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Abstract  

The total amount of mesopelagic fish biomass is estimated to be between 1 and 20 billion tons 

globally. However, there is currently no industrial fishery for them. As the sustainability of 

harvesting pelagic fishes and the health constraint of replacing marine lipids/proteins with 

land-based lips/proteins in the feed for farming fish seem to have reach their limits, there is an 

increasing interest of exploitation of mesopelagic fishes from fishing companies and fish feed 

producers. Although, some anisakid ascaridoid nematodes (some Anisakis and 

Pseudoterranova spp.) infect many marine teleosts worldwide and are causative agents of a 

fish-borne zoonotic disease to humans known as anisakidosis. This gastrointestinal disease 

may result from ingestion of live larvae with lightly cooked or raw fishery products. The 

Anisakis species A. simplex (s.s.) and A. pegreffii may also cause allergic reactions in 

sensitized patients. Considering mesopelagic fish as new fish recourse, it is then important to 

know their ecological role as well as the possible health risks that may be associated with 

ascaridoid parasites. In May 2019, a research cruise was carried out from Cape Verde to the 

Bay of Biscay, trawling mesopelagic fish. A total of 1271 fish specimens of 32 fish species 

were sampled for the presence of ascaridoids. From these, 13 species were found infected 

with a total of 177 ascaridoid individuals, all larvae. Molecular identification (Cox2, ITS) 

suggests the larvae to belong to 8 different species: Anisakis pegreffii, A. typica, A. 

ziphidarum, A. brevispiculata, A. paggiae, A. cf. paggiae, Pseudoterranova cf. ceticola and 

Raphidascarididae sp. Diretmus argenteus and Diaphus rafinesquii were the most infected 

fish species with an ascaridoid prevalence of 78% and 36%, respectively. The total density 

was estimated at 71 ascaridoids/Kg fish.  

It appears that there is a high diversity of ascaridoid nematodes in mesopelagic fish and that 

these are likely important transport hosts in the life cycle of these parasites. Results suggest 

the existence of spatial variation in the abundance and diversity of ascaridoids in mesopelagic 

fish i.e. D. argenteus.  In the perspective of food safety, the potential presence of  i.e. A. 

simplex thermostable cross-allergens in mesopelagic fishes should be considered if derived 

products are meant to be destined as feed for farmed fish. 
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Glossary  

Accidental host: a host that is not part of the natural chain of infection and do not normally 

lead to infection of a definitive host, but is accidentally infected and is end in the life cycle of 

the parasite (EFSA 2010)  

Allergic anaphylaxis: A rapid onset and dangerous syndrome characterized by urticaria, 

angioedema, severe respiratory and gastrointestinal symptoms, collapse and shock (EFSA 

2010). 

Allergic urticaria: a skin reaction with hives (raised, itchy areas of skin), which are changing 

and do normally not persist at the same location more than 24 hours. Acute, short-lived 

urticaria (less than 24 or 48 hours) is allergic and mediated by specific IgE against foods, 

drugs, insects, gastro-allergic anisakiasis etc. (EFSA 2010).  

Appendix? 

Caecum (= intestinal caecum): a blind diverticulum or pouch from the intestine (Arai and 

Smith 2016).  

Density: the number of individuals of a parasite in a measured sampling unit (e.g. host 

weight, volume, skin area) (Bush et al. 1997).   

Final host: The host in which the parasite reaches adulthood and reproduce (EFSA 2010).  

Food allergen: An antigen than can cause allergic reaction in humans when consumed (EFSA 

2010).  

Intermediate host: A host in which a parasite develops infectivity for the next host, in 

nematodes often passing through one or more of its juvenile stages  

Abundance:  The number of individuals of a particular parasite species in a sample of a 

particular host species divided by the total number of hosts of that species examined 

(including both infected and uninfected hosts) (Bush et al. 1997).  

Intensity: Average intensity of a particular species of parasite among the infected members of 

a particular host species (Bush et al. 1997). 

Mucron: terminal tail spine (Arai and Smith 2016).  

Paratenic host: same as transport host (see above).  
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Prevalence: The number of hosts infected with one or more individuals of a particular 

parasite species divided by the number of hosts examined for that parasite species (commonly 

expressed as percentage) (Bush et al. 1997). 

The Spearman's Rank Correlation Coefficient (Rs): a statistical measure of the strength of 

a link or relationship between two sets of data based on their ranks. Rs will always be between 

1.0 (a perfect positive correlation) and -1.0 (a perfect negative correlation). An Rs of 0 

indicates no association between ranks (Geographyfieldwork 2020). 

The Spearman's Rank Correlation Coefficient p value: a statistical measure of how 

probable it is that any observed correlation is due to chance. A p-value >0.05 suggest no 

correlation other than due to chance and that your null hypothesis assumption is correct. If 

your p-value <0.05 the observed correlation is unlikely to be due to chance and there is a high 

probability (>95%) that your null hypothesis is wrong (Geographyfieldwork 2020). 

Site: The topological or spatial location on or in a host where a parasite (or a sample of 

parasites) is collected. 

Transport host: A host not needed for the development of the parasite but that sustain the 

parasite and hence facilitates the parasite’s life cycle (see above).  

Ventricle (=ventriculus): glandular modification of the distal portion of the oesophagus of 

some nematodes; it may have a solid appendage of varying length extending posteriorly 

dorsal to the intestine (ventricular appendix) (Arai and Smith 2016). 

Oesophagus: in nematodes, the muscular anterior part of the digestive tract, pumping in fluid 

food (it is now recognized as a pharynx, but the term sticks).  

  



 
8 

Abbreviations  
bp: Base pairs in the DNA. 

DNA: Deoxyribonucleic acid.  

cf.: Taxonomic abbreviation for confer (L.), meaning “compare” or narrow down to the 

affinity to a species.  

g: Gram.  

IMR: Institute of Marine Research.  

ITS:  Internal transcribed spacers.  

L1-L4: The four larval stages of nematodes.  

min: Minutes  

ml: Milliliter  

mm: Millimeter 

n: Number of specimens  

NCBI: National Centre for Biotechnology Information 

PCR: Polymerase chain reaction 

rDNA: Ribosomal DNA, DNA sequence coding for ribosomal RNA.  

TS: Trawl Station  

UiB: University of Bergen  

V: Volt  

µl: Microliter 

µM: Micromolar 

µm: Micrometer  
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1. Introduction 

1.1 Ascaridoid nematodes in mesopelagic fishes and potential food safety issues.  

Mesopelagic fishes are a various group of marine teleosts living in the mesopelagic zone (also 

known as twilight zone) at depths between 200 to 1000 m below the ocean surface (Gjøsaeter 

and Kawaguchi 1980; Robinson et al. 2010; John et al. 2016). They usually perform dial 

vertical migration into the epipelagic zone (0 – 200 m) during nighttime for predation on 

mesozooplanktons, smaller fishes or crustaceans such as euphausiids, and hide down in the 

dark deep during daytime (Gjøsæter and Kawaguchi 1980; Bernal et al. 2009; Irigoien et al. 

2014).  

Mesopelagic fishes are believed to dominate the biomass of marine teleost fishes in the world, 

as their estimated total biomass seem to be between 1 to 20 billion metric tons globally, 

compared to 1 billion tons estimated fish biomass in surface waters (Irigoien et al. 2014; St. 

John et al. 2016; Martin et al. 2020). Mesopelagic fishes have been very little exploited so far 

(Lamhauge et al. 2008; Hidalgo and Browman 2019), even though they have been considered 

as an enormous harvestable resource since the 1970s (Lamhauge et al. 2008; Hidalgo and 

Browman 2019; Grimaldo et al. 2020). The sternoptychids (e.g. Maurolicus spp.) and 

myctophids (e.g. Benthosema spp.) are considered to be the most abundant mesopelagic fish 

families (Valinassab et al. 2007; Lamhauge et al. 2008; Standal and Grimaldo 2020). 

Globally, a few commercial attempts have been made in the Gulf of Oman and south of 

Iceland, targeting mesopelagic species such as pearlsides (e.g. Maurolicus muelleri) (Gjøsæter 

1984; Standal and Grimaldo 2020).  During the last three years, it has also been carried out 

trial fisheries in international waters in the North East Atlantic and within the Norwegian EEZ 

(Grimaldo et al. 2020).  

Both B. glaciale and M. muelleri are considered suitable for human consumption, but mostly 

they have been valued as raw material for the global fish meal and oil industry for use as fish 

feed for the aquaculture industry (John et al. 2016; Hidalgo and Browman 2019; Alvheim et 

al. 2020; Olsen et al. 2020; Ytrestøyl et al. 2015).  

Currently, the marine fish protein/oil raw materials are produced from pelagic fish, a resource 

that seems to have reach its limits of exploitation. Thus, pelagic fishes would not be able to 

provide enough fish protein/oil to satisfy the increasing demand of these products by the 

farming industry (Ytrestøyl et al. 2015). Marine lipids and proteins may be partially replaced 

by land-based lipids and protein sources such as soya in feed for farmed fishes such as 
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salmonids (Shepherd et al. 2017; Egerton et al. 2020). However, the replacement of marine 

lipids/proteins with land-based lipids/proteins in the feed seems to have also reached its 

limits. There have been suggested some fish health and welfare issues connected to the high 

content of soya replacement in the feed, such as intestinal damage and reduced growth 

performance in different fish species (Refstie et al. 2001; Dersjant-li 2002; Lamhauge et al. 

2008; Naylor et al. 2009; FAO 2018). As consequence, there is an increasing interest for the 

exploitation of mesopelagic fishes as a potential new food/nutrient resource from fishing 

companies and fish feed producers (Klimpel et al. 2006; John et al. 2016; Standal and 

Grimaldo 2020). Thus, it is important to identify all possible health risks that may entail when 

introducing new species as a source of nutrition, either indirectly via feed for farmed fish, or 

directly as human food.  

Living third-stage larva of anisakids is known to be causative agent of a fish-borne zoonotic 

disease to humans named anisakidosis (Chai et al. 2005; Buchmann and Mehrdana 2016; Bao 

et al. 2019; Adroher-Auroux and Benítez-Rodríguez 2020). The viable anisakid larvae may 

reach the humans by consumption of raw or lightly cooked fish meals. Under these 

circumstances, the larva may infect the human gastrointestinal tract and cause disease that 

cause abdominal pain due to the larvae trying to penetrate stomach (or gut) wall and be 

accompanied with allergic symptoms (Audicana and Kennedy 2008; Adroher-Auroux and 

Benítez-Rodríguez 2020).  

In addition, allergy to Anisakis spp., in which a sensitized consumer may have allergic 

symptoms (ranging from urticaria to life-threatening anaphylaxis) after consumption of fish 

contaminated with dead larvae or with their allergens has been also reported (reviewed by 

Bao et al., 2019). Fourteen allergens have been described from A. simplex (WHO/IUIS 2020), 

and several of those have been shown to be resistant to pepsin and heath treatments (Caballero 

and Moneo 2004; Moneo et al. 2005). In relation to this, there are some studies suggesting 

that some of those allergens can possibly be transmitted to humans by feeding farmed fish 

with infected fish (Fæste et al. 2015b, 2015a).  

To date, a few studies have examined the occurrence of anisakids in mesopelagic fish (Hamre 

and Karlsbakk 2002; Klimpel et al. 2010; Mateu et al. 2015; Cabrera-Gil et al. 2018; Gaglio et 

al. 2018). Since mesopelagic fish constitute such a large biomass in the world oceans, it is 

important to understand/determine their parasite diversity and infection levels. Indeed, Martin 

et al (2020) suggested as research priority to identify how many organisms live in the twilight 

zone and how diverse they are (from bacteria to cetaceans). The dominant fish species are 



 
13 

small sized, and therefore likely important in ascaridoid parasite transmission through the 

food webs (Klimpel et al. 2006; Cabrera-Gil et al. 2018; Gaglio et al. 2018),  i.e. connecting 

the various ascaridoid nematodes from zooplankton to larger predatory fishes/squids and 

cetacean final hosts (Bloodworth and Odell 2008; Fernández et al. 2009; Naito et al. 2013).  

Thus, considering a future scenario in which mesopelagic fish can be exploited, either for 

human consumption or for the production of feed for the fish farming industry, it is important 

to have qualitative and quantitative data on the ascaridoid nematode occurrence in these 

fishes, in order to facilitate risk assessments and to gather new epidemiological and ecological 

data. 

1.2 Diversity of ascaridoid nematode larvae 
The most important fish ascaridoid parasites belong to the anisakid genera Anisakis, 

Pseudoterranova and Contracaecum, and the raphidascaridid genus Hysterothylacium 

(Berland 2006), because they are very common and are associated with medical and 

socioeconomic issues (Bao et al. 2021). In the present study, a special focus is placed on 

species of the genus Anisakis, and some other ascaridoids that were found (further details at 

section 3).  

