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A note on Severi varieties of nodal curves on
Enriques surfaces

Ciro Ciliberto, Thomas Dedieu, Concettina Galati and Andreas Leopold Knutsen

Abstract Let |L | be a linear system on a smooth complex Enriques surface S whose

general member is a smooth and irreducible curve of genus p, with L2 > 0, and let

V|L |,δ(S) be the Severi variety of irreducible δ-nodal curves in |L |. We denote by

π : X → S the universal covering of S. In this note we compute the dimensions of

the irreducible components V of V|L |,δ(S). In particular we prove that, if C is the

curve corresponding to a general element [C] of V , then the codimension of V in |L |

is δ if π−1(C) is irreducible in X and it is δ − 1 if π−1(C) consists of two irreducible

components.

1 Introduction

Let S be a smooth complex projective surface and L a line bundle on S such that the

complete linear system |L | contains smooth, irreducible curves (such a line bundle,

or linear system, is often called a Bertini system). Let

p := pa(L) =
1

2
L · (L + KS) + 1,
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be the arithmetic genus of any curve in |L |.

For any integer 0 ≤ δ ≤ p, consider the locally closed, functorially defined

subscheme of |L |

V|L |,δ(S) or simply V|L |,δ

parameterizing irreducible curves in |L | having only δ nodes as singularities; this

is called the Severi variety of δ-nodal curves in |L |. We will let g := p − δ, the

geometric genus of the curves in V|L |,δ .

It is well-known that, if V|L |,δ is non-empty, then all of its irreducible components

V have dimension dim(V) ≥ dim |L | − δ. More precisely, the Zariski tangent space

to V|L |,δ at the point corresponding to C is

T[C]V|L |,δ ≃ H0(L ⊗ JN )/< C >, (1)

where JN = JN |S is the ideal sheaf of subscheme N of S consisting of the δ nodes

of C (see, e.g., [4, §1]). Thus, V|L |,δ is smooth of dimension dim |L | − δ at [C] if and

only if the set of nodes N imposes independent conditions on |L |. In this case, V|L |,δ

is said to be regular at [C]. An irreducible component V of V|L |,δ will be said to be

regular if the condition of regularity is satisfied at any of its points, equivalently, if

it is smooth of dimension dim |L | − δ.

The existence and regularity problems of V|L |,δ(S) have been studied in many

cases and are the most basic problems one may ask on Severi varieties. We only

mention some of known results. In the case S ≃ P2 , Severi proved the existence

and regularity of V|L |,δ(S) in [14]. The description of the tangent space is due to

Severi and later to Zariski [15]. The existence and regularity of V|L |,δ(S)when S is of

general type has been studied in [4] and [3]. Further regularity results are provided

in [10]. More recently Severi varieties on K3 surfaces have received a lot of attention

for many reasons. In this case Severi varieties are known to be regular (cf. [13]) and

are nonempty on general K3 surfaces by Mumford and Chen (cf. [12], [2]).

As far as we know, Severi varieties on Enriques surfaces have not been studied

yet, apart from [8, Thm. 4.12] which limits the singularities of a general member

of the Severi variety V
g

|L |
of irreducible genus g curves in |L |, and gives a sufficient

condition for the density of the latter in the Severi variety V|L |,p−g of (p − g)-nodal

curves. In particular, the existence problem is mainly open and we intend to treat it

in a forthcoming article. The result of this paper is Proposition 1, which answers the

regularity question for Severi varieties of nodal curves on Enriques surfaces.

2 Regularity of Severi varieties on Enriques surfaces

Let S be a smooth Enriques surface, i.e. a smooth complex surface with nontrivial

canonical bundle ωS ≇ OS , such that ω⊗2
S

≃ S and H1(OS) = 0. We denote linear

(resp. numerical) equivalence by ∼ (resp. ≡).

Let L be a line bundle on S such that L2 > 0. It is well-known that |L | contains

smooth, irreducible curves if and only if it contains irreducible curves (see [5, Thm.
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4.1 and Prop. 8.2]); in other words, on Enriques surfaces the Bertini linear systems

are the linear systems that contain irreducible curves. Moreover, by [6, Prop. 2.4],

this is equivalent to L being nef and not of the form L ∼ P + R, with |P | an elliptic

pencil and R a smooth rational curve such that P · R = 2 (in which case p = 2). If

|L | is a Bertini linear system, the adjunction formula, the Riemann–Roch theorem,

and Mumford vanishing yield that

L2
= 2(p − 1) and dim |L | = p − 1

(see, e.g., [5, 7]).

Let KS be the canonical divisor. It defines an étale double cover

π : X −→ S (2)

where X is a smooth, projective K3 surface (that is, ωX ≃ OX and H1(OX ) = 0),

endowed with a fixed-point-free involution ι, which is the universal covering of S.

