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There is a wealth of evidence showing aberrant functional connectivity (FC) in
schizophrenia but with considerable variability in findings across studies. Dynamic FC is
an extension of traditional static FC, in that such analyses allow for explorations of
temporal changes in connectivity. Thereby they also provide more detailed information on
connectivity abnormalities in psychiatric disorders such as schizophrenia. The current
study investigated dynamic FC in a sample of 80 schizophrenia patients and 80 matched
healthy control subjects, replicating previous findings of aberrant dwell times in specific FC
states, and further supporting a role for default mode network (DMN) dysfunction.
Furthermore, relationships with hallucinations, a core symptom of schizophrenia, were
explored. Twomeasures of hallucinations were used, one measure of current hallucination
severity assessed on the day of scanning, and one trait-measure where hallucinations
were assessed repeatedly over the course of 1 year. Current hallucination severity did not
show a significant relationship with dynamic FC. However, the trait-measure of
hallucination proneness over 1 year showed a significant relationship with dynamic FC.
Patients with high hallucination proneness spent less time in connectivity states
characterized by strong anti-correlation between the DMN and task-positive networks.
The findings support theoretical models of hallucinations which have proposed an
instability of the DMN and impaired cognitive control in patients with hallucinations.
Furthermore, the results point to hallucination proneness as a potential marker for
identifying distinct subgroups of schizophrenia patients.
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INTRODUCTION

Schizophrenia (SZ) has been described as a “disconnection
syndrome” (1), referring to aberrant interaction between
critical areas of the brain. Neuroimaging studies have found
evidence for altered resting state functional connectivity (FC) in
schizophrenia patients compared to healthy control subjects,
covering a range of different brain regions [see (2–5) for
selected reviews]. These findings include hyper- as well as
hypo-connectivity, with considerable variation in results
across studies.

The inconsistencies in findings might partly stem from the
fact that schizophrenia is characterized by a wide range of
different symptoms which are associated with different
biological underpinnings and distinct FC abnormalities. Hence,
variability in sample compositions might affect the results of such
studies. In particular, auditory verbal hallucinations, a key
symptom of SZ, have repeatedly been linked to FC alterations.
These alterations involve auditory and language regions, the
default mode network (DMN), executive and cognitive control
networks, and subcortical areas [see (6–8) for selected reviews].

The majority of fMRI studies that have investigated FC in
schizophrenia and hallucinations, have employed methods of
static connectivity, i.e. averaging FC across the scanning time.
These methods work on the assumption that functional
connectivity between brain regions does not change
substantially across the duration of the scanning session which
typically lasts 5–15 min. However, this assumption does not
seem to hold true in the face of growing evidence for
considerable fluctuations in fMRI FC across time (9, 10).
Therefore, recent investigations of fMRI resting state FC have
increasingly focused on dynamic, or time-varying, FC. These
investigations aim to detect connectivity patterns that can be
found across subjects and occur at different time points
throughout the scanning period (11, 12). One of the main
approaches for the investigation of dynamic FC is a sliding
time window approach, where FC matrices are computed for
consecutive portions of the scanning period. FCmatrices of those
windows can then be clustered based on similarities in the FC
patterns in order to form a set of “connectivity states”. Each
connectivity state is characterized by a distinct FC pattern across
a variety of brain regions and the temporal pattern of those states
over time describes the functional organization of the brain [e.g.,
(13)]. The occurrences of FC states within an fMRI session have
been linked to concurrently measured EEG signals (14, 15) and
to different task conditions (16). These findings suggest that FC
states reflect fluctuations in neuronal activity and cognitive
states, or modes of brain functioning. Furthermore, differences
in dynamic FC also reflect more stable, inter-individual
differences in cognition (17).