1.2.1 The genus Anisakis 

To date, nine Anisakis species have been described worldwide based on morphology and the 

genetics of adult specimens (Mattiucci et al. 2014, 2017b). The biodiversity within the genus 

Anisakis has been inferred based on a multi-locus molecular approach (Mattiucci et al. 2016). 

Valid nuclear and mitochondrial molecular markers have been developed , allowing to 

differentiate a number of sibling species (Zhu et al. 2000; Timi et al. 2014; Mattiucci et al. 

2017a). Two of the most important diagnostic molecular/genetic markers available are the 

mitochondrial cytochrome oxidase 2 gene (mtDNA cox2) and the ITS region of rDNA (Zhu et 

al. 2002; Nadler et al. 2005; Timi et al. 2014; Mattiucci et al. 2017a, 2018).  

Two morphological types of third stage larvae (L3) belonging to genus Anisakis were found 

in Norwegian marine fishes by Berland (1961). These, termed type I and type II, were 

discerned on the basis of ventriculus length, shape of the junction between ventricle and 

intestine, and the presence/absence of a mucron at the tail tip (Berland (1961). Later, similar 

larvae have been found in fishes worldwide.  

Molecular studies have shown that Anisakis type I larvae represent several species, A. simplex 

(sensu stricto (s.s.)), A. pegreffii, A. berlandi, A. typica, A. ziphidarum and A. nascettii. 
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Anisakis type II larvae have been identified with A. physeteris, A brevispiculata and A. 

paggiae. However, based on morphology, Shiraki (1974) discerned two more larval types, 

called Type III and Type IV and Murata et al. (2011) showed that type II, III and IV larvae 

from Japan could be identified as A. physeteris, A. brevispiculata and A. paggiae, 

respectively. 

In addition, two larval genotypes that may represent two undescribed species of Anisakis have 

been recognized, referred to as Anisakis sp.1 and Anisakis sp. 2, and these were found to be 

phylogenetically related to A. typica and A. physeteris, respectively (Mattiucci et al. 2018). 

Details about which morphologically features for differentiate within the different ascaridoid 

genera and Anisakis larval types will be explained at the material and methods section.  

1.2.2 The genus Pseudoterranova 

Species member of the genus Pseudoterranova are often named seal worms, as common final 

hosts are pinnipeds (Abollo and Pascual 2002; Berland 2006). To date, six biological species 

have been recognized in the Pseudoterranova decipiens complex species: P. decipiens (s.s.), 

P. krabbei, P. bulbosa, P. azarasi, P. cattani and P. decipiens E (Mattiucci and Nascetti 2008; 

Timi et al. 2014; Mattiucci et al. 2017a), all infecting seals and sea-lions. Two species mature 

in cetaceans, i.e.  P. ceticola (previously Terranova ceticola) and P. kogiae (Abollo and 

Pascual 2002; Longshaw 2012; Timi et al. 2014; Mattiucci et al. 2017a). 

1.2.3 The genus Hysterothylacium 

To date, there are more than a hundred accepted species of the genus Hysterothylacium 

(WORMS-World Register of Marine Species). However, its taxonomy is unresolved (Klimpel 

et al. 2007b). One of the most important species is H. aduncum. As it has the potential to 

cause substantial economic losses to the fishing industry as a consequence of cosmetic 

degradation for the consumers of the fish product, even if it is considered a non-zoonotic 

parasite (Bao et al. 2021). Hysterothylacium aduncum is a very common parasite of fishes 

from the NE Atlantic waters (Klimpel and Rückert 2005). In addition, according to other 

authors, some Hysterothylacium L3 from marine fishes cannot be differentiated 

morphologically from nematode larvae of other genera, such as Lappetascaris (Hossen and 

Shamsi (2019) cited in Guardone et al. (2020)). 
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1.3 Life cycle of ascaridoid nematodes.  

The genera Anisakis, Pseudoterranova and Hysterothylacium share a similar life cycle. The 

anisakids Anisakis spp. and Pseudoterranova spp., have in common that their final host are 

homeotherms, fish-eating, marine mammals like cetaceans or seals (Anderson 2000; Klimpel 

et al. 2004; Mattiucci et al. 2017a). In the digestive tract (particularly stomach) of the final 

host, the adult roundworms sexually reproduce, and the fertilized eggs are released to the 

water with the hosts feces (Højgaard 1999). Free in the water, it is not completely elucidated 

if the larva undergoes one or two molts within the egg before it hatches (Køie 1993; Measures 

and Hong 1995). The prevailing view is that it is the L3 which emerges from the egg and that 

the L3, loosely ensheathed in the cuticle of second-stage larva, may be ingested by the first 

intermediate host which normally are small crustaceans (i.e. euphausiids, copepods, etc. ) 

(Køie 2001; Mattiucci et al. 2018).  

In the fish that ingest infected crustaceans, the L3 become digested free in the stomach or 

intestine. The larva may then, with the aid of the boring tooth and histolytic enzymes, bore 

through the wall of the stomach/intestine to the visceral organs or into the flesh. At final sites 

that vary with species, they may coil up and become encapsulated (Smith 1984; Anderson 

2000; Berland 2006).  

As the big fish prey on smaller, the L3 may also be transferred. Hence, the role of the fish 

host may vary. They may be important second intermediate hosts if the larvae grow to 

infectivity to the final host in them, but they may also carry reestablished larvae that had 

reached infective size already, and act as paratenic hosts (Klimpel and Palm 2011). 

Cephalopods may also be involved in the life cycles, with a similar role as fishes (Costa et al. 

2014; Mattiucci et al. 2018). The larvae of many ascaridoids live for a long time in their fish 

hosts, and therefore may accumulate, sometimes in high numbers (e.g. hundreds of L3 in one 

fish) (Levsen and Berland 2011).  

When the fish host is ingested by a potential final host, the L3 are digested free, usually in the 

stomach. The L3 then molt to the preadult stage, and finally to the mature adult stage that 

mates and thereby closing their lifecycle (Sprent 1954; Berland 2006; Colón-Llavina et al. 

2009).  

The raphidascaridid genus Hysterothylacium has a similar life cycle, except that marine 

teleosts are final host animals (i.e. heterotherms), meaning that the L3 ingested by a suitable 

final fish host may undergo molting to the preadult and to adults (Sprent 1954; Navone et al. 

1998; Berland 2006; Shamsi et al. 2013). Thus, when inspecting marine teleosts for ascaridoid 
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parasites, anisakids occur as L3, and raphidascaridids such as Hysterothylacium spp. may 

occur as encapsulated L3, or luminal L3, preadult and adult nematodes.  

1.4 The Project Aims 

To date, few studies have examined the occurrence of ascaridoids in small mesopelagic fish, 

which is likely important in transmitting those paradise through the food webs. Mesopelagic 

fishes may also be relevant in future exploitation for fish meal that could be used e.g., in feed 

for farmed fish. When considering using a new fish resource, it is important to know the 

ecological role of the resource in the ecosystem and as well as the possible health risks that 

may be associated with its consumption. Qualitative and quantitative data on the ascaridoid 

nematodes in these fishes can aid future assessments into allergen occurrence, and hence the 

risks from using fish meal of this origin. This study aims to increase our knowledge on 

ascaridoid nematode epidemiology in mesopelagic fishes, specifically to: 

(1) determine the parasite infection levels in various mesopelagic fish species in the Cape 

Verde to The Bay of Biscay region. 

(2) identify the ascaridoid parasite larvae using morphological and molecular methods.  

(3) identify factors affecting the parasite abundance in the fish (i.e. host species, size, 

geographical location).  

(4) Provide relevant data for the evaluation of food safety aspects, such as anisakid 

density (risk posed by using mesopelagic fish as protein source for humans and/or 

animals). 
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2. Material and Methods 

2.1 Fish sampling  

Fish samples were collected in the Eastern Atlantic Ocean from Mindelo (Cape Verde) to The 

Bay of Biscay (Northeast Atlantic) in May 2019. Eighteen (TS4601-4618) trawl hauls were 

conducted during a research cruise with the vessel “RV Kronprins Haakon (Fig. 1). A 6x6m 

macroplankton trawl or a multipelt 380 trawl (fish trawl) were used at depths between 84 and 

1650 m. The multipelt 380 trawl was used at three stations (4604, 4606, 4614) as this trawl 

had the potential to catch larger specimens than the macroplankton trawl.  

This could provide an idea of which fish-sizes may not be able to catch the macroplankton 

trawl. It must be noted that the multipelt trawl is classified as a non-quantitative trawl. It 

cannot be used for quantitative catch of relatively small organisms and to study the 

biodiversity of the catch. Hence, it will not be possible to know anything about the species 

biomass in the ocean when using the multipelt catch (see Table 1 and Fig.1 for more trawling 

data) (Anonymous 2019).The other thirteen hauls were done with the macroplankton trawl 

(Anonymous 2019).  
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2.1.1 Trawling data  

TABLE 1: OVERVIEW OF THE TRAWL STATIONS FROM WHICH FISH SAMPLES WERE OBTAINED 

DURING THE RESEARCH CRUISE WITH RV ‘KRONPRINS HAAKON’ 3RD-22ND MAY 2019. MOST 

SAMPLES WERE OBTAINED USING MACROPLANKTON TRAWL, EXCEPT THOSE INDICATED WITH 

SUBSCRIPT ‘MT’ WHICH REPRESENT MULTIPELT TRAWL SAMPLES. 

 

Station 

Trawl 

Station CTD Date 

(Day) 

Time Latitude Longitude Max 

Depth 

(m) 

4601 0118 03 Day 17.9692 -23.9560 1650 

4603 0120 06 Day 24.9748 -20.3110 1200 

4604MT 0121 07 Day 26.8987 -19.2319 1200 

4605 0122 08 Day 29.1403 -17.9654 1200 

4606MT 0123 09 Day 29.7668 -16.0871 1200 

4607 0124 10 Day 30.6122 -13.5899 1200 

4608 0125 11 Day 31.6338 -10.5101 1200 

4609 0126 12 Day 32.6997 -11.9357 1200 

4610 0127 13 Day 33.6949 -13.2319 1200 

4611 0128 14 Night 34.0972 -13.7590 84 

4612 0129 15 Day 35.1488 -15.1697 1200 

4613 0130 16 Day 36.1140 -16.4944 1200 

4614MT 0132 18 Day 40.2823 -13.4325 1200 

4615 0133 19 Day 42.9822 -12.3180 1200 

4616 0134 20 Night 43.6340 -12.2278 290 

4617 0135 21 Day 45.9535 -9.5882 1200 

4618 0136 22 Day 47.2549 -8.0342 1200 
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FIGURE 1: MAP OF THE TRAWLING STATIONS FOR THE WHOLE 

CRUISE AND MARKINGS OF WHERE THE MACROPLANKTON TRAWLS 

(ORANGE RINGS) AND THE MULTIPELT (FISH) TRAWLS (PURPLE 

RINGS) WERE USED. MAP HAS BEEN MODIFIED BY AUTHOR, SEE 

ORIGINAL MAP IN ANONYMOUS 2019. 
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2.1.2 The fish sampling 

A total of  1271 specimens from 32 fish species were collected from TS4601, 4603-4618 and 

examined for ascaridoid nematodes. Fishes were firstly sorted from the catch and identified to 

species level by two taxonomists (Eva Garcia-Seoane and Rupert Wienerroither) before they 

were distributed on the various projects that took part in the cruise. A selection was made on 

the fish-size (i.e. fishes larger than 1 cm total length) in order to be able to distinguish 

between infection by consumption or actual patriotization in the fish. As fish smaller than 1 

cm total length is virtually impossible to carefully dissect out the whole organ package from. 

No fish was sampled for this study from TS4602. For overview of the fish sample used in this 

study see Table 3 and Table 4 in the result section. Fishes were sheated in plastic bags sorted 

per fish species and trawl stations and stored as soon as possible in a deep freezer (−20°C) 

onboard.   

2.2 Parasite examination  

2.2.1 Autopsy of the fishes and nematode inspection 

At the lab (IMR, Bergen), the frozen fish were thawed at room temperature and measured to 

the nearest millimetre (mm) for the total (TL) and standard length (SL) and then weighed 

(TW) in grams (g) (see table 8). In addition, a few fishes were analysed fresh for parasitic 

nematodes during the cruise in the RV lab. The body cavity was opened with a scalpel and/or 

surgical scissors, and all the internal organs were dissected out with tweezers and placed in 

Petri dishes with some drops of physiological saline. The emptied body cavity and the 

surfaces of the internal organs were then carefully examined under stereomicroscope for 

ascaridoids. Stomachs and intestines were opened longitudinally, and the contents scraped 

out. Identifiable preys were recorded, and any parasite present collected.  

Thereafter, the internal organs and carcass were placed into plastic bags (e.g., one bag for the 

muscle and one bag for the viscera) and inspected by UV-press method (see section 2.2.2). 

