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Summary
In this article, we consider a nonlocal (in time) two-phase flow model. The non-
locality is introduced through the wettability alteration induced dynamic capil-
lary pressure function. We present a monotone fixed-point iterative linearization
scheme for the resulting nonstandard model. The scheme treats the dynamic
capillary pressure functions semiimplicitly and introduces an L-scheme type sta-
bilization term in the pressure as well as the transport equations. We prove the
convergence of the proposed scheme theoretically under physically acceptable
assumptions, and verify the theoretical analysis with numerical simulations.
The scheme is implemented and tested for a variety of reservoir heterogeneities
in addition to the dynamic change of the capillary pressure function. The pro-
posed scheme satisfies the predefined stopping criterion within a few number of
iterations. We also compared the performance of the proposed scheme against
the iterative implicit pressure explicit saturation scheme.
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1 INTRODUCTION

Unsaturated groundwater flow, enhanced oil recovery, and subsurface carbon dioxide (CO2) storage1-5 are typical appli-
cations of multiphase porous media flow with high societal relevance. Numerical simulations including mathematical
modeling and numerical methods have been applied to understand such flow processes. The governing mathematical
models are highly nonlinear and possibly degenerate systems of partial differential equations. Usually, the nonlinearities
are introduced through constitutive models such as relative permeabilities—and capillary pressure—saturation relations.
We describe these relations by either van Genuchten6 or Brooks and Corey3,7 parametrizations. These parameterizations
are only suited for rock surfaces that experience a static and uniform wetting property.

In this article, we focus on the two-phase flow that considers dynamic pore-scale wettability alteration (WA) pro-
cesses. WA mechanisms have been exploited in the petroleum industry, where optimal wetting conditions in the reservoir
are obtained through a variety of means that include chemical treatment, foams, surfactants, and low-salinity water
flooding.8-13 The WA processes are assumed to be instantaneous in the above studies. Here, rather, we considered expo-
sure time-dependent WA mechanisms. In our previous work,14 we upscaled time-dependent WA processes to Darcy-scale
phenomenon, and we have developed an interpolation-based dynamic capillary pressure model. The proposed model is
(macroscale) fluid history and time-dependent (see Section 2.2 and Reference 14 for the details) in addition to the current
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wetting phase saturation. This implies that a nonlocal capillary diffusion term in time is introduced in a two-phase flow
model. These all impose an additional complexity onto the standard two-phase porous media flow model.

Due to the nonlinearity and dynamic heterogeneity of the designed model, it is impossible to derive analytic solutions.
As a consequence, a numerical approach is the only option to predict such flow dynamics. However, developing efficient
algorithms for finding numerical solutions is also a challenge in itself even for standard models.15 Besides the nonlinearity
and heterogeneity of the designed model, long-term temporal dynamics adds an extra difficulty for proposing a reliable
numerical model. Implicit discretization in time has been employed to handle long-term subsurface evolution as it allows
large time step sizes. Newton-type methods are usually applied to solve the resulting nonlinear system of equations. These
approaches are second-order convergent. However, this order of convergence comes at a price of a costly computation of
the Jacobian of a system at each time step.16-19 In addition, these methods are only locally convergent.19,20 However, the
Newton method can be improved by line search strategies as, for example, Armijo’s rule.

The other alternative approach is the splitting and then coupling (splitting-coupling) scheme. It splits the entire sys-
tem into subsystems. The decomposed subproblems are then solved sequentially and are coupled by data exchanges at
each time step. The implicit pressure explicit saturation (IMPES) scheme is a widely used splitting-coupling approach
to model two-phase flow and component transport processes.5,17-22 IMPES solves the pressure equation implicitly and
updates the saturation explicitly. This approach eliminates the nonlinear terms in the pressure and saturation equations
by evaluating them at saturation and fluid properties up-winded from the previous time step. As a consequence, the
scheme is conditionally stable, and hence it requires a sufficiently small time step size to approximate the solution.

Several techniques can be implemented to improve the IMPES approach. A very straightforward approach imposes a
large time step for the pressure and then subdivides the time step size for the transport equation.17,22 This approach relies
on the assumption that the reservoir pressure changes slowly in time compared with saturation evolution. The other
approach solves the transport equation implicitly using a Newton method while the pressure is treated in the same way as
the classical IMPES.23,24 In Kou and Sun,20 the capillary pressure function in the pressure equation is approximated by a
linear function. This helps to couple the pressure and saturation equations at the current time step. However, the scheme
involves the calculation of matrix inverse and multiple numbers of matrix multiplications, which greatly increases the
computational cost of the scheme. Furthermore, the transport equation is still solved explicitly in time, and the scheme
is reduced to the classical IMPES when the capillary pressure is neglected.

Iterative coupling techniques are also applied to improve the classical IMPES scheme. For instance, in Reference
21 an iteration between the pressure and saturation equation is introduced. This iterative scheme is based on their pre-
vious work.20 Radu et al,19 have proposed a fixed-point iterative scheme for two-phase flow model (in global pressure
formulation).

Recently, Kvashchuk and Radu,18 have proposed an iterative linearization scheme for two-phase flow (in average
pressure formulation) following IMPES. The scheme approximates the capillary pressure function by applying a chain
rule and evaluating the nonlinear terms at the previous iteration. This approximates the transport equation semiimplicitly.
However, the pressure equation was evaluated at the previous iteration saturation profile. This implies that the scheme
lacks a coupling term at the current time step. As a consequence, the scheme might be challenged by dynamic capillary
pressure forces that change the saturation distributions in a very short time.

In this article, we propose and analyse an iterative linearization scheme for the designed nonstandard model above
based on an iterative IMPES approach, typically we followed the work of Kvashchuk and Radu.18 We discretize the
dynamic capillary pressure functions semiimplicitly in time, where the gradient of the dynamic capillary pressure
function (in the pressure and saturation equations) is reformulated by applying the chain rule (see Equation (14) in
Section 3.2). We then introduce an iteration step and evaluate the nonlinear terms at the previous iteration. We further
introduce an L-scheme type19,25 stabilization term in the pressure and transport equations. We prove the convergence and
robustness of the proposed scheme under natural assumptions. The convergence proof shows that the linearization tech-
nique and the introduced stabilization terms allowed the scheme to take a large time step size. By contrast to the classical
Newton method, the proposed scheme can be seen as an inexact Newton method which has the advantage of not comput-
ing the Jacobian of the system. However, this article is not intended to compare the proposed scheme with the existing lin-
earization schemes including the Newton method. Our colleagues25-27 have done comparison studies on the performance
of linearization techniques, and concluded that the fixed-point methods are slower but robust than the Newton method.

