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ABSTRACT

Small-scale fishers’ short-run supply decisions are understudied, often be-

cause of data limitations. We utilize a unique dataset of daily catches and

prices from a mixed-species trawl fishery in Taiwan, characterized by tar-

geting decisions made before prices are formed. To investigate the effect

of expected prices on fishers’ supply decisions, we formulate a vector er-

ror correction model in a seemingly unrelated regression system of 11 fish

species. We find the price-elastic short-run supply for several species: the

maximum daily price elasticity of supply (PES) ranges from 0.4–1.1 and is

statistically significant for all but one species. The long-run PES (approx.

weekly) is > 1 for eight species. In contrast, elasticity with respect to wave

height is weak (the median short-run elasticity −0.4). These findings are

unexpected for trawl fisheries believed to have low selectivity. Our results

highlight the potential that auction markets have to incentivize fishing

that emphasizes quality over quantity.

Keywords: Mixed-fisheries, small-scale fisheries, price expectations, sup-

ply responses, error correction model, seemingly unrelated regression

JEL codes: Q210, Q220

1 Introduction

Fishermen make repeated decisions with respect to going fishing or not, which species

to target, and where to catch them. These decisions are influenced by factors including

regulation, technology, weather, expectations about prices, costs, and fish abundance

(Wilen et al., 2002). Some of these factors are relatively latent, with little or no

changes in the short-run, whereas others are subject to rapid changes, such as in
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weather and prices. Compared to long-term fleet dynamics, fishers’ short-term de-

cisions, e.g., day-to-day decisions, have not received sufficient attention either from

research scholars or fisheries authorities (Rijnsdorp et al., 2011). Understanding the

short-term dynamics is important for predicting and designing efficient regulatory

programs (Wilen et al., 2002; Salas and Gaertner, 2004).

The focus of this paper is on the effect of short-term price variations on fishers’

supply decisions. The importance of price in the fisher’s decision is evident. Fisheries

models typically assume fishers to be profit maximizers (Salas et al., 2004) responding

to economic incentives such as price (Dupont, 1993). Survey interviews of fishers

have also confirmed this; for instance, Bastardie et al. (2013) found that fish prices

and weather are two key factors that Danish fishers consider when deciding whether

to go fishing, and the potential for sizable catches determines their choices of fishing

grounds and target species. Studies on the supply elasticity of fishers, however, do not

fully corroborate this expectation. The short-run supply of fish and fish products is

typically found to be price inelastic (Jensen, 2002). Frequently, such evidence is drawn

upon from regulated fisheries, or fisheries with limited numbers of species. Moreover,

it is common to assume that fishers form rational price expectations (Muth, 1961),

that is, they do not make systematic forecast errors. Would, then, the conclusion

differ for fisheries that are subject to open or semi-open access with active market

transactions, and also if we allow for alternative assumptions about fishers’ price

expectations?

We investigate these questions using day-to-day catch statistics from coastal mixed

fisheries in Taiwan. Coastal fisheries in East Asia share several distinct features:

they are often small in scale and associated with vibrant domestic fresh fish markets

characterized by market participants exhibitinging an intrinsic preference for fresh

catches (Yamamoto, 1995). Fresh fish caught on shorter trips receive a price premium

(Sogn-Grundvåg et al., 2013; Lee, 2014). Consumers of East Asian ethnicity perceive

high utility from consuming fresh or live fish (Thapa et al., 2015; Dey et al., 2008).
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Such consumer preferences could shape fishers’ harvesting practices. To secure the

price premium, coastal fleets supplying local markets often only use ice to chill their

catches (Abe, 2017). This distinguishes them from many other fleets where catches

are typically frozen on board and/or serve international markets. Because fresh or

chilled fish is perishable, fishers are encouraged to make shorter fishing trips.

A rich mix of species is another defining feature of the coastal fisheries in East Asia

and elsewhere in the subtropical and tropical coastal seas. Studies based on mixed

fisheries show that shifting target species is an important risk mitigation strategy

(Kasperski and Holland, 2013), more so for small-scale fishers (Salas et al., 2004).

The third feature is the relatively slack fisheries management. Coastal fisheries in

the region, China in particular, are principally controlled by licenses (e.g., Shen and

Heino, 2014). License control creates a semi-open access regime in which fishers have

much more freedom to respond to price signals and exploit the stocks at their disposal,

compared to quota-regulated fisheries. The combination of vibrant fish markets, a

rich selection of species, and rudimentary fisheries management (i.e., limited entry)

makes East Asia an interesting region to study fishers’ price responsiveness.

Attempts to study fishers’ short-term decisions in non-regulated fisheries are often

hampered by a lack of data. We have been able to obtain a unique data set of

daily catch and price statistics from a coastal trawl fishery in southwestern Taiwan.

The data set covers an extensive period of time (2001–2015) and has daily temporal

resolution (On-line supplement S1). The data have been obtained from public sources

as well as through the authors’ visits to the fishing market in question. Existing

studies on the price elasticity of supply typically rely on aggregated cross-sectional

data that often have only annual resolution, and come from regulated fisheries or

from consumer markets (Diop and Kazmierczak Jr, 1996; Salvanes and Squires, 1995;

Pascoe et al., 2011). Our species-specific daily data from production markets offer

us unique possibilities to study the short-run supply responses of semi open-access

fisheries.
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2 Literature review

The important feature of coastal fisheries serving fresh food markets is that there ex-

ists a natural decision lag between the time a harvest decision is made and the time

the prices are realized. Because prices are volatile on a daily scale, fishers act on the

expected prices (Griliches and Mairesse, 1995). It is not common, however, to discuss

fishers’ price expectations in the fisheries economic literature. Exceptions include

Dupont (1993) and Kristofersson and Rickertsen (2009) who used the expected prices

predicted by an ARIMA price model. By contrast, decisions with lags have been

commonly featured in the agronomic literature, stemming from the seminal work of

Nerlove (1958). In these studies, farmers encountering similar price delays or deci-

sion lags are price takers and possess rational or quasi-rational expectations (Nerlove

and Bessler, 2001). Typically, expected prices are taken from futures prices (instru-

mented or uninstrumented), lagged prices, or predicted prices from a univariate time

series (Roberts and Schlenker, 2013). While these studies provide the theoretical and

empirical basis for our study, the difference between farming and fishing is evident.

