endocytosis (125-131, 

219). 
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4.3.1 Sequence and structural analysis of LpR 

In salmon lice, a single transcript of LpR was identified based on sequence and 

structural identities (Fig. 1, Paper II). The LpR of salmon lice (LsLpR) shared 46% 

identity with LpR of shrimp, 48–53% identity with LpR of insects, and slightly lower 

levels of similarity with VLDLRs of oviparous vertebrates and LDLRs of mammals. 

A typical LpR consists of five functional domains, ligand binding domain, epidermal 

growth factor precursor homologous domain, O-linked sugar domain, a 

transmembrane domain and a cytoplasmic domain. In salmon lice, domain 

organization analysis confirmed the presence of all five functional domains (Fig. 1, 

Paper II). Evolutionary relationship analysis with other lipoprotein receptors showed 

that LpR of salmon lice is closely related to decapods and insect LpRs (Fig. 2, Paper 

II). These results suggest that LpR of salmon lice has the same function in the lipid 

metabolism as found in other organisms and therefore considered as a critical 

component in the lice during reproduction and involved in the accumulation of lipids 

inside oocytes during their development inside the genital segment. 

4.3.2 Expression and functional analysis of LsLpR in larvae and 

female lice 

LpR has been found in different species of insects and its function in the uptake and 

accumulation of lipids in oocytes inside ovaries (86, 130, 131) is well established. 

Other than ovaries, LpR has also been found in different somatic tissues of adults and 

in larvae of insects (124, 128, 131, 219-221). In salmon lice, one gene similar to LpR 

of insects and LDLR of vertebrates was found. Gene expression analysis in different 

stages of salmon lice showed highest LsLpR transcript levels in larvae and in the adult 

female relative to chalimus I (Paper 2, Figure 3). Furthermore, in situ hybridization 

confirmed the presence of LpR transcripts in the ovary and vitellogenized eggs of 

adult female, whereas in larvae, the LpR was found in the neuronal somata of brain 

and in the intestine (Paper 2, Figure 5A-5E). At protein level, the existence of 
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LsLpR was detected in the ovaries and maturing oocytes of female lice (Paper 2, 

Figure 5F and 5G). The expression of LsLpR in ovaries and vitellogenized eggs of 

adult female and in somatic tissues of larvae of salmon louse suggest its important 

function in the recognition and internalization of lipid carrying particles like 

lipoproteins. 

  

To evaluate the function of this receptor in salmon lice, RNAi experiments were 

conducted in larvae (Paper 2, Figure 6) and in female lice (Paper 2, Figure 7). 

RNAi experiments in larvae showed no visible defects in development and in the 

swimming performance of LsLpR dsRNA treated animals. Moreover, LsLpR dsRNA 

treated larvae consumed same levels of yolk lipids as found in larvae of control 

groups (Paper 2, Figure 6B-D). Larvae of salmon lice are lecithotrophic (43) and 

depend upon maternal yolk sac reserves as a nutrition during their development until 

they find suitable host. The presence of LsLpR in intestine of larvae suggested that 

receptor provides binding site for lipoprotein which obtain lipids from the yolk and 

circulate them to different tissue of larvae for development. In larvae of salmon lice, 

it was speculated that RNAi of LsLpR may stop the development of larvae due to 

complete or partial loss of lipids mobilization from the yolk to different tissues. 

However, this were not the results from RNAi experiments in larvae, maybe because 

the degree of knock downed achieved for LsLpR were not sufficient to reduce or 

disrupt the lipid transport from the yolk to other tissues of larvae. Secondly, even 

though the mRNA levels were reduced, it is possible that protein levels were still at 

about the same levels as were before the RNAi experiment. Similar results were 

found in the knock down of tsetse fly LpR, where receptor was significantly knocked 

down without any changes in the lipid levels of hemolymph. 

  

In female lice, RNAi experiments were conducted in preadult II stage and 

experiments were terminated when female lice had become adult and produced 

second pair or egg-strings. In all RNAi experiments, no significant changes in the 

transcript levels of LsLpR were observed (Paper 2, Figure 7A). Moreover, in all 
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experiments, females produced normal egg-strings and normal development of all 

offspring to copepodids were also found (Paper 2, Table 2). But, in one out of three 

RNAi experiment the number of copepodids that hatched from the egg-strings of 

LsLpR dsRNA treated female lice was lower than the control group lice. In insects, 

similar RNAi results were found in S. ricini (221). Here female pupae of S. ricini 

were injected with LpR dsRNA, but did not result in considerable changes in the level 

of mRNA compared to control animals and ovary development and egg production 

were found to be normal. In another LpR RNAi experiment conducted in B. 

germanica, the levels of Lp were reduced in the ovary. However, no changes in 

ovarian development or fertility were observed (129). Moreover, the effects of LpR 

RNAi in the fat body of B. germanica began to disappear after three days, and levels 

of LpR mRNA and Lp contents began to increase which suggest that LpR silencing 

occurred for a short period only.  

Another RNAi experiment was conducted in salmon lice where nauplii were treated 

with LsLpR dsRNA. When nauplii molted into copepodids, some copepodids were 

collected to check the knock down efficiency of LsLpR and remaining copepodids 

were used to infect the fish and follow them until they reached into adult females 

(approximately 60 days after infection). The RNAi experiment was terminated once 

females from control group produced second pair of egg-strings. All females from 

both LsLpR knock downed and control groups were collected and further check the 

efficiency of RNAi. Results showed that silencing of LsLpR was about 60% in 

copepodids and no significant change in the knock down of LsLpR was observed in 

adult females (Paper II, Figure 7C). Further RNAi experiments in adult females 

(Paper II, Figure 7B) showed that maximum knock down of LsLpR was 30% at day 

15. Perhaps this knock down efficiency of LsLpR was not enough to show abnormal 

phenotypes in adult female salmon lice. Secondly, protein levels of lipophorin 

receptor were not tested after all RNAi experiments. 
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5. Conclusions and future works 

In this present work, lipid transport and metabolism were studied in adult female 

louse to determine the importance of lipids for development and survival of female 

louse itself, for egg production and for embryogensis and development of larvae.  

Paper I addresses the active role of MTP in reproduction and lipid metabolism in 

adult female lice. MTP promotes biosynthesis of lipoproteins essential for the 

transport of apolar lipids to various organs of animals. In salmon lice, MTP was 

identified for first time and its functions during reproduction of female were studied 

by using RNAi. Results show that MTP-knocked down females produce embryos 

with fewer lipids in their yolk and 70-90% embryos coudnot developed into 

copepodids. Results of RNAi experiments in female lice suggested that MTP is 

essential during reproduction which may play an important role in the lipoprotein-

based supply of maternal lipids to developing eggs. MTP is compulsory factor for the 

production of lipoproteins as studied in different animals. In salmon lice, role of MTP 

in the biosynthesis of lipoproteins was not investigated. Mostly MTP expressed in 

tissues where lipoprotein biosynthesis occurred as observed in different animals. In 

salmon lice presence of MTP transcripts in the intestine and sub-cuticular tissues 

indicate its active involvement in the production of lipoproteins in these tissues. To 

address its function in the biosynthesis of lipoproteins, further functional studies are 

needed. Functional studies like silencing of MTP in salmon lice can be used to 

observe the lipids and lipoproteins levels in the hemolymph and in MTP-expressing 

tissues to figure out its involement in the biosynthesis of lipoproteins. 

  

In paper III, two apolipoprteins (LsLp1 and LsLp2) of salmon lice were identified and 

functional studies were carried out in female lice. Since apolipoprteins are essential 

part of lipoproteins and these lipoproteins circuate lipids throughout body of animals. 

In adult female lice, the major lipid contents were observed in eggs and therefore it 

was assumed that knock down of LsLp1 and LsLp2 may disrupt complete or partial 
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supply of maternal lipids to eggs inside egg-strings. Functional studied through RNAi 

showed that LsLp1 dsRNA treated females produced short-eggstrings with less 

numbers of offsprings as compare to females from control groups. These results 

indicate that LsLp1 is involved in the development of eggs inside eggstrings. During 

these functional studies, transcript levels of LsLp1 or LsLp2 were estimated but 

protein levels were not measured. Therefore further functional studies in female lice 

are suggested to follow the levels of these apolipoproteins in hemolymph and 

expressing tissues such as subcuticular tissues and intestine. Moreover, levels of 

lipids should also be measured in hemolymph and in different tissues of female 

salmon lice during knock down of LsLp1 or LsLp2. More results from functional 

studies could explain the contribution of these lipoproteins in the supply of lipids to 

different tissues particularly to eggs of female lice. Moreover, role of vitellogenins 

and vitellogenin like proteins need to be addressed in the supply of maternal lipids to 

eggs of female lice. These results could explain the contribution of vitellogenins and 

vitellogenin like proteins for the accumulation of lipids inside eggs of female lice 

along with lipoproteins such as LsLp1and LsLp2. 

 

In oviparous animals, eggs obtain most of their lipids through receptor-mediated 

endocytosis of lipoproteins. In insects, lipophorin receptor is essential for uptake and 

accumulation of lipids by eggs and other tissues. In paper II, lipophorin receptor 

(LpR) was identified and its role in the lipid metabolism and reproduction of female 

lice was characterized for the first time at the molecular level. Presence of LpR 

transcripts and proteins in ovaries and eggs indicate that the receptor may be able to 

mediate the endocytic uptake of salmon lice lipoproteins. RNAi-mediating knock 

down of the lipophorin receptor was conducted in female lice. However, effects of 

RNAi were not sufficient to conclude if receptor is involved in the uptake of 

lipoproteins. During knock down of LpR, it is possible that levels of lipids and 

lipoproteins increased in hemolymph of salmon lice. Therefore, it is suggested that 

further functional studied need to be carried out along with quantification of lipid 
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contents in hemolymph and in other tissues of lice. LpR affinity towards lipoproteins 

was not investigated and further ligand-binding assays are suggested in cell culture to 

evaluate the function of this receptor in the salmon lice. 
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the endoplasmic reticulum (3). This protein family also 
contains other members with a central role in animal repro-
duction and lipid circulation, such as vitellogenins, verte-
brate’s apoB, and insect apolipophorin (apoLp)-II/I (4, 5).

MTP is a heterodimeric protein complex composed of 
two distinct subunits, a large subunit of, typically, 99 kDa 
containing a lipid transfer activity and a multifunctional 
58 kDa protein disulfide isomerase (PDI) (6, 7). The MTP 
large subunit, for simplicity named only MTP, is com-
posed of three structural motifs: the N-terminal -barrel 
(N-sheet), the central -helix domain and C-terminal -sheet 
(C-sheet), and three functional domains (lipid transfer, 
membrane-associating, and apoB binding) (8, 9). The 
N-sheet -barrel is involved in the recognition of the N 
terminus of apoB, the central -helix interacts with both 
apoB and PDI, and the C-sheet -sheet has lipid binding as 
well as transfer properties (8).

In mammals, MTP is essential for the assembly and secre-
tion of apoB-containing lipoprotein, chylomicrons in the 
intestine, and VLDLs in the liver (10), and thereby facili-
tates delivery of triglyceride and cholesterol to the periph-
eral tissues. In humans, homozygous mutations in the MTP 
gene abolish secretion of apoB-lipoproteins and reduce 
the lipid level in plasma, resulting in abetalipoproteinemia 
(11). Studies in the mice show that homozygous knockout 
of the MTP gene is lethal to the embryo (12). This pheno-
type is ascribed to the lack of lipoprotein synthesis and mas-
sive accumulation of lipid droplets in the cells of yolk sac 
endoderm (12), indicating that the yolk sac has lost its abil-
ity to produce lipoproteins and deliver lipids to the devel-
oping embryo.

Abstract  The salmon louse, Lepeophtheirus salmonis, is an 
endemic ectoparasite on salmonid fish that is challenging for 
the salmon farming industry and wild fish. Salmon lice pro-
duce high numbers of offspring, necessitating sequestration 
of large amounts of lipids into growing oocytes as a major 
energy source for larvae, most probably mediated by lipo-
proteins. The microsomal triglyceride transfer protein (MTP) 
is essential for the assembly of lipoproteins. Salmon lice 
have three L. salmonis MTP (LsMTP) transcript variants en-
coding two different protein isoforms, which are predicted 
to contain three -sheets (N, C, and A) and a central heli-
cal domain, similar to MTPs from other species. In adult 
females, the LsMTPs are differently transcribed in the sub-
cuticular tissues, the intestine, the ovary, and in the mature 
eggs. RNA interference-mediated knockdown of LsMTP in 
mature females gave offspring with significantly fewer neu-
tral lipids in their yolk and only 10–30% survival.  The pres-
ent study suggests the importance of LsMTP in reproduction 
and lipid metabolism in adult female L. salmonis, a possible 
metabolic bottleneck that could be exploited for the develop-
ment of new anti-parasitic treatment methods.—Khan, M. T., 
S. Dalvin, F. Nilsen, and R. Male. Microsomal triglyceride 
transfer protein in the ectoparasitic crustacean salmon louse 
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The microsomal triglyceride transfer protein (MTP) was 
first reported as an endoplasmic reticulum resident pro-
tein that catalyzes the transfer of neutral lipids between 
membranes (1). Later it was found that MTP is also essen-
tial for the synthesis and secretion of lipoproteins contain-
ing apoB (2). MTP belongs to the large lipid transfer 
protein superfamily and it functions as a transporter of lip-
ids in the assembly of nascent lipoprotein particles within 
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In oviparous organisms, such as frog (13), Drosophila 
(14, 15), and worms (16), MTP has a similar function in 
the secretion of lipoproteins as found in mammals. The 
secretion of frog vitellogenin A-1 is MTP dependent (13), 
as the secretion is enhanced only when coexpressed with 
MTP. In Drosophila melanogaster, the transport of lipids 
between organs is carried out by a single apoB-family li-
poprotein, lipophorin (Lpp) (14). The lipidation of Lpp 
occurs in two continuous steps with the help of two dis-
tinct lipid transfer proteins, MTP and large lipid transfer 
particle. Initially, Lpp is released from the fat body as a 
phospholipid-rich particle through the MTP-dependent 
mechanism and reaches the gut, where it is loaded with 
sterols and diacylglycerols via large lipid transfer particle. 
A homolog of the large subunit of MTP, named defeca-
tion suppressor of Clk (DSC-4), was found in the intes-
tine of Caenorhabditis elegans (16).