This article is organized as follows. Section 2 describes the mathematical model of nonstandard immiscible incom-
pressible two-phase flow in porous media. In Section 3, we introduce a linearization scheme for the resulting model,
and prove the convergence of the proposed scheme. We further discuss the choice of a relaxation factor in this section.
Numerical simulations in 2D and 3D models are presented in Section 4. This section shows the performance of the
proposed scheme and compares it with iterative IMPES. The article ends with a conclusive remark in Section 5.
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2 NONLOCAL TWO-PHASE FLOW MODEL

Let Ω be a bounded permeable domain in Rd, d= 1, 2, or 3, having a Lipschitz continuous boundary 𝜕Ω and let t ∈ [0,T] be
the life time of the processes. The two-phase flow in such domain is governed by Darcy’s law and mass balance equations
for each phase.5 For each phase 𝛼 ∈ {w, o}, where w, o stand for wetting and nonwetting fluids, respectively, the Darcy
flux u𝛼 ∶ Ω × [0,T] → Rd is given by

u𝛼 = −𝜆𝛼
(
∇P𝛼 − 𝜌𝛼g∇z

)
, (1)

where 𝜆𝛼 ∶ Ω × [0,T] → R is phase 𝛼 mobility, 𝜌𝛼 ∶ Ω × [0,T] → R is phase density that controls the buoyancy force, and
g is the gravitational vector. The phase mobility is defined as 𝜆𝛼 = Kkr𝛼

𝜇𝛼

, where K ∶ Ω → Rd×d is the absolute permeability
of the rock, kr𝛼 is phase 𝛼 relative permeability, and 𝜇𝛼 is phase 𝛼 viscosity.

For each phase 𝛼 ∈ {w, o}, the balance of mass for the incompressible immiscible fluids yield the transport equations,

𝜙𝜌𝛼𝜕tS𝛼 + 𝜌𝛼∇ ⋅ u𝛼 = f𝛼, in Ω, (2)

where 𝜙 is the porosity of the medium Ω, and f𝛼 is source or sink term in each phase. From model (1) and (2), we obtained
two equations with four unknown variables. To close the system the following constraints must also be satisfied:

0 ≤ Sw, So ≤ 1, Sw + So = 1, and Po − Pw = Pc(Sw), (3)

where Pc is the capillary pressure that relates the phase saturation to the phase pressures difference. Equations (1) to (3)
with appropriate initial and boundary conditions are used to describe two-phase flow dynamics in a porous medium.

2.1 Model reformulation

Since we are dealing with incompressible fluids and matrix, we can sum up the mass balance models in Equation (2) to
get the pressure equation,

−∇ ⋅ (𝜆tot∇Po − 𝜆w∇Pc − (𝜆w𝜌w + 𝜆n𝜌w)g∇z) = fp + fs in Ω, (4)

where 𝜆tot = 𝜆w + 𝜆o is the total mobility. In Equation (4), we have one equation and two unknowns, namely, Po and
Sw. As a consequence, the transport equation for the wetting or nonwetting phase saturation should be coupled with
Equation (4) in order to close the system. Therefore, we get a system of two equations with two unknowns,

−∇ ⋅ (𝜆tot∇Po − 𝜆w∇Pc − (𝜆w𝜌w + 𝜆n𝜌n)g∇z) = ft in Ω, (5a)

𝜙𝜕tSw − ∇ ⋅ 𝜆w (∇Po − ∇Pc − 𝜌wg∇z) = fs in Ω, (5b)

where, f t = f w + f n is the total source. In order to solve the two Equations (5a) and (5b), one needs to impose appropriate
initial and boundary conditions, such as Neumann and Dirichlet conditions. Thus, we assume that the boundary of the
system is divided into disjoint sets such that 𝜕Ω = ΓD ∪ ΓN . We denote by 𝜈 the outward unit vector normal to 𝜕Ω, and set

Po(⋅, 0) = P0
o(⋅), Sw(⋅, 0) = S0

w(⋅), in Ω, (6a)

Po = Po,D, Sw = Sw,D, on ΓD × (0,T], (6b)

u𝛼 = J𝛼, on ΓN × (0,T], (6c)

where J𝛼 ∈ Rd is phase inflow rate. In order to make the model uniquely determined, it is required that Γd ≠ ∅.
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2.2 Relative permeability and dynamic capillary pressure functions

Commonly, the Brooks and Corey7 and van Genuchten6 models are used to represent the capillary pressure and relative
permeabilities for equilibrium system. For nonequilibrium systems, explicit time-dependency of Pc-Sw curves have been
developed (eg, see References 28,29) to capture changes in capillary pressure induced by dynamic flow conditions. These
models are developed under a static wettability condition.

In this article, we consider an extended capillary pressure model that captures the dynamic change of rock wettability
at pore-scale. Kassa et al14 have introduced the dynamic term as an interpolation between the end wetting state curves.
This can be described mathematically as follows,

Pc = (1 − 𝜔(⋅))Pww
c + 𝜔(⋅)Pow

c , (7)

where, Pww
c and Pow

c are end wetting (respectively, the water-wet and oil-wet) capillary pressure functions. Here, the
water-wet and oil-wet capillary pressure functions are represented, respectively, with large and small (possibly negative)
entry pressures. The dynamic coefficient 𝜔(⋅) is designed to upscale the dynamics of (pore-scale) time-dependent WA
mechanism. In Reference 14 a fluid-fluid contact angle (CA) change model (that changes the wettability from an arbi-
trary initial wetting state to the final wetting state) was introduced at the pore-level. In Kassa et al,14 two approaches were
considered, namely, uniform and nonuniform WA. The first assumes all pores in the REV has been altered identically
through exposure time to the WA agent, whereas the nonuniform WA case considers a CA change in a pore only if that
particular pore is exposed to the WA agent. These CA change models were coupled with a bundle-of-tubes model to sim-
ulate WA induced capillary pressure curves. The obtained curves and the interpolation model were combined to propose
the dynamic coefficient 𝜔. According to the results in Reference 14, 𝜔 can be represented as:

𝜔(Sw, t) =
⎧⎪⎨⎪⎩

𝛽1𝜒

𝛽1𝜒+1
, for uniform WA,

𝛽2Sw𝜒

𝛽2Sw𝜒+1
, for nonuniform WA,

(8)

where 𝛽1 and 𝛽2 are fitting parameters that have a clear relation with the pore-scale CA change model parameter (see the
details in Reference 14).

The variable 𝜒 is defined as

𝜒 ∶= 1
T ∫

t

0
(1 − Sw)d𝜏, (9)

where T is a predetermined scaling factor, and we recommend to choose T such that 𝜒 ∈ [0, 1], that is, T should be
above or equivalent to the life time of the exposure period. The variable 𝜒 is used to measure the averaged exposure time
of the REV to the WA agent, and it is an increasing function of exposure time. Thus, the models (7) and (8) describe
time-dependent WA induced dynamic capillary pressure model. The change of the capillary pressure in time continues
even for constant water saturation. However, 𝜒 keeps constant for pores that are fully occupied with water, that is, Sw = 1.
In this case, the capillary pressure is only dependent on the current water saturation path. This may lead to a discontinuity
of the capillary pressure function at the interface of grid blocks. Thus, the continuity of capillary pressure results in a
saturation discontinuity.