Most obviously, the supply of agricultural products typically deals with an annual

lag, whereas for the fresh fish market, the delay is short, being about one day. More-

over, multi-output can be important for mixed fisheries production, but is less of an

issue in agricultural production. Pascoe et al. (2007) argued that in mixed fisheries,

the production of one output does not reduce the supply of the input for the produc-

tion of other outputs, a technology termed “mostly joint but not purely joint”. Our

model accounts for potential multiple outputs by estimating all species-specific catch

equations jointly, using the systems of equations approach that allows for correlation

among the error terms across the equations.

The effect of output price on output quantity can emerge from fisheries studies

on economic productivity or technical efficiency (Squires, 1987; Chiang et al., 2004;

Tingley et al., 2005; Asche et al., 2009). Implicitly or explicitly, these studies assume

rational price expectations, that is, no systematic error in price forecasting. Because
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price is endogenous, this strand of the literature relies on a dual approach, under

which decision makers are profit maximizers, and input and output prices are the only

factors deciding output levels (Farrell, 1957). A common conclusion has been that

the short-run price elasticity is low or statistically insignificant (see Jensen, 2002 for

a review). The use of observed prices as an explanatory variable may be appropriate

for large-scale or industrial fisheries if prices are predetermined or otherwise relatively

stable. However, fishers in our study do not observe prices prior to a fishing trip, and

an alternative assumption about price expectations must be considered.

3 Fisheries and the fresh fish market in Taiwan

Surrounded by the sea, Taiwan is an important fishery player, with capture fisheries

ranging from near-shore fisheries (≤ 12 nautical miles) to offshore fisheries (12–200

nautical miles) and distant-water fisheries (DWF). The near-shore and offshore fish-

eries (hereafter referred to as coastal fisheries) are mostly small in scale (an average

crew size of 5.1 people per vessel and 1.4 days per trip), but employ over 50% of the

people working in the fishing sector (Fisheries Agency, 2008, 2014). Coastal fisheries

catches are highly appreciated by the Taiwanese due to their freshness and the long

tradition of fish consumption—the term “hian-lau-a” is used by local people to de-

scribe fresh catches just out of the water that have not been chilled or frozen. The

market price of ‘hian-lau-a’ is typically higher than that of its frozen counterpart.

Coastal fisheries management in Taiwan primarily relies on license control, except

for a few specific fisheries such as the sergestid shrimp fishery (Wu and Ou, 2009).

License control was introduced in 1967 and fully implemented in 1991 (Huang and

Chuang, 2010). Once fishers obtain a fishing license, they face no effort or catch

quotas and are free to exploit the resources, apart from a few protected species. This,

however, has come with a price; government statistics show that catches associated

with coastal fisheries have been declining steadily from a peak level of 400,000 tonnes
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per year in the 1980s (Fig.1). The decline is mostly due to reduced landings from the

offshore fisheries. The catch share of DWF has been on the rise: from 42% in 1965

to 84% in 2014 (Fisheries Agency, 2014).

The lack of efficient fisheries management in Taiwan is due in part to the high

species richness. One implication is that common single-species management tools

such as “Total Allowable Catches” (TAC) would be more difficult to implement. While

the authorities in Taiwan have introduced several measures to ease fishing pressure,

the evidence suggests that these efforts have failed to correct the problem (Huang

and Chuang, 2010).

To investigate an individual fisherman’s short-term price elasticity, we focus on the

multi-species coastal trawl fisheries serving the Ke-Tzu-Liao fish market in Ziguan,

southwestern Taiwan.1 All catches are auctioned soon after landing. The Ziguan

Fishery Association is in charge of the auction 2, which follows a standard protocol,

including sorting and weighing catches prior to the auction. The auctions follow the

Dutch style where an auctioneer starts with a high bid, then lowers the bid until a

buyer is found. The market operates daily from 11am–3pm, except for the Chinese

New Year. Fishers selling their catches are typically small-scale fishers engaging in

daily fishing trips; that is to say, fishers go out to the sea during the night (3–4am)

and return to the port during the day when the market opens for auction. There are

about 90 fishing vessels registered in the local association. Only registered buyers are

allowed to make a bid. As of 2015, there were about 400 registered buyers.

Focusing on the Ke-Tzu-Liao fish market is interesting because the market rep-

resents one of the most developed auction markets for fresh fish landings in Taiwan.

A functioning auction also ensures that a key economic assumption of an “equilib-

rium market” can hold. Moreover, the sea southwest of Taiwan (where Ke-Tzu-Liao

is located) is an important fishing ground for trawl fisheries. Bottom trawl, often
1Ziguan is also spelled Tsukuan or Tzukuan.
2All fishers from the area are members of the Ziguan Fishery Association. The role of the

association is to provide a market place for its members and to facilitate the sale of fish. It does not
enforce any fishing quotas.

