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Abstract: It is known that many relevant logics can be con-
servatively extended by the truth-constant known as the Ack-
ermann constant. It is also known that many relevant logics
can be conservatively extended by Boolean negation. This
essay, however, shows that a range of relevant logics with
the Ackermann constant can not be conservatively extended
by a Boolean negation.
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1. Introduction

Acting on inspiration from Johansson’s way of introducing negation for
the minimal calculus, Willhelm Ackermann introduced the negative truth-
constant f in [1] in order to define modal operators. Ackermann suggested
reading f as “the absurd”, and defined the modal operators of impossibility,
necessity and possibility as, respectively A → f, ∼A → f and ∼(A → f).
Anderson and Belnap showed in [2] that the addition of f is conserva-
tive and that these modal notions could in fact expressed without a truth-
constant which prompted them to prefer a truth-constant-less formulation
of their modified version of Ackermann’s logic, namely the logic E, which
turned out to be theorem-wise identical to Ackermann’s logic.

The tradition of relevant logic has for the most part followed Anderson
and Belnap in viewing the Ackermann constant as a constant of conve-
nience; only to be added conservatively in cases where it simplifies presen-
tations or proofs. Even though the addition is conservative in many cases,
and even though the addition of other logical notions such as Boolean nega-
tion is also conservative in many cases, one cannot always put these fact
together and conclude that the addition of Boolean negation to a logic ex-
tended by the Ackermann constant is itself conservative. This feature was
first observed by Giambrone and Meyer ([9]) who noted that even though
CR—the Boolean extension of R—is a conservative extension of R, and
Rt—R extended by the positive Ackermann constant t (basically ∼f)—is a
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conservative extension of R, CRt is not a conservative extension of Rt. In
this case it is provable that CRt is a conservative extension of CR, and so the
non-conservativeness of CRt over Rt is only to be located in the t-involving
formulas. Giambrone and Meyer further claim that the contraction-less
logic TWt also fails to be conservatively extended by Boolean negation, al-
though TW itself is. I will show that their proof of their TWt-claim is wrong
due to a confusion of two intuitive readings of t as either the conjunction
of every actual truth or the conjunction of every logical truth. This paper
studies Giambrone and Meyer’s phenomenon in more depth and shows that
in fact quite many relevant logics endowed with the Ackermann constant
fail to be conservatively extended by Boolean negation.

The rest of this essay is divided into six sections. In sect. 2 I show how the
various relevant logics are pieced together and give some basic definitions
and lemmas. The two main interpretations of the Ackermann constant are
given and their difference discussed. These two interpretations give rise to
two interesting classes of relevant logics: the t-distinctive relevant logics for
which the rule A ` t → A is derivable, and the semi-t-distinctive relevant
logics for which the rule is admissible.

Sect. 3 then shows that no semi-t-distinctive sublogic of R which vali-
dates excluded middle is conservatively extended by Boolean negation. It
follows from this that none of the three “classical” relevant logics T, E and
R strengthened by the Ackermann constant are conservatively extended by
Boolean negation.

Sect. 4 and sect. 5 are on paracomplete relevant logics—relevant log-
ics without excluded middle. Sect. 4 considers paracomplete t-distinctive
relevant logics. It is shown that no such logic with reasoning by cases
is conservatively extended by Boolean negation. Sect. 5 raises the ques-
tion of whether this also carries over to paracomplete logics which are ei-
ther merely semi-t-distinctive or for which reasoning by cases is not avail-
able. The question is, however, left unsettled, although it is shown that
Giambrone and Meyer’s claim in [9] to have settled this in the negative in
the case of the semi-t-distinctive version of TW is incorrect. Sect. 6 then
finally summarizes.

This is the third and last in a series of essays on Boolean negation and
non-conservativeness pertaining to relevant logics. The first essay, [15],
dealt with modal relevant logics, whereas the second essay, [16], dealt with
the question whether the variable sharing property is always preserved when
extending a logic with Boolean negation. Together the three essays paint a
picture of relevant logics being quite often non-conservatively extended by
Boolean negation. It should therefore be noted that many relevant logics
in fact are conservatively extended by Boolean negation. Neither of the
three papers make any effort to survey such proofs, however. The interested
reader should consult [6], [9], [13] and [17].
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2. Definitions and common lemmas

This section first gives some definitions of various relevant logics—see
Tab. 1— as well as other notions and lemmas that will be useful through-
out the paper. The notions of semi-t-distinctive and t-distinctive logics are
introduced and discussed. As a start, then, all proofs in this essay will be
standard Hilbert-style proofs:

Definition 1 (Hilbert proof). A Hilbert proof of a formula A from a set of
formulas Γ in the logic L is defined to be a finite list A1, . . . , An such that
An = A and every Ai≤n is either a member of Γ, a logical axiom of L, or
there is a set ∆ ⊆ {A j| j < i} such that ∆ ` Ai is an instance of a rule of L.
The existential claim that there is such a proof is is written Γ `L A.