For end wetting (water-wet and oil-wet) conditions, we considered two consistent sets of capillary pressure functions.
Qualitatively, these curves represent either water-wet (ww) or oil-wet (ow) conditions. We adopted the van Genuchten
constitutive model for these conditions and can be read as,

Pww
c = Pw

e (S
− 1

mw
w − 1)

1
nw , and Pow

c = Po
e (S

− 1
mo

w − 1)
1

no , (10)

where P𝛼
e is phase 𝛼 wetting condition entry pressure, m𝛼 is pore volume distribution of the porous domain for the 𝛼’s wet-

ting condition and can be related to n𝛼 as m𝛼 = 1∕n𝛼 . In this study, only the standard van Genuchten relative permeability
functions are considered to describe the relative movement of fluids,
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kww
r𝛼 =

⎧⎪⎨⎪⎩
√

1 − Sw

(
1 − S

1
mw
w

)2mw
, 𝛼 = o,√

Sw

(
1 −

(
1 − S

1
mw
w

)mw
)2

, 𝛼 = w.

(11)

Coupling the relations kww
r𝛼 -Sw and Pc-Sw-𝜒 into the flow model (5a) and (5b) will give nonstandard dynamic two-phase

flow model in a porous medium. The goal of this study is to propose a stable and flexible scheme that handles such
dynamics efficiently for simulations that consider long-term time evolution.

3 DISCRETIZATION, LINEARIZATION, AND ITERATIVE COUPLING
TECHNIQUE

Let the total simulation time interval [0,T] be divided into N time steps in such a way that 0= t0 < t1 < … < tN =T, and
define the time step 𝛿t = T∕N, as well as tn = n𝛿t, n ∈ {1, 2, … ,N}.

The backward Euler method is applied to discretize the resulting nonlocal two-phase flow model in time and the
semidiscretized model can be read as

−∇ ⋅
(
𝜆tot(Sn+1

w )∇Pn+1
o − 𝜆w(Sn+1

w )∇Pc(𝜒n+1, Sn+1
w )

)
= f n

t , (12a)

𝜙
Sn+1

w − Sn
w

𝛿t
− ∇ ⋅

(
𝜆w(Sn+1

w )(∇Pn+1
o − ∇Pc(𝜒n+1, sn+1

w ))
)
= f n

s . (12b)

The superscripts (n+1) and n represent the current and previous time steps, respectively. Above, we omitted the gravity
term and the analysis will continue in this form for the sake of clarity and brevity of the presentation.

The above system is fully coupled and challenging to solve directly because of its nonlinearity. Due to the nonlinearity,
iterative linearization and sequential coupling methods such as iterative IMPES are needed to solve such systems.

3.1 Iterative IMPES

The iterative IMPES linearizes the given two-phase flow problem by evaluating the nonlinear terms from the previous
iteration step.21 Thus, the nonlinear model (12a) and (12b) can be reduced to

−∇ ⋅
(
𝜆tot(Sn+1,i

w )∇Pn+1,i+1
o − 𝜆w(Sn+1

w )∇Pc(𝜒n+1,i, Sn+1,i
w )

)
= f n

t , (13a)

𝜙
Sn+1,i+1

w − Sn
w

𝛿t
− ∇ ⋅

(
𝜆w(Sn+1,i

w )(∇Pn+1,i+1
o − ∇Pc(𝜒n+1,i, Sn+1,i

w ))
)
= f n

s . (13b)

The iterative IMPES solver starts with Sn+1,i
w = Sn

w and thus, the system above is linear and decoupled. Usually the pressure
equation (13a) is solved for Pn+1,i+1

o first. The computed pressure and the previous iteration saturation profile are used
to update the current iteration saturation profile explicitly from Equation (13b). The iteration will continue until the
convergence criterion has been satisfied.

3.2 Semiimplicit time discretization

The iterative IMPES formulation above splits the pressure and saturation equations in each iteration step. Hence, the
approach has missed the inherent coupled nature of the original problem (12a) and (12b). This may cause instability on
the convergence of the method in particular for long-term reservoir processes.

In this article, we propose a scheme that couples the pressure, and saturation equations at the (n+1)th time step in
addition to the current iteration step. The scheme treats the dynamic capillary pressure function (in the pressure and satu-
ration equations) semiimplicitly in time. We then introduce a monotone fixed-point iteration.18,19,21,25,30 The development
of the scheme is discussed below.



6 KASSA et al.

The scheme starts with approximating the capillary pressure function at the current time step (in the pressure (12a)
and saturation (12b) equations) by applying chain rule and semibackward Euler discretization in time. The resulting
approximation is read as

∇Pn+1
c ≈

𝜕Pn
c

𝜕Sw
∇Sn+1

w +
𝜕Pn

c

𝜕𝜒
∇𝜒n+1. (14)

The obtained approximate capillary pressure is substituted back to the two-phase flow model to give the following
linear system (we call this linearization technique pseudo-monolithic scheme),

−∇ ⋅
(
𝜆n

tot∇Pn+1
o − 𝜆n

w

(
𝜕Pn

c

𝜕Sw
∇Sn+1

w +
𝜕Pn

c

𝜕𝜒
∇𝜒n+1

))
= f n

t , (15a)

𝜙
Sn+1

w − Sn
w

𝛿t
− ∇ ⋅

(
𝜆n

w

(
∇Pn+1

o −
(
𝜕Pn

c

𝜕Sw
∇Sn+1

w +
𝜕Pn

c

𝜕𝜒
∇𝜒n+1

)))
= f n

s . (15b)

The above approach (15a) and (15b) couples the pressure and saturation equations at the current time step weakly. But,
importantly, the saturation and pressure state variables communicate each other at the same degree of decision making
level. Recall that the variable 𝜒 is also a function of saturation, and thus, the number of equations and unknowns are
compatible.

