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ABSTRACT: 

 

Background: Males with classic Fabry disease have a high incidence of end stage renal disease 

(ESRD). The processes leading to ESRD are poorly understood. Defects in the α-galactosidase A 

gene lead to globotriaosylceramide (GL3) accumulation in various cell types, but in the 

glomerulus, this is progressive with age only in podocytes. Of concern, podocytes are relatively 

resistant to enzyme replacement therapy (ERT) and are poorly replicating when lost. Methods: 

In this study in 55 males aged 27±13 years with classic Fabry disease genotype and/or phenotype 

unbiased quantitative morphometric electron microscopic renal biopsy studies were performed. 

Results: There was increasing podocyte GL3 volume fraction with increasing age, which 

plateaued at about age 27. GL3 accumulation was associated with podocyte injury and loss as 

evidenced by increased foot process width and decreased podocyte number density per 

glomerular volume. Worsening podocyte structural parameters were also associated with 

increasing urinary protein excretion, a strong prognosticator of adverse renal outcomes in Fabry 

disease, and with glomerular filtration rate loss. Conclusions: Given the known association 

between podocyte loss and irreversible focal segmental and global glomerulosclerosis, this study 

supports an important role for podocyte injury and loss in the progression of Fabry nephropathy 

and argues for therapeutic intervention before critical podocyte loss has occurred.  
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Table of Abbreviations: 

 

α-Gal-A  α-galactosidase A  

ERT   Enzyme replacement therapy  

FPW  Average foot process width 

GL3  Globotriaosylceramide  

GFR  Glomerular filtration rate 

Nv(PC/glom) Number density of podocytes per glomerular volume 

UPER  Urinary protein excretion rate 

VPC  Average podocyte volume  

VPCN Average podocyte nuclear volume  

V(Inc/PC) Podocyte GL3 volume; average total volume of GL3 inclusions per podocyte 

Vv(Inc/Endo) Endothelial GL3 volume fraction; the fraction of endothelial cytoplasmic volume 

occupied by GL3 inclusions 

Vv(Inc/Mes) Mesangial GL3 volume fraction; the fraction of mesangial cytoplasmic volume 

occupied by GL3 inclusions 

Vv(Inc/PC) Podocyte GL3 volume fraction; the fraction of podocyte cytoplasmic volume 

occupied by GL3 inclusions 

Vv(PC/glom) The fraction  of the volume of the glomerulus  occupied by podocytes 

Vv(PCN/PC)  The fraction of the volume of podocytes occupied by podocyte nuclei 
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INTRODUCTION: 

Fabry disease is caused by mutations in GLA gene leading to deficiency  in the lysosomal 

enzyme α-galactosidase A (α-Gal-A) and accumulation of its substrates, primarily 

globotriaosylceramide (GL3), in various cell types and organs (1). Especially in males with more 

severe α-Gal-A gene mutations and little or no residual α-Gal-A enzyme activity, Fabry disease 

often results in severe vital organ injury manifesting as strokes, cardiomyopathy, arrhythmias, 

renal failure, neuropathy, and premature death (2).  

Enzyme replacement therapy (ERT) may relatively quickly (within 5 months) eliminate 

microscopically detectable GL3 accumulation in endothelial cells in the skin, kidney, and heart 

as well as in additional cell types such as glomerular mesangial cells, and fibroblasts (3). 

However, some cell types such as glomerular podocytes, vascular smooth muscle cells and 

cardiac myocytes are considerably more resistant to ERT (3, 4). These are all complex, 

terminally differentiated, poorly replicating cells with great functional significance whose injury 

or loss can lead to severe organ dysfunction. Thus, although a long-term randomized placebo 

controlled ERT trial reported reductions in serious clinical events (5), there are substantial 

residual risks despite ERT (6). While playing a crucial role in preserving nephron structure and 

function, podocytes have little ability to replenish when lost (7). Podocyte dysfunction/loss is 

closely associated with proteinuria, the strongest available biomarker for predicting glomerular 

filtration rate (GFR) loss in patients with Fabry disease (8). In addition, there is a large and ever-

increasing body of human and animal research which is consistent with the concept that 

substantial podocyte loss is associated with focal segmental and global glomerulosclerosis, 

important and irreversible lesions in the path to end stage renal disease (ESRD) (9, 10). In young 

ERT-naïve patients with Fabry disease, podocyte GL3 accumulation increases with age, whereas 
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in glomerular endothelial and mesangial cells it does not (11). Given that the development of 

Fabry disease clinical events is highly age-dependent (6, 12, 13), cells with progressive Fabry 

changes with increasing age (e.g,, podocytes) are more likely to contribute to these events. This 

study focuses primarily on podocyte changes over a wide age range in untreated male patients 

with Fabry disease.  