The salmon louse (Lepeophtheirus salmonis) is a marine 
ectoparasitic copepod that infests salmonids in the North-
ern Hemisphere. The salmon louse feeds on the blood, 
mucus, and skin of hosts and represents a major health and 
fish welfare issue that causes large economic losses in the 
Atlantic salmon (Salmo salar) farming industry (17) and 
also poses a considerable threat to wild salmonids (18). 
The lifecycle of the salmon louse consists, in total, of eight 
stages, each separated by a molt (19). The first are two 
stages of free-living nauplius larva followed by one infective 
copepodid stage. This is followed by two chalimus stages 
(where the parasites are firmly attached to the host), two 
preadult stages (with clear morphological sex difference), 
and finally the adult stage. Before host attachment, larvae 
are lecithotrophic, dependent on energy from maternally 
deposited lipid and protein reserves within the yolk (20, 
21). The sexually mature adult female continuously pro-
duces eggs carried in two egg-strings. Under laboratory 
conditions, female salmon lice can survive for at least 455 
days and produce more than 11 pairs of egg-strings (22). 
During egg production, the female louse incorporates mas-
sive amounts of yolk proteins (21, 23) and lipids into the 
growing oocytes. The predominant lipids in the eggs are 
neutral lipids, triacylglycerol, and cholesterol, followed by 
polar lipids, such as phosphatidylcholine and phosphati-
dylethanolamine, but fatty acid composition varies with the 
composition of the food received by the host salmon (20). 
The mechanism of lipid accumulation in the growing 
oocytes has not been described in salmon lice. However, 
lipids are absorbed in the intestine and are likely to be 
transported with the hemolymph via lipoproteins, for ex-
ample, to the oocytes. A highly efficient lipid uptake and 
transport can be predicted to secure the high production of 
eggs in salmon lice and dispersal of louse larvae in the 
environment.

In the present study, we identified a gene encoding MTP 
from L. salmonis (LsMTP). We hypothesize that LsMTP may 
be involved in the lipoprotein-based supply of lipids from 
the intestine of a female salmon louse to growing oocytes. 
To this end, LsMTP was characterized and three transcript 
variants were identified. Silencing of the LsMTP gene using 
RNA interference (RNAi) affected production of eggs and 

reduced the viability of the developing larvae due to less 
neutral lipids in their yolk. Our results suggest that LsMTP
has a crucial role in the reproduction of female salmon lice.

MATERIALS AND METHODS

Sampling of salmon lice
A laboratory strain of salmon lice, L. salmonis (22), was kept on 

Atlantic salmon (Salmo salar) in tanks with a continuous supply of 
seawater (temperature 10°C and salinity 34.5 ppt). Fish were fed a 
commercial diet daily. Nauplii I/II and copepodids were obtained 
from hatching egg-strings in hatching incubators supplied with 
the same seawater. Chalimus, preadult, and adult stages of lice 
were sampled from fish. Prior to sampling, fish were anesthe-
tized with a mixture of benzocaine (60 mg/l) and metomidate 
(5 mg/l) in seawater. All the experiments and maintenance of 
salmon were carried out according to the Norwegian animal 
welfare legislation.

For stage-specific quantitative (Q)-PCR, five biological repli-
cates were collected from each stage. The following life stages and 
number of animals were collected for each replicate. Nauplius I 
(n = 100), nauplius II (n = 100), planktonic copepodid (n = 100), 
chalimus I (n = 10), chalimus II (n = 10), preadult I male and 
female (n = 1), preadult II male and female (n = 1), adult male 
(n = 1), young adult female and adult female (n = 1). For the 
starvation experiment, adult female lice were collected from fish 
and kept in seawater for 1–4 days. All the samples were stored in 
RNAlaterTM (Ambion) and kept overnight at 4°C prior to storing 
at 20°C for further use.

RNA isolation and cDNA synthesis
Total RNA was extracted using TRI-reagent (Sigma-Aldrich) 

according to the manufacturer’s instructions. The concentra-
tion and purity of isolated RNA was confirmed using Nanodrop 
ND-1000 spectrophotometer (NanoDrop Technologies). The iso-
lated total RNA samples were treated with amplification grade 
DNaseI (Invitrogen) as per manufacturer’s instructions. For 
Q-PCR, DNase-treated total RNA (250 ng) was used for cDNA syn-
thesis with Affinity Script QPCR cDNA synthesis kit (Stratagene) 
and diluted 10 times with nuclease-free water prior to storage at 
20°C. For PCR, 1 g total RNA was reverse transcribed using a 
qScript cDNA SuperMix (Quanta Bioscience).

Genome analysis, PCR, cloning, and sequencing of 
LsMTP gene

LsMTP-coding sequence was identified in the Ensembl data-
base (http://r9ywwtvj.ensemblgenomes.org/Lepeophtheirus_ 
salmonis/Info/Index) and the salmon louse genome database 
(accession: EMLSAT00000001530) (LiceBase, https://licebase.
org/) with homology to known human (NCBI: X91148.1) and 
Drosophila MTP (FlyBase: FBgn0266369). The GenBank accession 
numbers of the three MTP sequences reported here are: LsMTP-A, 
MF063064; LsMTP-B, MF063065; and LsMTP-C, MF063066. PCR 
was carried out using GoTaq Flexi DNA polymerase (Promega) as 
per the manufacturer’s protocol. The 5′ and 3′ rapid amplifica-
tion of cDNA ends (RACE) was conducted with SMARTer RACE 
cDNA amplification kit (Clontech) as instructed in the users’ 
manual. The 5′ and 3′ RACE-Ready cDNAs were synthesized from 
the total RNA of adult females and used for RACE-PCR. Gene-
specific primers for 5′ and 3′ RACE are listed in supplemental 
Table S1. PCR products were cloned into pCR™ 4-TOPO® vector
using the TOPO TA cloning kit for sequencing (Life Technolo-
gies) followed by transformation into Escherichia coli TOP10 cells.
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Clones were verified by PCR with M13 forward and reverse primers 
(supplemental Table S1). PCR products of positive clones were 
cleaned with ExoSAP-it (Affymetrix) and sequenced using BigDye 
Terminator v3.1 reagent (Applied Biosystems) at the sequencing 
facility of the University of Bergen.

In situ hybridization
To confirm the in situ hybridization specificity, two different 

single stranded digoxigenin (DIG)-labeled RNA probes of 476 bp 
and 604 bp lengths corresponding to different regions of LsMTP 
transcripts (Fig. 1) were synthesized separately from cDNA using 
the DIG RNA labeling kit (Roche). Primers used for the synthesis 
of sense and antisense RNA probes are listed in supplemental 
Table S1. The concentration and labeling efficiency of probes was 
assessed by spectrometry (Nanodrop ND-1000) and with a spot 
test on nylon membrane, respectively. In situ hybridization was 
carried out in paraffin-embedded sections of adult female lice, 
as previously described by Kvamme, Frost, and Nilsen (24) and 
Dalvin, Nilsen, and Skern-Mauritzen (25) with some modifications. 
Tissue sections were deparaffinized with Histoclear (National 
Diagnostic) instead of xylene and proteinase K treatment was 
done for 13 min. Hybridization of probes (500 ng/100 l) was 
carried out at 65°C for 16–20 h. Sections were incubated with 
anti-DIG-alkaline phosphatase Fab fragments (Roche) and vi-
sualized using nitroblue tetrazolium (Roche) and 5-bromo-4-
chloro-3-indolyl phosphate (Roche). The localization of LsMTP 
transcripts was detected with antisense probes and sense probes 
were used as negative controls.

Real-time Q-PCR
Q-PCR was performed on Applied Biosystem 7500 real-time 

PCR system using PowerUp SYBR Green Master Mix (Applied 
Biosystem) as per the manufacturer’s recommendations. The 
Primers used in Q-PCR are listed in supplemental Table S1. The 
salmon louse elongation factor 1 (ef1) was used as a reference 
(26). Two-fold serial dilutions (six dilutions) of cDNA were used 
to create a standard curve for efficiency calculation. As the effi-
ciency of the assay ranged from 95% to 100%, all the assays were 
carried out simultaneously for LsMTP and ef1 using the same 
cDNA and master mix along with two negative controls, a non-
template control and a no reverse transcriptase control. All the 
samples were run in duplicate, and Ct (cycle threshold) values 
were averaged. The final results were analyzed using the 2CT 
method (27). The Q-PCR analysis was performed on lice recov-
ered from two RNAi experiments. Primers used in Q-PCR for the 
detection of downregulation in the RNAi experiments were de-
signed outside the double-stranded RNA (dsRNA) fragments. For 
each RNAi experiment, five representative adult females from the 
control group and LsMTP dsRNA-treated group were analyzed. 
Animals from the control group were used as a calibrator to calcu-
late relative expression. Relative expression levels of three variants 
of LsMTP in different developmental stages of salmon lice were 
also determined by Q-PCR using copepodids as a calibrator. For 
the starvation experiment, animals (n = 5) were collected on 
days 0, 1, 2, and 4, and after 2 days of refeeding on the host fish. 
Relative expression of LsMTP was calculated using day 4 for 
calibration.

RNAi
dsRNA was prepared according to the Megascript RNAi kit 

(Ambion). Two different fragments targeting different regions 
of LsMTP mRNA (Fig. 1) were amplified by PCR from primers 
with T7 promoter sequence, previously used for synthesis of in 
situ hybridization probes (supplemental Table S1). A fragment 
of 850 bp from cod trypsin (CPY185) was used as a control 

(23). Respective PCR products were used as templates for the 
synthesis of sense and antisense RNAs by in vitro transcription 
using T7 polymerase. For synthesis of dsRNA sense and anti-
sense, RNAs were pooled and incubated at 75°C for 5 min fol-
lowed by slow cooling to room temperature. The purified dsRNA 
concentrations were measured with Nanodrop ND 1000 Spec-
trophotometer, and a final concentration of 600 ng/l was 
used for injections.

Two RNAi experiments were conducted separately in female 
lice. The first knockdown of LsMTP was carried out with dsRNA 
fragment 1 (LsMTP Fr 1) in newly molted preadult II females. In 
the second experiment, LsMTP silencing was done with dsRNA 
fragment 2 (LsMTP Fr 2) in young adult female lice. Both RNAi 
experiments were performed as described by Dalvin et al. (23). In 
each experiment, female lice were injected for LsMTP dsRNA and 
control dsRNA separately. After injection of dsRNA, lice were 
kept in seawater for 3 h and put back (n = 30–32) on three fish for 
every dsRNA fragment with equal numbers of dsRNA-treated fe-
male and untreated male lice. Both RNAi experiments were ter-
minated when control dsRNA-injected female lice produced 
second pairs of egg-strings. Female lice were examined for gross 
morphology and imaged along with egg-strings for further egg-
string measurement. Afterwards, egg-strings from females of 
both experiments were removed gently with forceps, placed into 
individual hatching incubators and closely examined every day. 
The offspring from the first RNAi experiment were evaluated vi-
sually and counted at 9 days post hatching when control animals 
had developed to copepodids. Nauplii from the second RNAi ex-
periment were collected, visually evaluated, and counted be-
tween 6 and 8 h post hatching and closely followed through 
molting to nauplii II and further to copepodids. Neutral lipid 
content was detected and quantified in nauplii I using lipid stains 
(see below).

Lipid analysis
Seven independent replicates of groups of 25 nauplii hatched 

from control and LsMTP dsRNA-injected female egg-strings from 
the second RNAi experiment were used for qualitative and semi-
quantitative analysis of neutral lipids.

Oil Red O staining.  Nauplii I were collected from hatching in-
cubators, washed three times with cold PBS, and fixed in phosphate-
buffered 4% paraformaldehyde (pH 7.4) for 2 h. Oil Red O stain
was performed using the methods described (28) with some 
modifications. Fixed nauplii were washed three times with cold 
PBS, resuspended in 60% isopropanol for 10 min, and stained 
with Oil Red O stain (Sigma-Aldrich) for 30 min. After staining,
nauplii were washed in cold PBS, rinsed with 60% isopropanol, 
mounted, and photographed with a Leica Model MZ6 stereo 
microscope.