Then stability and accuracy of the pseudo-monolithic scheme (15a) and (15b) is improved further by introducing
outer iteration steps (ie, (i+ 1) and i), and evaluating the nonlinear terms at the current time step (n+1 instead of
n) but at the previous iteration i. We controlled the convergence of the proposed fixed-point iteration by adding an
L-scheme type19,21,25 stabilization term. We named this linearization technique as iterative pseudo-monolithic scheme, and
read as

− ∇ ⋅

(
𝜆

n+1,i
tot ∇Pn+1,i+1

o − 𝜆
n+1,i
w

(
𝜕Pn+1,i

c

𝜕Sw
∇S̃n+1,i+1

w +
𝜕Pn+1,i

c

𝜕𝜒
∇𝜒n+1,i+1

))
= f n

t , (16a)

𝜙
S̃n+1,i+1

w − Sn
w

𝛿t
− ∇ ⋅

(
𝜆

n+1,i
w

(
∇Pn+1,i

o −

(
𝜕Pn+1,i

c

𝜕Sw
∇S̃n+1,i+1

w +
𝜕Pn+1,i

c

𝜕𝜒
∇𝜒n+1,i+1

)))
= f n

s , (16b)

Sn+1,i+1
w = (1 − Li+1)Sn+1,i

w + Li+1S̃n+1,i+1
w , (16c)

𝜒n+1,i+1 = (1 − Li+1)𝜒n+1,i + Li+1𝜒n+1,i+1, (16d)

where Li+ 1 ∈ (0,1] is a stabilization constant that has an important role on the convergence of the proposed scheme. The
choice of Li+ 1 in each iteration will be discussed later in this article. Equations (16c) and (16d) can be substituted into
Equations (16a) and (16b) directly during the solution processes. Here, we note that Sn+1,i+1

w and 𝜒n+1,i+1 are used as a
previous iteration values for the next iteration and we set Sn+1,0

w = Sn+1
w for the first iteration step.

Remark 1. The pseudo-monolithic and the iterative pseudo-monolithic schemes reduced to IMPES and iterative
L-scheme, respectively, if the capillary pressure is neglected.

Below, we demonstrate the convergence of the iterative pseudo-monolithic scheme, and in Section 4, we compare its
performance against the pseudo-monolithic scheme (15a) and (15b) and the iterative IMPES.

3.2.1 Convergence analysis of the iterative pseudo-monolithic scheme

We denote by L2(Ω) the space of real valued square integrable functions, and by H1(Ω) its subspace containing functions
having also the first-order derivatives in L2(Ω). Let H1

0(Ω) be the space of functions in H1(Ω)which vanish on the boundary.
Furthermore, we denote by ⟨⋅ , ⋅⟩ the inner product on L2(Ω), and by || ⋅ || the norm of L2(Ω). Lf stays for the Lipschitz
constant of a Lipschitz continuous function f (⋅).

Let Th is a regular decomposition of Ω, which decomposes Ω into closed d-simplices; h stands for the mesh diameter.
Here, we assume Ω = ∪ ∈h . The Galerkin finite element space is given by
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Vh ∶= {vh ∈ H1
0(Ω)|vh| ∈ P1( ),  ∈ h}, (17)

where P1( ) denotes the space of linear polynomials on any simplex T.
We use the definition of spaces and notations above to write the variational form of Equations (12a) to (12b) which

finds Pn+1
o , Sn+1

w ∈ Vh for a given Sn
w such that the following holds,⟨

𝜆n+1
tot ∇Pn+1

o − 𝜆n+1
w

(
𝜕Pn+1

c

𝜕Sw
∇Sn+1

w +
𝜕Pn+1

c

𝜕𝜒
∇𝜒n+1

)
,∇vh

⟩
= ⟨f n

t , vh⟩ (18a)

⟨𝜙Sn+1
w − 𝜙Sn+1

w , vh⟩ + 𝛿t
⟨
𝜆n+1

w ∇Pn+1
o − 𝜆n+1

w

(
𝜕Pn+1

c

𝜕Sw
∇Sn+1

w +
𝜕Pn+1

c

𝜕𝜒
∇𝜒n+1

)
,∇vh

⟩
= ⟨f n

s , vh⟩, (18b)

for all vh ∈Vh. Similarly, we can also write the variational form of the iterative pseudo-monolithic method (16a) and (16b)
that find Pn+1,i+1

o , Sn+1,i+1
w ∈ Vh for given Sn

w, Sn+1,i
w such that⟨

𝜆
n+1,i
tot ∇Pn+1,i+1

o − 𝜆
n+1,i
w

(
𝜕Pn+1,i

c

𝜕Sw
∇S̃n+1,i+1

w +
𝜕Pn+1,i

c

𝜕𝜒
∇𝜒n+1,i+1

)
,∇vh

⟩
= ⟨f n

t , vh⟩ (19a)

⟨𝜙S̃n+1,i+1
w − 𝜙Sn

w, vh⟩ + 𝛿t

⟨
𝜆

n+1,i
w

(
∇Pn+1,i+1

o −

(
𝜕Pn+1,i

c

𝜕Sw
∇S̃n+1,i+1

w +
𝜕Pn+1,i

c

𝜕𝜒
∇𝜒n+1,i+1

))
,∇vh

⟩
= ⟨f n

s , vh⟩, (19b)

holds for all vh ∈Vh. The aim is to show that the linearized model (19a) and (19b) converges to the nonlinear problem
(18a) and (18b) within few outer iteration steps in each time step.

The convergence analysis of the scheme is proved theoretically by assuming that the continuous model has a solu-
tion. Furthermore, the following assumptions on the coefficient functions and the discrete solutions are defining the
framework in which we can prove the convergence of the proposed scheme.

A1: The mobilities satisfy the Lipschitz continuity condition in the wetting phase saturation, that is, there exist constants
L𝜆𝛼

such that

||𝜆𝛼(Sw) − 𝜆𝛼(Sw)|| ≤ L𝜆𝛼
||Sw − Sw||, ∀Sw, Sw ∈ [0, 1]. (20)

This implies that any linear combination of 𝜆𝛼 is also Lipschitz continuous.
A2: The dynamic capillary pressure function Pc, and its partial derivatives 𝜕Pc

𝜕Sw
and 𝜕Pc

𝜕𝜒
are Lipschitz continuous with

respect to Sw and 𝜒 . This implies, for any 𝜒, 𝜒, Sw, Sw ∈ [0, 1], we can find constants L𝜒

Pc
,L𝜒

P′
c
,Ls

Pc
and Ls

P′
c

such that

||Pc(𝜒, Sw) − Pc(𝜒, Sw)|| ≤ Ls
Pc
||Sw − Sw||, and‖‖‖‖‖𝜕Pc(𝜒, Sw)

𝜕Sw
−

𝜕Pc(𝜒, Sw)
𝜕Sw

‖‖‖‖‖ ≤ Ls
Φ′

c
||Sw − Sw||, (21)

||Pc(𝜒, Sw) − Pc(𝜒, Sw)|| ≤ L𝜒

Φc
||𝜒 − 𝜒w||, and‖‖‖‖𝜕Pc(𝜒, Sw)

𝜕𝜒
−

𝜕Pc(𝜒, Sw)
𝜕𝜒

‖‖‖‖ ≤ L𝜒

P′
c
||𝜒 − 𝜒||. (22)

Furthermore, we assume that the dynamic capillary pressure Pc(𝜒, Sw) is decreasing function, that is, 𝜕Pc(𝜒,Sw)
𝜕Sw

< 0,

and 𝜕Pc(𝜒,Sw)
𝜕𝜒

< 0
A3: We assumed that the initial wetting phase saturation satisfies ||∇Sn

w||∞ ≤ Ms with || ⋅ || denoting the L∞(Ω)-norm.
This implies also ||∇Sn+1

w ||∞ ≤ Ms and ||∇Pn+1
n ||∞ ≤ Mp.