7



considered to be one of the least selective and most destructive forms of fishing, is

also the most common fishing gear used for coastal fisheries in the region and many

areas of the world (Shen and Heino, 2014; Watson et al., 2006).

4 Theoretical framework

Recursive supply and demand markets

The supply and demand of the fresh catches from Ke-Tzu-Liao follows a recursive

structure put forward by Wold (1954). If we apply Wold’s theory of a hierarchical

causal chain in our model, given the available information (e.g., lagged prices), fishers

make target decisions before the actual prices of target species are observed. Let us

define a simple recursive system as follows:

Supply: qt = as +bsE(pt)+µs, (1)

Demand: pt = ad +bdqt +µd, (2)

where a and b are parameters. Supply decisions are based on expected prices E(pt),

which is assumed to be a function of past prices E(pt) = f (pt−1, ..., p1), following the

cobweb theory (Ezekiel, 1938). The demand of the day determines current prices

that clear the market. This will trigger a supply response for the following day and

the model continues to operate. Both expected prices in the supply equation and

quantity landed (qt) in the demand equation are exogenous or predetermined, and

their parameters have a causal interpretation (Strotz and Wold, 1960).

A recursive system removes simultaneity bias through the introduction of a time

unit (a day in our case). However, the simultaneous-equations literature has warned

against cases where the problem may still persist. The first case involves low fre-

quency observational data. While simultaneity may not be present in high-frequency

(e.g., daily) data due to, for example, a lack of response time, it may still emerge

8



if the available data are averaged over a long period (e.g., monthly or annually). In

this case, a static model with simultaneity becomes a limiting case of its dynamic

recursive model (Graddy and Kennedy, 2010). The second involves large inventory

changes. Roberts and Schlenker (2013) explained that expected prices of agricultural

commodities in the supply equation can be endogenous due to an unobserved supply

shift caused by changes in the storage level. When inventory changes were small

and involved high frequency data (daily trading data from the Fulton fish market),

Graddy and Kennedy (2010) showed that their recursive system did not suffer from

simultaneous equations bias. Compared to the Fulton market – a consumption mar-

ket, Ke-Tzu-Liao is a production market where storage is typically not an option due

to the extreme perishability of the catches. This has been further confirmed by our

on-site observations. Having freed ourselves from a simultaneity problem, we can

estimate the supply equation and the demand equation separately and without bias

using an ordinary least squares (OLS) estimator, so long as the error terms of both

equations (µs, µd) are uncorrelated. For the purpose of this article, we will only focus

on the supply equation.

Fishers’ species/location choice

We postulate that the fishers’ supply decision involves their selecting target species to

maximize their daily expected payoffs. How do trawlers in our study system actually

target? In the context of mixed fisheries concerned with multiple vessels, it often

seems to be the case that skippers target a wide range of species and exhibit wide

spatial movements (Monroy et al., 2010; Rijnsdorp et al., 2011). It is natural to

assume that trawlers target species by moving to different locations to search for

intended species.

A trawler’s spatial behavior has been previously modeled in the discrete location

choice framework (e.g., Holland and Sutinen, 2000). Following this tradition, we

assume that there are i main species spread over j locations, and one habitat may

9



be shared by several species. We further assume that all species are available in each

location but the biomass of each species varies by location: B j = [b1, j,b2, j, ...,bi, j].

The total biomass of a species summed over all locations (Bi = ∑ j bi, j) is a long-term

measure and is seen as time-invariant on a daily scale. Fishers plan their catch based

on the expected prices of available species Pe = [Pe
1 ,P

e
2 , ...,P

e
i ,εP] and other exogenous

variables.

The fisher’s location (or species) decision at time t can be expressed as

L j = f (B j,Pe,εB,εP), (3)

where εB is the measurement uncertainty in expected stock levels at any location, and

εP is the measurement uncertainty regarding how the expected prices are formed. By

dropping the time subscript t, the harvest equation on day t can be expressed as

follows:

qi, j = g(L j,I,W,D,εH), (4)

where I denotes composite input prices such as the price of fuel and labour, W is

weather conditions, and D refers to seasonal and weekday dummy variables. εH is

a measure of uncertainty in harvesting due to the by-catches. Because the trawling

area is relatively small and there is only one monitoring station, we assume that W

is location invariant within our study area.

Combining equations 3 and 4 and summing up catches over all locations, we obtain

the following harvest equation on day t:

Qi =
j

∑
j=1

qi, j =
j

∑
j=1

g(B j,Pe,I,W,D,νi) = h(B,Pe,I,W,D,νi), (5)

where vi = f (εP,εH ,εB), and the error terms are independent and identically dis-

tributed. Eq. 5 serves as the base of our empirical estimation detailed in Section

5. Because the trawlers in our study area are relatively homogeneous and because
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there are few vessels relative to the available fishing area, we assume that the harvest

equation (Eq. 5), expressed at the level of an individual fisher, also describes the

aggregate behavior at the fleet level.

5 Data and estimation strategy

Data

Our analyses are based on a unique dataset on coastal fisheries catches landed at

the Ke-Tzu-Liao fresh-fish auction market in southwestern Taiwan (see the online

supplement). The data set contains daily landings and daily ex-vessel prices spanning

2001–2015. The data are vessel aggregated, but disaggregated by species or species

groups (hereafter referred to as species).