Measures of dynamic FC also show links with mental health
disorders, such as schizophrenia, and have been successful in
differentiating patient groups and healthy controls (18).
Importantly, dynamic FC has been found to outperform static
FC measures when classifying SZ patients (19, 20). Interestingly,
classification was not significantly improved when adding static
FC measures to dynamic ones. This suggests that SZ-related
Frontiers in Psychiatry | www.frontiersin.org 2
abnormalities in static FC are also captured in dynamic FC but
not vice versa. SZ patients and healthy controls have been shown
to differ on a number of variables related to dynamic FC. First,
patients spend more time in states with overall weak FC between
networks, and less time in states with strong FC between sensory
networks (18, 21–23). Second, SZ show reduced “dynamism” in
FC, reflected in a reduced number of distinct FC states and
reduced switching between states (24). This reduction in
dynamism was also specifically related to the severity of
hallucinations. On the other hand, the amount of time spent in
different FC states showed no relationship with a summary
measure of positive symptoms which included hallucinations
(21). Together, these results could point to a unique relationship
between dynamic FC and hallucinations.

The current study sought to investigate resting state dynamic
FC in SZ, with a particular focus on hallucinations. Given the
relative scarcity of studies on dynamic FC in SZ, the first aim was
to replicate previously reported differences between SZ and HC
with respect to the length of time spent in different FC states (18,
21). In addition, links between dynamic FC states and
hallucinations were explored, using two different measures of
hallucinations. First, effects of current hallucination severity were
investigated using a measure of hallucinations on the day of
scanning. However, since previous research suggests that
temporary symptom severity might not show a strong
relationship with dynamic FC states (21), a second, trait
measure of hallucinations was included. Hallucinations were
assessed repeatedly over a 1-year period and a measure of
hallucination proneness was established. This second measure
reflects more stable trait differences between patients. Therefore,
it could indicate distinct subgroups of SZ patients, which have
been suggested in previous research based on lifetime history
assessments of auditory hallucinations (25). Stable differences in
hallucination proneness are likely to be reflected in brain
functioning and may therefore also be related to dynamic FC,
which reflects a general functional organization of the brain (26).
Furthermore, dynamic FC has been shown to differentiate
between patient groups with different diagnoses (18, 19) and
symptom-based subgroups of patients (27). Therefore, we
predicted differences in connectivity state dwell times between
SZ patients and healthy controls, and between patients with low
versus high hallucination proneness.
METHODS

Subjects
fMRI data were collected from 84 patients with a schizophrenia
spectrum disorder (SZ) according to the ICD-10 diagnostic
manual (F20–F29: Schizophrenia, schizotypal, and delusional
disorders) (28). Four data sets were excluded after pre-
processing, due to head movements of more than one voxel
size between volumes, resulting in 80 patient data sets. Eighty
healthy control subjects (HC) were individually matched with
the SZ patients based on gender (60 males per group) and age (±
3 years, except for six SZ-HC pairs with a mean difference of 8.12
years). The mean age was 30.96 years (SD = 11.91) for SZ and
March 2020 | Volume 11 | Article 227
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30.86 years (SD = 11.13) for HC. The majority of patients used
antipsychotic medication, of which all used second-generation
antipsychotics, with some patients in addition using first-
generation antipsychotics [defined daily dose (DDD) of
antipsychotics M = 1.02, SD = 0.55]. Some patients also used
anti-depressants (n=8), mood stabilizers (n=2), opioids (n=1),
benzodiazepines (n=13), anticholinergic (n=4), anticonvulsant
(n=4), or ADHD medication (n=1). Further information on the
patient sample can be found in Table 1. All subjects gave written
informed consent to take part in the study prior to participation.

Data Acquisition
Neuroimaging Data
3T MR data were acquired at the Haukeland University Hospital
in Bergen, Norway (68 patients and 80 HC), and at the Medical
University of Plovdiv, Bulgaria (12 patients). In the course of the
study, the MR scanner at the Bergen site was upgraded from a GE
Signa HDx to GE Discovery MR750. All data acquired at the
Plovdiv site were acquired on a GE Discovery MR750w, using the
same MR parameters as at the Bergen site. The scanner version
was included as a regressor variable of no interest in all analyses
(i.e., Bergen pre-upgrade, Bergen post-upgrade, Plovdiv). The
study protocol was approved by the Regional Committee for
Medical Research Ethics in Western Norway (REK Vest) (REK
#2016/800) and by the ethical authorities at the Medical
University of Plovdiv, and conducted according to the
Declaration of Helsinki.

fMRI resting state data were collected during a 5.33-min eyes-
closed scan. One hundred sixty whole brain volumes were
acquired, with 30 slices with a 0.5 mm gap (voxel size
1.72×1.72×3 mm) with the following parameters: repetition
time (TR)/echo time (TE)/flip angle (FA)/field of view (FOV)
2000ms/30ms/90°/220mm. In addition, a structural T1-weighted
image was acquired (7.42 min) using a 3D SPGR sequence with
the following parameters: TR/TE/FA/FOV 7.78ms/2.94ms/14°/
256mm (post-upgrade: 6.9ms/3.0ms/14°/256mm), isotropic
voxel size of 1mm3.