A4: The total derivative of Pc with respect to Sw is bounded above by zero.
A5: Assume that for any time step (n+1) with n≥ 0, there exist a solution for saturation Sn+1

w and pressure Pn+1
o such that

the Equations (18a) to (18b) are satisfied.

From now on, we denote by
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ei+1
p = Pn+1,i+1

o − Pn+1
o , ei+1

s = Sn+1
w − Sn+1,i+1

w , ẽi+1
s = Sn+1

w − S̃n+1,i+1
w , (23)

the error at iteration i+ 1. A scheme is convergent if ||ei+1
p || → 0, ||ei+1

s || → 0 when i→∞.

Theorem 1. Assume that the conditions (A1) to (A5) are satisfied. If we choose Sn
w as the initial approximation, Sn+1,0

w , of the
exact solution Sn+1

w , there exists a time step size 𝛿tn with mild restriction such that the iteration Sn+1,i+1
w and Pn+1,i+1

o generated
by the scheme (19a) and (19b) converges to Sn+1

w and Pn+1
o , respectively, in L2 norm.

Proof. As in References 18,19,25, we start the analysis by subtracting the linearized pressure equation (19a) from the
nonlinear Equation (18a) to obtain:

⟨𝜆n+1
tot ∇Pn+1

o − 𝜆
n+1,i
tot ∇Pn+1,i+1

o ,∇vh⟩ −⟨
𝜆n+1

w
𝜕Pn+1

c

𝜕Sw
∇Sn+1

w − 𝜆
n+1,i
w

𝜕Pn+1,i
c

𝜕Sw
∇S̃n+1,i+1

w ,∇vh

⟩

−

⟨
𝜆n+1

w
𝜕Pn+1

c

𝜕𝜒
∇𝜒n+1 − 𝜆

n+1,i
w

𝜕Pn+1,i
c

𝜕𝜒
∇𝜒n+1,i+1,∇vh

⟩
= 0, (24)

for any vh ∈V h. Applying the Cauchy-Schwartz inequality

|⟨u, v⟩|2 ≤ ||u||2||v||2, (25)

followed by the assumptions (A1) to (A4), and testing with vh = ei+1
p , we get the following estimate,

M0
𝜆tot

⟨∇ei+1
p ,∇ei+1

p ⟩ ≤ 𝛾p||ei
s||||∇ei+1

p || +⟨
𝜆

n+1,i
w

(
𝜕Pn+1,i

c

𝜕Sw
− t

T
𝜕Pn+1,i

c

𝜕𝜒

)
∇ẽi+1

s ,∇ei+1
p

⟩
, (26)

where 𝛾p = L𝜆tot Mp + L𝜆w(M
s
Pc
+ M𝜒

Pc
) + (Ls

P′
c
+ L𝜒

P′
c
)M𝜆w . Applying (A4) once more, we obtain an estimate as follows,

||∇ei+1
p || ≤ 𝛾p

M0
𝜆tot

||ei
s|| (27)

Similarly, we subtract Equation (19a) from Equation (18b) to get,

𝜙

𝛿t
⟨ẽi+1

s , vh⟩ −⟨
𝜆n+1

w
𝜕Pn+1

c

𝜕Sw
∇Sn+1

w − 𝜆
n+1,i
w

𝜕Pn+1,i
c

𝜕Sw
∇Sn+1

w + 𝜆
n+1,i
w

𝜕Pn+1,i
c

𝜕Sw
∇Sn+1

w − 𝜆
n+1,i
w

𝜕Pn+1,i
c

𝜕Sw
∇S̃n+1,i+1

w ,∇vh

⟩

−

⟨
𝜆n+1

w
𝜕Pn+1

c

𝜕𝜒
∇𝜒n+1 − 𝜆

n+1,i
w

𝜕Pn+1,i
c

𝜕𝜒
∇𝜒n+1 + 𝜆

n+1,i
w

𝜕Pn+1,i
c

𝜕𝜒
∇𝜒n+1 − 𝜆

n+1,i
w

𝜕Pn+1,i
c

𝜕𝜒
∇𝜒n+1,i+1,∇vh

⟩
−
⟨
𝜆

n+1,i
w

(
∇Pn+1,i+1

o − ∇Pn+1
o

)
,∇vh

⟩
+
⟨(

𝜆
n+1,i
w − 𝜆n+1

w

)
∇Pn+1

o ,∇vh

⟩
= 0. (28)

Now by taking the advantage of assumptions (A1) to (A3) and applying the Cauchy-Schwartz inequality with the
definition of 𝜒 , Equation (28) can be estimated as,

𝜙

𝛿t
||ẽi+1

s || −⟨
𝜆

n+1,i
w

(
𝜕Pn+1,i

c

𝜕sw
− t

T
𝜕Pn+1,i

c

𝜕𝜒

)
∇ẽi+1

s ,∇ẽi+1
s

⟩
≤ M𝜆w ||∇ei+1

p ||||∇ẽi+1
s || + (𝛾p + L𝜆w Mp)||ei

s||||∇ẽi+1
s ||, (29)

where we choose vh = ẽi+1
s as a test function. At this point, we apply assumptions (A1) and (A4). From assumption (A4),

we have that 𝜕Pn+1,i
c
𝜕Sw

− t
T

𝜕Pn+1,i
c
𝜕𝜒

< 0. This implies that there exists a real number MP′
c
> 0 such that,

max
Sw,t

{
𝜕Pn+1,i

c

𝜕Sw
− t

T
𝜕Pn+1,i

c

𝜕𝜒

}
= −MP′

c
.
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Considering all these and after some algebraic manipulation, the inequality (29) can be rewritten as

𝜙

𝛿t
||ẽi+1

s ||2 + MP′
c
||∇ẽi+1

s ||2 ≤ M𝜆w ||∇ẽi+1
p ||||∇ẽi+1

s || + 𝛾s||ei
s||||∇ẽi+1

s ||. (30)

where 𝛾s = 𝛾p + L𝜆w Mp. Substitute the pressure estimate (27) into (30) to give an estimate for the saturation error:

𝜙

𝛿t
||ẽi+1

s ||2 + MP′
c
||∇ẽi+1

s ||2 ≤
(
𝛾pM𝜆w

M0
𝜆tot

+ 𝛾s

)||ei
s||||∇ẽi+1

s ||. (31)

Let us define

C =
𝛾pM𝜆w

M0
𝜆tot

+ 𝛾s > 0, (32)

and apply Young’s inequality

ab ≤ a2

2𝜖
+ 𝜖b2

2
,

for 𝜖 > 0 to the inequality (31), and choosing the parameter 𝜖 to be 𝜖 = C
MP′c

, the estimate (31) is reduced to

||ẽi+1
s ||2 ≤ 𝛿tC2

MP′
c
𝜙
||ei

s||2. (33)