Nile Red staining.  Nile Red stain was used to detect neutral lip-
ids in unfixed nauplii I according to (29) with the following modi-
fications. Nauplii I were washed three times with cold PBS, stained 
with 1 ug/ml of Nile Red (Sigma-Aldrich) in PBS for 30 min, and 
imaged directly with a Leica TCS SP5 confocal microscope. Neu-
tral lipids were visualized by excitation at 543 nm and fluores-
cence detection at 635 nm.

Semi-quantification of total nauplii I neutral lipids.  The semi-
quantification of total neutral lipids of nauplii I was carried out 
using Oil Red O stain. After fixation and staining with Oil Red O,
the excess stain was washed away with 60% isopropanol. Oil Red
O stain was extracted from nauplii using 200 l of 100% isopro-
panol and absorbance was measured at 500 nm in duplicate. 
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Background signal was subtracted using 100% isopropanol as a 
background control.

Bioinformatics analysis
The Staden package (30) was used for DNA sequence assem-

bly, editing, and analysis. Multiple sequence alignment was 
done in BioEdit version 7.2.5 (31) using ClustalW. Accession 
numbers of MTP protein sequences from other species in-
cluded in the multiple alignment were as follows: Homo sapiens 
(NCBI: NP_000244.2), Salmo salar (NCBI: XP_014050992.1), Danio 
rerio (NCBI: NP_998135.1), D. melanogaster (NCBI: NP_610075.2), 
Zootermopsis nevadensis (NCBI: KDR21635.1), Daphnia magna 
(NCBI: JAN30039.1), Scylla olivacea (Uniport: A0A0P4WDH4), 
and Xenopus tropicalis (NCBI: XP_002934813.1). Signal peptides 
were predicted using Phobius (http://phobius.sbc.su.se/) and 
SignalP server (http://www.cbs.dtu.dk/services/SignalP/). Con-
served domain (LpD-N) in the protein sequences was analyzed in 
Conserved Domain Database (32). Secondary structures of 
proteins were predicted using JPred4 (33) or PSSpred (http://
zhanglab.ccmb.med.umich.edu/PSSpred/) and three-dimensional 
structures of proteins were resolved using Phyre2 online server 
(34). All predicted structures of proteins were refined using 
Modrefiner (35) and visualized using Pymol software.

RESULTS

LsMTP gene encodes three transcript variants
One DNA sequence encoding LsMTP was identified in 

the salmon louse genome. To obtain the full-length tran-
script sequence, 5′ and 3′ RACE were carried out using 
primers specific to the LsMTP sequence, which revealed 
three transcript variants named LsMTP-A, LsMTP-B, and 
LsMTP-C (Fig. 1A). Variant LsMTP-A contained alternative 
exon 1, which was part of the 5′ untranslated region (UTR) 
sequence in variant LsMTP-B, but not present in variant 
LsMTP-C (Fig. 1A, B). Predicted open reading frames of 
LsMTP-B and LsMTP-C variants, both started from the al-
ternative start codon located in the intronic region of vari-
ant LsMTP-A (Fig. 1A, B). The details of the all LsMTP 
variants are summarized in Fig. 1D.

Sequence and structural analysis of LsMTP variants
The LsMTP-B and LsMTP-C transcripts encoded an 

identical protein of 819 amino acids, while the LsMTP-A 
was 827 amino acids and contained a different N-terminal 
signal peptide (Fig. 1C). The LsMTP-A and LsMTP-B/C 
isoforms contained a conserved region, named the lipo-
protein N-terminal domain (SMART accession SM00638), 
found in lipid transport proteins, including vitellogenins, 
apoLp, and apoB. A BLASTP search in the UniProtKB/
Swiss-Prot revealed LsMTP as most closely related to an 
uncharacterized protein from the crab Scylla olivacea (25% 
identity) and MTP of Daphnia magna (23% identity). A 
similar identity of LsMTP was also found with other func-
tionally known MTPs like Homo sapiens (21.8%), Mus mus-
culus (21.1%), Danio rerio (21.8%), Gallus gallus (21.0%), 
and D. melanogaster (21.7%). Alignment to MTP of its host, 
the Atlantic salmon (NCBI: XP_014050992.1) showed 22% 
identity to LsMTP.

Secondary and tertiary structures of the mature LsMTP 
(without signal peptide) were modeled along with other 
MTP orthologs (human, Drosophila, frog, and worm) using 
a homology modeling approach. The modeling template 
was the X-ray crystal structure of the silver lamprey (Ichthyo-
myzon unicuspis) lipovitellin, the mature form of vitello-
genin (PDB ID: 1LSH) (36), also used for domain database 
annotation and in similar modeling studies (37, 38). All the 
modeled structures (Fig. 2, supplemental Fig. S1) displayed 
similar domain composition made up of an N-terminal 
-barrel (N-sheet), a central helical domain, and two  
-sheets (C-sheet and A-sheet) toward the C terminal, in 
agreement with the lipovitellin template. Moreover, struc-
tural similarity between the MTPs was calculated by per-
forming structural alignments in PyMol with salmon louse 
MTP structure as a reference. The average distance be-
tween the atoms of the superimposed proteins, calculated 
as root mean square deviation (RMSD), was found to be 
2.52, 3.07, 3.07, and 10.2 Å for H. sapiens, D. melanogaster, 
X. tropicalis, and C. briggsae, respectively.

In the N-sheet, the salmon louse MTP model predicted 
13 antiparallel -strands (Fig. 2A, B), similar to the avail-
able lipovitellin structure where 11 of the 13 -strands 
formed a barrel-like conformation (9). The central heli-
cal domain of the salmon louse MTP model consisted of 17 
-helices arranged in an inner and outer layer (Fig. 2A, 
B), as in the lipovitellin structure. The C-sheet domain in 
the lipovitellin X-ray structure contained two -sheets (C 
and A), which were also found in the sea louse MTP 
model. The two -sheets formed a hydrophobic pocket 
(Fig. 2A), which included a number of hydrophobic resi-
dues (37). Sequence alignment of the conserved N-sheet, 
the central helical domain, and the C-sheet of MTP from 
salmon lice, crustaceans, vertebrates, and insects showed 
that the two cysteines known to form a disulfide bond in the 
N-sheet domain of lamprey lipovitellin (9) were conserved 
(C156-C182 in lipovitellin, C101-C120 in LsMTP) (Fig. 
2B, C). This disulfide linkage in the N-sheet domain was 
essential to stabilize the barrel-like conformation formed 
by the -strands. Walsh et al. (39) found an amino acid 
(D169) in the N-sheet domain, which was important to 
the formation of an internal salt bridge with amino acids 
K187 and K189. Missense mutation (D169V) destroyed 
this salt bridge, which led to loss of PDI binding as well 
as lipid transfer activity. In the N-sheet domain of LsMTP, 
amino acid D96 formed an internal salt bridge with 
amino acids R115 and K117 (Fig. 2B).

The central helical structure in lipovitellin was stabilized 
by a disulfide linkage (C451-C486 in lamprey lipovitellin, 
C391-C396 in LsMTP) (Fig. 2A). The residues in the salt 
bridge (R547-E574 in lamprey lipovitellin, R473-E502 in 
LsMTP) in the helical domain of lipovitellin were also con-
served in the LsMTPs (Fig. 2D). In lipovitellin, this salt 
bridge was important to tie together helices 14 and 16 and 
increased the stability of the local fold. Further, the MTP-
specific sequence (Fig. 2E), which was not present in apoB, 
apoLp, vitellogenin, phospholipid transfer proteins, and 
other lipid transfer proteins (40), was also conserved in the 
salmon louse MTP. Two helixes (helix-A and helix-B) in 
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the A-sheet of human MTP were known to be involved in 
lipid transfer activity (37). The amino acid, leucine-734, in 
helix-A was important in lipid transfer and conserved in ver-
tebrates. However, in helix A (A-sheet) of LsMTP, isoleu-
cine (I653) was found at this position (Fig. 2E).

Tissue distribution of LsMTP transcripts in the adult 
female lice

In order to localize the site of expression of LsMTP in the 
adult female louse, in situ hybridization was performed on 
sections. Two independent probes targeting different parts of 
the transcript detecting all the three variants of LsMTP were 
utilized. The two probes revealed the same localization pat-
tern of LsMTP transcripts in the female (Fig. 3B–E). LsMTP 
transcripts were detected in the sub-cuticular tissue (Fig. 3B), 
intestine (Fig. 3C), ovaries (Fig. 3D), and vitellogenic oocytes 
in the genital segment (Fig. 3E). No positive signal was de-
tected in slides treated with sense probes (negative control).

Differential expression of LsMTP transcript variants in 
different tissues by RT-PCR

RT-PCR with variant-specific primers (supplemental 
Table S1) showed a differential expression of LsMTP vari-
ants among the examined tissues. LsMTP-A was mainly ex-
pressed in the sub-cuticular tissue and ovaries (Fig. 3F). 
LsMTP-B was detected in the ovaries, with relatively low 

abundance in the sub-cuticular tissue, while LsMTP-C was 
present in sub-cuticular tissue, intestine, ovaries, and vitel-
logenic oocytes (Fig. 3F).

Expression level of LsMTP variants in different 
developmental stages

Analysis of mRNA levels using Q-PCR showed that all 
three splice variants of LsMTP were expressed at all devel-
opmental stages of salmon lice (Fig. 4). Expression levels of 
variants LsMTP-A and LsMTP-B were highest in adult male 
and female stages as compared with other stages (Fig. 4). 
However, relative expression of LsMTP-A was reduced in the 
adult female when compared with the young adult female 
(newly molted females) and in the adult male, the expres-
sion of LsMTP-B was relatively higher than LsMTP-A. More-
over, the expression of LsMTP-C was relatively stable, with 
the highest expression levels found in nauplius I (Fig. 4).

Knockdown of LsMTP gene inhibits egg production and 
reduces larva survival

Two experiments with RNAi knockdown of LsMTP 
were performed, one in newly molted preadult II females 
(n = 30) and a second in young adult females, using dsRNA 
targeting cod trypsin in the negative control groups  
(Table 1). Both RNAi experiments were terminated when 
the adult females from the control groups produced the 

Fig.  1.  The organization of the LsMTP gene. A: Genetic structure of the three variants of LsMTP. LsMTP-A 
consisted of six exons with an initiator codon in exon 1. The 5′ UTR is represented with a white box. LsMTP-B 
was generated due to intron retention, with exon 1 as part of the 5′ UTR. LsMTP-C arose due to exon 1 skip-
ping. Lipoprotein N-terminal domain (LpD-N) is shaded with gray. The positions of the fragments used for 
RNAi and in situ hybridization RNA probes (ISH) are also shown. Scale bar = 200 bp. B: Multiple nucleotide 
alignments of the 5′ UTR sequences of three LsMTP variants. The 5′ UTR nucleotide sequences of three vari-
ants are highlighted in gray. The arrowheads indicate the start codon (ATG). Lowercase letters represent the 
intron sequence. Gaps are displayed as dashed lines. C: N-terminal amino acid sequence alignment of three 
LsMTP variants. The predicted signal peptides for three variants are underlined. D: Overview table. The table
lists the size of the variants, open reading frame (ORF), 5′ and 3′ UTRs, signal peptide, and LpD-N domain size 
in number of amino acids (AAs).
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Fig.  2.  Structural analysis of LsMTP. A: Predicted secondary structures of LsMTP. LsMTP model consists of four functional domains: 
N-terminal -sheet, central helical domain, C -sheets, and A -sheets. The ruler for amino-acid numbering is shown below. B: The tertiary 
structure of LsMTP was modeled using PHYRE protein structure prediction program. The left panel represents the full view of the ribbon 
structure of LsMTP protein, with cysteine residues (gray spheres) and residues of the salt bridges (cyan spheres). The right panel represents 
the zoom view of the interior of the N-terminal -sheet (upper) and central helical domain (lower). Disulfide linkages have been formed 
between C101-C120 and C156-C182, whereas salt bridges have been formed between D96-R115-K117 and R473-E502. C, D: Multiple align-
ments of the conserved N-sheet and central helical domain of LsMTP with other MTPs. The conserved cysteine residues are shown with as-
terisks and residues of the salt bridges are highlighted with inverted triangles. E: Multiple alignment of the MTP-specific sequence. This 
region was present in salmon louse MTP and contained helix A. The black arrow below the sequence indicates the amino acid position (L734 
in human MTP) important for the lipid transfer activity (37). Isoleucine (I653) was found at this position in salmon lice. The dotted line 
shows the helix as predicted by Jpred4 and PSSpred, which has not been described before in other MTPs.
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second pair of egg-strings to be certain that maturing 
eggs received dsRNA treatment. In the first experiment, 
RNAi knockdown of LsMTP in newly molted preadult II 
females (n = 30), the downregulation of LsMTP was highly 
significant and the levels of LsMTP were reduced by 95% 
compared with control animals (Fig. 5). The knockdown 
of LsMTP had no lethal effect on the adult lice. However, 
females injected with LsMTP dsRNA produced shorter and 
curly egg-strings compared with control females, which pro-
duced normal straight egg-strings, (supplemental Fig. S2). 
A very strong reduction (90%) in the number of surviving 
copepodids produced from the females treated with LsMTP 
dsRNA was observed, as compared with control groups 
(Table 1). The few larvae that hatched went through 

molting, apparently as normal, and developed into cope-
podids. This low number of surviving larvae could be caused 
by reduced lipid deposition in the developing oocytes, 
while still sufficient for some larvae to survive. To ad-
dress this possibility and to further confirm the specific-
ity of RNAi-mediated gene silencing, a second RNAi was 
performed in newly molted young adult females (n = 32) 
that should give higher initial MTP transcript level, and 
therefore somewhat higher survival rate of the larvae. 
Downregulation of LsMTP gene expression was approxi-
mately 90% compared with control (Fig. 5), with the re-
maining absolute levels 2-fold higher than in the first RNAi 
experiment. All animals in the control group produced 
normal egg-strings, while about 50% (11 females) of the 

Fig.  3.  In situ hybridization and RT-PCR analysis of LsMTP mRNAs in various tissues of an adult female 
salmon louse. A: Dorsal view of an adult female without egg-strings. The black dotted line indicates the area 
where sub-cuticular tissue is situated; a white straight dash-dot line represents the gut filled with blood. Aster-
isks (*) and hashtags (#) represent the positions of the ovaries and mature vitellogenic oocytes, respectively. 
B–E: Cross-sections of sub-cuticular tissue (B), intestine (C), ovaries (D), and vitellogenic oocytes (E) hybrid-
ized with antisense probes or sense probes (small inserts) as negative controls. F: RT-PCR analyses from cDNA 
templates of different tissues of adult female lice using LsMTP variant-specific primers. RT-PCR analysis of ef1 
was carried out to determine the quantitative variations of LsMTP transcripts among samples. SQT, sub-cuticular 
tissue; IN, intestine; OV, ovaries; OO, oocytes. Scale bars = 1 mm (A), 200 m (B, E), 100 m (C, D).