Clinical Data
Hallucination severity was assessed with the P3 item of the
Positive and Negative Syndrome Scale [PANSS; (29)]. The
Frontiers in Psychiatry | www.frontiersin.org
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PANSS P3 item assesses hallucinations in different modalities
and has a particular focus on auditory hallucinations and hearing
voices (30), since these are the most common type of
hallucination in psychotic patients (31, 32). Therefore, the
PANSS P3 item is a measure of hallucination severity in
general but the way that the interview questions are organized
reflects auditory hallucinations to a greater degree than other
sensory modalities. All PANSS raters were trained and certified
and satisfactory inter-rater reliability was documented. For all
patients, PANSS data were collected on the day of fMRI
scanning. For the 12 patients from the Plovdiv site, this was
the only PANSS assessment, but for the 68 patients who were
scanned at the Bergen site as part of a 1-year study, additional
PANSS data were acquired during up to seven additional visits to
the clinic (baseline, week 1, week 3, week 6, month 3, month 6,
month 9, month 12). The mean number of visits per patient was
M = 5.81 (SD = 2.04), with most patients being followed for at
least 6 months (mean last visit number M = 6.51, SD = 1.74).
Supplementary Table S1 provides an overview of the
distributions of visits per patient. fMRI data were typically
acquired at one of the first visits (visit 1, 2, or 3 in 75% of
cases), but in order to account for any potential effects of the time
point of scanning, the visit number was included as a regressor
variable of no interest when comparing patient subgroups.

Data Preprocessing and Analyses
Data pre-processing was conducted with the SPM12 software
package (https://www.fil.ion.ucl.ac.uk/spm/). This included
realignment of functional volumes for head motion correction,
coregistration of the T1 structural image to the mean functional
image, normalization of functional data into MNI (Montreal
Neurological Institute) space, resampling to a voxel size of 4x4x4
mm, and smoothing with a Gaussian kernel of 8 mm FWHM.

Independent Component Analysis (ICA)
Pre-processed fMRI data were further analyzed in the SPM
Group ICA of fMRI Toolbox (GIFT v3.0b http://trendscenter.
org/software/gift/), using the Toolbox default parameter settings.
Initially, a two-step data reduction procedure was followed. First,
all data sets underwent a subject-specific Principal Component
Analysis (PCA) which estimated 150 components. Second, all
subjects’ reduced data sets were concatenated and underwent a
PCA which estimated 100 components on the group level.
Subsequently, group-level spatial ICA was performed on the
PCA output, identifying 100 functional components equivalent
to Allen et al. (13) and Damaraju et al. (21). The Infomax
algorithm was used for component estimation. Subject-specific
component maps and time courses were obtained from the
group-level components using the GICA back reconstruction
method. Components were then evaluated and excluded as
artifact components if they showed a peak in white matter or
cerebrospinal fluid, or if the majority of the power in the Fourier
frequency spectrum of the component’s time course was above
0.1 Hz (33, 34). Using component spatial maps from previous
research (13) as templates, 45 components were finally identified
as functional components belonging to one of eight functional
networks: subcortical (four ICs: putamen, caudate, 2x thalamus),
TABLE 1 | Demographic data for the whole sample of SZ patients, and for the
68 SZ patients from the Bergen site, split into non-hallucinators and hallucinators
Positive and Negative Syndrome Scale (PANSS) data are based on assessments
on the day of fMRI scanning. A significant group difference between hallucinators
and non-hallucinators was found for PANSS total (p =.041).

all patients
(n = 80)

non-hallucinators
(n = 19)

hallucinators
(n = 49)