At this stage, we can substitute the stabilization term from Equation (16c) into Equation (33) to get the following
estimate,

|||||||| 1
Li+1 ei+1

s +
(

1 − 1
Li+1

)
ei

s
||||||||2 ≤ 𝛿tC2

MP′
c
𝜙
||ei

s||2. (34)

For any choice of Li+ 1 ∈ (0,1], 1 − 1
Li+1 ≤ 0, and thus, by applying the reverse triangle inequality, we can obtain,

||ei+1
s ||2 ≤

(
Li+1 − 1 + 𝛿tC2

MP′
c
𝜙

) ||ei
s||2. (35)

Thus, the scheme converges linearly for the designed nonlocal two-phase flow model when

𝛿t ≤ (2 − Li+1)MP′
c
𝜙

C2 , (36)

is satisfied. ▪

Remark 2. If we choose a small L, convergence of the scheme is guaranteed for large time step. However, the rate of
convergence may be slow and thus, we may encounter large number of iterations.

3.2.2 Choice of the relaxation factor

Above we observed that the choice of the relaxation factor plays an important role on the convergence of the scheme.
Here, we introduce a choice strategy for the relaxation factor based on the history of the errors at previous and current
iterations.

Following Reference 21, we define the length of the residual of the transport equation at the current iteration by
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||Rn+1,i+1
s || = ||S̃n+1,i+1

w − Sn+1,i
w ||. (37)

The aim is finding a relaxation factor that makes (37) sufficiently small. However, this problem is highly nonlinear
optimization problem and thus, challenging to come up with optimal global solution. As a consequence, we compute and
bound the relaxation factor adaptively in each iteration.

To support the convergence of the iterative pseudo-monolithic scheme, the relaxation factor L should be chosen such
that the residual defined by (37) is decreasing with each successive iteration, that is,

||Rn+1,i+1
s || ≤ ||Rn+1,i

s || (38)

From (16c) and (38), there exists a constant L such that,

||Sn+1,i+1
w − Sn+1,i

w || ≤ L||Sn+1,i
w − Sn+1,i−1

w ||. (39)

We denote the relaxation factor at the ith iteration step by Li, and thus the relaxation equation for wetting phase
saturation can be rewritten as,

Sn+1,i+1
w = (1 − Li+1)Sn+1,i

w + Li+1S̃n+1,i+1
w , (40)

where Li+ 1 ∈ (0,1]. Substituting Equation (40) into Equation (39) and rearranging will give,

Li+1 ≤ L
||Sn+1,i

w − Sn+1,i−1
w ||||S̃n+1,i+1

w − Sn+1,i
w || . (41)

Recall that Li+ 1 ∈ (0,1] and from Equation (38), and thus the choice of Li+ 1 should satisfy instead,

Lmin ≤ Li+1 ≤ min

{
Lmax ,L

||Sn+1,i
w − Sn+1,i−1

w ||||S̃n+1,i+1
w − Sn+1,i

w ||
}

, (42)

where Lmin,Lmax ∈ (0,1] and L are specified a priori.

4 NUMERICAL RESULTS

In this section, we examine the convergence and accuracy of the iterative pseudo-monolithic scheme presented in
this work. Section 4.1 presents a comparison between the pseudo-monolithic (15a) and (15b) scheme and the itera-
tive pseudo-monolithic (16a) to (16d) scheme. We also carry out comparisons between iterative IMPES, and iterative
pseudo-monolithic scheme in Section 4.2. All the schemes are implemented in the open source software package MRST.31

Here, we applied two point flux approximation to discretize the models designed below. However, we recall that we
applied a Galerkin finite elements to show the convergence of the scheme theoretically. This is to show that the scheme
is independent of space discretization methods.

4.1 Analytic example

In this subsection, a porous medium flow model is designed by choosing exact solutions

San
w = 0.65 − tx(1 − x)y(1 − y), Pan

o = tx(1 − x)y(1 − y) + 0.2 in (0,Tf ) × Ω,

followed by constructing source terms and boundary conditions. For this particular example, we set t ∈ [0,1] and Ω =
(0, 1) × (0, 1). Furthermore, we consider unit magnitude for rock as well as fluid properties in order to ease the construc-
tion of the source terms. We applied van Genuchten relative permeability relations (11) and dynamic capillary pressure
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F I G U R E 1 Number of iterations, A and L2 error, B with respect to time step sizes [Color figure can be viewed at wileyonlinelibrary.com]

model (7) with

𝜔 =
𝛽1𝜒

𝛽1𝜒 + 1
,

where the parameters are set to be nw = no = 2, Pw
e = 1, Po

e = 0, and 𝛽1 = 400.
To evaluate the convergence of the scheme to the exact solution, we have considered a 80× 80 regular grid cells with

varying time step sizes given below

𝛿t ∈ {1∕5, 1∕20, 1∕40, 1∕60, 1∕100, 1∕140}.

The outer iteration loop for the iterative pseudo-monolithic scheme is allowed to continue until ||Sn+1,i+1
w − Sn+1,i

w || ≤ 1 ×
10−6 is satisfied. In this test, the relaxation factor choice strategy mentioned in subsection 3.2.2 is applied. Initially, L1 is
computed from (37), where we take ||Sn+1,0

w − Sn+1,−1
w || = 1 in each time step.

We experimented a convergence test considering the inputs above, and Figure 1A presents the number of iterations of
the iterative pseudo-monolithic scheme for different time step sizes. Furthermore, we also plotted the number of iterations
of the pseudo-monolithic scheme just as a reference.

Obviously, the proposed pseudo-monolithic scheme exits the iteration steps at the first iteration for all time steps. On
the other hand, the proposed iterative pseudo-monolithic scheme converges to the solution within two iterations for all
time steps except for the larger time step 𝛿t = 0.2 which needs one extra iteration.

Figure 1B shows the associated L2 error ||Sn+1
w − San

w ||L2(Ω) for the saturation and pressure profiles. San
w represents the

analytical solution of the saturation. The pseudo-monolithic method approximates the exact solution efficiently. The
iterative pseudo-monolithic scheme has improved the accuracy of the pseudo-monolithic scheme as proposed in Section 3.
This explains that the efficiency and accuracy of the iterative scheme can be gained with only the cost of a few extra
iterations. Note that the number of iterations can be reduced by considering larger stopping criteria for outer iterations
without affecting the accuracy.