BB A1–A5, R1–R7 BBX BB +A12[

B BB +A6, +A7, −R5, −R6 BBI BB +A12
DW B +A8, −R7
TW DW +A9, +A10, −R3, −R4 T TW +A12, +A13
EW TW +R8 E T +A14, +A15
RW TW +A11 R T +A11
Lt1 L +t1, +t2.1 Lt3 L +t1, +t2.3
Lt2 Lt1 +t2.2 Lt4 L +t�, +t2.1, +t2.2
CL L +B1–B2

Table 1. Definitions of various relevant logics

Definition 2 (Defined connectives).

A↔ B =d f (A→ B) ∧ (B→ A)
2C =d f (C → C)→ C
�C =d f t→ C
f =d f ∼t
A ⊃ B =d f ∼A ∨ B De Morgan material implication
A = B =d f ¬A ∨ B Boolean material implication
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(A1) A→ A identity
(A2) A→ A ∨ B and B→ A ∨ B ∨-introduction
(A3) A ∧ B→ A and A ∧ B→ B ∧-elimination
(A4) ∼∼A→ A double negation elimination
(A5) A ∧ (B ∨C)→ (A ∧ B) ∨ (A ∧C) distribution
(A6) (A→ B) ∧ (A→ C)→ (A→ B ∧C) strong lattice ∧
(A7) (A→ C) ∧ (B→ C)→ (A ∨ B→ C) strong lattice ∨
(A8) (A→ ∼B)→ (B→ ∼A) contraposition axiom
(A9) (A→ B)→ ((B→ C)→ (A→ C)) suffixing axiom
(A10) (A→ B)→ ((C → A)→ (C → B)) prefixing axiom
(A11) A→ ((A→ B)→ B) assertion axiom
(A12[) A ∨ ∼A excluded middle
(A12) (A→ ∼A)→ ∼A reductio
(A13) (A→ (A→ B))→ (A→ B) contraction axiom
(A14) ((A→ A)→ B)→ B 1. E-distinctive axiom
(A15) 2A ∧2B→ 2(A ∧ B) 2. E-distinctive axiom
(t1) t
(t�) �A→ A
(t2.1) �(A→ A)
(t2.2) �(A ∨ ∼A)
(t2.3) A ` �A
(B1) A ∧ ¬A→ B Boolean explosion axiom
(B2) A→ B ∨ ¬B Boolean excl. middle axiom
(R1) A, B ` A ∧ B adjunction
(R2) A, A→ B ` B modus ponens
(R3) A→ B ` (B→ C)→ (A→ C) suffixing rule
(R4) A→ B ` (C → A)→ (C → B) prefixing rule
(R5) A→ B, A→ C ` A→ B ∧C lattice ∧-rule
(R6) A→ C, B→ C ` A ∨ B→ C lattice ∨-rule
(R7) A→ ∼B ` B→ ∼A contraposition rule
(R8) A→ (B→ C), B ` A→ C δ
(R9) A,∼A ∨ B ` B γ

Definition 3 (disjunctive extension). Ld—the disjunctive extension of L—
is got from L by adding the disjunctive version of every primitive rule of L,
that is, if A1, . . . , An ` B is such a primitive rule, then Ld has A1∨C, . . . , An∨

C ` B ∨C as an additional the primitive rule.

Not all relevant logics validate the meta-rule of reasoning by cases:

(RbC) A ` C B ` C
A ∨ B ` C .

However, an easy induction will suffice for showing that this meta-rule
holds in any of the relevant logics dealt with in this paper if and only if the
disjunctive versions of every primitive rule is derivable, that is, if and only
if L = Ld. The sole purpose of introducing disjunctive rules in this paper
is to make sure reasoning by cases holds and for that reason I’ll sometimes
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state that some disjunctive version of a logic is got by adding reasoning by
cases as a primitive rule.

Definition 4 (Admissible rule). A rule Γ ` A is an admissible rule in L if it
is the case that ∅ `L A when ∅ `L B for all B ∈ Γ.

Definition 5 (Boolean extension). CL is called the Boolean extension of L.

Definition 6 (Conservative Extension). If L1 and L2 are logics over, re-
spectively, languages L1 and L2 such that L1 ⊆ L2, then L2 conservatively
extends L1 if ∅ `L1 A for every L1-formula A such that ∅ `L2 A.

Definition 7 (t-distinctive logic). A logic is called t-distinctive if t2.3 is
derivable.

Definition 8 (Semi-t-distinctive logic). A logic is called semi-t-distinctive
if it is the case that ∅ `L A if and only if ∅ `L �A.