We focus our analysis on the top 12 species that are most frequently caught

(available during 95% of the market opening days). Table 1 provides an overview of

the data. It is apparent that the variation in the quantity landed is much greater than

the price. The price data are standardized to December 2015 prices using the monthly

Consumer Price Index (CPI) across all sectors, provided by National Statistics of

Taiwan. The annual growth rate of CPI in Taiwan during our study period was

about 1.03%. The monthly CPI values were assigned to the 15th of the respective

months, and the daily CPI values were estimated from the monthly values using cubic

spline interpolation3. There are strong negative correlations between the price of the

day and the catch of the day across all species.

Among the selected species (Table 1), the group “mixed” is a special category

that represents (1) high-value but low-volume by-catch—if the catch of an individual

species is below the minimum auction unit (about a 1 kg basket), they are auctioned

together with other species in a similar price category; (2) uncommon species that
3We also tried linear interpolation of the monthly CPI values. As with the spline interpolation,

monthly CPI values were assigned to the 15th of the respective month. The statistical models are
not sensitive to the interpolation technique we have used.
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are not included in any of the official lists published by the Fisheries Administration.

Furthermore, several other species are represented by groups of closely-related species,

including “alfonsinos”.

Fuel prices were downloaded from the website of Chinese Petroleum Corporation

Taiwan, a state-owned company, and deflated using the monthly CPI as mentioned

above. The fuel refers to category A fuel for fishing vessels. The prices are weekly

because they are adjusted centrally every week to reflect price changes in the inter-

national oil market. To account for the effect of weather on fishing, we used data on

wave height collected at the Penghu data buoy station (N 22◦18.55’,E 120◦ 21.46’),

run by the Central Weather Bureau of Taiwan. The data were recorded daily during

2001–2015, with some gaps caused by malfunctions.

Predicting expected prices

We assume fishers follow quasi-rational expectations (QRE) (Nerlove and Bessler,

2001) in determining the expected prices of species. Quasi-rational fishers are only

bounded rational, not knowing the exact forecasting model but computing their esti-

mates of future prices based on past observations. In this sensen, QRE represents a

more realistic version of the rational expectation that assumes no systematic forecast

errors of prices. The rationale behind QRE is that if the prediction of a theory is

better than the expectations of agents, then there will be rent-seeking behavior (e.g.,

offering consulting services to fishers) to take advantage of information asymmetry,

eventually closing the gap (Muth, 1961).

The expected price is predicted via the best-fitting univariate ARIMA model

detailed as follows:

Pe
i,t = η1 pi,t−1 + · · ·+ηk pi,t−k + ε0

t +ζ1ε0
t−1 + · · ·+ζnε0

t−n. (6)

Eq. 6 assumes that the current price of a species (pt) depends on its past prices
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(pt−1,. . . , pt−k), the current random error (ε0
t ) and past random errors (ε0

t−1, . . . ,ε
0
t−n).

The coefficients η and ζ correspond to the autoregressive component and the moving

average (random errors) component, respectively. Prior to the prediction, we first

remove the year and seasonal trend in the price time series, followed by fitting the

residuals using the auto.arima function in the R library forecast. This function

uses a variation of the Hyndman and Khandakar algorithm, combining successive

KPSS tests for stationarity (Kwiatkowski et al., 1992), and the minimization of the

AIC and MLE to obtain an ARIMA model (Hyndman and Khandakar, 2008).

The agronomic literature has shown that market participants may have heteroge-

neous price expectations (e.g., Chavas, 2000). An assumption of homogeneous price

expectations is more justified in our case due to the aggregated data that we use and

the relatively simple market structure in Ke-Tzu-Liao.

Vector error correction model and seemingly unrelated regres-

sions (VECM-SUR)

Our empirical model follows the specification in Eq. 5, where all but dummy variables

are in log form. Algebraically:

Qi,t = a1 +ΦiPe
t + γiBi +δiWt +θiIt +D+ vi. (7)

Both the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test for stationarity and Dickey-

Fuller (DF) test for unit root show that the main variables in Eq. 7 are non-stationary

and I(1) integrated. Moreover, the residuals of Eq. 7 are serially correlated. It

becomes necessary to transform Eq. 7 before performing any estimation. Taking

first differences would be sufficient to meet the stationarity condition of I(0), but it

removes the long-run effect in the model. Johansen cointegration tests have revealed

that the prices and quantities of the same species are cointegrated and their residuals

are trend stationary. To utilize this cointegration relationship, we formulate the catch
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equation in the form of a vector error correction model (VECM). Specifically,

∆Qi,t =a1 +

Long-run effect (ECT)︷ ︸︸ ︷
α(Qi,t−1 −βPe

t−1 −σt)

+

Short-run effect︷ ︸︸ ︷
Ki

∑
p=1

Φ̂1,p∆Qi,t−p +
Ki

∑
p=1

Φ̂2,p∆Pe
t−p+δi∆Wt +Dw +νi. (8)

The model above consists of a long-run effect–the error correction term (ECT)–and a

short-run effect (Johansen, 1995). All variables in the long-run effect (own quantities,

own prices and prices of other relevant species) are treated symmetrically in the

VECM. Eq. 8 only represents the model of supply elasticity where quantity (Q)

is treated as the dependent variable. The optimal lag K is species-specific. We

select K and the cointegration rank simultaneously using command ca.jo from R

package “urca” (Pfaff, 2008) and rank.select from “tsDyn” (Stigler, 2010) following

the Bayesian information criterion (BIC). The cointegaration rank can be selected

independent of K or simultaneously with K. The latter approach, proved by Aznar

and Salvador (2002), was used in the study because it leads to a simpler model. We

construct the right-hand side variables manually and run the OLS of each species

either independently or jointly in a system equation.