Fig.  4.  Expression of the transcript levels of three different variants of LsMTP in various developmental 
stages of the salmon louse relative to transcript level in the copepodids. The insert shows the expression of the 
three variants in the copepodids. Naup I, nauplii I; Naup II, nauplii II; Cop, planktonic copepodids; Cha I, 
chalimus I; Cha II, chalimus II; Pad I M, preadult I male; Pad I F, preadult I female; Pad II M, preadult II male; 
Pad II F, preadult II female; YAD, young adult female. Error bars represent the SD (n = 5 for each stage).
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RNAi-treated females still produced egg-strings. These egg-
strings were short and curly when compared with egg-
strings of control females (supplemental Fig. S3). Furthermore, 
a significant number (72%) of hatched nauplii from 
LsMTP-treated females did not develop to copepodids 
when compared with the control group (Table 1).

To explore the level of lipids in larvae from controls and 
RNAi knockdown animals, nauplii hatched from the egg-
strings were stained to detect neutral lipids with Nile Red 
and Oil Red O. Similar results were obtained with the two
different stains. Nauplii produced from females injected 
with LsMTP dsRNA had no or fewer lipid droplets in their 
yolk as compared with nauplii produced from females in-
jected with control dsRNA (Fig. 6A–F). Total neutral lipids 
were measured using Oil Red O in hatched nauplii of
LsMTP and control RNAi-treated females. As expected, a 
significant reduction (83%) of total neutral lipids was seen 
in nauplii of LsMTP RNAi-treated females (Fig. 6G).

Starvation reduces the LsMTP mRNA level in adult 
female lice

Adult female lice obtain important nutrients, such as lip-
ids, from the fish host’s blood and skin. To determine 

whether LsMTP mRNA expression was directly correlated 
with food uptake, adult female lice were starved by removal 
from the host, and then refed on the fish host. Samples 
for Q-PCR analysis were collected at 0 (control), 1, 2, and 
4 days, and 2 days of refeeding. The expression of LsMTP 
was reduced 70–85% following starvation and increased 
upon refeeding (Fig. 7).

DISCUSSION

MTP has been studied in many organisms, particularly in 
vertebrates, due to its important role in lipid metabolism. 
Three transcript variants of LsMTP, referred to as LsMTP-
A, LsMTP-B, and LsMTP-C (Fig. 1), were identified. LsMTP-
A mRNA is predicted to encode an 827 amino acid protein, 
whereas LsMTP-B and LsMTP-C encode an 819 amino acid 
long protein (LsMTP-B/C). Two isoforms of MTP (MTP-A 
and MTP-B) have been identified in mice due to alter-
native first exons, and both isoforms are effective in lipid 
transfer activity (41, 42). Recently, two splice variants 
(MTP-B and MTP-C) have been found in humans (43), and 
it has been concluded that alternative splicing and the 
presence of distinct promoter regions play a key role in the 
regulation of cellular MTP levels. Additionally, specific 5′ 
UTRs containing elements that alter translation enable the 
cell to optimize MTP activity. The predicted protein iso-
forms of L. salmonis have only 21% to 23% sequence iden-
tity to MTPs of other species. Similarly, MTP proteins from 
other invertebrates (insects and nematodes) have been re-
ported to have less than 25% sequence identity compared 
with human and zebrafish (15, 40). Therefore, a consider-
able identity difference is present between the MTPs of in-
vertebrates and vertebrates.

Further structural analysis predicted that LsMTP pro-
tein contains -sheets (N, C, and A) and a central -helix 
C-terminal domain (Fig. 2). Similar structural domains have 
also been found in MTP of H. sapiens, as well as in other MTP 
orthologs such as D. rerio, D. melanogaster, C. elegans (40), and 
M. amblycephala (44). The RMSD was found to be 2.52, 3.07, 
3.07, and 10.2 Å for H. sapiens, D. melanogaster, X. tropicalis, 
and C. briggsae, respectively. The high RMSD found for 
C. briggsae could be connected with lower numbers of 
-strands in the N-terminal domain (supplemental Fig. S1). 
Of the other protein sequences tested, the results indicate a
significant overall structural similarity.

LsMTP transcripts were found in the sub-cuticular tissue 
(tissue with a functional resemblance to insect fat body 
and vertebrate liver) and intestine. In the salmon louse, 
the sub-cuticular tissue is the site where two vitellogenins 

TABLE  1.  Summary of the RNAi experiments

Injected  
Female Lice

Recovered  
Female Lice

Number of Females that  
Produced Egg-Strings

Length of  
Egg-Strings (mm)

Number of  
Hatched Nauplii

Number of  
Hatched Copepodids

Experiment 1
  Control 30 12 12 18.8 ± 1.6 (n = 9) Not counted 322 ± 109 (n = 9)
  RNAi (fragment 1) 30 10 7 7.4 ± 3.6 (n = 6) Not counted 33 ± 16 (n = 5)
Experiment 2
  Control 30 23 23 18.4 ± 1.8 (n = 20) 348 ± 78 (n = 7) 314 ± 67 (n = 7)
  RNAi (fragment 2) 32 22 11 15.5 ± 3.8 (n = 7) 262 ± 97 (n = 6) 86 ± 61 (n = 6)

Fig.  5.  Inhibition of LsMTP transcript by RNAi in adult female 
salmon lice. The expression level of LsMTP was quantified by 
Q-PCR in adult females injected with dsRNA in preadult (Fr 1) and 
young adult (Fr 2) females against control. The results represent 
the mean ± SEM of five biological replicates from each treatment 
group. Significant downregulation of LsMTP was found as com-
pared with control (t-test, P < 0.05).
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(21) and yolk-associated protein (23) are produced. In 
C. elegans, MTP transcripts were found in the intestine, which 
is reported to function as a secretory organ of vitellogenins 
(16). Similarly, in D. melanogaster, MTP transcripts were 
found in the fat body (an organ analog to vertebrate adi-
pose tissue and liver), and MTP proteins are reported to 
promote the production of Lpp and large lipid transfer 
particles (14). MTP transcripts were also found in verte-
brates in tissues expressing apoB, such as liver, intestine, 
retina (45), kidney (46), myocardium (47), placenta, 
and yolk sac (48–50). Here, MTP functions as an essential 
chaperone for the assembly and secretion of apoB-lipo-
proteins. LsMTP transcripts were also found in the ovaries 
and oocytes of the salmon louse. In vertebrates, the MTP is 
found in the ovaries and testis, where apoB is not expressed 
(51). The function of MTP in these lipid-affluent tissues is 
unknown. However, it is likely that MTP may play an im-
portant role in lipid trafficking and/or storage (52, 53). 
Further studies are needed to demonstrate the tissue-specific 
function of LsMTP in the salmon louse.

Expression levels of the three LsMTP transcript vari-
ants were also analyzed in some key adult female louse 
tissues (Fig. 3F). The observed differences between ex-
pression of the three LsMTP variants in different tissues of 
adult female lice are similar to observations in vertebrates, 
such as mice and humans (41–43). For example, mice have 
two isoforms of MTP. The MTP-A isoform is expressed pre-
dominantly in the liver, intestine, and heart, whereas MTP-
B is mainly found in adipose tissue. Similarly, in humans, 
splice variant MTP-B is found in various tissues, whereas 
MTP-C is expressed mainly in brain and testis.

In copepodids, the LsMTP-A and LsMTP-C transcripts are 
clearly the most abundant forms (Fig. 4, insert). Assessing the 
LsMTP transcript levels throughout the L. salmonis life cy-
cle, relative to copepodids, showed that LsMTP-A and 
LsMTP-B forms varied with highest levels in adult lice of 
both sexes, whereas LsMTP-C was relatively stably transcribed. 
The salmon louse larval stages are nonfeeding and survive 
on maternally provided energy, whereas the parasitic stages 
have access to a stable and abundant amount of energy. The 
steep increase in the LsMTP-A variant (and to some extent 
the LsMTP-B variant) in adults probably reflects increased 
demand of lipids for gamete production, particularly in fe-
males, because these forms are expressed in the sub-cuticular 
tissue and ovary (Fig. 3F). Our data indicate that, in the intes-
tine, LsMTP-C is the most abundant form (Fig. 3F) and have 
a stable expression levels in the various developmental stages 
(Fig. 4). These results indicate that LsMTP-C is involved in li-
poprotein maturation and secretion from intestinal cells  
and that increased intestinal capacity is a result of growth 
(i.e., increased number of enterocytes).

To investigate the effect of starvation, adult females were 
removed from their hosts. A significant reduction in ex-
pression of LsMTP was seen over time and refeeding in-
creased the expression, as compared with starved and 
control (day 0) animals. This indicates that expression of 
LsMTP directly depends on the availability of food in the 
intestine and/or lipids in the blood-feed, or is affected indi-
rectly due to downregulation of other lipid-carrying lipo-
proteins. The effect of feeding on MTP mRNA expression 
has been studied in D. rerio and a significant pretranslational 

Fig.  6.  LsMTP transports maternal neutral lipids to developing 
embryos. Bright field (A–D) and confocal fluorescence (A′–D′) 
nauplii stained with Nile Red to visualize the lipid droplets. Accu-
mulation of maternal neutral lipids was reduced in the nauplii of 
females injected with LsMTP dsRNA (C′–D′) as compared with nau-
plii produced from females injected with control dsRNA (A′–B′). 
Nauplii hatched from females injected with control dsRNA (E) 
and LsMTP dsRNA (F) were stained with a nonfluorescent dye 
(Oil Red O). Nauplii hatched from females injected with LsMTP 
dsRNA accumulate fewer neutral lipids (F), as compared with 
nauplii hatched from females treated with control dsRNA (E). G: 
Semi-quantification of neutral lipids with Oil Red O stain in the
nauplii of females treated with control and LsMTP dsRNAs. Neu-
tral lipids were reduced significantly (83%) in hatched nauplii of 
LsMTP dsRNA-treated females. Results are represented as the 
mean ± SD of nauplii (n = 25) hatched from seven independent 
replicates of control and LsMTP dsRNA-injected females. Scale 
bars = 100 m (A/A′–D/D′), 500 m (E, F).

Fig.  7.  Starvation reduces LsMTP transcript levels in adult female 
lice. Significant reduction of the expression level of LsMTP was 
found in starved animals, as compared with control animals (day 0) 
(t-test: P < 0.05). Refeeding (2 days) increased the expression of 
LsMTP as compared with starved and control (day 0) animals. Error 
bars represent the SD for each time point (n = 5).
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increase in MTP expression was seen in the anterior intestine 
(54). In mammals, in contrast, MTP mRNA expression was 
not significantly changed in the intestine and liver due to fast-
ing, but a moderate pretranslational increase was noted be-
cause of high fat and cholesterol diets (55–58).

LsMTP is expected to play an important role in the 
transport of yolk lipids from the intestine to growing oo-
cytes through the secretion of lipoproteins. The results of 
RNAi in young adult females clearly showed that the larvae 
of LsMTP knockdown female lice had a significantly lower 
reserve of maternally deposited lipids in their yolk, as con-
firmed by our qualitative and quantitative lipid analysis 
(Fig. 6A–G). Furthermore, a significant reduction in the 
number of copepodids was also noted (Table 1). To our 
knowledge, no information about the function of MTP is 
available in other crustaceans. However, knockout of the 
MTP gene in homozygous mice was embryonic lethal, 
due to the failure of the yolk sac to deliver lipids to the 
developing embryos (12). Similarly, disruption of dsc-4, a 
homolog of MTP in C. elegans, by RNAi or mutation, sup-
presses the germline delay and egg-laying (16). Moreover, 
MTP has also been shown to be important for the secre-
tion of Lpp and large lipid transfer particles in the hemo-
lymph of D. melanogaster and MTP mutant larvae; neutral 
lipid accumulates in the gut due to loss of lipoproteins 
(14). MTP is also important for yolk lipid utilization and 
absorption of dietary neutral lipids in larvae of D. rerio (59). 
The significant reduction in egg production and mortal-
ity of copepodids suggests that LsMTP has an important 
function in the reproduction and lipid metabolism of 
salmon lice. The specific mechanism for the reduction of 
lipids in the embryos of the LsMTP knockdown female is 
not known. However, it can be suggested that LsMTP is 
essential for the secretion of lipoproteins, similar to mam-
malian lipoproteins, and serves as a vessel for the transport 
of lipids from the intestine to oocytes or other tissues of 
the salmon louse.