Thus a logic is semi-t-distinctive if t2.3 is an admissible rule in it.
Before we delve into the non-conservative, let me say something about

truth-constants in relevant logics. There are two truth-constants which are
often added to relevant logics: the intensional Ackermann constant t, and
the extensional Church constant >. The Church constant is always axioma-
tized by the single axiom A → >. Neither of these constants are definable
in relevant logics. In every logic CL, however, > can simply be defined
as A ∨ ¬A for some A. This is not the case with the Ackermann constant
which remains undefinable even in CR. Note that the Ackermann constant
is ambiguous. t is sometimes glossed as the conjunction of every logical
truth/theorem, and sometimes as the conjunction of every actual truth. The
first gives rise to a modal interpretation of the conditional in the sense that
t→ A can be interpreted as “necessarily A”. The latter gloss on t obviously
does not invite such an interpretation. These interpretations are warranted
by the fact, as we shall see, that �A is a theorem if and only if A is a the-
orem of any Lt1-logic in which neither reasoning by cases nor excluded
middle are primitive logical principles and that the same is true for any Lt2

logic in which reasoning by cases is not a primitive principle, but excluded
middle is. The rule �A ` A is derivable in all such logics. However, the
converse rule, A ` �A, is generally not derivable in Lt1- and Lt2-logics. The
only logics in Table 1 for which this holds are the extensions of EWt1 since
such logics validate Ackermann’s δ rule which is easily seen to suffice for
deriving t2.3: t→ (A→ A), A ` t→ A.

The algebraic interpretation of t in t-distinctive logics is as the least des-
ignated element. A distinctive t needs to be interpreted as this element,
whereas a non-distinctive t only needs to be interpreted as the least des-
ignated element assigned to any formula A → A in the case of t2.1 and
A ∨ ∼A in case t2.2 is added. This, as we shall see, need not be the least
designated element. Both these two interpretations of t—as the conjunction
of all logical truths/theorems and the conjunction of all actual truths—and
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these two semantic interpretations are sometimes run together; this is espe-
cially tempting when one only cares about logical theorems.1 However, I
will show in the next section that this leads to error. The essential difference
in the case of logical theorems is whether t2.3 applies to assumptions for
reasoning by cases or not: if t2.3 is a mere admissible rule, then it will not in
general be applicable in sub-derivations using reasoning by cases. If t2.3 is
derivable, however, then one may freely use it also in such sub-derivations.

Lemma 1. A→ B `BB C ∧ A→ C ∧ B

Proof. Left for the reader. �

Lemma 2. A→ B `BB C ∨ A→ C ∨ B

Proof. Left for the reader. �

Lemma 3 (Boolean facts). The following are all theorems and derivable
rules of CBB:

(BF1) ¬¬A↔ A
(BF2) ¬(A ∨ B)↔ (¬A ∧ ¬B)
(BF7) A→ B ` ¬B→ ¬A

Proof. Left for the reader. �

Lemma 4. A→ B `Lti≤4 �(A→ B)

Proof.

(1) A→ B assumption
(2) (A→ A)→ (A→ B) 1, R4
(3) t→ (A→ A) t2.1
(4) �(A→ B) 2, 3, transitivity + def. of �

�

Lemma 5 (Ackermann’s lemma). If L is any explicitly named logic different
than BBX in Table 1, then `Lti≤4 A if and only if `Lti≤4 �A.2

Proof. The if part is trivial since `Lti≤4 t. The only if part is an induction on
proofs. First consider the axioms. All such, except for t1, are→-formulas.
Lem. 4, together with the fact that t → t is an instance of axiom A1, then,
ensures that all axioms are accounted for. Now assume that it holds for the
premises of a rule. If the rule in question is R3–R8, then the conclusion C
1A prime example is found in the appendix to Routley’s Exploring Meinong’s Jungle and
Beyond:

But t � which is interpreted as the conjunction of
all theorems, and semantically marks out the class of
logically regular worlds � can be added conservatively
to DLQ through the two-way rule: A ⇔ t → A. ([20, p.
923])

A world is regular if it validates all the logical theorems of the given logic. DLQ is first-
order version of the logic DW plus the axioms A12 and (A→ B) ∧ (B→ C)→ (A→ C).
2This was first proven by Ackermann in [1, p. 125].
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of the rule is a provable→-formula, and so Lem. 4 again ensures that �C is
also provable. For R1, assume that �A and �B are provable. By R1 itself it
follows that �A ∧ �B is provable, from which �(A ∧ B) follows using R5.
For R2, assume that �A and �(A → B) are provable, that is, t → A and
t→ (A→ B) are both provable. By R3 it follows that (A→ B)→ (t→ B)
is provable, and so the transitivity of → suffices for ensuring that ��B is
also provable, and so using t1 and R2 one can then derive �B. �

Lemma 6. BBXt2 is semi-t-distinctive, i.e. `BBXt2 A if and only if `BBXt2 �A.

Proof. Similar to Lem. 5; t2.2 is needed to ensure that �(A ∨ ∼A). �

Corollary 1. If the rule A ` �A is admissible in L and L′ is got by adding
axioms the main connective of which is→, or rules for which the conclusion
has→ as the main connective, then A ` �A is admissible in L′ as well. In
particular, A ` �A is admissible in CL if it is admissible in L.