Conversely, the quotient of any K3 surface by a fixed-point-free involution is an

Enriques surface.

Let C ⊂ S be a reduced and irreducible curve of genus g ≥ 2. We will henceforth

denote by νC : C̃ → C the normalization of C and define ηC := OC (KS) = OC (−KS),

a nontrivial 2-torsion element in Pic0 C, and η
C̃

:= ν∗
C
ηC . The fact that ηC is

nontrivial follows from the cohomology of the restriction sequence

0 // OS(KS − C) // OS(KS) // ηC // 0,

which yields h0(ηC ) = h1(KS − C) = h1(C) = 0, the latter vanishing as C is big and

nef. One has the fiber product

(π−1C) ×C C̃ //

��

C̃

νC

��

(π−1C)
π|

π
−1 (C)

// C,

where π |
π
−1 (C)

and the upper horizontal map are the double coverings induced re-

spectively by ηC and η
C̃

. By standard results on coverings of complex manifolds (cf.

[1, Sect. I.17]), two cases may happen:

• η
C̃
≇ O

C̃
and π−1C is irreducible, as in Fig. 1;

• η
C̃

≃ O
C̃

and π−1C consists of two irreducible components conjugated by the

involution ι. These two components are not isomorphic to C, as ηC is nontrivial,

as in Fig. 2 (each component of C̃ is a partial normalization of C).

As mentioned in the Introduction, it is well-known that any irreducible component

of a Severi variety on a K3 surface is regular when nonempty (see, e.g., [4, Ex. 1.3];

see also [8, §4.2]). The corresponding result on Enriques surfaces is the following.
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Fig. 1 η
C̃
= ν∗

C
(ηC ) , 0 Fig. 2 η

C̃
= ν∗

C
(ηC ) = 0

First note that, in the above notation, the dimension of the Severi variety of genus

g = pg(C) curves in |L | = |C | at the point [C] satisfies the inequality

dim[C]

(
V
g

|L |

)
≥ h0(ωC̃ ⊗ ηC̃ ) =

{
g − 1 if ηC̃ ; OC̃

g if ηC̃ ≃ OC̃

(3)

(see [8, Proofs of Thm. 4.12 and Cor. 2.7]). Our result implies that the latter is in

fact an equality when C is nodal, and gives a concrete geometric description of the

situation in both cases.

Proposition 1. Let L be a Bertini linear system, with L2 > 0, on a smooth Enriques

surface S. Then the Severi variety V|L |,δ(S) is smooth and every irreducible compo-

nent V ⊆ V|L |,δ(S) has either dimension g−1 or g; in the former case the component

is regular. Furthermore, with the notation introduced above,

1. for any curve C in a (g − 1)-dimensional irreducible component V , π−1C is

irreducible (whence an element in V|π∗L |,2δ(X));

2. for any g-dimensional component V , there is a line bundle L′ on X with (L′)2 =

2(p − d) − 2 and L′ · ι∗L′
= 2d for some integer d satisfying

p − 1

2
≤ d ≤ δ,

such that π∗L ≃ L′ ⊗ ι∗L′, and the curves parametrized by V ⊆ V|L |,δ(S) are the

birational images by π of the curves in V|L′ |,δ−d(X) intersecting their conjugates

by ι transversely (in 2d points). In other words, for any [C] ∈ V , we have

π−1C = Y + ι(Y), with [Y ] ∈ V|L′ |,δ−d(X) and [ι(Y)] ∈ V|ι∗L′ |,δ−d(X) intersecting

transversely.

Furthermore, if L′ ≃ ι∗L′, which is the case if S is general in moduli, then d =
p−1

2

and L ∼ 2M, for some M ∈ Pic S such that M2
= d.
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We will henceforth refer to components of dimension g − 1 as regular and the

ones of dimension g as nonregular. Note however that from a parametric perspective

the Severi variety has the expected dimension and is smooth in both cases, as the

fact that (3) is an equality indicates; we do not dwell on this here, and refer to [8] for

a discussion of the differences between the parametric and Cartesian points of view

(the latter is the one we adopted in this text).

Note that Proposition 1 does not assert that the Severi variety V|L |,δ is necessarily

non-empty: in such a situation, V|L |,δ does not have any irreducible component and

the statement is empty.

Proof. Pick any curve C in an irreducible component V of V|L |,δ(S) . Let f : S̃ → S

be the blow-up of S at N , the scheme of the δ nodes of C, denote by e the (total)

exceptional divisor and by C̃ the strict transform of C. Thus f
|C̃
= νC and we have

K
S̃
∼ f ∗KS + e and C̃ ∼ f ∗C − 2e.