 

METHODS: 

Patients: We studied treatment-naïve male patients with Fabry disease. Renal biopsies were 

performed as baselines for clinical trials, as clinical assessments prior to the initiation of ERT or 

for diagnosis of clinical renal abnormalities. All patients provided written informed consent (or 

parental consent in the case of children). Kidney biopsies from seven living transplant donors 

obtained prior to organ removal were studied as controls. The research was performed in 

accordance with principles of the Declaration of Helsinki and was approved by the Institutional 

Review Boards of the Universities of Minnesota and Washington. 

 

Clinical Information: Patients’ age at the biopsy, serum creatinine, urinary protein excretion 

rate (UPER) (based on urine protein creatinine ratio or 24 hours urine protein), Fabry-related 

symptoms, GLA mutation and/or α-Gal-A activity were extracted from medical records or from 

the clinical trial databases. Leukocyte and plasma α-Gal-A activity levels are strongly 

correlated(14). In order to make leukocyte and plasma α-Gal-A activity values measured in 

different labs and at different times comparable, we expressed α-Gal-A activity as percent of the 

lower limit of a given laboratory’s normal range (Table 1). All protein changes were checked 

with the «Mutation Taster» software [http://www.mutationtaster.org/cgi-
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bin/MutationTaster/MutationTaster69.cgi]. For mutation descriptions at the cDNA and protein 

levels, we followed the Human Genome Variation Society recommendations (15). GFR, where 

available,  was measured by the plasma disappearance of iohexol, or was estimated based on 

serum creatinine values using the CKD-EPI equation if age≥18 (16) or the modified Schwartz’ 

equation if age<18 years(17). Urinary protein excretion rate (UPER) was derived from timed 

urine collections or spot urine samples obtained close to the time of the biopsy. 

Renal Biopsy Studies: 1 µm sections of 2.5% glutaraldehyde fixed plastic embedded tissues 

were stained with toluidine blue for identification of glomeruli (18). Random glomerular sections 

were prepared for stereological studies as described elsewhere (11). Overlapping digital low 

magnification (~8,000 x) images of entire glomerular profiles were obtained using a JEOL 1010 

electron microscope for masked review by two observers (BN and MM) to select 2-5 non-

sclerosed glomeruli per biopsy with minimal or no artifacts for stereological studies as described 

below. High magnification (~30,000 x) images were obtained according to a systematic uniform 

random sampling protocol for estimation using point counting of the fraction of the volume (Vv) 

of podocyte cytoplasm occupied by GL3 inclusions [Vv(Inc/PC)], hereafter called “podocyte 

GL3 volume fraction” for simplicity, (11) (Figure 1). This was also done for glomerular 

endothelial [Vv(Inc/Endo)] and mesangial cells [Vv(Inc/Mes)] (11). Average volume of 

podocyte nuclei (VPCN) was estimated using the point-sampled intercept method (19) with a 

modified sampling strategy to reduce the volume-weighted property of the method (Figure 1) 

(20). This provides shape and size independent volume estimates. The fraction of the volume of 

podocytes occupied by podocyte nuclei [Vv(PCN/PC)] and fraction  of the volume of the 

glomerulus  occupied by podocytes [Vv(PC/glom)] were estimated using point counting. The 

average volume of podocytes was calculated as: VPC =  
VPCN

Vv(PCN/PC)
 . The total volume of GL3 
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inclusions per podocyte [V(Inc/PC)], hereafter called “podocyte GL3 volume” for simplicity, 

was then calculated as:  VPC·Vv(Inc/PC). Number density of podocytes per glomerular volume 

[Nv(PC/glom)] was calculated as the fraction of the volume of the glomerulus occupied by 

podocytes  divided by the average podocyte volume or Vv(PC/glom)/VPC(21). Podocyte 

average foot process width (FPW) was estimated as the reciprocal of slit length density as 

previously described (Figure 1) (11, 22).  All stereological estimates were done by masked 

observers.  

 

Statistical Analyses 

Statistica 13.0 (Statsoft, Inc.) software was used. Parametric or non-parametric tests were used 

based on the variable characteristics and distribution. Comparison of variables in Fabry patients 

and normal controls was done using Student's t-test or Kolmogorov-Smirnov test. Relationships 

between variables were evaluated using Pearson correlation. Multiple regression analysis was 

performed to identify factors associated with podocyte loss and GFR. Piecewise linear regression 

analysis was performed to study nonlinear relationships. p≤0.05 was considered statistically 

significant.  