Proof. Immediate from Lem. 4 �

3. Results on logics with excluded middle

Lemma 7. A `CBBX ∼¬A

Proof.

(1) A ∧ ¬A→ ∼¬A B2
(2) A ∧ ∼¬A→ ∼¬A A3
(3) (A ∧ ¬A) ∨ (A ∧ ∼¬A)→ ∼¬A 1, 2, R6
(4) ¬A ∨ ∼¬A A12[

(5) A assumption
(6) A ∧ (¬A ∨ ∼¬A) 4, 6, R1
(7) (A ∧ ¬A) ∨ (A ∧ ∼¬A) 6, A5
(8) ∼¬A 3, 7, R1

�

Corollary 2. `CBBXt2 t→ ∼¬t

Proof. Axiom t1 yields t as a logical theorem from which Lem. 7 yields
∼¬t. t → ∼¬t now follows since A ` �A is admissible in CBBXt2 (Lem. 6
and Cor. 1). �

Lemma 8. `CBBXt2 A→ t ∨ f3

3Meyer showed in [12, p. 324] that > ↔ t ∨ f is a theorem of CRt1> and noted that this is
not a provable formula in Rt1>. He also showed that > ↔ ((f → t) → t) is a theorem of
CRt1>. This latter formula, however fails to be a theorem of weaker logics such as CEt1>

and CRWXt1>.
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Proof.

(1) ¬t→ ¬t ∨ f A2
(2) ¬(¬t ∨ f)→ ¬¬t 2, Lem. 3 (BF7)
(3) ¬t ∧ ¬(¬t ∨ f)→ ¬t ∧ ¬¬t 3, Lem. 1
(4) ¬t ∧ ¬¬t→ ¬A B1
(5) ¬t ∧ ¬(¬t ∨ f)→ ¬A 3, 4, transitivity
(6) t→ ∼¬t Cor. 2
(7) t→ (∼¬t ∧ t) 6, fiddling
(8) (¬t ∨ f)→ f 7, R7 + De Morgan-fiddle
(9) ¬f → ¬(¬t ∨ f) 8, Lem. 3 (BF7)
(10) ¬t ∧ ¬f → ¬t ∧ ¬(¬t ∨ f) 9, Lem. 1
(11) ¬t ∧ ¬f → ¬A 5, 10, transitivity
(12) ¬(t ∨ f)→ ¬t ∧ ¬f Lem. 3 (BF2)
(13) ¬(t ∨ f)→ ¬A 11, 12, transitivity
(14) A→ ¬¬(t ∨ f) 13, Lem. 3 (BF7)
(15) A→ t ∨ f 14, Lem. 3 (BF1), transitivity

�

BBXt2 is a sublogic of the three-valued logic RMt1
3 (= RMdt3

3 = RMdt4
3 ),

which is the logic of the algebra displayed in Fig. 1.4 That algebra, like
others in this essay, will have its partial order displayed. Conjunction and
disjunction are to be interpreted as infimum and supremum over this order-
ing. Alongside there will be a matrix which shows how the conditional and
the negation(s) are to be interpreted. A subset T of the algebra—a filter to
be precise—is selected as the set of designated elements. A rule holds in
an algebra just in case the conclusion is assigned a value in T when all its
premises are. The Ackermann constant t is assigned some element in T—
the least such if the logic is t-distinctive or the least such value assigned to
any theorem if it is not, but is semi-t-distinctive. I also list how to inter-
pret the relevant formulas so as to make the model a counter-model to the
intended formula.5

Theorem 1. CL is not a conservative extension of L for any logic BBXt2 6
L 6 RMt1

3 .

Proof. This follows from Lem. 8 together with the fact that A→ t∨ f is not
valid in the semantics for RMt1

3 . �

Corollary 3. CBBIti≤4 , CTti≤4 , CEti≤4 , and CRti≤4 are not conservative exten-
sions of their Boolean-free counterparts.

4RMt1
3 is got from Rt1 by adding the axioms A→ (A→ A) and A ∨ (A→ B). See Brady’s

paper [3] for soundness and completeness proofs.
5All models depicted in this paper have been found with the help of MaGIC—an acronym
for Matrix Generator for Implication Connectives—which is an open source computer pro-
gram created by John K. Slaney ([22]). I have made heavy use of both it as well as William
McCune’s theorem prover/model generator package Prover9/Mace4 ([10]) in arriving at
the results reported in this essay.
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T = {1, 2}
JtK = 1
JAK = 2

2

1

OO

0

OO

→ 0 1 2 ∼

0 2 2 2 2
1 0 1 2 1
2 0 0 2 0

Figure 1. RMt1
3 counter-model to A→ t ∨ f

Thus virtually non of the standard semi-t-distinctive paraconsistent rele-
vant logics with excluded middle can be conservatively extended by Boolean
negation. Note that the presence of t here is vital as for instance both CT
and CR are conservative extensions of, respectively, T and R (cf. [9] and
[13]).