Age 30.96 (11.91) 33.42 (11.38) 28.88 (11.15
Gender (m/f) 59/21 13/6 36/13
PANSS P3 2.69 (1.63) 1.05 (0.23) 3.33 (1.49)
PANSS positive 16.23 (5.20) 13.53 (5.06) 16.73 (5.18)
PANSS negative 15.86 (5.00) 13.53 (5.17) 16.15 (4.63)
PANSS general 33.42 (8.99) 28.47 (8.71) 34.77 (8.85)
PANSS total 65.51 (16.39) 55.53 (16.24) 67.65 (15.09
Medication (DDD) 1.02 (0.55) 0.96 (0.41) 1.08 (0.63)
Duration of illness 4.83 (7.71) 3.19 (5.47) 4.03 (7.15)
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auditory (two ICs), somatomotor (eight ICs), visual (nine ICs),
insula (one IC), fronto-parietal task-positive networks (eight
ICs), Default Mode Network (eight ICs), and language (five ICs).

Dynamic Functional Connectivity Analysis
Dynamic functional connectivity analyses were conducted with
the GIFT Dynamic FNC Toolbox (v1.0a) equivalent to previous
research (13, 21). In a first step, subjects’ component time
courses were detrended and despiked. A fifth-order
Butterworth low-pass filter with a high frequency cutoff of 0.15
Hz was applied. Six realignment parameters obtained during
head motion correction were regressed out from the time
courses. For the dynamic FC analysis, overlapping time
windows of 40 s (20 TRs) were taken from the scanning time
in steps of 2 s (1 TR) and convolved with a Gaussian of sigma = 3
TRs in order to de-weigh volumes at the beginning and end of
the windows. For each window, FC was estimated in the form of
a regularized inverse covariance matrix using the Toolbox
graphical LASSO method with an additional L1 norm
constraint. Finally, covariance estimates were Fisher-Z-
transformed. For each subject, variance associated with the
scanner version was removed from the windowed FC. In order
to identify FC states that reoccured across time and across
subjects, the windowed FC matrices were subjected to the
GIFT k-means clustering procedure. In a first step, a subset of
windows (i.e. “exemplars”) was selected for each subject,
representing those FC matrices with maximal variability in FC.
From those windows, the optimal number of clusters (k) was
determined by the toolbox using the elbow criterion, defined as
the ratio of within-cluster distances to between-cluster distances.
The resulting k cluster centroids were used as templates for
clustering all windows’ FC matrices of all subjects.

Group Comparisons of Dynamic Functional
Connectivity
The primary measures of interest were the state dwell times,
indicating for each state the average length of the single time
periods that subjects stayed in that FC state, before switching to
another state. To test for differences between SZ and HC, a
MANOVA was conducted with each state’s dwell time as
dependent variables, and SZ versus HC as an independent
variable. To investigate the relationship between dwell times
and hallucinations, two different measures were employed. First,
the continuous P3 score on the day of fMRI scanning was used as
a measure of current hallucination severity. Second, P3
assessment over the course of 1 year was used as a trait
measure of hallucination proneness. This resulted in a non-
hallucinator group (n=19) whose P3 score was never higher than
two in the 1-year period (or alternatively one score of three
compensated for by only scores of one on all other assessments),
and in a hallucinator group (n = 49) whose P3 score was three or
higher in at least one assessment during the 1-year period (unless
compensated by only scores of one on all other assessments).
Two MANCOVAs were conducted, one for each of the two
hallucination measures as an independent variable, and dwell
times in the different FC states as dependent variables. Age,
gender, MRI visit number, and type of medication were included
Frontiers in Psychiatry | www.frontiersin.org 4
as regressor variables of no interest, since hallucinators and non-
hallucinators were not matched with respect to these variables.
RESULTS

Dynamic Functional Connectivity States at
the Whole-Group Level
K-means clustering identified five distinct connectivity states
based on the windowed FC matrices (Figure 1). State 1 was
characterized by strong positive FC within the DMN, i.e. between
the different components of the DMN, and negative FC between
the DMN and Task Positive Networks (TPN), especially the
insula. State 2 was characterized by strong positive FC within and
between sensory networks and negative FC of those networks
with the DMN and TPN. State 3 was similar to State 2 but FC of
sensory networks was even stronger and the negative FC with
DMN and TPN was absent. Instead, sensory networks showed
negative FC with subcortical networks. State 4 was characterized
by overall weak FC across networks, which was positive within
networks and negative between networks. State 5 was
characterized by mostly positive FC which was strong within
networks, in particular the DMN and language network.