 

RESULTS: 

Patients’ Characteristics 

We aimed to study podocyte injury in kidney biopsies from ERT-naïve male patients with Fabry 

disease with classic genotype/phenotype. 67 ERT-naïve males with Fabry disease age 26 (4-60), 

median (range) years were initially considered for enrollment. The phenotype of the disease 

(classic vs. late-onset/cardiac variant) was definable in 60 patients based on the available 
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literature for known mutations and/or clinical findings; 48 (80%) had classic and 12 (20%) had 

late-onset/cardiac phenotypes of Fabry disease. The available information was insufficient for 

reliable classification in 7 patients. Clinical parameters (age, GFR, UPER) and Fabry specific 

structural data including GL3 inclusion volume fraction  in podocytes and mesangial cells were 

not statistically different between these 7 patients and the patients with classic phenotype, and 

inclusion volume fraction in endothelial cells was greater in these 7 patients with unknown 

phenotype compared with the classic phenotype patients (Supplementary Table 1). We therefore 

combined these two groups for all subsequent analyses (n=55) and excluded the late-

onset/cardiac variant subjects from the study. Subjects’ characteristics are listed in Table 1.  

 

Relationships between GL3 accumulation, podocyte injury and loss with age 

The scatter plot of age vs. podocyte GL3 volume fraction suggested that the relationship between 

these two parameters may be best explained through two regression lines with a slope change 

somewhere between ages 20-30 years (Figure 2A). Piecewise linear regression analysis showed 

that 63% of podocyte GL3 volume fraction can be explained by age with the breakpoint at age 

27±13 years [i.e., podocyte GL3 volume fraction correlated directly with age in patients younger 

than 27 years (R=0.62, p=0.0001), but did not increase with age thereafter (Figure 2A)]. This 

suggests that, beyond a threshold, increasing podocyte GL3 volume fraction may compromise 

the survival of these cells. In order to further examine this possibility we determined the 

relationship between GL3 inclusion volume fraction in podocyte profiles with a visible nucleus 

and the size of that podocyte profile as an indicator of podocyte size in 193 podocytes from 7 

randomly selected biopsies. There was a statistically significant direct correlation between 

podocyte profile area and GL3 inclusion volume fraction in each biopsy consistent with larger 



9 
 

podocytes having greater fraction of cytoplasm filled with GL3, this suggesting that the rate of 

GL3 accumulation in these cells exceeds their rate of cellular enlargement (supplementary Table 

2). Furthermore, the plot of pooled data from these biopsies showed an initial linear relationship 

between GL3 inclusion volume fraction and podocyte profile area followed by a plateau (Figure 

2B). This supports a threshold for GL3 inclusion volume fraction and/or podocyte size beyond 

which podocyte survival is compromised (Figure 2B).  

 

Since we observed a different pattern of relationship between fractional volume of inclusions per 

podocyte and age in patients younger than age 27 vs. those age 27 years or older, we also 

separately analyzed the data in each of these age groups. In contrast to podocyte GL3 volume 

fraction which, as noted above, reached a plateau at about age 27 years, both mean podocyte 

volume (VPC)  and the podocyte GL3 volume [V(Inc/PC)] correlated directly with age in 

patients below age 27 (R=0.50; p=0.017 and R=0.59; p=0.004, respectively) and above age 27 

(R=0.55; p=0.026 and R=0.51; p=0.046, respectively). Thus, although the podocyte GL3 volume 

fraction did not appear to increase beyond a certain level, podocyte cell volume and total GL3 

content per podocytes continued to increase with increasing age. Comparison of a subset of 

Fabry patients (n=20) with similar ages to the living kidney donors showed that mean podocyte 

cell volume in Fabry patients was ~4 fold greater than these normal controls (Supplementary 

Figure 1).  

While podocytes were enlarged in Fabry disease, there was progressive decline in the fraction of 

glomerular volume occupied by podocytes [Vv(PC/glom)] with age (R=-0.57; p=0.00006; Figure 

2C). Likewise, by simple linear regression analysis, number density of podocytes per glomerular 

volume [Nv(PC/glom)] declined with age (R=-0.47, p=0.033 (Figure 2D), confirming podocyte 
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loss with increasing age. Inverse correlations between age and the fraction of glomerular volume 

occupied by podocytes and between age and podocyte number density were present both in 

patients who were younger and who were older than age 27 years. Moreover, in 33 subjects 

where values for both plasma or leukocyte α-Gal-A activity and podocyte number density were 

available, there was a direct relationship between α-Gal-A activity and podocyte number density 

(r=0.46, p=0.007), consistent with a relationship between α-Gal-A deficiency and podocyte loss.  