In summary, we identified MTP in the salmon louse, and 
structural analysis revealed that LsMTP has similar func-
tional domains found in MTP homologs from other species. 
From results of expression analysis together with functional 
studies, it can be concluded that LsMTP has an important 
role in the lipid metabolism and reproduction of salmon 
lice. Results from our study further demonstrated that 
LsMTP could be used as a target for the control of repro-
duction in the female lice. However, further investigations 
are required to characterize associated lipoproteins and 
mechanisms of lipid loading and secretions in salmon lice.

The authors thank Heidi Kongshaug for injecting the lice for the 
RNAi experiments and Lars Hamre, Per Gunnar Espedal, and 
Bjørnar Skjold for their excellent support in the animal facility.
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Abstract

The Salmon louse (Lepeophtheirus salmonis) is a marine ectoparasite of salmonid fish in

the Northern Hemisphere and considered as a major challenge in aquaculture and a threat

to wild populations of salmonids. Adult female lice produce a large number of lipid-rich eggs,

however, the mechanism of maternal lipid transport into developing eggs during salmon

louse reproduction has not been described. In the present study, a full-length L. salmonis

lipophorin receptor (LsLpR) consisting of 16 exons was obtained by RACE and RT-PCR.

The predicted ORF was 952 amino acids and structural analysis showed five functional

domains that are similar to LpR of insects and decapods. Phylogenetic analysis placed the

LsLpR together with LpRs from decapods and insects. Expression analysis revealed that

the relative abundance of LsLpR transcripts was highest in the larvae and adult female lice.

In adult females, the LsLpR transcripts and protein were found in the ovary and vitellogenic

oocytes whereas, in larvae, the LsLpR transcripts were found in the neuronal somata of the

brain and the intestine. Oil Red O stain results revealed that storage of neutral lipids was

found in vitellogenic oocytes and ovaries of adult females, and in the yolk of larvae. More-

over, RNA interference (RNAi) was conducted to demonstrate the function of LsLpR in

reproduction and lipid metabolism in L. salmonis. In larvae, the transcription of LsLpR was

decreased by 44–54% while in an experiment LsLpR knockdown female lice produced 72%

less offspring than control lice.

Introduction

The salmon louse (Lepeophtheirus salmonis) is a marine ectoparasitic copepod that infests sal-

monids in Norway, Scotland, Ireland and Canada. It feeds on blood, mucus and skin of hosts

in sea water, which leads to major health and welfare issues of fish and results in a major eco-

nomic losses in the Atlantic salmon (Salmo Salar) farming industry [1]. The salmon louse has

also been considered to be a threat to wild salmonids [2]. The life cycle of the salmon louse

comprises of eight developmental stages, each stage separated by a moult [3]. The free-living
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stages consist of two nauplius stages, and an infectious copepodid stage. After the settlement of

copepodids to host fish, there are two immobile chalimus stages where the louse is anchored to

the host through frontal filaments, followed by three mobile stages: two pre-adult stages and

one adult stage. Eggs hatch into free-living nauplius I larvae, the first of three larval stages of L.

salmonis that are lecithotrophic. These larvae stages rely on stored nutrients imported to the

eggs during vitellogenesis and the free-living copepodids must settle to a fish host before they

run out of energy [4].

Once the adult female louse becomes sexually mature, a continuous production of eggs is

initiated in the ovaries. The oocytes migrate from the ovaries to the genital segment where

they grow and mature forming two genital complexes with vitellogenic oocytes. The eggs are

fertilized and deposited as a pair of egg-strings which the female carry externally until all eggs

are hatched. Like other oviparous animals, salmon lice store large amounts of yolk proteins [5,

6] and lipids [7] in the developing oocytes to secure energy for embryogenesis and early larval

development. In general, yolk lipids provide energy, building blocks for the developing cell

membranes, and precursors for prostaglandin and steroid hormones. The major neutral lipid

found in eggs and larvae (nauplius II) of L. salmonis is triacylglycerol (TAG), whereas the

major polar lipids are phosphatidylcholine and phosphatidylethanolamine [7]. Despite the

existing knowledge of lipid classes in oocytes and larvae of L. salmonis, mechanism of lipid dis-

tribution and uptake in developing oocytes is scarce. Hence, improved understanding of

mechanism for lipid uptake will enhance the knowledge regarding oocytes maturation and can

potentially be used in anti-parasitic strategies.

In animals, lipids are transported in the aqueous environment of the circulatory system in

lipid-protein complexes named lipoproteins. A lipoprotein particle consists of a hydrophobic

core of neutral lipids surrounded by a single layer of phospholipid molecules, unesterified cho-

lesterol and apolipoproteins. Mammals have two different TAG-rich lipoproteins involved in

lipid transport: chylomicrons from the intestine and very low-density lipoproteins (VLDL)

from the liver, delivering neutral lipids to target tissues through lipoprotein lipase-mediated

lipolysis. After lipolysis, chylomicrons convert into chylomicron remnants and VLDLs change

into intermediate-density lipoproteins (IDLs) and low-density lipoproteins (LDLs). These

remnants particles become enriched in cholesteryl ester (CE) and supply cholesterol to the

liver or peripheral tissues through receptor-mediated endocytosis. In contrast to mammals,

the major lipoprotein in the hemolymph of insects is lipophorin (Lp) [8–10] which functions

as a reusable shuttle for the delivery of lipids to various tissues including oocytes [11–16]. In

some insects, Lp is accumulated inside the developing oocytes and becomes itself part of the

yolk [17]. Two forms of Lp are found in insects, high-density lipophorin (HDLp) and low-den-

sity lipophorin (LDLp) which has 30–50% and up to 62% lipid contents respectively [18, 19].

The HDLp contains one molecule of apoLp I and one molecule of apoLp II. However, when

large amounts of lipids are mobilised during insect flight, extra copies of apoLp III are associ-

ated with HDLp and formation of LDLp occurs which contains much more lipids than HDLp

[10, 12, 20]. Other than Lp, a small contribution of vitellogenin (Vg) has also been suggested in

the transport of lipids to growing oocytes of insects [15, 18].

The LDL receptor (LDLR) is a member of the LDLR superfamily. In mammals, LDLR

binds cholesterol-rich LDL and internalizes it through receptor-mediated endocytosis. During

endocytosis, the receptor releases lipoprotein into the lumen of the endosome and the receptor

is recycled back to the surface of the cell available to new rounds of endocytic uptake [21–23].

The role of LDLR is to maintain the cholesterol homoeostasis and mutations in this receptor

lead to familial hypercholesterolemia [24, 25]. Another member of the LDLR superfamily,

termed VLDL/Vg receptor (VLDLR/VgR) plays a major role in reproduction of chicken as it

mediates the uptake of VLDL and Vg in the developing oocytes [26]. In arthropods, the LDLR
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family member lipophorin receptor (LpR) binds and transport lipophorin to the developing

oocytes through receptor-mediated endocytosis. The LpR gene was first characterized at the

molecular and functional level in the locust, Locusta migratoria [27] and later cloned and char-

acterized in several insect species [28–35]. Recently, three lipophorin receptors (LpR1, LpR2A

and LpR2B) from shrimp (Pandalopsis japonica) have been characterised [36]. Similar to other

members of LDLR family, LpR contains five functional domains: A ligand binding domain, an

epidermal growth factor (EGF) precursor homologous domain, an O-linked sugar domain, a

transmembrane domain and a cytoplasmic domain. In insects, the LpR has been reported to

play an important function in lipid metabolism as well as in the reproduction. The expression

of LpRs takes place predominantly in the reproductive organs and is responsible for lipid accu-

mulation in growing oocytes. Studies of mutants have shown that LpR2 of D. melanogaster has

an important role in the transport of lipids to growing oocytes [34]. Similarly, RNAi experi-

ment showed that LpR is involved in the uptake of Lp in B. germanica [32].

In this study, a gene encoding a lipophorin receptor (LsLpR) containing the conserved

domain structure was identified in salmon louse. To our knowledge, this is the first report on

the characterization of a member of LDLR superfamily in L. salmonis. The receptor was found

to be expressed in all developmental stages, but predominantly in larval and adult female lice.

The receptor mRNA and protein were found exclusively in the ovaries and oocytes of the adult

females. In larvae, the transcripts were found in several tissues. Furthermore, RNAi experi-

ments were conducted in larvae and female lice confirming this function.

Materials and methods

Sampling of salmon lice

A laboratory strain of salmon lice, Lepeophtheirus salmonis [37] was maintained on Atlantic

salmon (Salmo salar) in tanks, supplied with a continuous flow of seawater at 10˚C and

34.5 ppt salinity. Fish were hand fed daily with commercial dry pellets. Nauplii I/II and free-

living copepodids were obtained from egg-strings, hatched in flow-through incubators with

the same supply of seawater. Chalimi, pre-adult and adult stages of lice were sampled from

fish. Before sampling, fish were anaesthetized with a mixture of benzocaine (60mg/l) and

methomidate (5mg/l) in seawater. All the experiments were performed according to the Nor-

wegian animal welfare legislations and approved by Norwegian Food Safety Authority

(Mattilsynet).

Five biological replicates were collected from each developmental stage of the salmon lice

for stage-specific RT-qPCR. The following life stages and pooled number of animals were har-

vested for each replicate: Nauplius I (n = 100), nauplius II (n = 100), planktonic copepodid

(n = 100), chalimus I (n = 10), chalimus II (n = 10), preadult I male and female (n = 1), pre-

adult II male and female (n = 1), adult male (n = 1) and adult female (n = 1). All the samples

were collected in RNAlaterTM (Ambion) and kept overnight at 4˚C before long time storage at

-20˚C.

Isolation of RNA and cDNA synthesis

Total RNA was isolated using TRI reagent (Sigma-Aldrich) as per manufacturer’s instructions.

The concentration and purity of isolated RNA was confirmed using Nanodrop ND-1000 spec-

trophotometer (NanoDrop Technologies). Following RNA isolation, 1 μg of total RNA was

treated with amplification grade DNaseI (Invitrogen) as per manufacturer’s instructions. For

RT-qPCR, 300 ng of total DNase-treated RNA was used for the synthesis of cDNA with Affin-

ity Script QPCR cDNA Synthesis Kit (Stratagene) and diluted 10 times with nuclease free
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water prior to storage at -20˚C. For RT-PCR, 1μg of total RNA was reverse transcribed using a

qScript cDNA SuperMix (Quanta Bioscience).

Genome analysis, PCR, cloning and sequencing of LsLpR

The LpR sequences from Bombyx mori (GenBank: AB211594) and Blattella germanica (Gen-

Bank: AM403063) were used to identify candidate LpR genes in the salmon louse genome

database (Licebase https://licebase.org/). Two genes (stable IDs: EMLSAG00000008639 and

EMLSAG00000009473) were predicted to encode LpRs according to the lowest e-value crite-

ria. However, SMARTer RACE (rapid amplification of cDNA ends) demonstrated that these

two predicted genes were part of the same gene. The 50 and 30 RACE was conducted with

SMARTer RACE cDNA Amplification Kit (Clontech) as instructed in the users’ manual.

Total RNA isolated from an adult female was used to synthesize the 50 and 30 RACE-Ready

cDNAs using gene-specific primers (Table 1). PCR products were cloned into pCR™ 4-

TOPO1 vector using the TOPO TA Cloning kit for sequencing (Life Technologies) followed

by transformation into Escherichia coli TOP10 cells. PCR products of positive clones were

cleaned with ExoSAP-it (Affymetrix) and used as templates for sequencing using M13 forward

and reverse primers. All the sequences were assembled, and the single transcript was recon-

firmed by RT-PCR. The complete mRNA sequence of LsLpR has been deposited in GenBank

(MF435899).

Table 1. Primers used during this study.