From the restriction sequence

0 // O
S̃
(e) // O

S̃
(C̃ + e) // ω

C̃
(η

C̃
) // 0

we find

dimT[C]V|L |,δ(S) = dim |L ⊗ JN | = h0(L ⊗ JN ) − 1 = h0( f ∗L − e) − 1

= h0(O
S̃
(C̃ + e)) − 1 = h0(ω

C̃
(η

C̃
))

=

{
g − 1, if η

C̃
≇ O

C̃
,

g, if η
C̃
≃ O

C̃
.

(4)

In the upper case, by (1), we have that V|L |,δ is smooth at [C] of dimension

g − 1 = p − δ − 1 = dim |L ⊗ JN |.

Assume next that we are in the lower case. Then, by the discussion prior to the

proposition, we have π−1C = Y + ι(Y) for an irreducible curve Y on X , such that π

maps both Y and ι(Y) birationally, but not isomorphically, to C. In particular, Y and

ι(Y) have geometric genus pg(Y) = pg(ι(Y)) = pg(C) = p − δ = g. Set L′ := OX (Y)

and 2d := Y · ι(Y). Note that d is an integer because, if y = ι(x) ∈ Y ∩ ι(Y), then

ι(y) = x ∈ Y ∩ ι(Y). Since Y ≃ ι(Y) and π is étale, both Y and ι(Y) are nodal with

δ−d nodes and they intersect transversely at 2d points, which are pairwise conjugate

by ι, and therefore map to d nodes of C. Hence d ≤ δ. We have

pa(Y) = pa(ι(Y)) = g + δ − d = p − δ + δ − d = p − d. (5)

whence

(L′)2 = 2(p − 1 − d).

By the Hodge index theorem, we have
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4(p − 1 − d)2 =
(
(L′)2

)2

= (L′)2(ι∗L′)2 ≤ (L′ · ι∗L′)
2
= 4d2,

whence p − 1 ≤ 2d.

By the regularity of Severi varieties on K3 surfaces, any irreducible component of

V|L′ |,δ−d(X) has dimension dim |L′ |−(δ−d) = pg(Y) = g. Hence, V is g-dimensional;

more precisely, the curves parameterized by V are the (birational) images by π of the

curves in an irreducible component of V|L′ |,δ−d(X) intersecting their conjugates by ι

transversely (in 2d points). By (4), it also follows that dim V = dimT[C]V|L |,δ(S), so

that [C] is a smooth point of V|L |,δ(S).

To prove the final assertion of the proposition, observe that, by the regularity

of Severi varieties on K3 surfaces, we may deform Y and ι(Y) on X to irreducible

curves Y ′ and ι(Y ′) with any number of nodes ≤ δ − d and intersecting transversally

in 2d points; in particular, we may deform Y and ι(Y) to smooth curves Y ′ and

ι(Y ′). Thus, C′ := π(Y ′) is a member of V|L |,d , whence of geometric genus p − d.

Since dim |Y ′ | = pa(Y
′) = pg(C

′) = pa(C
′) − d = p − d, the component of V|L |,d

containing [C′] has dimension dim |L | −d+1 = p−d. We thus have dim |L⊗JN ′ | =

dim |L | − d + 1, where N ′ is the set of d nodes of C′, hence N ′ does not impose

independent conditions on |L |.

Assume now that L′ ≃ ι∗L′, which — as is well-known (see, e.g., [9, §11]) — is

the case occurring for generic S, as then Pic X is precisely the invariant part under ι

of H2(X, Z). Then 2d = L′ · ι∗L′
= (L′)2 = 2(p − 1 − d), so that p − 1 = 2d. Since

L2
= 2(p − 1) = 4d and N ′ does not impose independent conditions on |L |, by [11,

Prop. 3.7] there is an effective divisor D ⊂ S containing N ′ satisfying L − 2D ≥ 0

and

L · D − d ≤ D2
(i)
≤

1

2
L · D

(ii)
≤ d, (6)

with equality in (i) or (ii) only if L ≡ 2D; moreover, since L−2D ≥ 0, the numerical

equivalence L ≡ 2D implies the linear equivalence L ∼ 2D. Now since N ′ ⊂ D, we

must have L · D = C′ · D ≥ 2d, hence the inequalities in (6) are all equalities, and

thus D2
= d and L ∼ 2D.

The following corollary is a straightforward consequence of Prop. 1 and the fact

that the nodes on curves in a regular component in a Severi variety (on any surface

and in particular on a K3 surface) can be independently smoothened.

Corollary 1. If a Severi variety V|L |,δ on an Enriques surface has a regular (resp.,

nonregular) component, then for any 0 ≤ δ′ ≤ δ (resp., d ≤ δ′ ≤ δ, with d as in

Prop. 1), also V|L |,δ′ contains a regular (resp., nonregular) component.
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