Differences in Dynamic FC Between SZ
Patients and HC
Two of the five FC states showed a significant difference in dwell
times between SZ and HC (Figure 2A). SZ had significantly
increased dwell time compared to HC in State 5, F(1,158) = 4.43,
p =.037, but significantly reduced dwell time in State 3,
F(1,158) = 5.01, p=.027. With respect to the occurrences of the
two states in each group, fewer SZ than HC visited State 3
(n = 11 vs n = 23), whereas there was no difference for State 5
(n = 37 vs n = 36). There was no significant difference between
SZ and HC in the number of distinct time periods in State 3 and
State 5 (p =.299 and p =.578).

Relationships Between Dynamic FC and
Hallucinators
Current hallucination severity, assessed with the PANSS P3 score
on the day of fMRI scanning, was not significantly related to
dwell times in the different FC states (all p > .26). However, trait
hallucination proneness over a 1-year period showed a significant
relationship with state dwell times (Figure 2B). Compared to the
non-hallucinator group, the hallucinator group had significantly
reduced dwell times in State 1, F(1,26)=12.48, p=.002. There was
no significant difference in the number of distinct time periods in
State 1 (p=.452). Within the hallucinator group, the severity of
hallucinations, measured as the mean P3 across 1 year, did not
have a significant effect on dwell times (all p > .508, with p=.521
for state 1). In order to ensure that the results were specific to
hallucinations and not driven by general symptom severity, the
MANCOVA was repeated twice, once corrected for the positive
PANSS score across visits and once corrected for the total PANSS
score across visits, and the results remained substantially the
same (changes in effect size from partial h2 =.32 to h2 =.26 and
h2 =.29, respectively). Furthermore, neither the positive PANSS
March 2020 | Volume 11 | Article 227
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subscale nor the total PANSS score were significantly related to
dwell times in State 1 (p=.130 and p=.151).

DISCUSSION

This study investigated dynamic FC in SZ patients compared with
HC subjects and explored relationships with hallucinations, one
of the key symptoms of SZ. On the whole-group level, dynamic
FC analyses revealed five FC states which reoccurred over time
and across subjects and which were characterized by distinct FC
patterns across a variety of functional networks. These FC states
were highly similar to those found in previous research using the
Frontiers in Psychiatry | www.frontiersin.org 5
same methods (13, 21). Dwell times in different states showed
relationships with SZ diagnosis as well as hallucinations.

Dynamic FC Differences Between SZ
Patients and HC Subjects
While all FC states occurred in the SZ as well as in the HC group, the
two groups differed with respect to the length of time periods spent in
two out of the five states. Firstly, SZ had significantly longer dwell times
than HC in states that were characterized by positive FC within and
between networks and particularly strong FC within the DMN and the
language network (State 5). The DMN has repeatedly been reported to
show abnormal FC patterns in SZ, with the majority of reviews
FIGURE 1 | FC matrices of the dynamic FC states identified by k-means clustering on the whole-group level (80 SZ and 80 HC). Medians of cluster centroids are
displayed. In brackets are the percentages of occurrence of the five states across the scanning period. The labelling of networks that is shown for state 1, is identical
for all states. FC, functional connectivity; SZ, Schizophrenia; HC, healthy control.
A B

FIGURE 2 | Mean dwell times (and SEM) in the different FC states per group. (A) Shows the comparison of HC subjects and SZ patients. (B) Shows the
comparison of hallucinators and non-hallucinators. Dwell times are given in number of windows (1 window = 1 TR = 2s). Significant differences in dwell times are
marked with * for p < .05 and ** for p < .01. FC, functional connectivity; TR, repetition time.
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concluding predominantly increased FC within the DMN (3, 35, 36).
This finding has been suggested to reflect thought disturbances in
relation to an increased internal focus of cognitive processing in SZ
patients (37, 38). The fact that SZ patients in the current study were not
more likely to reach states with high within-DMN connectivity but
stayed in these states significantly longer than HC, might indicate that
they become “stuck” in these states of increased internal processing
focus. Furthermore, those states were also characterized by overall
positive FC across all brain regions, which suggests a weak segregation
between different functional networks and could be related to
impairments in differentiating between internal versus external
thought contents (36).