The economic interpretation of coefficients in Eq. 8 is as follows. If the long-run

relationship is stable (i.e., α < 0), α can be interpreted as the speed of adjustment

from an existing disequilibrium; β is the normalized long-run supply elasticity; vector

Φ̂2 refer to lagged short-run own- and cross-price elasticities. δ is the wave elasticity.

Dw refers to weekday dummies and ν is the error term satisfying IID.

We use a two-pronged strategy to account for the mixed-species nature of the

coastal trawl fishery landing at Ke-Tzu-Liao. First, we account for the effects of

other species on the targeting decisions in relation to a particular species: vector

Pe includes the expected prices of several species; i.e., Pe ∈ [Pe
1 ,P

e
2 , ...,P

e
i ]. Second,

there are technical interactions between the species, reflecting the lack of technology
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to catch species with overlapping ranges separately–a feature of most trawl fisheries.

This implies that the error term νi across different species-specific catch equations

(Eq. 8) may be correlated. We therefore jointly estimate all catch equations using

Zellner’s (1962) iterative Seemingly Unrelated Regression (SUR). SUR is a way of

considering potential multi-output in mixed-fisheries (Pascoe et al., 2007). The SUR

analysis is implemented via the R package systemfit (Henningsen et al., 2007).

To determine the most relevant species to be included in the catch equation as

cross-price effects, we first run Eq. 8 where Pe contains own expected prices only. We

then choose the relevant species based on the correlation matrix of the residuals of

the catch equations (Fig. 3). In the current analysis, we set the correlation threshold

to 0.22, the lowest maximum correlation across all species, so that for each species,

at least one cross-price effect is included. For lizardfishes, this rule resulted in more

cross-price effects than were estimable. Furthermore, because the high cross-species

correlations (Fig. 3) suggest it is primarily a by-catch species, we removed this species

from subsequent analyses.

Several time-invariant variables in Eq. 5 are removed in Eq. 8. These include the

stock biomass B, which is endogenous. B is a latent variable and can be treated as

a constant over short (e.g., daily) timescales. In the short-run model, B disappears

by differencing; in the long-run ECM model, the biomass effect, if any, is implicitly

captured by the trend term (σt) 4. We remove fuel prices, as well as year and monthly

dummies from Eq. 8 due to a lack of statistical power 5. The sign of the coefficients

is expected to be negative for wave height but positive for own prices and lagged own

prices.
4Note that the ECM model in Eq. 5 does not require t to be linear. Because the trend also

captures other long-run effects, we cannot disentangle the effect of biomass.
5We tried an alternative model specification by modeling long-term and seasonal patterns as third-

degree polynomials, with the day number from the beginning of the study (for long-term trends)
or Julian day (for within-year seasonal patterns) as explanatory variables. We did not detect any
seasonal or yearly effect in our FD models.
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6 Results

Short-run own price elasticity of supply

Because our model estimates the daily price elasticity of supply based on the ex-

pected prices predicted by ARIMA, the daily supply elasticity should be interpreted

as a percentage change in the weighted sum of past prices. In terms of the own price

elasticity of supply (PES), all but one species (the largehead hairtail Trichiurus lep-

turus) exhibit a positive and statistically significant PES (Table 3). The magnitude

varies with lags and species, ranging from 0.4 to 1.1 (Fig. 4). Neritic squid (Abralia

multihamata), Japanese butterfish (Psenopsis anomala) and shrimp scad (Alepes djed-

abba) demonstrate elastic price responses in multiple lags. This result is surprising,

provided that this is the response within a single fishing day and that fishers were

constrained by the limited fishing hours each day. Largehead hairtail is the only

species on our list that is not price responsive, possibly because the fishery operating

from Ke-Tzu-Liao is not optimized for this species. The low price elasticity found

for the mixed category is in agreement with our expectations, because it represents a

heterogeneous mixture of valuable by-catch species or uncommon species that cannot

be targeted as a single group.

Long-run own price elasticity of supply

The coefficients of the error correction terms (ECT) in all eleven catch equations

have the expected negative sign (Table 3), suggesting that there exist stable long-

run relationships between quantities and expected prices for all species. The median

value of the ECT coefficient is −0.23, meaning that approximately 23% of the total

disequilibrium in quantities in Ke-Tzu-Liao was corrected within one effective fishing

day. For 10 out of 11 species, it takes no more than seven days for an existing catch

disequilibrium to return to its equilibrium state. In other words, the long-run effect

here is approximately a weekly effect. The speed of the equilibrium adjustment is
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also captured by statistically significant but negative coefficients of the lagged catch

quantities (Fig. 4), which show that the short-run supply of a fish species is negatively

influenced by its landing in the past few days, the more so the closer the lag.

We found that the long-run PES is always greater than the short-run PES of

a particular species; the latter is about 18%–66% of the former. This finding is

consistent with the literature, namely, fishers become more responsive if given more

time flexibility. The largehead hairtail is the most evident case, where the PES of

the hairtail is not significantly different from zero in the short-run but rises to 0.63

in the long-run. Four species in our list, namely red bullseye, Japanese butterfish,

shrimp scad and neritic squid, have a PES of over 3, implying that every percentage

increase of in the expected prices of these species will lead to the catches for the same

species increasing by more than three percent. Notice that the most price elastic

species, namely the red bullseye (3.8) and Japanese butterfish (3.7), are also the

most valuable ones in terms of the mean price (Table 1).

Cross price elasticity of supply

Similar to own-price elasticity, short-run cross-PES is much weaker than long-run

cross-PES. We hence focus on the long-run cross-PES hereinafter. The cross-PES

separates substitute-in-production from complement-in-production (joint product).