The ascaridoid nematode larvae site was registered and then dissected out.  

The body lengths of the nematodes collected were measured to the nearest millimeter on a 

millimeter paper under a stereomicroscope. They were then examined in a temporal mount on 

a microscope slide in saline, in a light microscope equipped with a camera. Photos were taken 

at 40x, 100x and 200x magnification. The nematodes were morphologically assigned to larval 

types (see section 2.2.3).  
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After photographing, each larva was placed individually in eppendorf tubes filled with a few 

drops of water and deep frozen (-20 °C) for later molecular identification (see section 2.2.4).  

2.2.2 UV-press method 

After parasite examination of the viscera (see above), the gutted fish and viscera were 

refrozen for later examination by the UV-press method. Briefly, the thawed samples were 

flattened to 1-2 mm thick layers in a hydraulic press and subsequently inspected under a 366 

nm UV-light source in a dark room in order to reveal ascaridoids inside the flesh or viscera, as 

nematodes that have died by freezing glow when irradiated by UV-light (Pippy 1970; Karl 

and Leineman 1993; Levsen et al. 2005). Some fish individuals that were too small or in too 

bad condition to be examined manually, were inspected by UV-press method only.  

2.2.3 Morphological identification 

The ascaridoids found were assigned to genus or larval morphotype under the light 

microscope as follows. The morphological characters considered, included presence/absence 

of lips or boring tooth (e.g., if the ascaridoids were preadult/adult or larval). Then, the 

presence/absence and appearance of the ventricle, intestinal caecum, ventricular appendix, 

cuticle ornamentation, mucron, shape of tail, the total length and color of the larva, as well as 

the position of the excretory pore (Berland, 196; Shiraki, 1974; Cannon, 1977; Murata et al., 

2011).  

2.2.4 Molecular identification  

The larvae varied in size. Hence, for the larvae identified as Anisakis spp. and Terranova -like 

(see results section) only the midpart of the larvae were used; the anterior and posterior parts 

were kept deep frozen in physiological water. The larvae tentatively classified as 

Hysterothylacium-like (see results section) were utilized whole for DNA extraction as they 

were very small.  

2.2.4.1 DNA extraction 

DNA extraction were done with totally 109 ascaridoid larvae of all different larval types. The 

rest of larvae were stored for future studies. The DNeasy® Blood & Tissue kit was used for 

extraction of DNA, using the protocol: Extraction of Total DNA from Animal Tissue (Spin-

column Protocol) (Qiagen 2006). A few modifications were made from the protocol. At first 

step, the process of preparing for lysis of the tissue, the 3 h digestion step was enhanced by 

addition of three ceramic balls (Precellys ceramic kit 2.8 MM, VWR) in each tube before 

centrifuging in the Precellys 24 lysis & homogenizer (bertin Technologies).  
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They were added in order to help the enzymatical degradation by homogenization of the 

tissue. Also, at step six the samples were supposed to centrifuge for 3 min at 14,000 rpm, but 

the centrifuge machine “Eppendorf® Microcentrifuge Model4514D” do have a maximum 

rpm limitation on 13,200 rpm. So, at this step the maximum rpm for the machine were used 

for 3 min as said in the protocol. DNA was eluted with 30 µl AE buffer. DNA amount and 

quality was measured using a Thermo Scientific NanoDrop Spectrophotometer (Geuther 

1977).  

2.2.4.2 PCR 

A total of 104 larvae were used for molecular identification, as not all the DNA extractions 

were successful.  

The ascaridoid mitochondrial cytochrome c oxidase subunit II (cox2) gene of 104 ascaridoids 

was amplified following procedures of Mattiucci et al. (2014) with some modifications (see 

below). Polymerase chain reaction (PCR) was carried out using the primers from Nadler & 

Hudspeth (2000): 

• 211F (5′-TTTTCTAGTTATATAGATTGRTTTYAT-3′) 

• 210R (5′-CACCAACTCTTAAAATTATC-3′) 

 

The entire internal transcribed spacers of the nuclear ribosomal DNA (ITS rDNA (ITS1, 5.8S 

rDNA gene and ITS2)) of 88 ascaridoids was amplified following Zhu et al. (2000) using the 

NC5 F and NC2 R primers:  

• NC5F (5’-GTAGGTGAACCTGCGGAAGGATCATT-3’)  

• NC2R (5’-TTAGTTTCTTTTCCTCCGCT-3’) 

 

Firstly, PCRs were done using Platinum HiFi Taq polymerase, but amplification did not work 

well even though PCR conditions were optimized several times. Finally, we used Go Taq Hot 

Start Polymerase (Promega) which showed good results. The optimized master mix (MM) can 

be found at Table (2).  
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TABLE 2: PCR MASTER MIX (MM) 

Regents Volume(µL) for 1x rxn. 

H20 (Mq) 16,8 

25 mM MgCl2 2,5 

5x Buffer 1,5 

10mM dNTP’s 0,5 

10µM Forward Primer 0,5 

10µM Reverse Primer 0,5 

10% DMSO 0,5 

5U Go Taq Hot Start Polymerase 

(Promega) 

0,2 

DNA 2 

Total: 25µL (=23µl MM + 2µL 

DNA) 

 

PCR program used for ITS: initial denaturation at 94°C for 5 min, followed by 30 cycles of: 

denaturation at 94°C for 30 s, annealing at 54 °C for 30 s., extension at 72°C for 30 s. 

Followed by final step of final extension at 72°C for 5 min, and hold at 4°C.  

PCR program used for Cox2: initial denaturation at 94°C for 5 min, followed by 35 cycles of: 

denaturation at 94°C for 30 s, annealing at 46 °C for 1 min, extension at 72°C for 1.30 min. 

Followed by final step of final extension at 72°C for 10 min, and hold at 4°C. 

2.2.4.3 Electrophoresis 

PCR-products were visualized by Gel electrophoresis. PCR products were run in the agarose 

gel of the mixing ratio of 0.5g agarose to 50mL 1X TAE buffer, before adding 5 µl of 

GelRed™ giving the finish product of 50mL agarose gel at concentration of 1% (Somma and 

Querci 2006). This concentration of the gel is recommended for resolving linear DNA 

molecules to 500-20000bp. The expected size of the present PCR products was c. 629bp for 

cox2 and about 936bp for the amplicon containing the ITS (Nadler and Hudspeth 2000; Zhu et 

al. 2000).  

The gel was bathed in 1X TAE-buffer and the wells were loaded with 6 µl PCR product 

mixed with 2 µl loading dye, gives the total product of 8µl. The first well used in the gel were 

loaded with 6 µl GelPilot® 100bp Plus ladder with the function being a visual marker for the 

molecular weight of the PCR products. The electrophoresis was run at 90 V for 60 min. The 



 
24 

bands on the gel were visualized using UV-light with Molecular Image Chemi Doc XRS+ 

(Universal Hood II (Bio-Rad)) and the program Image Lab Software.  

PCR-products with correct size, were sent for purification and sequencing to Eurofins 

(Cologne, Germany). The obtained sequences were searched for similarity using BLAST 

(Basic Local Alignment Search Tool) at National Center for Biotechnology Information 

(USA) (Altschul et al. 1990). Reference sequences from adult nematodes recovered from final 

hosts and deposited in GenBank were used for the blasting (see further details at section 

3.3.1). 

2.2.5 Morphometric measurements 

Measurements of body dimensions were taken from the images of some ascaridoid larvae  

using the software Image J (https://imagej.nih.gov/ij/). Images of corresponding object 

micrometer scales were used for calibration. Illustration of how some of the measures were 

obtained can be observed in Fig.2.  

 

 

FIGURE 1: MEASUREMENTS TAKEN FROM THE IMAGES OF P. CF. CETICOLA LARVAE. THE OESOPHAGUS 

LENGTH IS TAKEN ALONG THE MIDLINE FROM THE START OF THE OESOPHAGUS (E.G. SLIGHTLY SUB 

TERMINALLY IN THE WORM) TO THE VENTRICLE. THE CAECUM LENGTH WAS MEASURED FROM THE 

APERTURE INTO THE VENTRICLE AND TO THE CAECUM END. THE TAIL LENGTH REPRESENTS THE 

DISTANCE ALONG THE MIDLINE, FROM THE LEVEL OF THE ANUS/CLOACA TO THE POSTERIOR END. 

 

2.3 Data analysis  

The quantitative descriptors of parasite infection, prevalence, abundance, intensity and density 

were used as defined in Bush et al. (1997). Correlations between parasite abundance and fish 

size (i.e. length or weight) were examined for the most parasitized species using Spearman's 

Rank-Order Correlation test in Spearman’s Rho Calculator (Socscistatistics 2020).  
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3. Results 

3.1 Trawl samples and sampled fishes. 

The most dominant biomass in the trawls were shrimp, krill and other crustaceans, as well as 

jellyfish (See Fig. 3). The majority of the fishes sampled in this study belonged to the family 

Myctophidae (See Table 3). The stomach contents for the various species consists mostly of 

different species of crustaceans, except of Chauliodus spp. which had rests of smaller fishes. 

The majority of the fishes were sampled from the trawl catch near the West Sahara (TS4604).  

 

 

 

FIGURE 2: BOX FILLED WITH UNSORTED TRAWL CATCH, DOMINATED BY CRUSTACEANS. 
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TABELL 3: OVERVIEW OF THE TOTAL NUMBER OF INDIVIDUALS OF EACH FISH SPECIES SAMPLED PER 

TRAWL STATION (TS4601-4618) 

Family  
Stations (4601-4618) 

Species  
1 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Tot. 

Gonostomatidae                   

Cyclothone microdon         10       29 18 57 

Myctophidae                   

Benthosema glaciale 1            21 9  29 85 145 

Bolinichthys indicus     9 3   8  8 13      41 

Ceratoscopelus warmingii   18  31 1            50 

Diaphus brachycephalus   10               10 

Diaphus dumerilii 1                 1 

Diaphus effulgens   1               1 

Diaphus metopoclampus   
 

10 
              10 

Diaphus mollis 1  14 3 40             58 

Diaphus rafinesquii 2  48               50 

Hygophum hygomii   27   4 2  21 33 7 15      109 

Hygophum reinhardtii         1  4 2      7 

Hygophum taaningi 21 6  31 13   10          81 

Lampanyctus alatus 6                 6 

Lampanyctus cuprarius      1   3         4 

Lampanyctus lineatus 5      1           6 

Lepidophanes guentheri 5                 5 

Lobianchia dofleini   7    1 16 14 9 14       61 

Lobianchia gemellarii   2 2              4 

Nannobrachium atrum 12        5    9     26 

Notoscopelus resplendens        7 70 40  8      125 

Diretmidae                   

Diretmus argenteus  1 11  8 2  1          23 

Sternoptychidae                   

Argyropelecus aculeatus   22  10    10 21  2      65 

Argyropelecus hemigymnus            11 10     21 

Maurolicus muelleri             102  8  27 136 

Sternoptyx sp.   39      2   11      52 

Melamphaidae                   

Poromitra crassiceps   10  9 1            20 

Platytroctidae                   

Maulisia argipalla   7               7 

Eurypharyngidae                    

Eurypharynx pelecanoides   1      7   10 1     19 

Stomiidae                   

Chauliodus danae     20 17 3 1 5  3 6      55 

Chauliodus sloani 5     2  7          14 

Chauliodus schmidti 5                 5 

All 64 7 227 36 140 31 7 42 156 103 36 78 142 9 8 58 130 1271 
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TABLE 4: TOTAL LENGTH (TL) AND TOTAL WEIGHT (TW) FOR EVERY FISH SPECIES EXAMINED IN THIS 

STUDY. SORTED BY FAMILY. SD: STANDARD DEVIATION (SD) 

Family  TL (mm) ± SD (range) 
  

TW (g) ± SD (range) 
  Species  

Gonostomatidae 

Cyclothone microdon 48.4±8.4 (32-64) 0.5±0.3 (0.2-1.1) 

Myctophidae 

Benthosema glaciale 35.1±21.1 (13-78) 0.5±0.2 (0.1-1.5) 

Bolinichthys indicus 40.8±4.8 (31-52) 0.7±0.2 (0.3-1.4) 

Ceratoscopelus warmingii 47.1±6.4 (36-70) 0.8±0.4 (0.3-3.0) 

Diaphus brachycephalus 46.4±3.9 (40-50) 1.8±0.5 (0.9-2.4) 

Diaphus dumerilii 48.0±0.0 (48-48) 1.2±0.0 (1.2-1.2) 

Diaphus effulgens 55.0±0.0 (55-55) 1.6±0.0 (1.6-1.6) 

Diaphus metopoclampus 62.8±3.9 (57-69) 4.0±0.9 (3.0-5.9) 

Diaphus mollis 48.7±5.2 (36-66) 1.4±0.4 (0.5-2.4) 