4. Results on t-distinctive paracomplete logics

The previous section showed that quite a few logics with excluded middle
fail to be conservatively extended by Boolean negation. How, then, about
paracomplete logics—logics without excluded middle? As the following
two proofs show, such logics also often fail to be conservatively extended
by Boolean negation provided the Ackermann constant is present. The first
proof regards logics for which γ is a derivable rule, whereas the latter relies
instead on reasoning by cases being available.

Theorem 2. CL is a non-conservative extension for any logic between
BBt3[γ] and the four-valued logic RM4.

Proof. The first part of the proof is to the effect that `CL t ∧ f → A for any
such logic:

(1) t t1
(2) t→ f ∨ ¬f B2
(3) f ∨ ¬f 1, 2, R2
(4) ¬f 1, 3, γ
(5) t→ ¬f 4, t2.3
(6) t ∧ f → f ∧ ¬f 5, R5 + fiddling
(7) f ∧ ¬f → A B1
(8) t ∧ f → A 6, 7, transitivity

The last part is simply to note that t ∧ f → A fails in the RM4-algebra
depicted in Fig. 2.6 �

6See [7] for more information on RM and its finitely-valued extensions.
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T = {2, 3}
JtK = 2
JAK = 0

3

2

OO

1

OO

0

OO

→ 0 1 2 3 ∼

0 3 3 3 3 3
1 0 2 2 3 2
2 0 1 2 3 1
3 0 0 0 3 0

Figure 2. RM4-counter-model to t ∧ f → A

Relevant logics are most often taken to be paraconsistent and so do not
have γ as a derivable rule, although some logics do.7 The next result con-
cerns relevant logics without excluded middle as well as γ. The proof, how-
ever, relies on reasoning by cases being available, and unlike the other re-
sults which showed that either A → t ∨ f or t ∧ f → A are derivable in
the Boolean extensions, and therefore involve both the De Morgan negation
∼ as well as the Boolean one, the next result shows that A ∨ (A ∧ t → B)
is derivable for arbitrary A’s and B’s. This, then, shows also that the non-
conservativeness is in this case not due to the interaction between the two
negations.

Lemma 9. `CBBdt3 A ∨ (A ∧ t→ B)

Proof.

(1) A ∨ ¬A B2 + fiddling
(2) A 1, 1. assumption for RbC
(3) A ∨ (A ∧ t→ B) 2, fiddling
(4) ¬A 1, 2. assumption for RbC
(5) t→ ¬A 4, R10
(6) A→ ¬t 5, Lem. 3
(7) A ∧ t→ t ∧ ¬t 6, fiddling
(8) t ∧ ¬t→ B B1
(9) A ∧ t→ B 7, 8, transitivity
(10) A ∨ (A ∧ t→ B) 9, fiddling
(11) A ∨ (A ∧ t→ B) 1, 2–3, 4–10, RbC

�

Theorem 3. No logic between the positive fragment of BBdt3 and the three-
valued Łukasiewicz logic Ł3 is conservatively extended by Boolean nega-
tion.

Proof. This follows from Lem. 9 together with the fact that t is definable as
A → A for an arbitrary A in Ł3, that reasoning by cases is derivable for Ł3

7Both Ackermann’s Π′, as well as the logic Π′E presented in [14] are worth mentioning as
exceptions. See the latter paper for a discussion of why relevant logics ended up being
wrongly viewed as inherently paraconsistent.
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([11, lem. 3.54]), and that A ∨ (A ∧ t → B) fails in the Ł3-algebra depicted
in Fig. 3.

T = {2}
JtK = 2
JAK = 1
JBK = 0

2

1

OO

0

OO

→ 0 1 2 ∼

0 2 2 2 2
1 1 2 2 1
2 0 1 2 0

Figure 3. Ł3 counter-model to A ∨ (A ∧ t→ B)

�

This, then, shows that none of the standard contraction-free relevant log-
ics Bdt3 , DWdt3 , TWdt3 , EWdt1 = EWdt3 and RWdt1 = RWdt3 are conserva-
tively extended by Boolean negation.

Could one improve upon this result? Note first that t is definable as
A → A for arbitrary A in Ł3. This is essentially because Ł3 validates the
weakening axiom A → (B→ A); any logic which validates even the weak-
ening rule A ` B → A will be able to define t in this way.8 For relevant
logics, however, t is not definable. The distinction between t-distinctive
and semi-t-distinctive logics holds only for logics without the δ rule. With
regards to t, then, one may hope to improve the result by showing that also
semi-t-distinctive logics—sublogics of TWdt1—are non-conservatively ex-
tended by Boolean negation.