The results also showed a significant difference between SZ
and HC in dwell times in State 3. That is, HC stayed longer in
states with strong connectivity within and between sensory
networks and strong anti-correlation with subcortical areas, as
has been reported previously (18, 21, 22). This FC state has been
suggested to reflect a state of low alertness or drowsiness (13, 21).
Shorter dwell times for SZ compared to HC could simply reflect
higher levels of arousal or anxiety in patients, which would make
them less likely to be in a state of relaxation or drowsiness. Even
though this explanation is speculative, it is supported by the fact
that more HC than SZ patients ever reached this state at all.

Overall, the differences between SZ and HCwith respect to dwell
times in the different FC states largely replicate previous findings
(21, 23), even though some group differences did not pass the
significance threshold in the current study (e.g., increased dwell time
for SZ compared to HC in states with overall weak connectivity
between all networks). Given the smaller sample size in the current
study, this might be related to lower statistical power or it could
indicate that some state differences are more generalizable across
different sample compositions than others.
Dynamic FC Differences Between
Hallucinators and Non-Hallucinators
The second aim of the study was to explore the relationship between
dynamic FC and hallucinations within the SZ sample. As expected
(21), the time spent in different FC states was not significantly
related to a measure of current hallucination severity on the day of
fMRI scanning. However, assessing hallucinations as a trait variable
across a 1-year period and differentiating between patients with high
versus low hallucination proneness in that period, showed that those
two subgroups of patients differed in dynamic FC. Specifically,
hallucinators spent less time than non-hallucinators in states with
strong anti-correlation between the DMN and task-positive
networks (TPN).

Reduced DMN-TPN anti-correlation has previously been found
in SZ patients in studies using static FC. These findings have been
interpreted in the light of impaired differentiation between internal
and external focus in cognitive processing (35, 36). These
impairments might be particularly relevant for hallucinations,
which constitute an internally generated stimulus which is
attributed to an external source [cf. (39, 40)]. Abnormalities in
DMN connectivity have also been linked to hallucinations directly
(6). A recently proposed model of auditory hallucinations centers
around aberrant DMN connectivity, alongside auditory cortex
Frontiers in Psychiatry | www.frontiersin.org 6
abnormalities (41). Specifically, it was suggested that a reduced
anti-correlation between the DMN and the central executive
network causes a collapse of states with an internal processing
focus. The resulting DMN withdrawal then leads to a state of
increased focus on auditory processing and consequently to the
experience of hallucinations. The fact that hallucinators in the
current study could not uphold DMN-TPN anti-correlation states
for as long as non-hallucinators, might reflect the hypothesized
collapse of internal processing states, which are maintained by
DMN-TPN anti-correlation. Therefore, the findings are also in line
with a previously proposed hallucination-related instability of the
DMN (42) and a dysfunction of the cognitive control network (43).

Hallucinations as a Potential Marker for
Subgroups of SZ
The current study suggests that hallucinations could be an indicator
for identifying distinct subgroups of SZ patients. Importantly
though, relationships of hallucinations with dynamic FC were
only present for trait hallucination proneness but not for current
hallucination severity. This indicates that the general vulnerability to
experience hallucinations is reflected in functional brain
organization and that this vulnerability is detectable even in
periods where hallucination severity is low (as indicated by
patients with high hallucination proneness but low current
hallucination severity). Within the hallucination-prone subgroup,
there was no effect of hallucination severity over time, which
suggests that differences in dynamic FC reflect a categorical
vulnerability to experience hallucinations.