In order to identify factors associated with podocyte loss, multiple regression analysis was 

performed with podocytes number density [Nv(PC/glom)] as the dependent variable and age, 

podocyte GL3 volume and GL3 inclusion volume fraction per podocyte, endothelial cell and 

mesangial cell as predictor variables. With a tolerance of  >0.01, since podocyte GL3 volume 

and mean podocyte volume were highly correlated and showed redundancy , mean podocyte 

volume was not included in the model. The model explained 40% (adjusted R
2
=0.40, p=0.003) 

of podocyte number density variance and podocyte GL3 volume was the only independent 

predictor of podocyte number density (p=0.0004), consistent with a strong negative effect of 

podocyte GL3 accumulation on podocyte survival in Fabry disease. Importantly, the addition of 

α-Gal-A activity substantially improved the model, where now 61% (adjusted R
2
=0.61, 

p=0.0005) of podocyte number density was explained with both podocyte GL3 volume 

(p=0.00005) and α-Gal-A activity (p=0.001) being independent predictors. Mean podocyte foot 

process width (FPW), a generally accepted structural marker of podocyte stress and injury, was 

~1.5 fold greater in Fabry patients compared to normal controls (p=0.004) (Supplementary 

Figure 2). Also, FPW correlated with both podocyte GL3 volume fraction (R=0.40, p=0.004), 

and podocyte GL3 volume (R=0.36, p=0.03).  
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Relationships between Podocyte Structural Parameters and Renal Function 

By simple linear regression analysis, urinary protein excretion rate (UPER) correlated with 

increasing podocyte GL3 volume fraction (R=0.44, p=0.003) and FPW (R=0.41, p=0.007) 

(Figure 3A-B). Using simple linear regression analysis, the fraction of glomerular volume 

occupied by podocytes (R=0.24; p=0.09), mean podocyte volume (R=0.30; p=0.07) and 

podocyte GL3 volume (R=0.30; p0.08) showed trends of relationship with GFR. . Using multiple 

regression analysis with a tolerance > 0.01, 13% of GFR variance (adjusted R
2
=0.13, p=0.03) 

was explained by the fraction of glomerular volume occupied by podocytes, FPW and podocyte 

GL3 volume fraction, while the fraction of glomerular volume occupied by podocytes and FPW 

were  independent predictors. Addition of age, podocyte GL3 volume, and average podocyte 

volume or podocyte number density made the model statistically insignificant.   

 

The scatterplot of podocyte number density vs. podocyte GL3 volume  showed that the 

relationship between these two parameters follows an initial steep downward slope followed by a 

milder slope, consistent with a two-phase exponential decay function (Figure 3C). Piecewise 

linear regression analysis identified podocyte GL3 volume of 2009 µm
3 

as the breakpoint with 

maximum slope shift. Patients and biopsy characteristics in relation to this breakpoint are listed 

in Table 2. Aside from podocyte number density, podocyte GL3 volume, and average podocyte 

volume, the other clinical and structural parameters studied were not statistically different in 

patients with biopsies with podocyte GL3 volume above or below the breakpoint. Patients with 

podocyte GL3 volume greater than the breakpoint showed an inverse correlation between age 

and podocyte number  density  (r=-0.70, p=0.008) and direct correlations between age and 

podocyte GL3 volume (r=0.57, p=0.04) and mean podocyte volume (r=0.67, p=0.01). Also, in 



12 
 

patients with podocyte GL3 volume greater than the  breakpoint, UPER correlated inversely with 

podocyte number density (r=-0.64, p=0.03) and directly with podocyte volume (r=0.79, p=0.002) 

while FPW correlated inversely only with podocyte number density (r=-0.74, p=0.04). Subjects 

with podocyte GL3 volume ≤ the breakpoint showed no statistically significant relationship 

between age or UPER and podocyte number density, podocyte GL3 volume, or podocyte 

volume. However, they showed a direct relationship between UPER and the podocyte GL3 

fraction (r=0.60, p=0.009), this not found in subjects with podocyte GL3 volume > breakpoint.  