Name Sequence (5’-3’) Analysis

LpR48_5RACE CTCCACAATCATCCTCTTGATCACAAACCCAAC RACE

LpR_3RACE-3 GCAAGGCATCAGAAGAAGGCAATGGATCTCG RACE

LpR-F TCCATCTCTTCTGTTTGCACAT PCR

LpR-R ACAACGATAGATCGCCATGA PCR

LpR-F2 GCGTGTCTCAAGGGTCACAT PCR

LpR-R2 CACGTCTGATCACATCCTCCA PCR

M13_f GTAAAACGACGGCCAG TOPO cloning

M13_r CAGGAAACAGCTATGAC TOPO cloning

LpRORF-F ATGATACGTTTCTCAACATA PCR

LpRORF-R CGAATTGATGACCTCCTCTGA PCR

LpRp-F T7 TAATACGACTCACTATAGGGGCACCCATTGATGAAGGTAA dsRNA, Fragment 1

LpRp2-R T7 TAATACGACTCACTATAGGGGATGACCATTGGGACTTGCT

LpRp-F GCACCCATTGATGAAGGTAA

LpRp2-R GATGACCATTGGGACTTGCT

LpRp-FT7 TAATACGACTCACTATAGGGGAAACTGGGCGGATGAGTCA dsRNA, Fragment 2, In situ

LpRp-RT7 TAATACGACTCACTATAGGGGTTCCCGTATCTGTCCAATA

LpRp-F GAAACTGGGCGGATGAGTCA

LpRp-R GTTCCCGTATCTGTCCAATAGA

LpRp-F3 T7 GAAATTAATACGACTCACTATAGGGTAACGAGACTGCCGGATTCA dsRNA Fragment 3

LpRp-R3 T7 GAAATTAATACGACTCACTATAGGGACAGCATGATCTCTTGGTTCAC

LpRp-F3 TAACGAGACTGCCGGATTCA

LpRp-R3 ACAGCATGATCTCTTGGTTCAC

LPR_SY_F4 TCTCATTTCCACCATCATCG RT-qPCR

LPR_SY_R4 GCCAACGCAATGTTTCACTA RT-qPCR

RACE, Rapid Amplification of cDNA Ends: TOPO, DNA topoisomerase: PCR, Polymerase Chain Reaction: RT-qPCR, Quantitative reverse transcription PCR: Insitu,

Insitu hybridization: dsRNA, double-stranded RNA.

https://doi.org/10.1371/journal.pone.0195783.t001

Lipophorin receptor in the crustacean ectoparasite Lepeophtheirus salmonis

PLOS ONE | https://doi.org/10.1371/journal.pone.0195783 April 12, 2018 4 / 23



Phylogenetic analysis

Protein sequences of lipoprotein receptors were obtained from GenBank protein database.

These included the vertebrate VLDLRs (Very low density lipoprotein) of Canis lupus familiaris
(NP_001273907), Oryctolagus cuniculus (BAA01874), Rattus norvegicus (NP_037287), Mus
musculus (AAH13622), Bos taurus (NP_776914), Macaca mulatta (AAR83314), Pan troglodytes
(XP_520460), Homo sapiens (NP_003374); the vertebrate VgRs (Vitellogenin receptors) of

Oncorhynchus mykiss (CAD10640), Morone americana (AAO92396), Oreochromis aureus
(AAO27569); the vertebrate LDLRs (Low density lipoprotein receptors) of Mus musculus
(CAA45759), Homo sapiens (AAA56833), Bos taurus (NP_001160002), Sus scrofa (AHF51842),

Chiloscyllium plagiosum (AAB42184), Rattus norvegicus (NP_786938); three lipoprotein re-

ceptors (LpRs) of shrimp Pandalopsis japonica: LpR1(AHL26189), LpR2A (AHL26190) and

LpR2B (AHL26191), and insect LpRs of Aedes aegypti (AAQ16410), Drosophila melanogaster
(NP_733119), Rhyparobia maderae (BAE00010), Locusta migratoria (CAA03855), Blattella ger-
manica (CAL47126), Bombyx mori (BAE71406), Galleria mellonella (ABF20542); the crustacean

VgRs of Marsupenaeus japonicas (BAH57291), Penaeus semisulcatus (AAL79675), Penaeus

monodon (ABW79798), Macrobrachium rosenbergii (ADK55596), Palaemon carinicauda
(AHB12420), Pandalopsis japonica (AHL26192); the insects VgRs of Drosophila melanogaster
(AAB60217), Anopheles gambiae (EAA06264), Aedes aegypti (AAK15810), Solenopsis invicta
(AAP92450), Periplaneta Americana (BAC02725), Rhyparobia maderae (BAE93218), Blattella
germanica (CAJ19121). Multiple sequence alignment was performed in BioEdit version 7.2.5

[38] using the clustalW. All the gaps and divergent regions were removed. The aligned protein

sequences were exported to Mesquite Version 3.2 [39] and nexus format file was generated. The

best-fit model for the protein evolution was obtained from ProtTest V. 3.2 [40] based on the

Bayesian Information Criterion (BIC). Phylogenetic analysis was performed with MrBayes v.

3.2 [41] using model (WAG+I+G). To root the tree, the RME2 sequence of Caenorhabditis ele-
gans (AAD56241) was used as an outgroup. Two independent Monte Carlo Markov (MCM)

chains were executed and sampled every 100 generations for a total of 1000000 generations to

approximate the posterior probabilities. The quality of output data was assessed in Tracer v1.6

(http://tree.bio.ed.ac.uk/software/tracer/) and trees were obtained using FigTree v1.4.0 (http://

tree.bio.ed.ac.uk/software/figtree).

In situ hybridization

Single stranded Digoxigenin (DIG) labelled RNA probe of 571 nt was synthesized from cDNA

using the DIG RNA labelling kit (Roche). Primers used for the synthesis of sense and antisense

RNA probes are listed in Table 1. The concentration and quality of the probes were deter-

mined by spot test and spectrometry (Nanodrop ND-1000). In situ hybridization was per-

formed in paraffin embedded sections of adult female lice and copepodids as previously

described by Dalvin et al. [42] and Eichner et al. [43] with some modifications. Histoclear

(National Diagnostic) was used to deparaffinize the sections and proteinase K treatment was

carried out for 18 minutes. Sections were hybridized with DIG-labeled RNA probes (1500 ng/

100μl) at 65˚C for 20 hr. Afterward, sections were incubated with anti-DIG-alkaline phospha-

tase Fab fragments (Roche) and visualized using the nitroblue tetrazolium/5-bromo-4-chloro-

3-indolyl phosphate (Roche). Sense probe was used as a negative control. Pictures were

obtained with an Axio Scope.A1 microscope (Zeiss).

Immunofluorescence

Immunofluorescence was performed on paraffin-embedded sections of adult female lice. Tis-

sue sections were deparaffinized and rehydrated in a series of graded alcohols. Tissues were
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blocked with 5% goat serum and 0.1% BSA for 30 minutes. After blocking, sections were incu-

bated with 1:200 dilution of a polyclonal antibody of Blattella germanica LpR [32] (a generous

gift from Maria-Dolors Piulachs, Institut de Biologia Evolutiva, IBE, Barcelona, Spain). The

primary antibodies were detected using goat-anti-rabbit Alexa fluor 488 conjugated secondary

antibodies (1: 100, Invitrogen) for 1 hr at room temperature. Sections were washed and

mounted with ProLong Antifade mounting media containing DAPI (Life Technologies). Pic-

tures were obtained using a Leica fluorescence microscope.

Hematoxylin and erythrosine staining

Paraffin-embedded sections of copepodids were stained with hematoxylin and erythrosine

according to the procedure as described by Eichner et al. [43]. Briefly, sections were incubated

at 65˚C for 30 min, dewaxed in histoclear followed by rehydration in a series of graded alco-

hols. Afterwards, slides were put into distilled water and stained with hematoxylin (Shandon

Instant Hematoxylin, Thermo Scientific) for 2.5 min and with 1% erythrosine (Certistain,

Merck) for 1.5 min. After staining, slides were washed several times in distilled water and

mounted in Histomount (Invitrogen).

Quantitative reverse transcription PCR (RT-qPCR)

RT-qPCR was carried out on Applied Biosystem 7500 Real-Time PCR system using PowerUp

SYBR Green Master Mix (Applied Biosystem) according to the manufacturer’s instructions.

Primers used in RT-qPCR are listed in Table 1. A standard curve was generated using a two-

fold serial dilution (six dilutions) of cDNA to estimate the RT-qPCR assay efficiency. RT-

qPCR was performed under the following conditions: 50˚C for 2 min, 95˚C for 2 min, 40

cycles of 95˚C for 15 s and 60˚C for 1 min. At the end of the amplification cycles, a melting

curve analysis was performed at 60–95˚C. As the efficiency of the assay ranged from 95% to

100%, all the assays were carried out simultaneously for LsLpR and ef1α using the same cDNA

and master mix along with two negative controls, a non-template control (NTC) and a reverse

transcriptase negative control (-RT). The salmon louse Elongation factor 1 alpha (ef1α) was

used as a reference gene [44]. All samples were run in duplicate under the following condi-

tions, and Ct (cycle threshold) values were averaged. The expression levels of LsLpR was nor-

malized to the expression level of ef1α, and the final results were analyzed using 2-ΔΔCT method

[45]. Relative expression of LsLpR in all RNAi experiments was calculated using the control

group as a calibrator. Relative expression levels of LsLpR were determined in various develop-

mental stages of salmon louse using chalimus I as a calibrator.

Production of double-stranded RNA (dsRNA)

Double-stranded RNA (dsRNA) was prepared using Megascript RNAi kit (Ambion). Three

different fragments targeting different regions of LsLpR mRNA were amplified by PCR with

primers including T7 bacteriophage promoter sequence. The lengths of the dsRNA fragments

were, fragment 1; 804 bps (corresponding to nt 1690 to nt 2494 in LsLpR mRNA GenBank

accession no MF435899), fragment 2; 571 bps (nt 1235 to nt 1804) and fragment 3; 489 bps (nt

2652 to nt 3140). A fragment of 850 bp from cod trypsin (CPY185) was used as a control [46].

PCR products were used as templates for the synthesis of sense and antisense RNAs by in vitro

transcription using T7 polymerase. Equal volumes of sense and antisense RNAs were pooled,

incubated at 75˚C for five min and slowly cooled to room temperature. Finally, dsRNAs were

purified; concentrations were measured with Nanodrop ND 1000 Spectrophotometer and

stored at -20˚C until further use.
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RNA interference (RNAi) in nauplii

To knock-down the LsLpR in nauplius I larvae, three RNAi experiments were performed

separately and each experiment was repeated five times. The first and second RNAi experi-

ments were performed using dsRNA fragment 1 and fragment 2 respectively. The third RNAi

experiment was conducted using a combination of dsRNA fragment 1, and 3. Primers used to

produce dsRNA used in each experiment are shown in Table 1. All RNAi experiments were

performed according to procedure as described in [47]. For all experiments control group was

included and animals were treated with dsRNA complementary to CYP185. Briefly, egg-strings

were gently removed from adult female lice and transferred to flow-through wells. After hatch-

ing from the egg-strings, approximately 50 nauplius I larvae were collected for each experi-

mental group in 150 μl of seawater and transferred into Eppendorf tube cap. Nauplii I larvae

were incubated overnight (17h) with 1.5 μg of dsRNA. When nauplius I larvae had molted

into the nauplius II stage, all animals were transferred into incubators with flow-through sea

water supply. LsLpR dsRNA-treated animals were inspected daily to detect any abnormal phe-

notype and the experiment was terminated when the animals reached the copepodid stage 7

days post-hatching (dph). Animals were sampled into RNAlaterTM (Ambion) for RT-qPCR

analysis.

Knock-down of LsLpR in pre-adult and adult female lice

The LsLpR gene transcript knock-down experiments were done in pre-adult II female lice

using previously described three non-overlapping dsRNA fragments. In each experiment,

female lice were injected with dsRNA as described in [46] and kept in sea water for 4 hrs.

Afterwards, equal numbers (n = 10–13) of dsRNA treated female and untreated male lice were

put back on a single fish and a total of three fish were used in each experiment. Each RNAi

experiment was terminated when control dsRNA injected female lice had become adults and

had produced the second pair of egg-strings. Female lice with or without egg-strings were pho-

tographed and examined for changes in gross morphology. Subsequently, the egg-strings were

gently removed with forceps, placed into individual hatching incubators and monitored daily

to record hatching and developmental progress. Larvae were counted at 9 dph when all control

animals were fully developed to copepodids. All lice were sampled and collected in RNAlater

(Ambion) for RT-qPCR analysis.

In a single experiment, adult female lice (n = 30) were injected with a combination of LsLpR
dsRNA fragment 1 and 3. Five injected female lice plus equal amount of untreated male lice

were put back per single fish and a total of six fish were used. Same numbers of lice and fish

were used for the control group. Lice were recovered after 5, 10 and 15 days post-injection for

RT-qPCR analysis.

Infections of Atlantic salmon with LsLpR knock down copepodids

For infection trials, RNAi was carried out on nauplii I larvae as described above. Five biological

parallels each contained approximately 50 nauplii I larvae were treated either with a combina-

tion of LsLpR dsRNA fragment 1 and 3 or control dsRNA. After that, all the samples were

transferred into incubators with flow-through sea water supply. When nauplii molted into

copepodids, around 20 copepodids were collected from each parallel for RT-qPCR analysis

and remaining copepodids were used for infection of two fish. Each fish in a single fish tank

was infected with 60 copepodids according to protocol as described in [43]. The same proce-

dure was followed for the control group. The experiment was terminated when adult female

lice of control group produced second pair of egg-strings. All female lice with or without egg-

strings were inspected for any gross morphology changes and photographs were taken under
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microscope. Egg-strings were removed from lice and put into hatching incubators, while

female lice were collected for RT-qPCR analysis. Copepodids hatched from these eggs were

counted at 9–10 dph.