Diaphus rafinesquii 62.9±7.6 (51-85) 3.4±1.3 (1.3-6.5) 

Hygophum hygomii 38.0±10.2 (23-64) 0.7±0.6 (0.1-3.4) 

Hygophum reinhardtii 42.6±8.4 (28-46) 0.7±0.4 (0.1-1.2) 

Hygophum taaningi 42.0±7.0 (24-56) 0.8±0.4 (0.1-1.6) 

Lampanyctus alatus 50.7±10.8 (34-62) 34.6±54.5 (0.3-125.1) 

Lampanyctus cuprarius 75.3±2.1 (73-77) 1.7±0.1 (1.6-1.8) 

Lampanyctus lineatus 114.0±49.3 (62-172) 10.3±9.6 (0.8-23.4) 

Lepidophanes guentheri 46.4±10.2 (32-57) 0.7±0.4 (0.1-1.0) 

Lobianchia dofleini 32,8±6.1 (20-46) 0.4±0.2 (0.1-0.7) 

Lobianchia gemellarii 71.5±9.9 (63-82) 4.3±2.2 (2.5-6.4) 

Nannobrachium atrum 87.3±26.3 (11-124) 4.5±3.3 (0.2-12.3) 

Notoscopelus resplendens 37.3±5.9 (26-56) 0.4±0.2 (0.1-1.2) 

Diretmidae 

Diretmus argenteus 74.2±23.5 (25-105) 16.5±8.9 (0.6-30.3) 

Sternoptychidae 

Argyropelecus aculeatus 41.2±17.7 (15-73) 2.4±2.5 (0.1-10.7) 

Argyropelecus hemigymnus 35.4±4.7 (25-46) 0.5±0.2 (0.2-1.1) 

Maurolicus muelleri 44.1±9.5 (14-53) 1.0±0.2 (0.6-1.7) 

Sternopty Sp. 91.1±24.5 (63-143) 1.1±1.1 (0.1-8.2) 

Melamphaidae 

Poromitra crassiceps 31.8±8.0 (15-65) 12.2±10.7 (3.3-34.9)  

Platytroctidae 

Maulisia argipalla 112.9±24.7 (86-157) 10.5±5.2 (4.9-18.0) 

Eurypharyngidae  

Eurypharynx pelecanoides 278.4±97.1 (152-555) 5.8±6.5 (0.4-26.6) 

Stomiidae 

Chauliodus danae 100.7±14.0 (66-132) 2.4±0.9 (0.6-4.7) 

Chauliodus sloani 154.4±62.7 (62-213) Na* 

Chauliodus schmidti 128.4±71.2 (50-274) 18.7±13.6 (0.4-45.1) 

* Not weighed  
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3.2 Nematodes found. 

All the nematodes recovered were L3 larvae. A total of 177 ascaridoid larvae were collected 

from the 1271 fish specimens examined. Infections were registered in 13 out of the 32 fish 

species. The nematodes were usually easy to see in the viscera, even with the naked eye. The 

177 larvae were morphologically assigned as to larval types follows: Anisakis type I larvae 

(n=9) sensu Berland (1961) (Figure 5 and 6_A, B, C), Anisakis type III (n=51) larvae sensu 

Shiraki (1974) (Figure 7_A, B, C), Anisakis type IV (n=38) larvae sensu Shiraki (1974) 

(Figure 8_A, B, C), Hysterothylacium-like (n=42) (Figure 9_A, B, C.), and Terranova-like 

(n=37) (Figure 10_A,B,C).  

Larvae that had a distinct ventricle without appendix, and a straight intestine without a 

caecum were considered belonging to genus Anisakis. All these had a rounded cephalic end 

with a ventral boring tooth, subtended by an excretory pore at the base of the lip-anlagen. 

Anisakis type I larvae had a long, whitish body (total length range:18-31 mm). The prominent 

oval ventricle had an (usually visible) oblique transition to the intestine (Fig. 5 and 6 B). The 

tail was rounded, with a clear mucron at the tail tip (Fig. 5 and 6 C).  

Anisakis type III larvae had relatively small body compared to type I (total length range:15-18 

mm). Larvae had a light yellow to reddish body, an oval small ventricle relative to body 

length, and a rounded tail with a small mucron at the tail tip (Fig. 7 C). Their whole body 

reflected a light ice-blueish color when exposed to UV-light after freezing and thawing. In 

addition, the larvae showed a less intensity of glowing when UV-lighted, showing a more 

whiteish/yellowish color rather than clear blueish (Fig. 4), compared to the clear bluish color 

showed by Anisakis type I larvae (e.g. A. simplex (s.s.) and A. pegreffii) (see Fig. 1 at Bao et 

al. (2015)). 

Anisakis type IV larvae had a relatively small body compared to Anisakis type I larvae (total 

length range: 16-20 mm). Larvae had a light yellow to reddish body. Larvae had a violin-

shaped ventricle (Fig. 8 B) and a conical and pointed (but curved) tail without any mucron 

(Fig. 8. C). Their whole body did reflect a light sky-blueish color when exposed to UV-light 

after freezing and thawing (Fig 4). In addition, the larvae showed a more bluish color than 

type III when UV-lighted (Fig.4), but less than Anisakis type I larvae (e.g. A. simplex (s.s.) 

and A. pegreffii) (see Figure 1 at Bao et al. (2015)). It was also observed that their anterior 

“head” part showed less glowing intensity compared to the rest of the body.  
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Hysterothylacium -like larvae were small (total length range: 4-6 mm long), and with a 

transparent-whiteish body-color. Larvae had a boring tooth ventrally located (Fig.9 A), a 

short, round ventricle with both a very long ventricular appendix and long intestinal caecum 

(Fig 9. B). The excretory pore was seen below the nerve ring. Larvae had a pointed conical 

tail with a terminal spine (Fig. 9 C). 

The larvae categorized as Terranova-like resembled Anisakis, but they were smaller (total 

length range: 6-10 mm) and thick-bodied (Fig 11). These larvae had an intestinal caecum 

extending alongside the ventricle (Fig 10 C), and a pointed tail (Fig. 10 B). For more 

information see section 3.4. 

 

 

 

 

 

 

 

 

 FIGURE 4: UV LIGHTING OF ANISAKIS BREVISPICULATA (A.B) AND ANISAKIS PAGGIAE (A.P). 
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FIGURE 5: ANISAKIS TYPE I (A. ZHIPIDARIUM): ANTERIOR PART (A), 

VENTRICULUS PART (B) AND POSTERIOR PART (C). INCORRECT 

SCALE BAR THAT COULD NOT BE DELETED FROM THE IMAGE (RED X).  
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FIGURE 6: ANISAKIS TYPE I (A. TYPICA): ANTERIOR PART (A), 

VENTRICULUS PART (B) AND POSTERIOS PART (C). INCORRECT 

SCALE BAR THAT COULD NOT BE DELETED FROM THE IMAGE (RED X).  
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FIGURE 7: ANISAKIS TYPE III (A.  BREVISPICULATA): ANTERIOR 

PART (A), VENTRICULUS PART (B) AND POSTERIOR PART (B). 
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FIGURE 8: ANISAKIS TYPE IV (A.CF.PAGGIAE): ANTERIO PART (A), VENTRICULUS 

PART (B), AND POSTERIO PART (C).  
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FIGURE 9: HYSTEROTHYLACIUM  LIKE (RAPHIDASCARIDIDAE GEN SP.): 

ANTERIOR PART (A), VENTRICULUS PART (B) AND POSTERIOR PART (C). 
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FIGURE 10: TERRANOVA LIKE (PSEUDOTERRANOVA CF. 

CETICOLA): ANTERIOR PART (A), PART WITH VENTRICLE AND 

CAECUM (B) AND POSTERIOR PART(C) 
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3.3 Molecular identification 

3.3.1 BLAST Results 
 

Blasting the ITS /Cox2 gene sequences to reference sequences deposited in the GenBank 

suggested that the 5 nematode types recognized by morphology may belong to 8 different 

nematode species (Table 5).  

Table 5:  BLAST RESULT FOR NEMATODE ITS (ITS1-5.8S-ITS2) AND COX2 GENE SEQUENCES. 

NUMBER OF LARVAE BLASTED (n), MATCH PER. INDENT RANGE IN % (*), MATCHED SPECIES 

(**), NUMBER OF BASE PAIR BLASTED (BP), ACCESSION SEQUENCE IN GENBANK (R.S. ID), NOT 

OBTAINED (NO) AND CONCLUSION (CON.) 

Nematode 

species 

ITS Cox2 Con. 

n BLAST  

(bp) 

R.S ID n BLAST 

 (bp) 

R.S ID 

Anisakis type I 

i)  

4 

 

100* 

A.typica** 

(884) 

JQ912690 

 

 

4 
97.9-99.1* 

A. typica** 

(557) 

 

DQ116427 
Anisakis typica 

ii)  

4 100* 

A. ziphidarum** 

(856) 

JQ912691  

4 99.3-99.6* 

A. ziphidarum** 

(546) 

 

DQ116430 Anisakis 

ziphidarum 

iii)  

0 
NO 

 

NO 

 

1 
99.3* 

A. pegreffii ** 

(567) 

 

MG076946 
Anisakis pegreffii 

Anisakis type III 

i)  

30 
99.8-100* 

A. brevispiculata** 

(826) 

 

MH481715 

 

29 
97.5-99.8* 

A. brevispiculata** 

(560) 

 

MH669508 

Anisakis 

brevispiculata 

Anisakis type IV 

i)  

23 

 

99.1-99.5* 

A. paggiae** 

(851) 

 

JQ912695 

 

23 

95.0-98.9* 

A. cf. paggiae** 

(556) 

 

KF693770 
Anisakis cf. 

paggiae 

ii) 11 98.6-99.8* 

A. paggiae ** 

(826) 

JQ912695 11 95.0-100* 

A. paggiae ** 

(568) 

KF693769 

Anisakis paggiae 

Hysterothylacium like 

i)  

8 99.1-99.3* 

Hysterothylacium 

sp. 

** 

(886) 

 

MT365537 

 

6 
86.4-87.8* 

Hysterothylacium 

deardorffoverstreetorum** 

(571) 

 

KU886687 

Raphidascarididae 

gen. sp. 

Pseudoterranova like 

i)  

16 

99.9-100* 

Anisakis sp.** 

(801) 

 

KC342894 

 

15 

96.8-97.6* 

P. ceticola ** 

(570) 

 

DQ116435 
Pseudoterranova 

cf. ceticola 
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3.4. Description of Pseudoterranova cf. ceticola third larval stage (L3) 

Small pale-white larvae, with a thick-set appearance (see Fig. 10 and 11). The body was 

widest near the middle; the body total length: max width ratio was 17-31 (mean 24.7 ± 4.2, 

N=17). In-situ, the larvae were coiled like a watch spring when found in the viscera. Two 

larvae found in the muscle had a light neon-bluish color when exposed to UV-light (Fig. 12). 

Lip anlagen (see Figure 10 A) visible through the cuticle, wider than long. A plate like 

cuticular thickening extend dorsally approximately 21-27 µm (ca.22.6 ±1.9) in U-shape from 

the tooth, apparently surrounding the mouth (Fig. 10 A).  

Boring tooth and excretory pore at ventral side, excretory pore near base of tooth. Oesophagus 

narrows by the nerve ring which is positioned at around 8.4% of oesophagus length. 

Oesophagus length constitute 9-14 % (mean 10 %) of body length. The ventricle relatively 

long and wide; ventricle length about half of oesophagus length (oesophagus length: ventricle 

length ratio 1.5-2.8 µm (2.0 ± 0.3; N=17)) (Fig. 11B). The length of the intestinal caecum 

represents 48-85 % (mean 74 ± 13) of the ventricle length. The tail is conical, long and 

pointed (but curved) without a mucron (Fig. 10C).  

Transversal cuticular annulations revealed clearly at the tail. The mean length from the 

cloak/anus to tail tip (Tail L) were measured to 187 ± 9.8 µm (see table 6) for more 

information of measurements). 

TABLE 6: MEASUREMENTS OF MOLECULARLY IDENTIFIED PSEUDOTERRANOVA CF. CETICOLA LARVAE. 

L=LENGTH, W=WIDTH, N=NUMBER OF MEASUREMENTS, SD=STANDARD DEVIATION. 

MEASUREMENTS IN µM UNLESS SPECIFIED. 

 N Mean SD Min.-Max. 