 

DISCUSSION: 

This is the first study that addresses detailed structural changes in podocytes in a relatively large 

number of patients with Fabry disease. The podocyte (23) is among a group of terminally 

differentiated relatively poorly replicating important cell types that also includes vascular smooth 

muscle cells and cardiac myocytes (24) all of which have relatively poor responses to enzyme 

replacement therapy (ERT) (3, 25). Severe damage to these cell types can have serious clinical 

consequences including, for vascular smooth muscle cells, down-stream ischemia and tissue 

infarction, e.g., strokes, cardiac arrhythmias, myocardial fibrosis, renal interstitial fibrosis, and 

global glomerulosclerosis, and for cardiac myocytes, cardiomyopathy related cardiac failure 

(26). The podocyte is critical to the maintenance of glomerular permselectivity (27) and 

podocyte damage is associated with proteinuria which, in untreated males with Fabry disease, is 

a very powerful predictor of progressive GFR loss in untreated patients (8) as well as a predictor 

of the failure of long term ERT to prevent further GFR loss (6). As noted above, podocyte loss 

cannot be easily compensated for by podocyte regeneration and, if sufficiently severe, leads to 

irreversible global glomerulosclerosis and the spiral of chronic kidney disease progression 
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related to reductions in functioning nephron number (28).  

We have previously shown that podocyte GL3 volume fraction (i.e. the fraction of podocyte 

cytoplasm filled with GL3 inclusions) increases in Fabry patients with classic GLA mutations 

below age 19 years (11). Our hypothesis regarding the relationships between aging, GL3 

accumulation and podocyte loss is based on the findings in the present study which involved a 

large patient cohort across a wide age span is summarized in Figure 4. We found that the 

increase in podocyte GL3 volume fraction with increasing age continues until about age 25-30 

years. Thereafter there is a plateau in this relationship suggesting that podocyte viability is 

compromised with greater proportions of podocyte cytoplasm filled with GL3 inclusions. The 

direct relationship between podocyte GL3 volume fraction and podocyte profile area clearly 

shows that podocyte GL3 accumulation cannot be adequately compensated for by podocyte 

enlargement, otherwise podocyte GL3 volume fraction would have remained constant while 

podocytes enlarged. The direct relationships between FPW and podocyte GL3 volume fraction is 

indicative of increasing podocyte stress and injury with increasing GL3 accumulation, this 

supported by the direct relationships between podocyte GL3 volume fraction and UPER. These 

results also support the validity of our sampling and measuring methodologies in that our 

structural results from 3 glomeruli are reflective of the permselectivity properties of all 

approximately 2 million glomeruli.  

Importantly, this podocyte injury was associated with podocyte loss. Although mean podocyte 

volume was increased in these male ‘classic’ Fabry disease patients, in some instances to 300-

400% above the upper limit of normal, the fraction of glomerular volume occupied by podocytes 

actually decreased with increasing age. These findings are most consistent with decreasing 

numbers of podocytes per glomerulus. Although increased number of podocytes in the urine (i.e. 
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podocyturia) has been shown in Fabry disease (29-31), the present study is, in fact, the first to 

directly document podocyte loss in biopsies from patients with Fabry disease. Also important 

was the finding of an inverse relationship between both podocyte size and GL3 content and 

number density of podocytes per glomerulus. Podocytes undergo compensatory hypertrophy as a 

result of glomerular enlargement and/or reduced number of podocytes. Surpassing the capacity 

of podocytes for hypertrophy leads to podocyte loss and segmental glomerular sclerosis (32, 33). 

Several mechanisms have been proposed for explaining podocyte injury in Fabry disease (34-

36). Regardless of the injury process, the strong inverse relationship found between podocyte 

GL3 volume and podocyte number density supports clinical relevance of using quantitative 

measures of podocyte GL3 volume as an indicator of response to Fabry-specific treatments (20, 

37, 38). Importantly, the relationship between podocyte GL3 content and podocyte number 

density followed an initial phase with steep slope and a later phase with milder slope with a 

breakpoint at the transition between these two phases. While the proposed value for this 

breakpoint in this study needs to be confirmed in studies with larger number of biopsies, a few 

important points can be derived from the pattern of relationship between these two parameters.  

Biopsies with greater GL3 content per podocyte showed more prominent podocyte loss and were 

also associated with more progressive podocyte GL3 accumulation as well as with increasing 

podocyte loss with aging. While these cross-sectional observations suggest that quantitative 

assessment of podocyte GL3 volume may be of prognostic value and may help identify patients 

with more renal severe phenotypes, it will be important to confirm such conclusion in 

longitudinal studies.  