Oil Red O staining

Adult female lice were collected directly from the host. Nauplii and copepodids were collected

from hatching incubators. Unfertilized eggs from the genital segment and ovaries were dis-

sected from the adult female lice. All the samples were washed three times with cold PBS and

fixed in phosphate-buffered 4% paraformaldehyde (pH 7.4). Female lice were fixed overnight

while larvae, ovaries and unfertilized eggs were fixed for 2 hrs. Oil Red O stain was performed

according to the previously described method [48] with some modifications in the length of

time when adult lice were stained. After fixation, all samples were washed three times with ice-

cold PBS and resuspended in 60% isopropanol for 10–30 minutes. Larvae and tissue samples

were stained with Oil Red O (Sigma-Aldrich) for 0.5 hr while adult lice were stained for 2 hrs.

After staining, samples were washed in ice-cold PBS and rinsed with 60% isopropanol. Pictures

were obtained with a Leica Model MZ6 stereomicroscope directly or after mounting. For

semi-quantification of total neutral lipids, stain was extracted from RNAi copepodids using

200 μl of 100% isopropanol and absorbance were measured at 500 nm in duplicates. Back-

ground signal was subtracted using the 100% isopropanol as a background control.

Protein modelling and bioinformatics analysis

Three-dimensional structure of extra-cellular domains (ligand binding domain from repeat

R3-R8 and EGF-precursor domain) of LsLpR protein was modelled using Phyre2 online server

[49]. Modelled protein structure was refined using Modrefiner [50]. Calcium ions binding

sites were predicted using Raptor X Binding online server (http://raptorx.uchicago.edu/

BindingSite/) or COACH for protein-ligand binding site prediction (http://zhanglab.ccmb.

med.umich.edu/COACH/) [51]. Various domains of LsLpR protein was predicted using

SMART (http://smart.embl-heidelberg.de/) [52]. Signal peptide was predicted using SignalP

4.1 server (http://www.cbs.dtu.dk/services/SignalP/) [53]. Molecular weight and the theoretical

isoelectric point of protein was predicted on expasy (http://web.expasy.org/compute_pi/).

Results

Sequence analysis of LsLpR

A full-length cDNA encoding LsLpR was isolated from adult females of L. salmonis. The full-

length transcript was 4007 nucleotides, containing an open reading frame (ORF) of 2859 bp, a

50-untranslated region (UTR) of 162 bp and a 3’UTR of 986 bp. The ORF of LsLpR encodes a

putative protein consisting of 952 amino acids, with the signal peptide at position 1–23, the

predicted molecular weight (Mw) of 107.04 kDa and the theoretical isoelectric point (pI) of

4.81. The exons-introns analysis revealed that LsLpR gene is composed of 16 exons spanning

115.1 kbp (Fig 1A). The second intron was the largest, spanning about 44.2 kbp.

A BLAST search (http://www.uniprot.org/blast/) against the UniProtKB/Swiss-Prot

revealed that LpR of L. salmonis shared 46% identity (70.8% similarity) with the Lipoprotein

receptor 1 from the crustacean Pandalopsis japonica and ~48–53% identity (~74–77% similar-

ity) with insect LpRs such as Locusta migratoria (migratory locust), Aedes aegypti (yellow fever

mosquito), Galleria mellonella (wax moth), Bombyx mori (silk moth), Blattella germanica (Ger-

man cockroach) and Drosophila melanogaster (fruit fly). Besides insect LpRs, the L. salmonis
LpR shared ~38–40% identity (~66–68% similarity) with VLDLRs of oviparous vertebrates
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Fig 1. Exon-intron organization and structural analysis of LsLpR. (A) LsLpR gene is composed of 16 exons separated by 15 introns and spanning a genomic region

of 115.13 kbp. (B) Domains organization of LsLpR with other members of LDLR family. (C) Modelled structure of extracellular domains of LsLpR using PHYRE

protein structure prediction program. Cysteine residues are coloured green, yellow residues provide pocket for calcium ion and bound calcium ions are shown as cyan

spheres. (D) Single repeat from ligand binding domain shows the three disulphide bonds (C1-C3, C2-C5 and C4-C6). (E) Top view of β–propeller domain with five F/

YWXD motifs.

https://doi.org/10.1371/journal.pone.0195783.g001
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such as Salmo salar, Danio rerio (zebrafish), Gallus gallus (chicken), Anas platyrhynchos (duck)

and Xenopus tropicalis (frog) and ~36% identity (~67% similarity) with LDLRs of mammals

including Homo sapiens (human), Sus scrofa (wild boar), Bos taurus (cattle), Mus musculus
(mouse) and Rattus norvegicus (rat).

Structural analysis of LsLpR

To analyze the structural and functional domains of LsLpR which are common to members of

LDLR superfamily, SMART annotation and multiple protein sequence alignment was carried

out. The ligand binding domain (LBD) of LsLpR contained eight cysteine-rich repeats (Fig 1B

and S1 Fig). Each cysteine repeat contained six cysteines as shown in modelled extracellular

region of LsLpR (green residues in Fig 1C) based on X-ray crystal structure of human LDLR

(PDB ID: 1N7D) used as a template [54]. These six cysteines in each repeat formed three pairs

of disulphide bonds (C1-C3, C2-C5 and C4-C6) (Fig 1D) which was essential for ligand-recep-

tor interaction [55]. Furthermore, in each repeat a Ca2+ binding site was predicted as shown in

R5-R8 (Fig 1C and S1 Table) which was considered essential for disulphide formation and cor-

rect folding of LpR [56, 57]. Next to the LBD followed the epidermal growth factor (EGF)

domain which was important for acid-dependent dissociation of ligands. The EGF domain

was composed of three EGF-precursor repeats, and each repeat contained six cysteine residues

that made up three pairs of disulphide bonds and a Ca2+ binding site (Fig 1C). The EGF

domain also contained five F/YWXD tetra-peptide motifs (S2 Fig) required for the formation

of a β–propeller structure (Fig 1E) [58]. The predicted O-linked sugar domain of LsLpR was

composed of a short amino acids sequence consisting of 69 amino acids with phosphorylation

sites. The predicted transmembrane domain (TMD) of LsLpR (Fig 1B) contained 23 amino

acids helix (AGFMAGVAIGIGAGVILLLFLVL) which was greatly enriched in hydrophobic

residues as seen in other LpRs and in other members of LDLR family. TMD-helix acts as mem-

brane anchor [22, 23]. The TMD was followed by the cytoplasmic domain. The cytoplasmic

domain of LsLpR carried one copy of NPXY motif (S3 Fig) that is needed for the clathrin-

mediated internalization of receptor-ligand complex, and well conserved in LpRs and mem-

bers of LDLRs family belonging to other species [59]. Presence of several phosphorylation sites

in the cytoplasmic domain of LpRs suggested that they are involved in the signal transduction

[59]. However, so far there has been no experimental data in insects which support the signal

transduction function of LpR [60].

Phylogenetic analysis

Phylogenetic analysis to reveal evolutionary relationships between LsLpR and lipoprotein

receptors from other species is shown in Fig 2. The analysis showed that LsLpR was grouped

together with LpRs from decapods and insects. The analysis also revealed that vertebrate lipo-

protein receptors (VLDLRs, LDLRs and VgRs) were closely related to each other and closest to

decapod/insect LpRs than to VgRs of decapods and insects.

Expression of LsLpR and distribution of lipids

RT-qPCR analysis was conducted to measure the expression level of LsLpR in the different

developmental stages of the salmon louse. Expression of LsLpR was detected in all the tested

developmental stages, with the lowest expression detected in chalimus and pre-adult stages

(Fig 3). In larval stages, the lowest expression of LsLpR was seen in nauplii I, gradually

increased in nauplii II and reached the highest observed level in copepodids (Fig 3). In the

mobile stages, the highest LsLpR transcript level was detected in the adult female (Fig 3).
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Neutral lipids were detected in adults and larvae of salmon louse by Oil Red O stain (Fig 4).

In adult stages (Fig 4A and 4B), storage of lipids was detected in adult females (Fig 4B), mainly

in unfertilized eggs and ovaries (Fig 4I and 4II). In larval stages (Fig 4C–4E), maternally

derived lipids were found in the yolk (Fig 4C and 4D), which were utilized by the larvae before

their settlement to new host fish (Fig 4E).

Distribution of LsLpR transcripts in adult female lice and copepodids

In situ hybridization was performed to examine the distribution of LsLpR transcripts. In cope-

podids, the highest expression of LsLpR transcripts was found in the neuronal somata of the

brain and the intestine (Fig 5A). In adult female lice (Fig 5C), LsLpR transcripts were detected

in the lumen of the coiled tubules of the ovaries (Fig 5D) and the outer membranes of the

Fig 2. Phylogenetic tree of selected lipoprotein receptors from vertebrates and invertebrates. The tree was generated using Bayesian methods. LpR of L.

salmonis (LsLpR) is shown in red. The yolk receptor (RME2) of the nematode (C. elegans) was used as an out-group. The nodes are labelled with posterior

probabilities and for clarity only values < 100 are shown. The scale bar represents 0.4 amino acid substitutions per site.

https://doi.org/10.1371/journal.pone.0195783.g002
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Fig 3. Expression analysis of the LsLpR in various developmental stages of the salmon louse. Expression levels of LsLpR in chalimus I was set as 1. Error bars

represent the standard deviation (n = 5 samples for each stage). Abbreviations: Naup I, Nauplii I: Naup II, Nauplii II: Cop, free-living copepodids: Cha I, Chalimus I:

Cha II, Chalimus II: Pad I M, Preadult I male: Pad I F, Preadult I female: Pad II M, preadult II male: Pad II F, Preadult II female.

https://doi.org/10.1371/journal.pone.0195783.g003

Fig 4. Staining of neutral lipids in salmon lice. Detection of neutral lipids by Oil Red O stain. Adult male (A) and adult female (B). Storage of

lipids was detected mainly in mature eggs (II) but also in the ovary (I), of adult female lice. Maternally deposited lipids were found as droplets in the

yolk of hatching nauplii (C). A reduction in lipid reserves was noted in copepodids of 7 dph (D) compared to newly hatched nauplii and no lipid

droplets were found in copepodids (E) after 10 days of their hatching. Scale bars = (A, B, BII, C-E) 1 mm, (BI) 200 μm. Abbreviations: CM, cement

gland; ME, mature eggs; IME, immature eggs.

https://doi.org/10.1371/journal.pone.0195783.g004
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vitellogenic oocytes (Fig 5E). Furthermore, semi quantitative RT-PCR was performed using

cDNA of the selected tissues of the adult female lice confirming the results from the in situ
hybridization (S4 Fig).

Fig 5. Localization of LsLpR mRNA and protein in the salmon lice. (A), (D) and (E) in situ hybridization. (A) Localization of the LsLpR transcripts

in the intestine (In) and neuronal somata of the brain (Br) of copepodid. (B) Parallel slide of the copepodid stained with hematoxylin and erythrosine.

(C) Dorsal view of an adult female without egg-strings. The asterisks (�) and hashtags (#) indicate the positions of the ovaries in the cephalothorax and

mature vitellogenic oocytes in the genital segment of adult female louse respectively. (D) Localization of the LsLpR mRNA in the lumen of the ovarian

tubules. (E) Localization of the LsLpRmRNA in the vitellogenic oocytes in the genital segment. No stain was seen in slides (small inserts) hybridized

with sense RNA probe. (F) and (G) immunofluorescence with anti LpR. (F) Distribution of LsLpR protein was found in elongated structures, at the

inner side of the tubular membrane (white arrow) together with the nuclei of the oocytes (nuclei were stained blue with DAPI). (G) Distribution of the

LsLpR protein in the outer membrane of the vitellogenic oocytes. Scale bars indicate (A-B, E) 200 μm, (C) 1 mm, (D and G) 100 μm, (F) 50 μm.

https://doi.org/10.1371/journal.pone.0195783.g005
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Distribution of LsLpR protein in adult female lice

The presence of LsLpR protein was detected in sections of adult female lice using antibodies

raised against LpR of Blattella germanica (see Materials and Methods). In ovaries, LsLpR pro-

tein was localized in elongated structures, found at the inner side of the tubular membrane

together with the oocytic nuclei (Fig 5F). LsLpR was also seen in the outer membrane of the

vitellogenic oocytes (Fig 5G), where the LsLpR was transcribed (Fig 5E). Moreover, no fluores-

cence was detected in the control slides treated with secondary antibody only.

Knockdown of LsLpR in nauplii by RNA interference (RNAi)

RNAi was induced in nauplius I to access the functional role of LsLpR in the larval stages.

Three dsRNA fragments (see materials and methods) were produced and utilized in separate

RNAi experiments. In the first and second RNAi experiments dsRNA fragment 1 and dsRNA

fragment 2 were utilized and transcription of LsLpR was decreased by 54% and 44% as com-

pared to control groups respectively (Fig 6A). The third RNAi experiment was conducted

using a combination of dsRNA fragment 1, and 3 and LsLpR expression was decreased by 50%

as compared to control animals (Fig 6A).

However, no gross phenotype or change in survival between control and LsLpR dsRNA

treated groups was observed. No major difference was found in the lipid staining in the

yolk of copepodids developed from nauplii treated with dsRNAs against LsLpR and control

(Fig 6B–6D).

Knockdown of LsLpR in Pre-adult II and adult female lice by RNAi

Three separate RNAi experiments were conducted in pre-adult II female lice and analysed

when adult females from control groups had produced the second pair of egg-strings. Eggs

from all experimental groups were followed through hatching and development to copepodids.