Total L (mm) 17 8.5 0.8 7-10 

Max. W 17 348.2 50 279-442 

Oesophagus L 15 977.7 100 807-1147 

Anterior to nerve ring 17 84.8 4.3 78-90 

Ventricle L 17 493.5 78 378-647 

Ventricle W 17 152.3 21 112-175 

Caecum L 17 378.1 86 248-556 

Tail L 17 187 9.8 160-204 
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FIGURE 11: PSEUDOTERRANOVA CF. CETICOLA (L3). POSTERIOR PART (A), VENTRICLE (V) 

AND POSTERIOR PART (P) 

FIGURE 12: UV LIGHTED PSEUDOTERRANOVA CF. CETICOLA (L3).  
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3.5 Epizootic data  

3.5.1 Geographical distribution 

Fish were sampled from seventeen trawl stations (TS) (TS4601, 4603-4618) (see Table 3 

above). Ascaridoid nematode larvae were found in fish from 57 areas. There was some 

geographical variation in the occurrence of the larval types (Table 7). All five morphotypes of 

larvae were collected off West Sahara – South Canary Islands waters (TS 4604 and 4606) (see 

Table 8). Anisakis typica, A. ziphidarum, A. brevispiculata, A. cf. paggiae and P. ceticola 

were all found in Cape Verde waters (TS 4601).  

Anisakis typica, A. brevispiculata and Raphidascarididae sp. were collected in Canary Island 

waters (TS 4607). The northernmost location where Raphidascarididae sp. larvae were found 

were the station 4607 in the Canary Island water. 

Anisakis pegreffii was the only species found off Portugal waters (TS 4614), the northernmost 

parasite finding of the research campaign. Anisakis ziphidarum and P. cf. ceticola were also 

found in Morocco waters (TS 4610). 

3.5.2 Infection data  

Ascaridoid L3 (N=177) were collected from a total of 53 fish individuals representing 13 

species: B. indicus; C. warmingii; C. danae; D. dumerilii; D. mollis; D. rafinesquii; D. 

argenteus; E. pelecanoides; L. guentheri; L. gemellarii; M. muelleri; M. argipalla and N. 

atrum (see Table 8).  

Anisakis pegreffii was only found as a single larva in M. muelleri. The larva was found free 

(not encapsulated) in the viscera of the fish.  

Anisakis typica was found in D. dumerilii, C. warmingii, C. danae and L. gemellarii. The 

larvae from D. dumerilii and C. warmingii were emerged from the fishes’ gill (likely post-

mortem migration ). Findings from the other fish-species were from the viscera.  

Anisakis ziphidarum was found with E. pelecanoides (plastic bag harboring the fish, again 

probably due to post-mortem migration). The nematode was also found in D. rafinesquii, 

there laying free over the organs.  

Anisakis brevispiculata was found in D. argenteus, L. guentheri and N. atrum. Larvae were 

mainly found free, coiled among the pylorus blind sacs in those fishes. In addition, two larvae 

were found within the stomach of D. argenteus, and two larvae were revealed by UV light in 

the rest of viscera.  
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Anisakis cf. paggiae and A. paggiae were found in D. argenteus and A. paggiae also in N. 

atrum. The larvae were free, coiled in the pylorus blind sacs or in the viscera. In addition, four 

larvae were found in the stomach of D. argenteus. No findings in the musculature.  

Raphidascarididae gen. sp. was only found in D. argenteus. Larvae were either found 

encapsulated in yellow/orange capsules inside the stomach wall (Fig. 13), in the pyloric caeca 

of the fish, or as free larvae on the viscera, or inside the stomach.  

Pseudoterranova cf. ceticola was found in B. indicus, C. danae, D. argenteus, D. mollis and 

D. rafinesquii. Larvae were mainly found free, compact spiral-coiled in the viscera and in a 

few cases 4/177 worms in the flesh of the fish (revealed by UV-lightening). 

Nematode parasites were not found in A. aculeatus; A. hemigymnus; C. sloani; C. schmidti; 

C. microdon; D. brachycephalus; D. effulgens; D. metopoclampus; H. hygomii; H. 

reinhardtii; H. taaning; L. cuprarius; L. lineatus; L. dofleini; N. resplendens; P. crassiceps or 

Sternoptyx sp.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 13: RAPHIDASCARIDIDAE GEN. SP. IN SITU, WITHIN A CAPSULE (C) 

IN STOMACH-TISSUE OF DIRETMUS ARGENTEUS. 
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TABLE 7: LARVAL MORPHOTYPES AND SPECIES FOUND PER FISH SPECIES AND TRAWL STATION (TS). 

N= NUMBER OF FISH EXAMINED, NI= NUMBER OF FISH INFECTED, PS= POSITIVE SAMPLES, NL= 

NUMBER OF LARVA FOUND, A. PEGREFFII (A), A. TYPICA (B), A. ZIPHIDARUM (C), A. BREVISPICULATA 

(D), A. PAGGIAE (E), A. CF. PAGGIAE (F). 

 

 

Fish species 

N Ni Anisakis 

Type I 

(A; B; C) 

Anisakis 

Type III 

(D) 

Anisakis 

Type IV 

(E; F) 

P. cf. ceticola Raphidascaridid

ae gen. sp. 

Ps Nl Ps Nl Ps Nl Ps Nl Ps Nl 

TS.4601 

(Cape verde) 

 

D. dumerilii 

D. rafinesquii 

L. guentheri 

N. atrum 

1 

2 

5 

12 

1 

1 

1 

3 

1 

0 

0 

0 

1B 

0 

0 

0 

0 

0 

1 

1 

0 

0 

1 

1 

0 

0 

0 

2 

0 

0 

0 

2E 

0 

1 

0 

0 

0 

1 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

TS.4604 

(West Sahara) 

 

C. warmingii 

D. mollis 

D. argenteus 

M. argipalla 

D. rafinesquii 

18 

14 

11 

7 

48 

1 

1 

8 

1 

17 

1 

0 

0 

0 

2 

1B 

0 

0 

0 

2c 

0 

0 

8 

0 

0 

0 

0 

27 

0 

0 

0 

0 

6 

0 

0 

0 

0 

8E+F 

0 

0 

0 

1 

2 

1 

15 

0 

1 

2 

1 

25 

0 

0 

4 

0 

0 

0 

0 

28 

0 

0 

TS.4605  

L. gemellarii 2 1 1 1B 0 0 0 0 0 0 0 0 

TS.4606 

(South Canary 

Islands) 

 

C. danae 

D. mollis 

D. argenteus 

20 

40 

8 

1 

3 

8 

0 

0 

0 

0 

0 

0 

0 

0 

6 

0 

0 

14 

0 

0 

5 

0 

0 

27E+F 

1 

3 

1 

1 

3 

1 

0 

0 

4 

0 

0 

9 

TS.4607 

(Canary 

Islands) 

 

C. danae 

D. argenteus 

17 

2 

1 

2 

1 

0 

1B 

0 

0 

2 

0 

8 

0 

0 

0 

0 

0 

0 

0 

0 

0 

2 

0 

6 

TS.4610 

(Morocco) 

 

B. indicus 

E. 

pelecanoides 

8 

7 

1 

1 

0 

0 

0 

2C* 

0 

0 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 

0 

0 

0 

0 

TS.4614 

(Portugal) 

 

M. muelleri 102 1 1 1A 0 0 0 0 0 0 0 0 

*Two larvae were found in the plastic bag, that harbored the E. pelecanoides from the TS. 4610. 
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TABLE 8: TABLE SHOWING OVERVIEW OF THE INFECTION LEVELS OF ASCARIDOID (ASC.) NEMATODES; 

ANISAKID (ANI.) OR RAPHIDASCARIDID (RAPH.) PRESENT IN MESOPELAGIC FISHES. PREVALENCE (P) 

(%), MEAN ABUNDANCE (MA), MEAN WEIGHT (MW), TOTAL WEIGHT OF THE SAMPLE (TW) AND 

DENSITY (N WORMS/KG). SORTED BY FISH-HOST FAMILY. (FOR INFECTION LEVEL DATA FOR EACH 

NEMATODE SPECIES SEE TABLE 1 IN APPENDIX). 

Fish host: 

Family 

Species 

Total 

N 

fish 

Total Asc. mW 

fish 

(g) 

tW 

fish 

(g) 

Total 

Ani. 

 

Total 

Raph. 

Density 

Ani. 

Density 

Raph. 

Density 

all 

Asc. 

P mA 

Myctophidae 
 

Bolinichthys indicus 41 2 0.02 0.7 30.2 1 0 33 0 33 

Ceratoscopelus warmingii 51 2 0.02 0.8 43.0 1 0 23 0 23 

Diaphus dumerilii 
1 10

0 

1 1.2 1.2 1 0    

Diaphus mollis 58 7 0.07 1.4 78.3 4 0 7 0 7 

Diaphus rafinesquii 50 36 0.50 3.4 167.5 25 0 149 0 149 

Lepidophanes guentheri 5 20 0.20 0.7 3.4 1 0 298 0 298 

Lobianchia gemellarii 4 25 0.25 4.3 17.4 1 0 58 0 58 

Nannobrachium atrum 
26 12 0.12 4.5 117.4 3 0 26 0 26 

Diretmidae 
 

Diretmus argenteus 23 78 5.61 16.5 380.5 87 42 229 110 339 

Sternoptychidae 
 

Maurolicus muelleri 137 1 0.01 1.0 135.7 1 0 7 0 7 

Platytroctidae 
 

Maulisia argipalla 7 14 0.14 10.5 73.5 1 0 14 0 14 

Eurypharyngidae 
 

Eurypharynx 

pelecanoides 

19 16 0.16 5.5 105.1 3 0 29 0 29 

Stomiidae 
 

Chauliodus danae 55 4 0.04 2.4 132.9 2 0 15 0 15 

 

3.6 Nematode abundance and host size 

At the trawl station with highest parasite abundance (Ts4604), the abundance of ascaridoid 

larvae in both D. rafinesquii and D. argenteus was positively related to host weight (see table 

9). When analysing the ascaridoid species, the relationship of abundance with weight was 

particularly strong for A. brevispiculata and A. paggiae (sensu lato (s. l.)) in D. argenteus. 

Pseudoterranova cf. ceticola abundance was positively related to host size (weight) in both 

these host species. Too few D. rafinesquii (n=2) and D. argenteus (n=2) were infected with A. 

ziphidarum or Pseudoterranova cf. ceticola respectively, to reveal any relationship between 

abundance and size.  
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TABLE 9: THE RELATIONSHIP OF PARASITE ABUNDANCE TO FISH WEIGHT IN GRAM FOR DIAPHUS 

RAFINESQUII AND DIRETMUS ARGENTEUS FROM TS4604. N= NUMBER OF LARVAE, RS= SPEARMANN 

RANK CORRELATION COEFFICIENT; P= P-VALUE; P (%)= PREVALENCE. 

Fish species Diaphus rafinesquii (n=48) Diretmus argenteus (n=11) 

n Rs p P (%) n Rs p P (%) 

Total 25 0.451 0.001* 35 68 0.818 0.002* 73 

Anisakis 

brevispiculata 

0   0 28 0.899 0.000* 73 

Anisakis paggiae 

(s. l.) 

0   0 7 0.829 0.002* 45 

Anisakis 

ziphidarum 

2 0.233 0.110 6 0   0 

Hysterothylacium 

sp. 

0   0 27 0.385 0.241 36 

Pseudoterranova 

cf. ceticola 

23 0.451 0.001* 31 2 0.670 0.023* 18 

 

3.7 Other parasites 

Two specimens of a parasitic pennellid copepod, Sarcotretes sp. were found attached to the 

outer surface of two L. alatus at TS4601. Two Sarcotretes scopeli were found on two B. 

glaciale at TS4618. Another pennellid, Cardiodectes medusaeus was found on a N. atrium 

from TS4610. An unidentified cestode plerocercoid, morphologically a Scolex pleuronectis 

with bilocular bothria, was collected from the intestine of a C. danae sampled at TS4606, and 

a C. sloani from TS4601. An acanthocephalan, Echinorhynchus sp. was collected from a C. 

schmidti from TS4601.  
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3.8 Previous records of ascaridoid nematodes in mesopelagic fishes from Mediterranean 

and north Atlantic waters 

 

TABLE 10: REVIEWED BIBLIOGRAPHY OF PREVIOUS EPIDEMIOLOGICAL STUDIES UPON THE PRESENCE 

OF ASCARIDOID NEMATODES IN MESOPELAGIC FISHES FROM ATLANTIC WATERS. 

Parasite Host Geographic area Reference 

Anisakis simplex Maurolicus muelleri Western Norway Hamre & Karlsbakk 2002 
 

Borostomias antarcticus off Greenland Klimpel et al. 2006 
 

Argentina silus off Greenland Klimpel et al. 2006 

Anisakis simplex (s.s.) Maurolicus muelleri Norwegian Deep Klimpel et al. 2007a 
 

Maurolicus muelleri Mid-Atlantic 

Ridge 

Klimpel et al. 2007a 

 
Myctophum punctatum Mid-Atlantic 

Ridge 

Klimpel et al. 2008, 2010 

 
Notoscopelus kroyeri Mid-Atlantic 

Ridge 

Klimpel et al. 2008 

 
Aphanopus carbo Madeira Costa et al. 2003; Pontes et al. 