As this study strongly suggests, the process of podocyte loss begins relatively early in Fabry 

disease, arguing for earlier institution of treatment, certainly before significant proteinuria 
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develops. It will also be important to conduct longitudinal studies to document if a given 

treatment can lead to amelioration of podocyte loss. Nevertheless, since beyond a certain point in 

the process of podocyte loss, glomerular scarring is the regular outcome (28) and since with 

higher levels of proteinuria GFR loss continues despite the institution of ERT (6), a beneficial 

effect of earlier institution of ERT on podocyte survival would not be surprising. Our findings 

also lend support to implementing kidney biopsies in the ascertainment of the severity of renal 

injury and timing of therapeutic strategies in males with Fabry disease. While a baseline biopsy 

prior to initiation of treatment will provide valuable information, performing follow up biopsies 

may be even more informative in assessment of the efficacy of treatment on the injury to 

podocytes and other kidney structures(20, 39, 40). The situation for females is more complex, 

since their podocyte involvement and injury is also affected by mosaicism resulted from random 

X-inactivation (41).  

The present study has some limitations. The cross-sectional nature of this study limits our ability 

to draw firm conclusions regarding prognostic significance of the podocyte injury findings. The 

available α-Gal-A activity values included plasma or leukocyte values measured in different 

laboratories over a wide time span, requiring a normalization process in an attempt to derive 

comparative values. Also, these observations in untreated males with ‘classic’ Fabry disease 

should not be generalized to patients with atypical forms of Fabry disease or to females or ERT 

or otherwise treated patients 

In summary, podocyte GL3 accumulation in Fabry disease is associated with podocyte injury 

which progresses with age and this is associated with proteinuria and podocyte loss.  
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Table 1. Clinical and renal functional characteristics in male ‘classic’ patients with Fabry 

disease.  

Case Age 

(years) 

Protein 

Change 

cDNA 

Mutation 

Mutation 

Category 

α-Gal-A 

activity 

(%LNL) 

Plasma 

GL3 

GFR UPER  RAAS 

Blockade 

Non-renal 

Fabry Features 

1 4 p.(Tyr216

Asp) 

c.646T>G missense NK NK 92  NK N NK 

2 5 p.(Arg112

Cys) 

c.334C>T missense 0% NK 122 0.460 N None 

3 7 p.(Met267

Arg) 

c.800T>G missense 14% 7.5 106 0.250 N CO, PN, GI,  

4 11 p.(His302
Ala 

fs*13) 

c.903_904ins
G 

frameshift 0% NK 121 0.150 N NK 

5 11 NK NK NK 20% NK NK 0 N CO, AK 

6 12 NK NK NK 38% NK NK 0.039 N CO, AK 

7 13 NK NK NK 0% NK 122 0.169 N NK 

8 15 NK NK NK 3% NK 93 0.082 N NK 

9 15 NK NK NK 0% NK 103 0.088 N NK 

10 15 NK NK NK 3% NK 134 0.079 N NK 

11* 15 NK NK NK NK NK NK 0.350 N CO, AK, PN 

12 16 p.(Arg404

del) 

c.1212_1214 

delAAG 

deletion 49% 13.4 112 0.090 N CO, AK, PN, 

GI 

13 17 p.(Arg227

Ter) 

c.679C>T nonsense 2% 17.1 190 0.229 N CO, AK, PN,  

14 17 p.(Asn272

Lys) 

c.816C>A missense 2% NK 107 0.110 N PN, GI 

15 17 NK NK NK 0% NK 97 0.082 N NK 

16 17 NK NK NK 3% NK 127 0.069 N NK 

17 18 p.(Met267
Arg) 

c.800T>G missense 19% 4.8 96 0.220 N CO, AK, PN, 
GI 

18 18 p.(Arg227
Ter) 

c.679C>T nonsense 2% 19.3 156 0.167 N CO, AK, PN 

19 20 NK IVS5-

2,3delCA 
(c.802-3_802-

2delCA) 

intronic 

deletion / 
splicing 

3% NK 153 0.167 N CO, AK,  

20 20 p.(Arg220
Lys) 

c.658C>T nonsense 2% 7.7  70 0.211 Y CO, AK, PN 

21 20 p.(Asn272
Lys) 

c.816C>A missense <24% 27.3 131 0.024 N CO, AK, PN, 
GI 

22 21 p.(Arg227
Ter) 

c.679C>T nonsense 2% 15.8 130 0.102 N AK, PN, GI 
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23 21 p.(Arg227