Each experiment was performed with a single dsRNA fragment, or with a combination of two

dsRNA fragments (Table 1). The level of LsLpR transcripts was measured by RT-qPCR in adult

female lice. No significant reduction in mRNA expression levels was observed in lice injected

with single dsRNA fragment or a combination of two dsRNA fragments at the time of termina-

tion (Fig 7A). Moreover, no significant effect on morphology and survival rate was noted

between females injected with LsLpR or control dsRNA, but the number of hatched copepo-

dids per adult female was significantly lower (reduced by 72% (p < 0.05, t test)) in the LsLpR-

injected group of experiment 2 compared to the control group (Table 2).

To see if duration of dsRNA treatment influenced knock down efficiency, adult female lice

were injected with LsLpR dsRNA (fragments) and the level of LsLpR transcripts was measured

at days 5, 10 and 15 (Fig 7B). RT-qPCR results showed that RNAi of LsLpR gene could not be

detected before day 10. At day 15 transcript levels were reduce by 30% compared to control

(p < 0.05, t test).

Infection trial and LsLpR knock down

LsLpR knock down (fragments 1 + 3) in nauplii I and level of transcripts were measured by

RT-PCR in copepodids (7 dph). In copepodids transcription was decreased by 60% compared

to the control group (Fig 7C). Afterwards, Atlantic salmon were infected with the copepodids

from the knock down experiment in single fish tanks and maintained on the fish until the lice

had developed into adults. Adult female lice were collected and expression of LsLpR was mea-

sured by RT-PCR. No significant reduction in transcript levels was observed in the adult

female lice when compared to control group (Fig 7C). The number of lice recovered from

Lipophorin receptor in the crustacean ectoparasite Lepeophtheirus salmonis

PLOS ONE | https://doi.org/10.1371/journal.pone.0195783 April 12, 2018 14 / 23



LsLpR dsRNA treated group was 30% less than the number of lice recovered from control

dsRNA treated group (Table 3). However, no gross abnormal phenotype difference was

observed between control and LsLpR dsRNA treated groups. Female lice of both groups pro-

duced normal egg-strings and equal number of hatched copepodids were found from both

groups (Table 3).

Discussion

In this study, a molecular characterization of the LpR from the salmon louse was carried out

for the first time. A single copy gene encoding LsLpR was identified in the salmon lice genome.

Exon-intron organization revealed that LsLpR gene is composed of 16 exons separated by 15

introns. The organization of exons-introns in silkworm, B. mori for LpR gene has previously

been described [31]. The silkworm LpR1 (BmLpR1) was composed of 16 exons interrupted by

Fig 6. Effect of RNAi on LsLpR transcript and lipid levels in copepodids. (A) Relative Expression of LsLpR in the copepodids (7 dph) after

knock downed in nauplius larva. Error bars show standard deviation. Asterisk represents significant difference (independent-samples T-test,

p < 0.05) in mRNA levels of LsLpR between the control group (n = 5) and the knock-down group (n = 5). (B-D) Detection of neutral lipids by

Oil Red O stain. Lipid contents in the copepodids hatched from LsLpR (fragments 1 + 3) (B) and control dsRNAs treated nauplii (C). Semi-

quantification of total neutral lipids with Oil Red O stain in copepodids (n = 5, each replicate contains 25 animals) developed from nauplii

treated with control and LsLpR dsRNAs (fragments 1 + 3) (D). No significant difference (independent-samples T-test, p > 0.05) was found

between control group and LsLpR dsRNA-treated group. Scale bars = (B-C) 1 mm.

https://doi.org/10.1371/journal.pone.0195783.g006
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15 introns that span about 122 kbp. Whereas, other isoforms such as LpR2, 3 and 4 contained

15 exons separated by 14 introns. The second intron of BmLpR was the largest that span >65

kbp similar to LsLpR where second intron span 44.2 kbp. BLAST searches showed that LsLpR

Fig 7. Treatment with dsRNA against LsLpR. (A) Relative expression of LsLpR in the adult females after injection of dsRNA in pre-adult females (30–32 days post

injection). (B) Relative expression of LsLpR after injection of dsRNA (fragment 1 + 3) in adult females and measured at days 5, 10 and 15 (post injection).

Expression PCR was carried out on 5 female lice from control and knock-down group at each time point. (C) Relative expression of LsLpR in copepodids

(n = 5 × 20) after knock down (fragments 1 + 3) in nauplii I, assayed before the infection of a host and in adult female lice at the time of termination of the

experiment. Error bars show standard deviation and P-values for independent-samples T-test analysis are shown, expression levels of LsLpR in control versus

LsLpR dsRNA-treated group.

https://doi.org/10.1371/journal.pone.0195783.g007

Table 2. Summary of the RNAi experiments.

Experiment # Fragment # Total Lice

injected

Total Lice

recovered

No of females carrying

Eggs

Average no of copepodids hatched

per louse

No of female lice analyzed in

RT-qPCR

1 Fragment 1 40 11 11 415±42.5 9

Control 37 5 5 370.5±55.8 5

2 Fragment 2 30 20 20 145±104 6

Control 30 18 17 516±166.8 6

3 Fragments

1+ 3

31 23 23 500±105 7

Control 30 28 28 520±95 6

https://doi.org/10.1371/journal.pone.0195783.t002

Lipophorin receptor in the crustacean ectoparasite Lepeophtheirus salmonis

PLOS ONE | https://doi.org/10.1371/journal.pone.0195783 April 12, 2018 16 / 23



shared the highest amino acid identity and similarity with LpR of decapods and insects. Phylo-

genetic analysis placed the LsLpR along with other crustacean and insect LpRs and showed

that vertebrate VLDLRs/VgRs and LDLRs were closely related to each other and appeared as a

sister group of the decapod/insect LpRs. The VgRs of vertebrates did not group together with

decapod/insect VgRs indicating that they have evolved independently.

Structural analysis revealed that LpR shared the same structural domains as found in other

members of LDLR superfamily. The LBD of LpR usually consist of several cysteine-rich

repeats, eight in LsLpR (Fig 1) which was identical to LBD of several insect LpRs such as B.

mori, L. maderae and L. migratoria, LpR1 of crustacean P. Japonica and vertebrates VLDLRs/

vitellogenin receptors. However, LBD of some insect LpRs contains seven cysteine-repeats and

are structurally identical to LDLRs (Fig 1) [32, 61, 62]. The existance of these repeats in the

LBD is imporant for their binding to ligand and the acquisition of cellular lipids but the impor-

tance of the numbers of cysteine-repeats in the LBD is not known [62]. LsLpR also contains an

EGF-precursor domain which is involved in the acid-dependent displacement of the ligand

from the LBD as observed in LDLR-LDL complex at endosomal pH [54, 63, 64]. However, the

insect LpR-HDLp complex is not dissociated under an acidic environment, which supports

the concept of ligand recycling [65]. The structures of extracellular (LBD and EGF-precursor)

domains of human LDLR have been solved by X-ray [54]. The LsLpR shared similar structures

when modelled against LDLR. Similar results were found as seen in LsLpR when Locust LpR

were modelled against LDLR and it was suggested that despite their high structural similarity,

the specificity of both receptors (LDLR and LpR) for their ligands is mutual exclusive [66, 67].

In LsLpR, the EGF-precursor domain followed the 69 residues long O-linked sugar domain

(OLSD). All insect LpRs contain OLSD, however, the length varies in different insect species

[28]. For example, OLSD of L. maderae is consisting of 70 residues whereas the length of

OLSD of A. aegypti is over 250 residues. Moreover splice variants have been reported that

affects this region of OLSD in LpR from other insect species including B. germanica, A. aegypti,
G. mellonella and B. mori [29, 32, 68, 69]. A single copy of well conserved NPXY internalization

motif was found in the cytoplamsic domain of LsLpR. The three-dimensional structure predic-

tion and multiple protein sequence alignment both revealed that the sequence of LsLpR con-

tained all structural motifs which are common in LpRs and in other members of LDLR family.

In insects, lipids are transported by the Lp from the fat body to oocytes through receptor

mediated endocytosis [18, 33]. Generally, the expression of LpR transcripts was observed

throughout the ovarian development and increased during vitellogenesis of several insect spe-

cies including A. aegypti, L. maderae, B. germanica, S. ricini, B. mori and D. melanogaster [28,

31–34, 62]. Here in salmon lice, high levels of mRNA and protein was found in the ovaries and

vitellogenic oocytes of female. Accumulation of neutral lipids was also found in vitellogenic

oocytes and ovaries of adult female lice. These results suggest that lipids may be transferred

Table 3. Summary of the infection trial experiment.

Fragment # No of female lice

recovered

No of Male

recovered

Female lice which produced egg-

strings

Average no of copepodids

hatched

No of female lice analyzed in

RT-qPCR

Fragments

1+ 3

16, 12 7, 9 16, 12 248±74 5, 5

Control 22, 22 11, 8 22, 17 259±56 5, 5

Nauplii I larvae treated with dsRNA (fragments 1 + 3) from LsLpR were sampled as copepodids and used to infect Atlantic salmon, counted as adults (male and female)

and if females produced eggstings and finally if the eggs hatched and produced normal copepodid larvae. The numbers represent recovered larvae and adult sea lice

from two fish.

https://doi.org/10.1371/journal.pone.0195783.t003
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directly from the intestine to growing oocytes and ovaries, where the receptor might be

involved in the up-take of lipids to the developing oocytes.

Lipids are the major source of energy for the developing embryos in oviparous animals and

90% of the energy utilized by the developing embryos of Culex quinquefasciatus originates

from lipids [70]. Similarly, maternally deposited lipids in the larvae of salmon lice are also

major source of energy before their settlement to a new host. In larvae, lipids are transported

as lipoproteins from their site of storage to different tissues during development. The mecha-

nism of lipoprotein uptake by receptor-mediated endocytosis has been suggested in the fat

body tissue of larval and young adult locusts [13, 27]. In salmon lice, the levels of expression

and localization of LsLpR transcripts in larvae reached its highest level in copepodids where

mRNAs of the receptor were found in the intestine and neuronal somata of the brain. These

results are in agreement to the expression of LpR in the larvae of insect species. In larva of S.

ricini, the expression of srLpR7-1 was detected in fat body, brain, malpighian tubule, whereas

low expression was observed in adult individuals [62]. Similarly in B. mori, the isoform LpR-4
was expressed in the brain and central nervous system of larvae along with other develop-

mental stages [31]. In adults of L. migratoria and A. mellifera, the expression of LpR was

reported in the midgut [27, 35]. The distribution of maternally deposited neutral lipids in the

larvae of salmon lice were found in the yolk of hatched nauplii, which were reduced after

moulting into copepodids (7 dph) and complete depletion was noted in the aged copepodids

(after 10 dph). Notably, the expression of LsLpR was highest in the 7 dph copepodids and

therefore reflected the transfer of lipids from the yolk to different tissues to secure rapid

growth and development.

To further elucidate the function of LsLpR in the salmon lice, RNA interference was per-

formed to knock down the LsLpR in salmon lice. Three independent RNAi experiments were

conducted in the larvae and a significant reduction in LsLpR transcripts was noted. However,

no change in survival or swimming performance of copepodids were noted and utilization of

lipids from yolk were similar in both control and LsLpR dsRNA treated groups. It is possible

that the levels of knockdown achieved for LsLpR may not be sufficient to disrupt the mobiliza-

tion of lipids from yolk to other tissues of larvae. Secondly, it is also possible that protein levels

were still high within the time frame of these RNAi experiments for the supply of lipids to tis-

sues during larval development. Similar lack of abnormal development was also achieved in

the Tsetse fly where the LpR (GmmLpR) receptor was significantly knocked down. Here, lipid

levels in hemolymph remained unchanged, and oocytes developed normally [71]. Likewise,

three independent RNAi experiments were conducted in preadult II female salmon lice. No

significant silencing of LsLpR was found with any of the three different RNAi fragments and

all the adult females produced normal egg-strings. In all RNAi experiments normal develop-

ment to the copepodid stages was observed; however, in one of the three experiments the num-

bers of hatched copepodids were reduced from females injected with LsLpR (fragment 2) as

compared to control. Similar RNAi results were found in S. ricini [62]. The female pupae of S.

ricini were injected with LpR dsRNA along with controls, but no considerable reduction in the

mRNA level was found and no abnormalities in ovaries or egg production were noted. Fur-

thermore, RNAi was conducted in B. germanica and reduction in Lp levels was noted in the

ovary but no significant effect on the ovarian development and fertility was noted [32]. More-

over, in the fat body of B. germanica, the effects of RNAi began to disappear after three days

and levels of LpR mRNA, and lipophorin contents increased. In salmon lice during infection

trial, the LsLpR was knocked down in copepodids by 60%. No significant knock-down was

observed in adult females that developed from these copepodids (approximately 60 days after

infection). Moreover, RNAi experiment in adult females showed that the maximum knock

down of LsLpR (30%) was only observed at days 15. Hence, it appears that LsLpR is difficult to
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knockdown in adults while in larvae effect of knockdown is not achieved to a level where any

obvious abnormal phenotype is observed. Further RNAi studies are needed in the future in dif-

ferent insect and crustacean species to explain the sensitivity of RNAi towards LpRs.
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