We have also performed a numerical experiment to analyze the convergence of the proposed iterative method by fixing
the time step size 𝛿t for a different number of grid cells with

h = {1∕10, 1∕20, 1∕40, 1∕60, 1∕80, 1∕100}, (43)

where h is the side length of a uniform grid cell. The obtained results are listed in Table 1. The iterative pseudo-monolithic
method converges with a maximum iterations of three. This maximum number of iteration was needed for the
largest time step size 𝛿t = 0.2. From Table 1, we observe that the number of iterations keeps the same while
the grid size varies. This implies that the proposed iterative pseudo-monolithic scheme is not dependent on the
mesh size.

http://wileyonlinelibrary.com
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1/h 10 20 40 60 80 100

Number of iterations (𝛿t = 0.2) 3 3 3 3 3 3

Number of iterations (𝛿t = 0.05) 2 2 2 2 2 2

T A B L E 1 The required number of
iteration to converge to the solution per
time step for different mesh size resolutions

Parameters Units Example 1 Example 2

𝜙 [–] 0.2 0.2

𝜇w [cP] 1 1

𝜇o [cP] 0.45 0.45

nw [–] 2 2

no [–] 2 2

Pw
e [bar] 5 5

Po
e [bar] 0 0

L [–] 0.5 0.5

Lmax [–] 1 1

𝛽1 [–] 100 –

𝛽2 [–] – 100

T A B L E 2 Material properties and model parameters

F I G U R E 2 Rock permeability model for Example 1. Here “md” stands
for milli darcy [Color figure can be viewed at wileyonlinelibrary.com]

4.2 Physical test

Above, we considered an academic example and studied the accuracy of the iterative pseudo-monolithic method over
the pseudo-monolithic scheme. In the following, we will compare the iterative pseudo-monolithic scheme and IMPES by
considering complex porous media geometries with fluid and rock properties given in Table 2. Note that fluid properties
and model parameters given in Table 2 are applied for both iterative IMPES and iterative pseudo-monolithic schemes. The
outer iteration loop is allowed to continue until ||Sn+1,i+1

w − Sn+1,i
w || ≤ 2.5 × 10−5 is satisfied. The relaxation factor choice

strategy starts with computing L1 from (37), where we take ||Sn+1,0
w − Sn+1,−1

w || = 1 in each time step. The relative per-
meabilities and capillary pressure models in Examples 1 and 2 below are considering a zero residual saturations for the
wetting and nonwetting fluids.

4.2.1 Example 1

The computational domain with 300m× 150m dimensions, consisting of different subdomains for the distribution of
permeability, is considered. This porous medium model is shown in Figure 2.

http://wileyonlinelibrary.com
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T A B L E 3 Linearization schemes
convergence comparison for the tested flow
model in Example 1

𝜹t (days) 27.5 6.85 3.43 1.71 0.85

Iterative IMPES

Total iteration – – – – 12 237

Average iteration – – – – 3.82

Iterative pseudo-monolithic

Total iteration 672 1820 2832 4112 5244

Average iteration 6.72 4.55 3.45 2.57 1.6

Note: The “–” sign stands for the scheme is not convergent, “Total iteration” stands for the overall
number of iterations to complete the simulation, and “Average iteration” represents the average
iteration number per time step.
Abbreviation: IMPES, implicit pressure explicit saturation.

We applied the water-wet van Genuchten relative permeabilities (11) and a capillary pressure function as given below,

Pc =
𝛽1𝜒

1 + 𝛽1𝜒
(Pow

c − Pww
c ) + Pww

c , (44)

where Pww
c and Pow

c are as described in Equation (10). The capillary pressure (44) is changing from Pww
c to Pow

c dynami-
cally for 7.5 years. Here 7.5 years represent the life of injection for this particular simulation. Further data on the model
parameters are given in Table 2 above. We complete the model by injecting the nonwetting fluid to the left-bottom corner
of the domain with an injection rate of 0.35m3 per day and we impose a zero Dirichlet condition at the middle of the right
side of the domain. The rest of the boundaries are considered impermeable.

We discretized the above model with 2500 regular grid cells and performed numerical experiments to evaluate the
convergence behavior of the iterative IMPES and pseudo-monolithic scheme for different time step sizes. Table 3 shows
the convergence results of the two methods. As shown in Table 3, the iterative IMPES only converges if the time step size
𝛿t ≤ 0.85 day, and the iterative pseudo-monolithic scheme converges for all time step sizes. This shows that the iterative
IMPES is subject to strong restrictions with respect to the time step size choice in this example. Usually, IMPES encoun-
tered a difficulty regarding the choice of time step size even for standard multiphase flow models.20-22,32 The dynamic
nature of the capillary pressure function further worsens the flexibility of iterative IMPES on the choice of the time step
size in this example. By contrast, the iterative pseudo-monolithic scheme shows its strength allowing for the relaxed choice
of time step sizes. The scheme is capable of taking a large time step size. Furthermore, the total and average number of
iterations are increasing and decreasing, respectively, when the scheme considers smaller time step sizes. The decreasing
number of average iterations per time step size is a positive sign toward the stability of the iterative pseudo-monolithic
scheme.

We further studied the convergence stability of the iterative pseudo-monolithic scheme by controlling the speed of
capillary pressure alteration. To do so, we vary the dynamic coefficient parameter 𝛽1 from Equation (44). For this numer-
ical experiment, we used the same mesh size as before and chose a larger time step size 𝛿t = 30.5 days. Table 4 shows the
convergence behavior of the iterative pseudo-monolithic scheme for different dynamic coefficient parameter, 𝛽1, values.
From Table 4, we observe that the scheme requires more iterations as 𝛽1 increases. That means the scheme needs a few
extra iterations to converge as the alteration speed of the capillarity becomes faster. Furthermore, the scheme may fail to
converge for this model if we choose sufficiently large 𝛽1 > 2 × 104 (not shown here). For such case, the proposed scheme
is enforced to choose a relatively small time step size. Nevertheless, the results above show that the scheme converges
successfully for nonlocal (in time) two-phase flow model that considers physically reasonable dynamic capillary pressure
alteration (even with capillary pressure jumps). These all support the theoretical convergence analysis of the proposed
scheme as discussed in Section 3. In general, the reliability of the scheme to handle the dynamic alteration of the capillary
pressure and nonlocality of the problem has been successfully demonstrated.

After a successful convergence stability experiment, we also studied the impact of the dynamic coefficient parameter,
𝛽1, on the flow path of the fluids. We used 𝛿t = 30.5 days, and we keep the grid size, fluid and reservoir parameters as
above for this purpose. However, we considered two different values for the dynamic coefficient parameter 𝛽1. Figure 3
shows the fluid distributions after 7.5 years of evolution.
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𝜷1 100 200 104 2× 104

Total iteration 622 644 768 963

Average iteration 6.9 7.2 8.5 10.7

T A B L E 4 The impact of dynamic coefficient parameter on the
stability of the iterative pseudo-monolithic scheme

F I G U R E 3 Saturation profiles: A, Demonstrates the flow path when 𝛽1 = 1, that is, slow dynamic capillary pressure alteration and B,
shows the fluid path for relatively fast dynamic alteration, that is, 𝛽1 = 2 × 104 [Color figure can be viewed at wileyonlinelibrary.com]

As shown in Figure 3, the effect of the dynamic coefficient on fluid displacement is distinct. The movement of the
nonwetting fluid is restricted for fast dynamic alteration processes. In other words, the displacing fluid remains the res-
ident fluid for slow dynamic capillary pressure alteration, whereas it swipes the resident fluid when we consider a fast
capillary pressure alteration. This happens because the wetting property of the volumes (occupied by the displacing fluid)
is altered to the intermediate-wet system before it leaves the volume, and thus, the nonwetting fluid preferred to be in
contact with the solids when we consider fast capillary pressure alteration.