Ter) 

c.679C>T nonsense NK 2 289 0.140 N CO, PN, GI 

24 23 p.(Asn298

Lys 

fs*2) 

c.893_894ins

G 

insertion 6% 7 112 0.102 N CO, AK, GI 

25 23 NK NK NK 5% 8.5 178  NK N CO, AK, 

LVH, PN 

26 23 p.(Gly132

Arg) 

c.394G>A missense <24% 9.9 88  NK N CO, AK,  

27 23 p.(Arg404
del) 

c.1212_1214 
delAAG 

deletion 14% 8.5 113 0.240 N CO, PN, GI 

28 23 NK NK NK 6% 10.5 148 NK N CO, AK, PN 

29 24 NK NK NK 4% 20 126 0.140 N CO, AK, PN 

30 25 NK NK NK <24% 13.9 146 0.402 N CO, AK, AR, 
PN, GI 

31 25 NK NK NK 6% NK 110 NA N CO, AK,  

32 25 p.[(Asp55

Val; 
Gln57Leu)

] 

c.[164A>T; 

170A>T] 

double 

missense 

0% NK 114 0.018 NK NK 

33 26 p.(Trp204
Ter) 

c.612G>A nonsense 6% 9.9 96  NK N CO, AK, PN, 
GI 

34 30 p.(Arg404

del) 

c.1212_1214 

delAAG 

deletion 28% 10.2 86 0.220 N CO, AK, PN, 

GI 

35 31 NK c.639+4A>T splicing 3% 5.3 167 1.150 N CO 

36 33 p.(Asp244

Asn) 

c.730G>A missense NK NK 115 0.023 NK NK 

37 33 p.(Val339

Alafs*32) 

c.1016_1026d

elTGTGGGA
ACGA 

deletion 0% 7.7 103 0.383 N CO, AK, PN 

38 34 p.(Tyr216

Cys) 

c.647A>G missense 0% NK 119 0.029 NK NK 

39 34 NK c.639+4A>T splicing 3% 29.5 137 0.297 N CO, AK, 

LVH, AR, MI, 

PN 

40 35 p.(Ser102
Glnfs*19) 

c.304delC deletion 3% 16.9 102 NK Y CO, AK, PN 

41 35 p.(Gly144
Val) 

c.431G>T missense 0% NK 105 0.009 NK NK 

42 36 p.(Val281_
Thr282deli

nsAla) 

c.842_844del
TAA 

deletion <24% 10.8 102 1.267 N CO, AK, PN 

43 37 p.(Ser148
Arg) 

c.444T>G missense 6% 13.7 101 0.359 N CO, AK, PN 

44 38 NK NK NK <24% 35.5 135 1.615 N CO, AK, PN 

45 38 p.(Ser148

Arg) 

c.444T>G missense 6% 12 101  NA N CO, AK, MI,  

46 40 p.(Asp153

del) 

c.457_459del

GAC 

deletion 0% NK 76 3.380 Y LVH 

47 40 p.(Arg112

Cys) 

c.334C>T missense NK 4.8 79 0.230 N CO, AK, LVH 
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48 40 p.(Arg301

Ter) 

c.901C>T nonsense 0% 19.2 133 0.462 N CO, AK, GI 

49 45 p.(Pro259

Arg) 

c.776C>G missense 3% NK 104 0.027 NK NK 

50 45 p.(Ala156

Thr) 

c.466G>A missense NK NK 74 0.016 NK NK 

51 45 p.(Leu243

Phe) 

c.729G>C missense 0% NK 104 0.008 NK NK 

52 46 NK NK NK <24% 25.3 154 0.209 N CO, AK, 
LVH, PN, GI 

53 52 p.(Asp33
Gly) 

c.98A>G missense 0% NK 83 0.016 NK NK 

54 53 p.(Trp44C
ys) 

c.132G>T missense NK NK 75 0.090 Y CO, AK, 
LVH, GI 

55 60 p.(Asp322
Glu) 

c.966C>G missense 1% NK NK NK NK NK 

 

Abbreviations: AK=angiokeratoma; AR=arrhythmia; CO=corneal opacity; GFR= glomerular 

filtration rate in ml/min/1.73m
2
; GI=gastrointestinal; LNL=lower normal limit; LVH: left 

ventricular hypertrophy; MI=myocardial infarction; NK=not known; PN=peripheral neuropathy;  

UPER=urine protein excretion rate, mg/g if urine protein/creatinine ratio or g/day if 24 hour 

collection. * Fabry disease diagnosis confirmed by clinical history of periodic lower extremity 

pain crises with and without fevers, angiokeratomas, cornea verticillata, mild proteinuria at age 

14 years, kidney biopsy findings consistent with Fabry nephropathy in the absence of 

lysomotrophic medications, and a maternal uncle with acroparasthesias and cardiac disease who 

died prematurely at age 40 years. 
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Table 2. Clinical and renal structural characteristics of male ‘classic’ patients with Fabry disease 

whose total volume of GL3 inclusions per podocyte [V(Inc/PC)] is below or above the 

breakpoint (2009 µm
3
) determined by piecewise linear regression analysis of relationship 

between the volume fraction of GL3 inclusions per podocyte [V(Inc/PC)] and number density of 

podocytes per glomerular volume [Nv(PC/glom)].  