Differences between hallucinators and non-hallucinators
persisted when correcting for total symptom severity and positive
symptoms. Furthermore, neither total symptom severity nor
positive symptoms were related to state dwell times. This points
to a unique relationship of hallucinations with dynamic FC patterns
and further supports the potential value of hallucinations as a
marker for differentiating SZ subgroups. The measure of
hallucination proneness over a 1-year period might be related to
assessments of lifetime history of hallucinations, which has
previously been shown to discriminate between SZ subgroups in a
classification study (25). In fact, classification accuracy was higher
for the hallucinators versus non-hallucinators subgroups of patients
than for the SZ versus HC groups. This led the authors to the
conclusion that hallucination-based patient subgroups might be a
more useful entity than traditional diagnosis groups. In the current
study, dynamic FC was susceptible to both, SZ diagnosis as well as
hallucination proneness, but with stronger relationships with for
hallucination proneness. Interestingly, the FC states that showed
effects of SZ diagnosis and the states that showed hallucination
effects, were both characterized by strong FC within the DMN. It is
therefore possible that the two effects are related, with states of
DMN-TPN anti-correlation (State 1) potentially compensating for
DMN hyper-connectivity (State 5). That is, SZ patients generally
spend more time in states with DMN hyper-connectivity, which
has been associated with misattributions of internal thought
contents to external sources (36–38). However, in non-
hallucinators, states of DMN-TPN anti-correlation modulate
DMN functioning, which might make these misattributions less
likely and hence protect against hallucinations.
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Limitations and Directions for Future
Research
Despite the potential of dynamic FC as a method for investigations
of naturally occurring fluctuations in brain functioning, some
limitations should be considered when interpreting dynamic FC
findings. First, while dynamic FC corresponds to fluctuations in
cognitive states (14, 16) and stable inter-individual cognitive
differences (17), the interpretations of the single FC states with
respect to underlying cognitive processes are still largely unclear.
Even though FC patterns can be interpreted based on the knowledge
about the functional networks involved, future research should
investigate direct links between dynamic FC states and cognitive
states, for example using task-based fMRI paradigms. With respect
to hallucinations, it would be interesting to apply dynamic FC to
fMRI data from symptom capture designs. This would allow an
investigation of the states that are associated with time periods in
which patients are known to experience hallucinations, or time
periods that precede or succeed hallucinations.

Second, dynamic FC analyses require a number of choices
with respect to different analysis parameters, such as window
size, and the selection of functional networks. While it has been
shown that some of these choices do not significantly affect the
results (13, 21), the current study nonetheless used previously
validated analysis parameters in order to enhance comparability
between studies and offer a replication of previous findings (21).
However, relationships between dynamic FC and hallucinations,
which were based on a relatively small sample in the current
study, should be subjected to further testing and replication.

A further critical point concerns the fact that fMRI data in the
current study were collected on different scanners. While this is very
common, in particular when studying clinical populations, great care
should be taken when combining fMRI data frommultiple sources, in
order to avoid effects of sampling bias and scanner-related
measurement parameters (44). In the present study, scanner-related
variance was removed from the data so that all reported results are
corrected for potential site- or scanner-related effects.

The current study did not assess the degree to which patients
experienced hallucinations during fMRI scanning. Therefore, it
is impossible to determine if and how potentially occurring
hallucinations during scanning may have affected the results.
This is particularly true for the analysis on current hallucination
severity, which was assessed on the day of scanning and might
therefore be related to hallucination frequency during scanning.
Since this analysis did not show any significant effect on dynamic
FC, it is difficult to speculate about a potential role of ongoing
hallucinations in the current findings.

The current study used the PANSS P3 item as a measure of
hallucination severity. Therefore, it is not possible to disentangle the
effects of hallucinations in different sensory modalities. However,
given the focus in the PANSS P3 interview situation on auditory
hallucinations (30), and the relative prevalence of auditory
hallucinations compared to other types of hallucinations (31, 32),
it is likely that the results primarily reflect effects of auditory
hallucinations. The reported hallucination-related differences were
centered around FC abnormalities in the DMN and TPN and were
interpreted in the context of theoretical models that were developed
Frontiers in Psychiatry | www.frontiersin.org 7
to explain auditory verbal hallucinations (41, 43). However, since
the DMN and TPN are involved in general cognitive functioning,
independent of a particular sensory modality, it is conceivable that
their dysfunction does not only play a role in auditory
hallucinations but in hallucinations generally. Future studies that
assess different modalities of hallucinations separately, should
explore to which degree they share underlying mechanisms, and
to which degree modality-dependent differences exist.
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