4.2.2 Example 2

We considered 50m× 50m× 10m dimensional heterogeneous medium, with permeability distribution,

K =

{
1 md, if (x, y, z) ∈ (5 m, 50 m) × (0 m, 30 m) × (2 m, 8 m)
100 md, else.

(45)

We employed the same relative permeabilities functions as above and dynamic capillary pressure given as

Pc =
𝛽2Sw𝜒

1 + 𝛽2Sw𝜒
(Pow

c − Pww
c ) + Pww

c , (46)

where Pww
c and Pow

c are as described in Equation (10). The capillary pressure is allowed to change from Pww
c to Pow

c
dynamically according to model (46) in each subdomain for 2.5 years. Additional data on model parameters are listed in
Table 2. We inject the nonwetting fluid to the west particularly at (y,z)∈ (10m,15m)× (2m,8m) with an injection rate of
0.15m3/day for 2.5 years, and impose a zero Dirichlet boundary condition to the east side of the domain, particularly at
(y,z)∈ (10m,15m)× (2m,8m). The rest of the boundaries are considered to be impermeable.

We discretized the designed model above with 3125 grid cells and we did simulations to examine the convergence
behavior of the iterative IMPES and pseudo-monolithic linearization techniques. The obtained results are published in
Table 5. In Table 5, we noticed that the iterative IMPES fails to converge for time step sizes bigger than 0.26 day. This
shows that the choice of a time step size is strongly restricted for iterative IMPES linearization which confirms the results
reported in References 20,21,32. Unlike the iterative IMPES, iterative pseudo-monolithic scheme relaxes the choice of the

http://wileyonlinelibrary.com
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T A B L E 5 Linearization schemes comparison for the tested flow model above in Example 2

𝜹t (days) 90.25 60 30.4 9.125 2.2812 0.57 0.26

Iterative IMPES

Total iteration – – – – – – 6980

Average iteration – – – – – – 2.2

Iterative pseudo-monolithic

Total iteration 50 72 121 271 824 2106 3354

Average iteration 5 4.8 4.03 2.71 2.06 1.3 1.05

Note: Here “–” represents that the scheme is not convergent.
Abbreviation: IMPES, implicit pressure explicit saturation.

T A B L E 6 The impact of dynamic coefficient
parameter on the stability of the iterative
pseudo-monolithic scheme

𝜷2 100 1000 2× 103 1× 104 2× 104

Total iteration 50 50 50 50 50

Average iteration 5 5 5 5 5

F I G U R E 4 Saturation distribution obtained from iterative pseudo-monolithic scheme. Here, we applied the same grid resolution as
above with time step size 𝛿t = 90.25 days. A, No dynamic capillary pressure alteration (𝛽2 = 0) and B, relatively fast alteration (𝛽2 = 1 × 105 in
Equation (46)) [Color figure can be viewed at wileyonlinelibrary.com]

time step size. The scheme return with an approximate solution for a relatively large time step size compared with the
iterative IMPES scheme. The total and average number of iterations, respectively, are increasing and decreasing when we
consider smaller time step sizes, see Table 5.

We further investigate the sensitivity of the dynamic coefficient parameter 𝛽2. For this, we keep the number of grid
elements as before and the time step size to be the larger one in Table 5, that is, 𝛿t = 90.25 days. Then, we vary 𝛽2, and
observe its impact on the convergence of the scheme. Table 6 shows the convergence results for different values of 𝛽2.
As shown in Table 6, the scheme converges with the same number of iterations for all values of 𝛽2. This implies that the
proposed scheme is not affected by the speed of the capillary pressure alteration dynamics for this particular example.

Above, we studied the convergence of the iterative pseudo-monolithic scheme for the nonlocal two-phase flow model.
Below, we investigate the impact of the dynamic capillary pressure model on the injected fluid distribution. Figure 4
compares the injected fluid distribution for the initial wetting condition capillary pressure (ie, 𝛽2 = 0 in Equation (46)),
and dynamic capillary pressure model (46) with 𝛽2 = 1 × 105.

In Figure 4, we observe that the displacing fluid leaves the resident fluid behind when we consider 𝛽2 = 0 in
Equation (46). This is due to the fact that the rock surfaces are water-wet in this case, that is, no WA, and thus, the res-
ident fluid prefers to remain in the pores. On the other hand, the nonwetting fluid has displaced the resident fluid and
concentrated near the injection area when we employed the dynamic capillary pressure model (46) with 𝛽2 = 1 × 105. In

http://wileyonlinelibrary.com
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this case, the wettability of the rock surfaces near to the injection area has been changed (in time) to the intermediate-wet
system before the displacing fluid leaves the volume, and thus, the displacing fluid preferred to occupy these pores. That
means the injected fluid pressure is able to displace the resident fluid with relatively small pressure. This shows that the
dynamic capillary pressure results in a large change of fluid saturation as compared with the standard capillary pressure
model, Pww

c , in Equation (10). This might be one of the reasons that restrict the time step size choice of the iterative IMPES.

5 CONCLUSION

In this article, we introduced fluid history and time-dependent dynamic capillary pressure model in a two-phase immis-
cible incompressible porous media flow model. We developed a linearization scheme for the resulting nonstandard
two-phase flow model by treating the capillary pressure implicitly and adding stabilization terms. This implicit treatment
of the dynamic capillary pressure model couples the pressure and saturation equations strongly, and makes the scheme
stable. We gave a theoretical convergence analysis of the scheme under some meaningful assumptions. The scheme has
been successfully implemented and tested for different illustrative examples. We found that the proposed scheme is effi-
cient to approximate the solution of the resulting nonstandard two-phase flow model. Most importantly, the scheme
demonstrates flexibility regarding the choice of time step size for dynamic capillary pressure alteration (possibly with cap-
illary jumps). Thus, combining the scheme with a Newton method is a straightforward application. This implies that one
can alternate between the iterative pseudo-monolithic scheme and the Newton method as mentioned in Reference 25.
This may further improve the convergence speed and accuracy of the approximation to simulate such complex models.
Furthermore, the convergence of the scheme shall be investigated for degenerate cases in the future.
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