 V(Inc/PC) ≤ Breakpoint 

N=21
†
 

V(Inc/PC) > Breakpoint 

N=13
†
 

p-value 

Age, years 30 ± 11 28 ± 11 0.64 

GFR, ml/min/1.73m
2
 110 ± 25 124 ± 30 0.15 

UPER* 0.14 ± 0.14 0.39± 0.54 0.16 

α-Gal-A activity** 0.07 ± 0.13 % 0.07 ± 0.06 % 0.98 

Vv(PC/glom) 0.31 ± 0.05 0.35 ± 0.03 0.05 

Nv(PC/glom) 0.000157 ± 0.000082 0.0000477 ± 0.000022 0.0003 

Vv(Inc/PC) 0.41 ± 0.06 0.43 ± 0.06 0.47 

V(Inc/PC), µm
3
 990 ± 486 3514 ± 1415 10

-8‡
 

VPC, µm
3
 2460 ± 1327 8326 ± 3238 3 × 10

-8
 

FPW, nm 703 ± 200 795 ± 271 0.28 

Vv(Inc/Endo) 0.13 ±0.04 0.11 ± 0.03 0.27 

Vv(Inc/Mes) 0.06 ± 0.03 0.05 ± 0.04 0.40 

†
Data for this analysis was available for 34 patients. UPER=Urine protein excretion rate, * mg/g 

if urine protein/creatinine ratio or g/day if 24 hour collection; ** % lower limit of normal range; 

Vv(PC/glom)=fractional volume of podocytes per glomerulus; Vv(Inc/PC)=fractional volume of 

inclusions per podocyte; 
‡
By design; FPW=foot process width. Vv(Inc/Endo)=fractional volume 
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of inclusions per endothelial cell; Vv(Inc/Mes)=fractional volume of inclusions per mesangial 

cell.   
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Figure 1. (A) Systematic uniform random sampling of a glomerular profile for stereological 

measurements from a patient with Fabry disease. Red boxes represent locations where higher 

magnification images are obtained by transmission electron microscopy. Red arrows show the 

path of sampling. Asterisk marks the box that is magnified in B (montage low magnification 

about 8,000x). (B) Magnified view of a portion of glomerular tuft with a superimposed point grid 

used for fractional volume estimation. (C) Higher magnification (~30,000x) image with an 

unbiased counting frame superimposed for estimation of foot process width based on the number 

of line intercepts with the glomerular basement membrane (yellow arrowheads) and number of 

slits (green arrows). 
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Figure 2. (A) Relationship between the podocyte inclusion volume fraction [Vv(Inc/PC)] and 

age. Regression line shows an exponential model with plateau. (B) Relationship between 

podocyte profile area and Vv(Inc/PC). (C) Inverse relationship between the fractional volume of 

podocytes per glomerulus [Vv(PC/glom)] and age (r=-0.54, p=0.0001). (D) Relationship 

between number density of podocytes per glomerulus [Nv(PC/glom)] and age. Solid lines = 

regression lines. Dashed lines = 95% confidence interval. 
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Figure 3. (A) Relationship between urine protein excretion rate (UPER; logarithmic scale, in 

mg/g if urine protein/creatinine ratio or g/day if 24 hour collection) and podocyte inclusion 

volume fraction [Vv(Inc/PC); R=0.44, p=0.003]. (B) Relationship between UPER (logarithmic 

scale) and podocyte foot process width (FPW), (R=0.41, p=0.007). (C) Relationship between 

number density of podocytes per glomerular volume [Nv(PC/glom)] and podocyte total inclusion 

volume. Regression line shows an exponential model with two-phase decay. Solid lines = 

regression lines. Dashed line = 95% confidence interval. 
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Figure 4. Relationships between aging and podocyte GL3 volume (dotted line), podocyte GL3 

volume fraction (dashed line) and podocyte loss in Fabry disease (black bold line). The grey line 

represents physiologic podocyte loss with aging. Initially, the rate of GL3 accumulation is 

greater than the rate of podocyte enlargement, this leading to increasing podocyte GL3 volume 

fraction with  increasing age up to age 25-30 years. Thereafter, podocyte GL3 volume fraction 

plateaus while GL3 accumulation continues in parallel with podocyte enlargement, and this is 

associated with podocyte loss from aging aggravated by additional podocyte loss from Fabry 

disease. 