A substitute has negative cross-PES, because targeting one species more implies tar-

geting others less; joint products carry positive sign as targeting a species leads to a

by-catch of other species sharing the same habitat. In all but one case, the own-PES

is larger than the cross-PES (Figure 5). Largehead hairtail, the least price responsive

species, is the only species whose catch is more affected by the price changes of other

species than its own. The greatest substitute relationship is found between the black

snoek and largehead hairtail, where a 1% increase in the price of the snoek leads to

a 1.5% reduction in the amount of largehead hairtail supplied.

The red bullseye and red scad are complements for each other, and an increase in
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the price of alfonsino will reduce the supply of both species. However, the opposite

is not true, indicating that they are by-catch species for the alfonsino. The alfonsino

is also the species that interacts with most of the other species studied, either as a

substitute or as a complement. This may indicate that alfonsino has wide distribution.

The interaction of fishing gear probably plays an important role here. Trawling, a

predominant fishing method around southwestern Taiwan, is known for low selectivity.

By contrast, the Japanese butterfish has no interaction with other species. This may

suggest that its distribution or microhabitat differs from those of the rest.

The effect of wave height and other exogenous variables

As expected, we found that local wave height negatively affects daily landings, except

for Japanese butterfish (Table 3). Typically, a doubling of the wave height reduces

landings by about 40%. This could be caused by a reduction in fishing effort, reduced

catchability, or both; without effort data, we cannot disentangle these mechanisms.

Species with a strong wave effect include reef-associated species such as shrimp scad

(−0.6), red bullseye (−0.41), and redtail scad (−0.47). It is possible that fishing near

reefs is more sensitive to weather than fishing species in more open habitats. For

8 out of 11 species, the short-run maximum price elasticity is higher than the wave

elasticity. In other words, fishers are generally more sensitive to price changes than

to wave height changes if the fish are caught locally.

The weekday dummies showed a degree of cyclical effect in landings for several

species. Compared to Monday, 4 out of 11 species have a lower catch volume on

Sunday and 6 out of 11 species show higher catches on Tuesday or Wednesday. These

effects are the most evident for mixed species and neritic squid. This is probably

because some vessels may take a day-off on Sunday, in combination with the lower

demand for fresh catches on Sunday and early in a week, and the delay in transporting

the fresh fish from the production market to consumer markets and end consumers.

International oil prices underwent a drastic change during our study period, also
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impacting vessel fuel prices. The effect of fuel price changes on landing appears to

be mostly negative but statistically insignificant (not shown in Table 3). The result

is in line with what other studies found for industrial-scale fisheries; for instance,

Kroodsma et al. (2018) only found very low short-run price elasticity of fuel demand

(-0.06) for global fleets (many of which are active on the high seas). Two reasons may

explain our result: (1) the fuel price for fishing vessels is subsidized and regulated. It

was only from 2008 that the Taiwanese government started to adjust the price weekly

to reflect international oil prices; (2) fishers tend to store fuel for later use once the

government announces a price increase, and thus they are less immediately affected

by price changes.

Robustness

We have performed several diagnostic tests including the Durbin-Watson(DW) test for

serial correlation of disturbance, the Ramsey RESET test for model mispecification,

and the Goldfeld-Quandt (GQ) test against heteroskedasticity. Our model is able

to pass DWtest, GQtest but not RESET test. This is probably due to the outliers

present in the data. As a robustness check, we removed observations identified as

outliers in the residuals, but the results did not change appreciably.

Similarly, because wave data are unavailable before fall 2006, we analyzed the

results with and without wave height. The results are similar in essence, apart from

the long-run elasticity of the mixed species category disappearing in the case of the

longer dataset. This is likely to have been caused by changes in how the mixed

category has been used, and we therefore present the results with wave height included

for the period 2007–2015.
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7 Discussion

Compared to quota-managed fisheries, the harvest behavior of license-controlled (or

limited-entry) mixed fisheries is under-studied, primarily due to limited data avail-

ability. This study represents one of the few examples. Our analysis is based on daily

dockside catch statistics for trawl fisheries in southwest Taiwan. We found evidence

of a price elastic short-run supply for several species. The maximum daily price elas-

ticity of supply (PES) was positive and statistically significant for all but one of the

species. The long-run (approximately weekly) PES was greater than one for 8 out of

11 species, reaching a maximum level of 3.8.

This finding contrasts with the previous results from large-scale and quota-managed

fisheries, in which the short-term supply of fish is price inelastic (see a review by

Jensen). Our results are somewhat unexpected because fishers from Ke-Tzu-Liao op-

erate on a small scale, face narrow reaction windows (short fishing trips) and have no

control over fish prices. Moreover, fishers primarily catch fish by trawling, which is a

relatively indiscriminate fishing method.

The results from our analysis can be understood in light of fishery characteristics

in the studied region. First, a rich mix of species along the southwest coast of Taiwan

enables fisheries to engage in what is termed a “portfolio fishing” strategy (Baldursson

and Magnússon, 1997). A growing literature uses portfolio theory to explain the

fishers’ species targeting decisions as a way of diversifying their income sources and

reducing income risk (Perruso et al., 2005; Cline et al., 2017). This is all the more

so for small-scale fisheries (Finkbeiner, 2015; Anderson et al., 2017). In the case of

Ke-Tzu-Liao, because available fishing time is constrained (2–3 hours per day), the

only short-term option for increasing revenues and securing income on the day is to

preferentially catch more valuable species.