The other path along which one might hope to do better is by eliminating
the need to assume reasoning by cases as a primitive rule; one may here
hope to find a proof of non-conservativeness which does not rely on RbC,
or simply by showing that RbC, or at least sufficient parts of it, is in fact

8Restall showed in [17, thm. 20] that ¬A → ∼A, and therefore A ∨ ∼A is provable in
CRWK—the Boolean extension of RW augmented by the weakening axiom—and that the
extension is therefore non-conservative. It can be shown that this also holds for DWK—
DW augmented by the weakening axiom. To show this, first consider the following lemma
that ¬A→ (A→ B) is a theorem of CDWK:

(1) ¬A→ (A→ ¬A) weakening axiom
(2) ¬A→ (A→ A) weakening axiom + fiddling
(3) ¬A→ (A→ A) ∧ (A→ ¬A) 1, 2, R5
(4) ¬A→ (A→ (A ∧ ¬A)) 3, A6 + fiddling
(5) (A→ A ∧ ¬A)→ (A→ B) B1 + R4
(6) ¬A→ (A→ B) 4, 5, transitivity

If we first instantiate ¬A for A and ∼A for B, we get ¬¬A→ (¬A→ ∼A). Now instantiate
A for A and ∼¬A for B so that we get ¬A → (A → ∼¬A) and by using the contraposition
axiom therefore ¬A → (¬A → ∼A). Putting these together using R6, we then get ¬A ∨
¬¬A→ (¬A→ ∼A) and therefore that ¬A→ ∼A. Fiddling then yields A ∨ ¬A→ A ∨ ∼A
and therefore A ∨ ∼A since A ∨ ¬A is a theorem. Since excluded middle is not a theorem
of Ł3, it follows that CL is a non-conservative extension of L for any logic between DWK
and Ł3.



12 TORE FJETLAND ØGAARD

derivable. Specifically, then, is it possible to prove non-conservativity for
any of the logics depicted in Fig. 4? Before ending this section I will show
that RWt1 is in fact a t-distinctive logic for which reasoning by cases holds,
and so CRWt1 fails to be a conservative extension of RWt1 . The next and
final section delves into these problems for the other logics. Some issues
will be clarified, but, regrettably, the question whether any of them are con-
servatively extended by Boolean negation will be left unsettled. Giambrone
and Meyer claim in [9] that TWt1 fails to be conservatively extended by
Boolean negation. I will show that Giambrone and Meyer’s proof of this,
however, is faulty.

RWt1

EWt1

OO

TWt3

99

TWdt1

]]

DWt3

OO

TWt1

ee 99

DWdt1

OO

Bt3

OO

DWt1

OOee 88

Bdt1

OO

Bt1

OOee 88

Figure 4.

Logics with only modus ponens and adjunction as primitive rules often
have a deduction theorem. Such a deduction theorem is then often sufficient
for showing that reasoning by cases holds for a logic. Brady showed that
any axiomatic extension of TW by →-formulas has a deduction theorem
([5, thm. 9]) on the form

Γ `L B⇐⇒ ∅ `L A1 → (A2 → (. . .→ (An → B) . . .))

where n ≥ 1 and all the Ai’s are members of, or conjunctions thereof, of
the set Γ ∪ {A | ∅ `L A}. Using this one can then show that reasoning by
cases is derivable RWt1 and CRWt1 .9 Furthermore, `RWt1 A → (t → A),
and so RWt1 is t-distinctive. Since CRWt1 is an axiomatic extension by
→-formulas of RW we therefore get that:

Corollary 4. CRWt1 is not a conservative extension of RWt1 .10

9Reasoning by cases for RWt1 is shown in [11, Lem. 3.54]. A strait forward proof that the
disjunctive versions of the rules of RWt1 are derivable is given Restall in [18, thm. 5.2].
10This, and Cor. 3, contradicts Restall’s claim in [19, cor. 13.17] that in fact both CRt1

and CRWt1 are conservative extensions of Rt1 and RWt1 . Restall simply overlooks the fact
that a counter-model using a reduced frame extended to evaluate the Boolean negation will
only have one point at which t is satisfied. However, if such a model is to be a counter-
model to t ∧ f → A, that point will have to satisfy both t and f, but not A. However, since
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«Parenthetical remark. Let me digress a bit to note an important con-
sequence of having a deduction theorem for the concept of conservative
extension. Def. 6 above defines a logic to conservatively extend another
basically if the logical theorems in the original language is unaltered upon
the extension. It doesn’t require non-logical theories to be unaltered. In the
case of Boolean negation, it would therefore be possible that CL to con-
servatively extend L, yet there be formulas Γ ∪ {A} over the Boolean free
language such that Γ `CL A, yet Γ 0L A. Let’s make this precise:

Definition 9 (Strong Conservative Extension). If L1 and L2 are logics over,
respectively, languages L1 and L2 such that L1 ⊆ L2, then L2 strongly
conservatively extends L1 if for every set of L1-formula Γ ∪ {A} such that
Γ `L2 A, Γ `L1 A.

For logics with a t-deduction theorem, however, strong conservative ex-
tension is entailed by mere conservative extension:

Lemma 10. If a deduction theorem holds for L in the form

Γ `L B⇐⇒ ∅ `L A1 → (. . .→ (An → B))

for some n where all Ai’s are either members of Γ ∪ {t}, or conjunctions
thereof, then it is strongly conservatively extended by a logic L′ for which
the same deduction theorem holds if it is conservatively extended by it.