2005 

Anisakis pegreffii Ceratoscopelus maderensis Mediterranean 

Sea 

Mateu et al. 2015 

 
Notoscopelus elongatus Mediterranean 

Sea 

Mateu et al. 2015 

 
Diaphus metopoclampus Mediterranean 

Sea 

Gaglio et al. 2018 

 
Myctophum punctatum Macaronesian Klimpel et al. 2010 

 
Aphanopus carbo Madeira Costa et al. 2003; Pontes et al. 

2005 

Anisakis ziphidarum Diaphus metopoclampus Mediterranean 

Sea 

Gaglio et al. 2018 

 
Aphanopus carbo Madeira Costa et al. 200; Pontes et al. 

2005 

Anisakis physeteris Ceratoscopelus maderensis Mediterranean 

Sea 

Mateu et al. 2015 

 
Notoscopelus elongatus Mediterranean 

Sea 

Mateu et al. 2015 

 
Electrona risso Mediterranean 

Sea 

Gaglio et al. 2018 

 
Vinciguerria attenuate  Mediterranean 

Sea 

Gaglio et al. 2018 

 
Aphanopus carbo Madeira Costa et al. 2003 

Anisakis brevispiculata Aphanopus carbo Madeira Costa et al. 2003 

Anisakis paggiae Anoplogaster cornuta  Irminger Sea Klimpel et al. 2011 

Hysterothylacium 

aduncum 

Maurolicus muelleri Norwegian Sea     Karlsbakk & Nilsen 1993 

 
Maurolicus muelleri Western Norway Hamre & Karlsbakk 2002 

 
Maurolicus muelleri Norwegian Deep Klimpel et al. 2007a 

 
Benthosema glaciale Norwegian Sea Karlsbakk & Nilsen 1993 

Hysterothylacium sp. Notoscopelus elongatus Mediterranean 

Sea 

Mateu et al. 2015 
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4 Discussion  

4.1 Morphology and genetics 

Five nematode larval types were morphologically distinguished from the 1271 fishes 

examined. Of the 177 larvae collected, 104 specimens were molecularly identified to species 

level. The few (9) Anisakis type I larvae represented 3 species A. typica (4), A. ziphidarum (4) 

and one A. pegreffii. All the type III larvae molecularly identified were A. brevispiculata, and 

the type IV larvae were A. paggiae or a A. paggiae related genotype (i.e. A. cf. paggiae). 

The Terranova-like larvae were closely related to Pseudoterranova ceticola. It was not 

possible to identify the raphidascaridid larvae to species level, since there is not an identical 

(or even close) reference sequence from adult individual deposited in GenBank. All larvae 

were L3, as they lacked lips and presented a boring tooth.  

Five different types of larvae were distinguished from each other by morphological 

characteristics. In addition, comparison of gene sequences of these larvae to corresponding 

sequences deposited in GenBank showed that the genes belonged to eight different species of 

nematodes. Means the genetic analyses can show more species diversity than morphology 

alone can show hence to ascarides species. 

4.1.1 Anisakis spp.  

Anisakis type I, III and IV larvae were morphologically classified mainly attending to 

differences in shape and length of the ventricle and tail (e.g. present or absence of a mucron at 

the tail tip) (Murata et al. 2011). Anisakis type I larvae englobes 6 Anisakis species; i.e. A. 

simplex (s.s.), A. pegreffii, A. berlandi, A. typica, A. ziphidarum and A. nascettii  (Mattiucci et 

al. 2018), which share morphological characteristics (i.e. long ventricle, junction between the 

ventricle and intestine oblique, rounded tail with a mucron at its tip (Berland (1961)), and are 

therefore not possible to separate only by morphology.  

The use of diagnostic genetic markers (e.g. mtDNA cox2 and rDNA ITS) is needed for 

species identification (reviewed in Mattiucci et al. (2018)). For the Anisakis type I larvae 

found in the present study, the genetic results (upon the previous markers) showed the 

presence of three Anisakis spp., consisting in four A. typica, four A. ziphidarum and one A. 

pegreffii.  

The larvae categorized as Anisakis type III were recognized by having a stout body, short 

ventriculus and a horizontal junction between the ventricle and intestine (Shiraki 1974; 

Murata et al. 2011). Shiraki (1974) reported the Anisakis Type III had a tail without mucron. 

However, Type III larva was previously reported to have a tiny mucron (Oshima (1972) cited 
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in Murata et al. (2011)). Murata et al. (2011) reported that a few (2 out of 10) Type III larvae 

had a tiny spine-like mucron and concluded that the tail mucron is an unstable characteristic.  

Sardella & Luque (2016) described 1 larva genetically identified as A. brevispiculata and 

collected from the fish Pinguipes brasilianus from Rio de Janeiro (Brazil) , as not having 

terminal mucron (Dos Reis Sardella and Luque 2016). Recently, Cabrera-Gil et al. (2018) 

reported that out of 130 Anisakis Type III larvae found in myctophids from the Arabian Sea, 

11% had a spine-like mucron. In the present study, apart from the characteristics described 

before, a small mucron was revealed (sometimes clearer than others) at the end of a short, 

rounded tail for all specimens found.  

Murata et al. (2011) found that all Anisakis type III larvae from Beryx splendens in Japan 

belonged to A. brevispiculata. Here, the sequence analysis of the mtDNA cox2 gene 

suggested that all the Anisakis type III specimens from Atlantic mesopelagic fishes represent 

A. brevispiculata (See table 5). Therefore, the larvae of this anisakid appears morphologically 

identifiable to species. However, the rDNA ITS sequences obtained are likely conclusive. 

They matched 99.8 to 100% with sequences obtained from adult nematodes and deposited in 

GenBank. A higher rate of evolution and genetic variability is expected for the mitochondrial 

gene (e.g. cox2) than that of the ribosomal gene (e.g. rDNA ITS) (Ceballos-Mendiola et al. 

2010), as it was found in the present study. The genetic variability at the rDNA ITS gene 

should be further studied (e.g. analysis of the different ribosomal haplotypes, phylogenetic 

studies, morphological and genetic studies from adult nematodes, etc.), but it is out of the 

scope of this work. Thus, based on their morphology and the mtDNA cox2 result, our larvae 

are believed to belong to the species A. brevispiculata.  

Anisakis type IV larvae here recognized from the description in Murata et al. (2011), were 

identified as A. paggiae (s. l.). The specimen’s ITS genes showed relatively high identity 

(98.6 -99.8%) with A. paggiae, a parasite of K. breviceps from northwestern Atlantic Ocean 

(Mattiucci et al. 2014). However, when comparing the cox2 genes, the majority of the 

sequences showed highest identity to a genotype called A. cf. paggiae by Di Azevedo et al. 

(2017). This genotype could represent a separate species (Di Azevedo et al. 2017) so far only 

found as adults in K. sima from Brazil. Unfortunately, no corresponding ITS sequence of the 

Brazilian specimen is available for comparison. However, since the present cox2 sequences 

diverged by as much as 4.9% from A. cf. paggiae and from A. paggiae, the diversity among 

these whale parasites could exceed A. paggiae and A. cf. paggiae based on the cox2 matches.  

4.1.2 Pseudoterranova cf. ceticola  
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The larvae molecularly identified as close to P. ceticola share some morphological 

characteristics (e.g. presence of intestinal caecum and excretory pore below tooth) with adults 

of Terranova ceticola (Deardorff and Overstreet 1981) and the Terranova larval types 

(Cannon 1977) so they were categorized as Terranova-like. The blasting results for cox2 

gene, revealed 96.8-97.6% identity to a cox2 sequence from adult Pseudoterranova ceticola 

from Caribbean K. sima  (Valentini et al. 2006).  

Therefore, these anisakid larvae are here tentatively identified as P. cf. ceticola. However, 

molecular data does not exist for a related species, P. kogiae, originally described from an 

Australian K. breviceps (Johnston and Mawson 1939). These anisakid species were only 

found as adults in kogiid whales (K. breviceps and K. sima) (Abollo and Pascual 2002;Colón-

Llavina et al. 2009;González-Solís et al. 2006;Mcalpine et al. 1997), but it is at present 

unknown whether the kogiid whales may carry one widespread, or several host specific or 

geographically restricted Pseudoterranova species.  

A molecularly identified larva was found by Costa et al. (2014) in the deep-water shark 

Centrophorus squamosus taken off Madeira, but a sequence was not provided. The larval type 

of these Pseudoterranova spp. has so far not ben described. Therefore, the morphology larvae 

here molecularly identified as Pseudoterranova cf. ceticola was described. Further studies on 

P. kogiae and adult nematodes from kogiid whales are needed to completely resolve the 

species identity problem.  

 

4.1.3 Raphidascarididae gen. sp. larvae 

A raphidascaridid larva resembling larvae of some members of the genus Hysterothylacium 

was exclusively found in D. argenteus. The nematodes were characterized by a small, 

rounded ventricle, a long intestinal caecum, and a very long ventricular appendix. The tail was 

long and had a spine at the tail tip. Such characteristics may be found in several 

raphidascaridid genera (e.g., Hysterothylacium, Lappetascaris and Heterotyphlum) (Hossen 

and Shamsi 2019). The ITS genetical results suggests that all belonged to a single species and 

reveals affinity (99.3%) to a raphidascaridid found in the Mediterranean octopus Eledone sp. 

(Guardone et al. 2020) (see below). The raphidascaridid L3 found here share some features 

(see above) to the raphidascaridid morphologically assigned as Lappetascaris sp. according to 

(Nagasawa and Moravec 1995, 2002; Culurgioni et al. 2010) or Hysterothylacium sp. by 

(Guardone et al. 2020).  

In relation to this, Nagasawa and Moravec (1995; 2002) reported the occurrence of 

Lappetascaris sp. larvae in squids from the Sea of Japan and from Central and Western North 
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Pacific Ocean. Also, Culurgioni et al (2010) reported the presence of Lappetascaris sp. in 

squids from Mediterranean Sea. The best match of the present Cox2 gene sequences was only 

86.4-87.8%, representing Hysterothylacium deardorffoverstreetorum sequences. Hence the 

present larvae represent a species not sequenced so far, and also does not appear to be 

congeneric with any of the Hysterothylacium spp. from which there are cox2 sequences in 

GenBank. Based on both the genetic results and their morphology, the present larva cannot be 

assigned to a species or genus, and possibly represent a new species. A genetic match with 

adult specimens is needed to resolve the species identity. 

 

4.2 Biological aspects  

4.2.1 Geographical distribution and host records  

It appears that Anisakis spp. have different host specificity (in the final host) and that the 

different life stages demand different biological taxa as hosts. For instance, adult Anisakis 

spp. are found as parasites from several species of dolphins, porpoises, and whales, whereas 

L3 are found as parasites in marine teleosts and squids from pelagic to demersal zone 

(reviewed by Mattiucci et al. 2018). It also appears to be differences in the geographical 

distribution in the Atlantic waters among the species. In the present study, the sampling areas 

with highest diversity of nematode parasites were near Cape Verde (TS 4601), West Sahara 

(TS 4604) and Canary Islands (TS 4606, 4607), where all five larval types were found. 

Portugal (TS 4614) was the northernmost sea area having an infected M. muelleri with a 

single A. pegreffii larva. 

4.2.1.2 Anisakis pegreffii  

Anisakis pegreffii is found to be the dominating species of Anisakis in the Mediterranean Sea 

(Mattiucci et al. 2018). The Iberian coast seems to be its northern limit of distribution in the 

Atlantic Ocean (Abollo et al. 2001; Mattiucci et al. 2004, 2018) as A. pegreffii is rarely found 

in northern NE Atlantic waters, e.g. with migratiory fish such as Atlantic mackerel (Scomber 

scombrus) (reviewed by Levsen et al. 2020). Anisakis pegreffii appears to be a generalist both 

for final and transport host. It has been reported as L3 from about sixty pelagic and 

benthopelagic fish species, and as adults from six dolphins and whales species from the 

Atlantic and Pacific waters (reviewed by Mattiucci et al. 2018).  

4.2.1.2 Anisakis typica  

The few (4) Anisakis typica larvae recovered were found in single infections in four different 

fish species, i.e. D. dumerilii, C. warmingii, C. danae and L. gemellarii. These were also from 
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four different localities of the Macaronesia region, from Cape Verde to the Morocco coast. 