Second, the semi-open access provided by fisheries management in Taiwan gives

fishermen the flexibility to fully exploit the species potential in the area. Kasperski

and Holland (2013) found that increasing access restrictions between fisheries in the
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US have been limiting the fishers’ ability to spread their income risk across multi-

ple fisheries. In a system with many interacting species, single species management

may create lock-ins that constrain fishers from adapting to unintended consequences

(Aguilera et al., 2015). In this sense, fishers in Ke-Tzu-Liao benefit from the slack-

ness of fisheries management in Taiwan, at least in the short-run. In the absence of

TAC, there is a risk of over-exploitation in the long-run. Third, the auction mar-

ket established by the local fisheries association facilitates the transmission of price

signals from consumers to fishers in an efficient manner. Consumer’s preferences for

freshness determines the extreme perishability of the catches. As high-quality catches

are rewarded with higher prices, and excessive catches are punished with lower prices,

fishers are encouraged to be price responsive.

We emphasize that an auction market, such as the one in Ke-Tzu-Liao, is an ex-

ception rather than the rule in Taiwan. In general, coastal fisheries in the region

are primarily quantity-driven, often through supply contracts that specify quantity.

Quantity-driven fisheries without TAC regulation are more susceptible to overex-

ploitation. Previous studies have documented that auction markets enhance the over-

all price levels for fishers (Guillotreau and Jiménez-Toribio, 2011). Auction markets

together with TACs are the two essential elements underpinning the application of a

rights-based co-management system for coastal fisheries in Spain (Molares and Freire,

2003; Macho et al., 2013). Our study suggests that establishing competitive auction

markets could be beneficial in alleviating excessive fishing pressure in the region.

Another implication of our study is that one should be cautious when inferring

the status of stocks from commercial catches. There is considerable interest among

fisheries scientists to use trends in catch data to deduce the status of fish stocks for

conservation and the management of data-poor fisheries (Grainger and Garcia, 1996;

Froese et al., 2012). Our results show how such trends may also be affected by changes

in market conditions (e.g., prices) even in seemingly indiscriminate mixed fisheries;

a failure to account for such effects may lead to distorted stock assessments (Pauly
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et al., 2013; Free et al., 2020).

There are a number of limitations in our study. While having fine temporal reso-

lution, our data are aggregated over space and producers, and contain no information

on the daily numbers of active producers. This latter limitation is probably unimpor-

tant: the crew salaries are paid at a fixed rate, independent of fishing activities, so

vessel owners have an incentive to keep their vessels active. Few of the ‘species’ can

be trusted to represent pure biological species. Moreover, lack of stock information

prevents us from disentangling the biomass effect explicitly.

To our knowledge, this study is the first one to analyze daily fish price data in order

to understand the short-run supply responses of fisheries controlled by licenses only.

Our VECM-SUR model accounts for both serial correlations that are typical for data

with high temporal resolution and species interactions that are characteristic of mixed

fisheries. The results show unexpectedly high responsiveness to the price changes,

helping time-limited fishers to maximize their revenues. Our first attempt also points

to some interesting directions for future research. In particular, how could knowledge

on short-run supply decisions be incorporated into fisheries management? And could

the integration of auction mechanisms into existing license controlled management

systems help to reduce overexploitation in coastal fisheries?
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Figure 1: Time evolution of catch proportions in different fisheries (left vertical axis)
and total catches from offshore (12–200 nautical miles) and near-shore (3–12 nautical
miles) fisheries (right axis) in Taiwan since 1959.
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Figure 3: Correlations of residuals for all species pairs in an SUR model for 12 species.
For each species, the catch model follows the specification in Eq. 8, except that the
expected prices of other species are omitted from the equation. The grey scale is
proportional to the strength of the correlation indicated by the numbers.
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Figure 5: The long-run cross-price elasticity (off-diagonal) and own-price elasticity
(diagonal) of supply based on the VECM-SUR model for 11 species. The species for
which elasticity is calculated is on the left. Filled circles refer to positive values and
empty circles to negative values. Grey circles are statistically not significant. The
area of the circle is proportional to |elasticity|.
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Table list

Table 1: Data Summary Statistics (2001–2015)

Var. Unit Description N Mean SD CV Min Max
Volume kg/day Alfonsino 5088 314.8 238.8 0.76 1.0 2332

Black snoek 5023 90.3 87.9 0.97 1.0 994.0
Golden cuttlefish 5056 125.0 143.7 1.15 1.2 6437
Japanese butterfish 5042 543.5 523.4 0.96 0.2 4412
Largehead hairtail 4987 265.8 309.9 1.17 1.0 4073
Lizardfishes 5019 138.9 117.8 0.85 1.0 960.9
Mixed 5109 3228 2958 0.92 1.3 35829
Neritic squid 5118 1196 2921 2.44 2.9 38225
Red bullseye 4942 195.1 302.5 1.55 0.9 4358
Redtail scad 4956 314.3 304.3 0.97 1.0 5390
Shrimp scad 5014 132.1 150.3 1.14 1.0 1527
Silver croaker 5039 296.3 323.7 1.09 0.9 9580

Price NTD/kg Alfonsino 5088 195.9 62.3 0.32 31.9 471.2
Black snoek 5023 126.7 47.0 0.37 15.7 561.2
Golden cuttlefish 5056 124.4 34.2 0.28 28.3 527.9
Japanese butterfish 5042 225.0 95.4 0.42 23.2 1469
Largehead hairtail 4987 108.8 53.8 0.49 11.6 525.4
Lizardfishes 5019 55.2 18.1 0.33 11.5 274.6
Mixed 5109 135 33 0.25
Neritic squid 5118 143 43 0.31
Red bullseye 4942 396.1 138.3 0.35 14.8 856.9
Redtail scad 4956 53.2 28.8 0.54 11.7 386.5
Shrimp scad 5014 176.9 69.9 0.39 16.0 694.3
Silver croaker 5039 130.9 64.3 0.49 15.4 884.9