Proof. Assume that L′ conservatively extends L and that the requisite de-
duction theorem holds for them. Now assume that Γ `L′ B where Γ ∪ {B}
are in the language of L. Since the deduction theorem holds, there are Ai’s
such that `L′ A1 → (. . . → (An → B)) where also A1 → (. . . → (An → B))
is a formula in the language of L. Since L′ conservatively extends L, it now
follows that `L A1 → (. . . → (An → B)). Since all Ai’s are either members
of Γ ∪ {t}, or conjunctions thereof, it follows that Γ `L Ai for all i’s, and
therefore that Γ `L B which ends the proof. �

Corollary 5. Let L be any axiomatic →-extension of TWt1 . Then L′ con-
servatively extends L if and only if it strongly conservatively extends L.

Proof. Looking at the proof of Lem. 5 it is easy to see that any such logic
will be semi-t-distinctive. The result now follows from Brady’s deduction
theorem for TWt1 . End parenthetical.» �

5. Semi-t-distinctive paracomplete logics without reasoning by cases

There are two main features that went into Lem. 9, namely reasoning by
cases and the t-distinctive rule A ` t → A. As we have seen, reasoning by
cases is provable of RWt1 and of the disjunctive logics TWdt1 , DWdt1 and
Bdt1 . It is not, however, provable for any of the other logics on display in
Fig. 4:

γ is a derivable rule of CR ([15, thm. 4]), that point will be closed under γ, and therefore
also satisfy A. Thus the flattening-technique appealed to in Restall’s proof of his Boolean
negation theorem ([19, thm. 13.16]) fails to work in the presence of t.
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Lemma 11. Reasoning by cases is not provable for any of the sublogics of
EWt1 displayed in Fig. 4.

Proof. That RbC does not hold for TW was shown in [15, cor. 9]. That
proof is easily seen to also cover all the sublogics of TWt3 in Fig. 4, so
we’re left with showing that RbC is not true of EWt1 either.

Restall noted ([18, thm. 5.5] that the formula ∼A∨ ((A→ B)→ B) is not
a theorem of E augmented by the δ rule.11 Evidently it would have been if
reasoning by cases held true. Restall does not display a counter-model, but
simply appeals to that MaGIC can be used to generate one. Like Restall, I
will in this case simply leave it as a MaGICal exercise for the reader. Note,
then, that such a counter-model to ∼A ∨ ((A → B) → B) is then also a EW
counter-model to the inference A∨∼A ` ∼A∨ ((A→ B)→ B) which would
also have held if reasoning by cases held true of EW. Such a counter-model
can also be generated which also validates all of EWt1 , which therefore ends
the proof. �

Thus the proof of Lem. 9 does not extend to any of the sublogics of EWt1

Fig. 4. Even the instance f ∨ (f ∧ t→ A) fails to be a theorem of EWt1:

Lemma 12. f ∨ (f ∧ t→ A) is not a theorem of EWt1

Proof. The model displayed in Fig 5 is a model for CTWdt1 . However,
by replacing its set of designated elements T = {2, 4, 6, 7} with the set
T ′ = {4, 7} we get a model for EWt1 . The same evaluation of t and A
yields, then, a counter-model to f ∨ (f ∧ t→ A) pertaining to EWt1 . �

We are therefore left to investigate the disjunctive logics TWdt1 , DWdt1

and Bdt1 . Even with RbC thus forced to hold, however, one will not be able
to derive A∨ (A∧ t→ B)—even when A is the formula f—in either CTWt1

or CTWdt1 as the counter-model in Fig. 5 shows.
Lem. 9 utilized not only reasoning by cases, but also the rule A ` t → A

to get t → ¬A from the RbC-assumption ¬A. This, it seems, will not
be possible to do in mere semi-t-distinctive logics such as CTWdt1 since
assumptions for reasoning by cases are not established logical theorems. In
fact, the model in Fig. 5 falsifies precisely the needed inference in that ¬f is
assigned the designated value 6, but Jt→ ¬fK = J4→ 6K = 0. As the matter
stands, therefore, it seems that one needs both reasoning by cases as well as
a t-distinctive Ackermann constant to obtain the sentence f ∨ (f ∧ t→ B).