Anisakis typica has previously been reported from Merluccius merluccius, Platichthys flesus, 

Scomber scombrus and Scomber japonicus from Morocco-Mauritania Atlantic coast and 

Portugal waters in the North-East Atlantic Ocean  (Mattiucci et al. 2002; Marques et al. 2006; 

Farjallah et al. 2008). It has been also reported in Pagellus bogaraveo, S. japonicus and 

Trachurus picturatus off Madeira waters (Mattiucci et al. 2002; Hermida et al. 2012) and 

several fish species from other waters (see Table 5 in Mattiucci et al. 2018). In terms of final 

host, A. typica is mainly a parasite of oceanic dolphins in warmer temperate and tropical 

waters (reviewed by Mattiucci et al., 2018). In addition, it has been reported as adult from K. 

breviceps and K. sima from Brazilian (Iniguez et al. 2011; Di Azevedo et al., 2017) and 

Philippine waters (Quiazon et al. 2013; Quiazon 2016).  

4.2.1.3 Anisakis ziphidarum  

Anisakis ziphidarum was found in D. rafinesquii off Western Sahara waters (TS4604) and in 

E. pelecanoides off Morocco (TS4610). Anisakis ziphidarum has previously been reported 

from other Diaphus species, i.e. Diaphus metopoclampus from the Mediterranean Sea (Gaglio 

et al. 2018). This nematode appears to show specificity to the beaked whales (Ziphiidae) (e.g. 

Mesoplodon layardii and Ziphius cavirostris, etc.), as it was found in ziphiids from the South 

Atlantic Ocean (off the South African coast) and other waters (reviewed by Mattiucci et al. 

2018). In addition, it has been reported from K. sima from Philippine waters (Quiazon et al., 

2013).  

4.2.1.4 Anisakis cf. paggiae, A. paggiae and A. brevispiculata  

Anisakis paggiae were collected from N. atrium at Cape Verde (TS4601) and the rest eleven 

specimens were collected from D. argenteus off West Sahara (TS4604) and South Canary 

Islands (TS4606). In addition, the rest twenty-three Anisakis cf. paggiae were only sampled 

from D. argenteus from the same sampling areas as A. paggiae. Both nematode species 

occurred in mixed infections in the same fish specimen. Interestingly, A. paggiae, A. cf. 

paggiae and A. brevispiculata were mainly found in D. argenteus. Anisakis paggiae and A. 

brevispiculata did also share N. atrium as transport host, but A. brevispiculata was found in 

even more sampling areas and hosts than A. paggiae/A. cf. paggiae. Anisakis brevispiculata 

was found in D. argenteus at the same areas as A. paggiae/A. cf. paggiae, but also at south of 

Canary Islands (TS4606) and had a higher prevalence in D. argenteus of 70% compared to 

the former (see table 1, at the appendix). Anisakis brevispiculata was also found at Cape 

Verde (TS4601) in L. guentheri with 20% prevalence.  
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Anisakis brevispiculata, A. paggiae and A. cf. paggiae appear to have specificity to kogiid 

whales (Kogiidae) (further details at section 4.2.2). Anisakis brevispiculata and A. paggiae 

appear to be more generalist at the fish transport host level. They have been reported from 

swordfish (Xiphias gladius) from Atlantic waters, as well as in several other fish species from 

different waters (reviewed by Mattiucci et al 2018). 

4.2.1.5 Pseudoterranova cf. ceticola and the Raphidascarididae sp.  

Pseudoterranova cf. ceticola was mainly collected from D. rafinesquii reaching a prevalence 

of 38% for the total fish sample. Specimens of D. mollis and D. argenteus sampled at TS4604 

where infected with P. cf. ceticola as well. These fish species, including C. danae, were found 

infected as well with P. cf. ceticola when sampled at the Canary Islands (TS4606). In 

addition, two single specimens were also collected from B. indicus and E. pelecanoides at the 

Madeira Island (Ts4610). 

The species P. ceticola seems to be strongly connected to the kogiid whales. It has been 

reported from stranded K. breviceps from localities in Canada (Mcalpine et al. 1997)), Mexico 

(González-Solís et al. 2006) and from NW Spain (Abollo and Pascual 2002), and from K. 

sima stranded in the Caribbean sea (Colón-Llavina et al. 2009). In addition, it has been 

reported from K. breviceps of Florida, representing the only cox2 sequence of the species 

available in GenBank (Valentini et al. 2006). The larva of (likely) the latter is for the first time 

characterized here. 

Compared to the other nematode species found in this study, the Raphidascarididae gen. sp. 

larvae appeared host specific. Diretmus argenteus was the only fish species found infected. It 

is therefore reasonable to assume that D. argenteus is an important fish transport host within 

the life cycle of this species of nematode as its prevalence was 48%. 

4.2.2 Ecological determinants of parasite diversity and abundance  

There were no fishes parasitized with nematodes at any of the other locations than those 

previously mentioned. This might reflect an absence or low abundance of suitable final hosts 

in these geographical studied areas. It could also be the case that the species of nematodes 

found in this study, use other fish in their transmission than those sampled. However, since 

some of the fish species were found to be infected at other sampling areas, it appears that 

there can be large spatial variation in the abundance and diversity of ascaridoids in 

mesopelagic fish. 

Across the present samples, 24 % of the 177 larvae recovered belonged to a raphidascaridid 
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which likely matures in a fish. The rest (76 %) mature in cetaceans. Among those, kogiid 

whales (i.e. K. sima and K. breviceps) were found as final hosts to 100% of the anisakids 

found here, i.e. A. brevispiculata, A. paggiae (s. l.), P. ceticola, A. ziphidarum, A. typica and 

A. pegreffii (Cavallero et al. 2011; Iñiguez et al. 2011; Quiazon et al. 2013; Di Azevedo et al. 

2015; Quiazon 2016; Santoro et al. 2018; Hossen and Shamsi 2019). Although, A. typica, A 

pegreffii and A. typica are more likely to accidental infection as those are found to be parasites 

from other whales as final hosts (Mattiucci et al. 2018). 

In addition, K. breviceps  has been reported stranded in the studied areas (Fernández et al. 

2009; Berrow et al. 2015) and Bloodworth and Odell 2008 (See fig 3 Bloodworth and Odell 

2008) and McAlpine (2018) suggested that this area is a suitable habitat for both kogiid 

whales (Mcalpine 2018) Kogia sima is suggested to occur in the tropical Atlantic, Indian and 

Pacific Oceans (from approximately 45°S to 45°N) (McAlpine 2009; Kiszka and Braulik 

2010). 

There are some studies which indicated that mesopelagic fish are prey for K. breviceps and K. 

sima (Bloodworth and Odell 2008; Mcalpine 2009; West et al. 2009; Naito et al. 2013). West 

et al. (2009) analyzed the stomach content of stranded K. breviceps of the Hawaiian 

archipelago, and identified among others, D. argenteus, C. warmingii, E. pelicanoides, 

Diaphus sp., Nannobrachium sp., Chauliodus macouni, etc., which are species that were 

found here infected with anisakid nematodes, or congenerics to them. In addition, the 

parasites could be transmitted through the food web from mesopelagic fish to cephalopods 

and then to the whales, since squids are also known as a very important part of the diet of 

these kogiids (Cabrera-Gil et al. 2018). Hence, it appears that kogiid whales (e.g. K. breviceps 

and K. sima) can be presented as suitable final host.  

Since parasites can be used as biological indicators (e.g., abundance and occurrence of the 

parasites relates to the distribution, migration patterns and ecology of their hosts) Klimpel and 

Palm 2011 findings suggest that the former kogiid whales are present (at least) in the 

sampling areas with infected mesopelagic fish. Further research is recommended to 

investigate K. breviceps and K. sima relationship to any of the mentioned larvae and fish prey 

(especially to D. argenteus).  
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4.2.3 Other aspect to consider. 

Other aspect that could possibly affect the sampling data, such as the fish biodiversity and 

biomasses of the catch, is the trawling method. The macroplankton trawl and the multipelt 

trawl were used to get the samples, and apparently the latter might be more efficient in fishing 

compared to the macroplankton trawl (Anonymous 2019). However, the size of the fishes was 

the same regardless of which trawl was used. So, the very largest fish specimens may have 

been able to avoid the trawls. Hence, the occurrence of the fish hosts in a particular area, and 

with those also the larvae, appear to be more related to the sea area of sampling than the 

trawling method, but results should be interpreted with caution as they might be biased by the 

trawling method. 

4.3 Food safety aspects 

4.3.1 Risk of anisakidosis 

When assessing the risk of anisakidosis (anisakiasis when caused by Anisakis spp.) to humans 

through consumption of fish products, one must consider that the fish product needs to be 

parasitized by a viable anisakid nematode (EFSA 2010). If so, freezing at -20ºC for not less 

than 24 hours or heating at >60 °C for at least 1 minute at the core of the fishery product 

would guarantee the killing of the parasite (EFSA 2010). Other treatments, such as 

marinating, undercooking, cold-smoking, or salting are considered insufficient to guarantee 

the killing of all the nematodes that may be present in the product (EFSA 2010). A recent 

study carried out on dried Northeast Arctic cod (tørrfisk) suggest that drying may be an 

efficient treatment to devitalize the anisakids present in the fish fillets (Bao et al. 2020). In 

addition, it is important to highlight that one singe larvae of Anisakis spp. is sufficient to 

cause disease to humans (Kołodziejczyk et al. 2020). Thus, consumption of mesopelagic fish 

as raw or lightly cooked may represent a risk of anisakidosis. To the best of our knowledge, 

mesopelagic fish are not eaten by humans directly to date, but these circumstances can 

change, so awareness given above is provided. 

4.3.2 Allergy risk 

The species A. simplex (s.s.) and A. pegreffii have been found to cause allergic responses to 

humans (Daschner et al. 2005; Mattiucci et al. 2013). The allergic response induced by A. 

simplex (s. l.) allergens can provoke two clinical forms namely gastro-allergic anisakiasis and 

allergy to A. simplex (EFSA 2010). Gastro-allergic anisakiasis (GAA) has been defined as an 

acute IgE-mediated generalized reaction (urticaria- angioedema-anaphylaxis) after the intake 

of A. simplex (s. l.) infected fish, where the live larva induces the symptoms during 



 
53 

penetration of the gastric mucosa (Daschner et al. 2000; EFSA 2010; Adroher-Auroux and 

Benítez-Rodríguez 2020). Allergic urticaria appears to be the most common allergic symptom 

for GAA, and may or not be accompanied by gastric/abdominal symptoms (i.e. epigastric 

pain, nausea and vomiting) (EFSA 2010; Fernández-Fígares et al. 2015). Immunoglobulin E-

mediated allergy is involved in so-called Type I immune hypersensitivity, hypersensitivities 

where proteins generally are the allergy trigger (the allergen) (Daschner et al. 2000; EFSA 

2010), but other immunoglobulins (e.g. IgG, IgG4) are also involved (Daschner et al. 

2014;2002)  

Allergy to Anisakis spp. varies in symptoms from acute urticaria, angioedema to anaphylaxis 

(Daschner et al. 2000; EFSA 2010; Fernández-Fígares et al. 2015). Allergic responses have 

been described from patients which have consumed fish contaminated with dead larva or even 

just Anisakis spp. allergens. This is considered as “true” food allergy  and implies that 

sensitized individuals may potentially suffer allergic symptoms even when the larvae is dead 

or even not physically present in the food, if Anisakis spp. allergens are present (EFSA 2010; 

Bao et al. 2019). In relation to this, fourteen allergens have been described from A. simplex 

(WHO/IUIS 2020), and several of those have been shown to be resistant to pepsin and heat 

treatments (Caballero and Moneo 2004; Moneo et al. 2005).  

Farmed salmon from Norway and Japan has for now been considered to have very low risk of 

exposure to anisakid nematodes (Inoue et al. 2000; Levsen and Maage 2016). By feeding 

farmed salmon with pellets the transmission of larvae to the fish is prevented (Inoue et al. 

2000; Levsen and Maage 2016). However, there are some studies suggesting that Anisakis 

spp. thermostable allergens can be transmitted to humans through consumption of farmed fish 

that was fed with infected fish or infected fishmeal (Fæste et al. 2015b, 2015a; Polimeno et al. 

2021). 

In relation to this, it has been reported allergic symptoms in 8 patients highly sensitized to A. 

simplex after eating chicken that were fed with fishmeal (Armentia et al 2006).  

Recently, Polimeno et al. (2021) showed that sera from A. simplex allergic patients recognized 

A. simplex allergens (i.e. Ani s4) in the edible part of Mediterranean farmed sea bream 

(Sparus aurata) supposedly free of anisakid parasites. Sea breams were fed with commercial 

flour widely used as fish or poultry feed, from which the presence of antigenic proteins of A. 

simplex was also recognized (Polimeno et al. 2021). Thus, the allergens may remain 

allergenic after processing of fish meal and potentially, be transmitted by feeding farming 

salmon in Norway with feed containing fishmeal. Mesopelagic fish  may host (as shown here) 

ascaridoid species, and fishmeal from them could therefore contain ascaridoid derived 
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allergens.  However, it remains unknown whether the anisakids found in this study such as A. 

paggiae, A. brevispiculata, A. typica and A. ziphidarum, P.cf. ceticola and Raphidascarididae 

sp. can cause allergies in humans.  