Fuel NTD/liter Weekly price 471 17.5 5.78 0.33 8.43 27.3
Wave cm Wave height 3826 86.6 51.4 0.59 21.0 552.0
Note: All prices are in December 2015 New Taiwanese Dollars. N denotes the number
of observations for each species. 100 NTD is about 3 USD.
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Table 2: Species-specific Expected Price Fitted by Non-seasonal ARIMA model

Alfonsino Black snoek Gol. cuttlefish Jap. butterfish Lar. hairtail Lizardfishes
p 3 2 4 2 2 2
d 0 0 0 0 0 0
q 1 2 3 2 2 2
N 3730 3685 3717 3685 3696 3676

Mixed Neritic squid Red bullseye Redtail scad Shrimp scad Sil. croaker
p 2 3 3 4 3 3
d 0 0 0 0 0 0
q 2 1 2 4 3 2
N 3763 3764 3612 3624 3706 3686

Notes: “p”=the order of the auto-regressive model. “d”= the degree of differencing. “q”=
the order of moving average. “N”’is the sample size.

37



Table 3: The supply responses of small-scale fishers based on the VECM-SUR model (partial outputs)

Dep. Var. 1 2 3 4 5 6 7 8 9 10 11
∆Qt Mixed Neritic Japanese Red Alfonsino Silver Largehead Shrimp Golden Redtail Black

squid butterf. bullseye croaker hairtail scad cuttlef. scad snoek
(LR)Pe

t−1 2.12*** 3.07*** 3.71*** 3.85*** 1.17*** 2.37*** 0.63* 3.36*** 0.85** 2.13*** 0.65**
(0.34) (0.28) (0.41) (0.2) (0.13) (0.24) (0.23) (0.31) (0.27) (0.17) (0.21)

ECT -0.18*** -0.17*** -0.14*** -0.2*** -0.41*** -0.23*** -0.19*** -0.38*** -0.32*** -0.39*** -0.36***
(0.02) (0.02) (0.02) (0.01) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

2×HLD 7.1 7.3 9.4 6.1 2.6 5.4 6.7 2.9 3.5 2.8 3.1
(SR)max(∆Pe

t−p) 0.38*** 1.08*** 1.05*** 0.82*** 0.37*** 0.42** 0.13 1.03*** 0.5** 0.89*** 0.43**
(0.1) (0.23) (0.16) (0.12) (0.11) (0.13) (0.1) (0.14) (0.18) (0.12) (0.15)

lag p∗ 1 4 1 1 1 2 3 1 2 1 3
max(∆Qt−k) -0.48*** -0.55*** -0.45*** -0.3*** -0.18*** -0.33*** -0.41*** -0.28*** -0.37*** -0.2*** -0.3***

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.03) (0.02) (0.02) (0.02)
lag k∗ 1 1 1 1 1 1 1 1 1 1 1
Wave -0.29*** -0.11* 0 -0.41*** -0.36*** -0.46*** -0.48*** -0.6*** -0.28*** -0.47*** -0.49***

(0.03) (0.05) (0.06) (0.06) (0.04) (0.07) (0.05) (0.06) (0.05) (0.07) (0.06)
Tue 0.09** 0.17** 0.08 -0.1 0.14** 0.33*** 0.12* 0.07 -0.04 -0.02 0.02

(0.03) (0.05) (0.06) (0.06) (0.04) (0.07) (0.05) (0.06) (0.05) (0.07) (0.06)
Wed 0.13*** 0 -0.03 -0.05 0.06 0.15* 0.06 0.15* 0.08 -0.05 -0.04

(0.03) (0.05) (0.06) (0.05) (0.04) (0.07) (0.05) (0.06) (0.05) (0.07) (0.06)
Thu 0.06 -0.07 -0.03 -0.1 0.05 0.05 0 0.03 0.01 -0.03 -0.12*

(0.03) (0.05) (0.06) (0.05) (0.04) (0.07) (0.05) (0.06) (0.05) (0.07) (0.06)
Fri 0.08* 0.04 -0.05 -0.12* 0.08 0.21** 0.06 0.05 0.09* -0.06 -0.06

(0.03) (0.05) (0.06) (0.05) (0.04) (0.07) (0.05) (0.06) (0.05) (0.07) (0.06)
Sat 0.07* 0.05 -0.05 -0.13* 0.09* 0.08 0.05 0.02 0.14** -0.03 -0.03

(0.03) (0.05) (0.06) (0.06) (0.04) (0.07) (0.05) (0.06) (0.05) (0.07) (0.06)
Sun -0.09** -0.24*** -0.23*** -0.06 -0.02 0.04 0.06 -0.01 -0.05 -0.03 -0.16**

(0.03) (0.05) (0.06) (0.06) (0.04) (0.07) (0.05) (0.06) (0.05) (0.07) (0.06)
Notes: The model is estimated based on the specification in Eq. 8. “***”,“**”, and “*” represent p values significant at the 0.1%, 1%, and 5% levels, respectively.
Standard errors are in parentheses. “LR” and “SR” are long-run and short-run own-PES. “HLD” refers to the half-life-disequibrium, the number of days it takes
for an existing disequilibrium to be reduced by half; “lag p∗” and “lag k∗” indicate respectively the corresponding lag position with the maximum coefficient for
∆Qt−p and ∆Pe

t−k. Fig. 4 shows the coefficients for all lags. 383838
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