11Restall credits Brady’s [4] for first noting this. The δ rule A → (B → C), B ` A →
C is interderivable in all relevant logics with the assertion rule A ` (A → B) → B.
Note that Restall—in [18], as well as in [17, p. 509] and [19, p. 305]—takes E to have
the assertion rule as a derivable rule. δ is admissible in E, and so theorem-wise, this is
harmless. However, it is not a derivable rule of E as that logic was formulated by Anderson
and Belnap, and so the logics are not identical; reasoning by cases does hold for E but does
not hold for E[δ].
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T = {2, 4, 6, 7}
JtK = 4
JAK = JfK
JBK = 0

7

4

@@

5

OO

6

^^

3

OO @@

2

^^ @@

1

^^ OO

0

OO^^ @@

→ 0 1 2 3 4 5 6 7 ∼ ¬

0 7 7 7 7 7 7 7 7 7 7
1 0 4 0 0 0 4 4 7 6 4
2 0 0 4 0 4 0 4 7 5 5
3 0 0 0 4 4 4 0 7 4 6
4 0 0 0 0 4 0 0 7 3 1
5 0 0 0 0 0 4 0 7 2 2
6 0 0 0 0 0 0 4 7 1 3
7 0 0 0 0 0 0 0 7 0 0

Figure 5. Counter-model to f ∨ (f ∧ t→ B) for CTWdt1

The inspiration for this essay came from Giambrone and Meyer’s essay
[9] where theorem 8 and its preceding proof reads:12

The following non-theorem of Rt1 is valid in the CTWt1 se-
mantics: f ∨ (f ∧ t→ A). So:

Theorem 8. CTWt1 , CRWt1 , CTt1 , and CRt1 are not con-
servative extensions of TWt1 , RWt1 , Tt1 , and Rt1 , respec-
tively. ([9, p. 13])

First of all note that the latter three logics are covered by Cor. 4 and
Cor. 3. That leaves their claim that CTWt1 is not a conservative extension
of TWt1 which contradicts my claim that the model in Fig. 5 is a CTWt1-
counter-model to f ∨ (f ∧ t→ A).

Now Giambrone and Meyer demanded that the Boolean extension of TW
should be got by adding B1, A→ (B→ (C∨¬C)) and the axiom (A→ B) =
(A = B). The latter axiom is interesting as it suffices for deriving reasoning
by cases for any axiomatic extension of TW.13 Thus reasoning by cases
holds for Giambrone and Meyer’s strengthened CTWt1 .14 However, the
counter-model to f ∨ (f ∧ t→ A) in Fig. 5 also validates these two stronger
Boolean principles. Their claim, therefore, is wrong. Where, then, do they
go astray? In order to show non-conservativeness, one needs to show that
there is a sentence in the original language which is only derivable in the

12The citation is slightly modified to fit the current nomenclature. Note that there is a
typesetting error in the essay as the displayed formula claimed to be a non-theorem of Rt1

is in fact t∨(f∧t→ A). The essay [9] is basically copied from §1.7 and §1.8 of Giambrone’s
PhD distertation ([8]), where the corresponding formula reads ∼t ∨ (∼t & t→ A) ([8, thm.
1.8.5]). Meyer was, together with Routley, Giambrone’s supervisor and §§1.7–1.8 is in [8,
p. ii] acknowledged as the joint work of Giambrone and Meyer.
13See [15, §6.1] for a proof and a short discussion of whether (A → B) = (A = B) is too
strong for logics like TW.
14The proof of [15, cor. 8] relies on there being no more primitive rules than adjunction and
modus ponens. Note, then, that Giambrone and Meyer initially take the fusion connective
to be part of the axiomatization of TW and its t- and ¬-extensions, although this is later
retracted ([9, p. 11]). The proof of [15, cor. 8] would still hold, however, if the fusion rules
A ◦ B→ C a` A→ (B→ C) are interpreted to be only logical theorem-preserving rules.
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extended logic. The obvious lacuna in Giambrone and Meyer’s proof is
therefore the step from noting that f ∨ (f ∧ t→ A) is valid in the semantics
for CTWt1 they set forth—which it is—to the fact that f ∨ (f ∧ t → A)
is derivable, i.e. they need a completeness proof for CTWt1 . They never
try to establish this, settling for claiming soundness. The stated semantic
clause for t is in fact the semantic clause for the stronger t-distinctive truth
constant, and so soundness does hold, but completeness will not be possible
to prove for CTWt1 (nor for CTt1).15 Their claim, therefore, is at best that
C]TWt3—where C]TWt3 is got by adding the extra Boolean axiom (A →
B) = (A = B) to CTWt3—is a non-conservative extension of TWt3 . Since
reasoning by cases is provable for C]TWt3 ([15, cor. 8]), this follows in
fact from Thm. 3. For TWt1 , TWdt1 and TWt3 , however, it is still an open
question whether adding B1 and B2 yields a conservative extension or not.

Of course, that f ∨ (f ∧ t→ A) is not derivable in CTWdt1 or CEWt1 does
not show that CTWdt1 and CEWt1 are conservative extensions of, respec-
tively, TWdt1 and EWt1 . Nor that they are not. I end this section, therefore,
with the following open question:

Open Problem. Are any of the logics different from RWt1 in Fig. 4 conser-
vatively extended by Boolean negation?

6. Summary

Many relevant logics can be conservatively extended by Boolean nega-
tion. This essay, however, shows that many such relevant logics fail to be
conservatively extended by Boolean negation if the Ackermann constant is
taken to be part of the logic.
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