Raphidascaridids such as Hysterothylacium spp. appear to not cause any harm to humans as 

they do not have the abilities to survive in warm intestines (e.g. they are adapted to fishes as 

final hosts). But this aspect remains controversial and not fully understood (Shamsi et al. 

2013). Hysterothylacium aduncum has been reported as causative agent of fish borne zoonosis 

(González-Amores et al. 2015; Yagi et al., 1996).  However, the parasite has not been 

genetically identified in the reports, so the diagnosis is debatable.  

As mentioned above, A. simplex (s.s.) and A. pegreffii have been shown to be able to cause 

allergic responses in humans (Mattiucci et al., 2013). However, other ascaridoid species could 

potentially also be involved in allergic reactions presented by sensitized patients (Valero et al. 

2003). For instance, a number of studies suggested that the ascaridoids (i.e. Anisakis simplex 

(s.l.), Anisakis physeteris, Hysterothylacium aduncum) share common allergens and may have 

a high degree of cross-reactivity among them (Iglesias et al. 1996; Leti and Research 

Laboratories 1998; Valero et al. 2003; Lozano Maldonado et al. 2004) 

Recently, Kochanowski et al. (2020) performed a comparative proteomic profile among L3 of 

A. simplex, P. decipiens and C. osculatum. They detected several allergens and concluded that 

in addition to A. simplex, P. decipiens and C. osculatum should be considered potential 

sources of allergens that could lead to IgE-mediated hypersensitivity (Kochanowski et al. 

2020). This increases the likelihood that the ascaridoids found in the present study also release 

thermostable allergens. 

4.3.2 Risk assessment associated with density.  

In here, a total of 2.5 kg of mesopelagic fishes (consisting of 32 fish species) were found to 

have 177 ascaridoids corresponding to a total density of 71 ascaridoids/Kg fish. In particular, 

the fish species with the highest density values were D. argenteus and D. rafinesquii with 339 

and 155 ascaridoids/kg of fish, respectively. Hamre & Karlsbakk (2002) found a density of 

4217 H. aduncum L3/Kg M. muelleri from Herdlefjorden. Estimated calculation of the data in 

Klimpel et al. (2007a) shown a density of 142 A. simplex (s. s.) and 2884 H. aduncum L3/ Kg 

M. muelleri fished from the Mid-Atlantic ridge and Norwegian Deep, respectively (Klimpel et 

al. 2007a). If compared with the low the density value found in this study off Portugal (5 

larvae/Kg M. muelleri), it suggests that the ascaridoid parasitism may also be site conditioned. 
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Maurolicus muelleri and B. glaciale have been evaluated as potential good sources to provide 

marine lipids and protein in salmon feed in Norway (Olsen et al. 2020).  

In addition, the former density values appear very high when compared to the value (3 

anisakids/kg of fillet) found in fresh Northeast Arctic cod (skrei) from Lofoten (Bao et al., 

2021). It is important to mention here, that most of ascaridoid larvae were commonly present 

in the viscera of fishes rather than in flesh in the present study. Commonly, most ascaridoids 

that may be present in fishes are in the viscera (Levsen et al. 2018). In this sense, if 

mesopelagic fishes are meant to be used as whole product, they may contain a high number of 

anisakids, and possibly potentially allergenic anisakid proteins, that might be directly 

consumed by humans, or may potentially be transferred to the fish feed and then to the farmed 

fish (and eventually to humans).  

There were no findings of parasitic nematodes in either of the following fish species: A. 

aculeatus; A. hemigymnus; C. sloani; C. schmidti; C. microdon; D. brachycephalus; D. 

effulgens; D. metopoclampus; H. hygomii; H. reinhardtii; H. taaning; L. cuprarius; L. 

lineatus; L. dofleini; N. resplendens; P. crassiceps and Sternoptyx sp. This suggests a low risk 

of transmitting ascaridoid parasites (or their allergens). However, it should not be ruled out 

that ascaridoid infection may occur to those fish species as well at a low prevalence, or in 

other sea areas or seasons, as ascaridoid nematodes are known to be able to infect many 

marine teleosts (Mattiucci et al. 2018). In case of future interest of exploitation of 

mesopelagic fish species, either for human or aquaculture use, in the studied geographic area, 

then it may be important to consider both which fish species to exploit and in which 

geographical areas.  

4.4 Conclusion  

The data produced in the present study are important for the understanding of the parasite-

host relationships and ecology in the marine ecosystems (particularly the twilight zone). The 

mesopelagic fish species B. indicus; C. warmingii; C. danae; D. dumerilii; D. mollis; D. 

rafinesquii; D. argenteus; E. pelecanoides; L. guentheri; L. gemellarii; M. muelleri; M. 

argipalla and N. atrum caught from Eastern Central Atlantic waters were found infected with 

ascaridoid nematodes.  

The sea areas with highest parasitic infection were around Cape Verde, Canary Islands, 

Madeira, and the waters off West Sahara and Morocco. The following ascaridoid nematodes 

were identified: A. pegreffii, A. typica, A. ziphidarum, A. brevispiculata, A. paggiae, A. cf. 

paggiae, Raphidascarididae sp. and P. cf. ceticola, showing high species diversity. The fish 
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species with higher infection levels were D. argenteus and D. rafinesquii with total density 

values of 399 and 155 ascaridoids/kg fish, respectively. Some of the studied fishes, e.g., M. 

muelleri appeared to be much less infected in the studied areas than previously reported from 

other locations.  

As a potential food resource, mesopelagic fish would represent a risk for anisakidosis only if 

it would be meant for being consumed as raw or lightly cooked. However, the anisakid 

thermostable allergens that may possibly be present in these fishes (even if meant to be used 

as fish feed for farmed salmon) may pose a risk for sensitized consumers (potentially even 

through consumption of farmed fish feed with them) that should be considered and further 

evaluated. To conclude, findings suggest that mesopelagic fishes are important transport hosts 

in the life cycle of various species of ascaridoid nematodes, especially D. argenteus, which 

was found to carry possibly 4 anisakid species (i.e., A. brevispiculata, A. paggiae, A. cf. 

paggiae and P. cf. ceticola), and probably a new species of Raphidascarididae yet to be 

described. The larva of Pseudoterranova cf. ceticola was herein described for the first time.     

 

4.5. Future studies  

The following research topics are recommended.  

4.5.1 Anisakis brevispiculata 

In the present study, it has been found A. brevispiculata L3 having a terminal mucron, whilst 

in the bibliography there is controversy about the stability of this characteristic. In addition, it 

appears to be two genotypes at the ITS gene. Thus, it arises a question of the possible 

presence of a sibling species within an A. brevispiculata complex that should be studied. 

Further morphological and genetic work upon adult nematode specimens recovered from 

whale final hosts would be needed to resolve the possible existence of a sibling species.  

4.5.2 Anisakis paggiae and A. cf. paggiae 

The cox2 sequences from Anisakis type IV larvae diverged as much as 5.0% from A. cf. 

paggiae and from A. paggiae. Thus, the diversity among these whale parasites could exceed 

A. paggiae and A. cf. paggiae, and this should be further investigated. In addition, it should be 

also studied if A. cf. paggiae should be considered a valid species within an A. paggiae 

complex. Again, further morphological and genetic work upon adult nematode specimens 

recovered from whale final hosts would be needed to resolve the possible existence of a 

complex of sibling species. 
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4.5.3 Pseudoterranova cf. ceticola and Raphidascarididae sp. 

As above, further work needs to be done on adult specimens of Pseudoterranova spp. from 

whale final hosts and the Raphidascarididae sp. must be found and described from the final 

fish host. It is identified as particularly important to carry out studies on P. kogiae and adult 

nematodes from kogiid whales as it is at present unknown whether the kogiid whales may 

carry widespread, several host specific or geographically restricted nematode species.  

4.5.4 Parasites as biological indicators and anisakid diversity 

It appears that kogiid whales may be important final hosts of most of the anisakids found in 

the present study, i.e. A. brevispiculata, A. paggiae, A. cf. paggiae and P. cf. ceticola. These 

whales probably predate on mesopelagic fishes in the sampling area. In addition, the parasites 

could also be transmitted from mesopelagic fish to squids and then to kogiids through the 

food web. The presence of these parasites in mesopelagic fish could be used as an indicator of 

presence of these kogiid whales in the area. Further studies to confirm or refute the 

importance of these kogiid whales in the life cycles of these anisakids should be carried out. 

Also, the genetic variation within these nematode species could reflect the presence of final 

host specific genotypes or even species.  

The high diversity of anisakids found in mesopelagic fish in the present study provides new 

knowledge about these poorly known anisakids, therefore, further research should be carried 

out in other sea areas and fish species. 

4.5.5 Risk assessment 

Finally, further research should be done to confirm if ascaridoid species like A. paggiae, A. cf. 

paggiae, A. brevispiculata, A. typica, A. ziphidarum, Pseudoterranova cf.  ceticola and 

Raphidascarididae sp. would also have allergens that may potentially cause allergic symptoms 

to Anisakis sensitized patients. In addition, the presence of A. pegreffii (A. simplex (s.s.) was 

already reported in previous “mesopelagic studies”), already known to produce thermostable 

allergens, suggests the potential transfer of allergens from mesopelagic fish to fish feed, to 

farmed fish and then to humans that should be further investigated. 
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Appendix  
TABLE 1: EPIDEMIOLOGICAL DATA FOR EACH NEMATODE SPECIES. PREVALENCE (P), MEAN ABUNDANCE 

(MA), STANDARD DEVIATION (SD), MAXIMUM NUMBER OF LARVAE FOUND IN ONE HOST = MAXIMUMS 

INETNSITY (IMAX). 

Parasite species

           Fish host Anisakis cf. Paggiae

Family P (%) mA (SD) Imax P (%) mA (SD) Imax P (%) mA (SD) Imax P (%) mA (SD) Imax P (%) mA (SD) Imax P (%) mA (SD) Imax P (%) mA (SD) Imax P (%) mA (SD) Imax

Species 

Gonostomatidae

Cyclothone microdon 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0

Myctophidae

Benthosema glaciale 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0

Bolinichthys indicus 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 2 % <0.1(0.2) 1 0 % 0

Ceratoscopelus 

warmingii
0 % 0 0 % 0 0 % 0 0 % 0 2 % <0.1(0.1) 1 0 % 0 0 % 0 0 % 0

Diaphus brachycephalus 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0

Diaphus dumerilii 0 % 0 0 % 0 0 % 0 0 % 0 100 % 1 (0) 1 0 % 0 0 % 0 0 % 0

Diaphus effulgens 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0

Diaphus metopoclampus 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0

Diaphus mollis 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 7 % 0.1(0.3) 1 0 % 0

Diaphus rafinesquii 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 4 % <0.1(0.2) 1 32 % 0.5(0.8) 3 0 % 0

Hygophum hygomii 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0

Hygophum reinhardtii 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0

Hygophum taaningi 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0

Lampanyctus alatus 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0

Lampanyctus cuprarius 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0

Lampanyctus lineatus 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0

Lepidophanes guentheri 20 % 0.2(0.4) 1 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0

Lobianchia dofleini 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0

Lobianchia gemellarii 0 % 0 0 % 0 0 % 0 0 % 0 25 % 0.3(0.5) 1 0 % 0 0 % 0 0 % 0

Nannobrachium atrum 4 % <0.1(0.2) 1 8 % 0.1(0.3) 1 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0

Notoscopelus 

resplendens
0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0

Diretmidae

Diretmus argenteus 70 % 5.6(2.4) 8 26 % 0.5(1.0) 4 30 % 0.9(3.0) 17 0 % 0 0 % 0 0 % 0 13 % 0.1(0.3) 1 48 % 1.8(2.7) 8

Sternoptychidae

Argyropelecus aculeatus 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0

Argyropelecus 

hemigymnus
0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0

Maurolicus muelleri 0 % 0 0 % 0 0 % 0 1 % <0.1(0.1) 1 0 % 0 0 % 0 0 % 0 0 % 0

Sternopty Sp. 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0

Melamphaidae

Poromitra crassiceps 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0

Platytroctidae

Maulisia argipalla 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 14 % 0.1(0.4) 1 0 % 0 0 % 0

Eurypharyngidae 

Eurypharyn pelecanoides 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 11 % 0.1(0.3) 1 6 % 0.1(0.2) 1 0 % 0

Stomiidae

Chauliodus danae 0 % 0 0 % 0 0 % 0 0 % 0 2 % <0.1(0.2) 1 0 % 0 2 % <0.0(0.2) 1 0 % 0

Chauliodus sloani 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0

Chauliodus schmidti 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0 0 % 0

 Raphidascarididae gen.Anisakis brevispiculata Anisakis paggiae Anisakis pegreffii Anisakis typica Anisakis ziphidarum Pseudoterranova cf. ceticola

 


