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Accuracy and efficiency of germline 
variant calling pipelines for human 
genome data
Sen Zhao1, Oleg Agafonov2, Abdulrahman Azab3,4, Tomasz Stokowy5,6 & Eivind Hovig1,3*

Advances in next-generation sequencing technology have enabled whole genome sequencing (WGS) 
to be widely used for identification of causal variants in a spectrum of genetic-related disorders, and 
provided new insight into how genetic polymorphisms affect disease phenotypes. The development 
of different bioinformatics pipelines has continuously improved the variant analysis of WGS data. 
However, there is a necessity for a systematic performance comparison of these pipelines to provide 
guidance on the application of WGS-based scientific and clinical genomics. In this study, we evaluated 
the performance of three variant calling pipelines (GATK, DRAGEN and DeepVariant) using the 
Genome in a Bottle Consortium, “synthetic-diploid” and simulated WGS datasets. DRAGEN and 
DeepVariant show better accuracy in SNP and indel calling, with no significant differences in their 
F1-score. DRAGEN platform offers accuracy, flexibility and a highly-efficient execution speed, 
and therefore superior performance in the analysis of WGS data on a large scale. The combination 
of DRAGEN and DeepVariant also suggests a good balance of accuracy and efficiency as an 
alternative solution for germline variant detection in further applications. Our results facilitate the 
standardization of benchmarking analysis of bioinformatics pipelines for reliable variant detection, 
which is critical in genetics-based medical research and clinical applications.

The innovation of next-generation sequencing (NGS) technologies has enabled exponential growth of the produc-
tion of high throughput omics data1–3. Whole genome sequencing (WGS) and targeted whole exome sequencing 
(WES) are two main types of DNA sequencing protocols that have been broadly applied for the discovery of 
disease-related genes and identification of driver mutations for specific disorders4–6. In contrast to WES, WGS can 
assess all the nucleotides of an individual genome and allow detection of variants in both coding and non-coding 
regions. As a result of decreasing genome sequencing cost, WGS is becoming a powerful tool to investigate a wide 
range of complex inherited genetic diseases (e.g. heart disease, diabetes and psychiatric conditions), through the 
identification of causal germline variants7–11. The clinical application of WGS is gaining utility and consequently 
importance in underpinning personalized precision medicine12,13.

There is a necessity of bioinformatic pipelines for variant calling analysis on WGS data in a precise and 
efficient way prior to their integration into clinical diagnostic applications14,15. In general, a pipeline is com-
prised of the following steps: quality control, read alignment, variant calling, annotation, data visualization and 
reporting12,16. At the current stage of technological development, most of the clinical laboratories performing 
diagnostics of genetic disorders by WGS focus on two types of variants; single nucleotide polymorphisms (SNPs) 
and short insertions and deletions (indels). Many tools (e.g. Strelka, SpeedSeq, Samtools and Varscan2) have 
been developed for SNP and indel calling in the WGS analysis pipelines17–20. Among them, the Genome Analysis 
Toolkit (GATK) is one of the most used variant calling tools, as it applies a variety of state-of-the-art statistical 
methods (e.g. logistic regression, hidden markov model and naïve bayes classification) to accurately identify 
differences between the reads and the reference genome that are caused either by real genetic variants or by 
errors21. GATK can achieve high accuracy, but is still imperfect in memory management and running efficiency. 
Illumina has released a Dynamic Read Analysis for GENomics (DRAGEN) Bio-IT platform that provides an 
accurate and ultra-rapid solution for WGS data analysis22. The DRAGEN platform implements a highly config-
urable field-programmable gate array (FPGA) hardware technique to dramatically speed up analysis processes 
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(e.g. alignment mapping and variant calling) and claims to do so without compromising accuracy. Verily Life 
Sciences (formerly Google Life Sciences) has developed DeepVariant for small germline variant detection based 
on a deep learning algorithm23. DeepVariant applies the python TensorFlow library to call variants in aligned 
reads by learning statistical relationships between images of read pileups around putative variants and true 
genotype calls. In 2016, the PrecisionFDA Truth challenge reported DeepVariant as the most accurate pipeline 
in the performance of SNPs calling24.

To compare the accuracy and efficiency of different variant calling pipelines and score their competence, it is 
critical to have high-quality benchmark datasets in which the true variant calls are well known. The Genome in a 
Bottle Consortium (GiaB) developed a golden callset (sample NA12878) that is widely used during development 
of variant calling pipelines and benchmarking25. Since its release, the NA12878 callset has been continuously 
upgraded as a comprehensive resource, and one of the major improvements was integration of the truth callset 
independently generated by the Platinum Genome (PG)26. An additional truth callset recently developed from a 
“synthetic-diploid” mixture of two haploid hydatidiform mole cell lines, CHM1 and CHM13, is now available in a 
public repository27. Although the variants in these two truth callsets represent real scenarios, the number of true 
variants is usually unknown, complicating its use for the assessment of accuracy (i.e. how close the defined truth 
callset is to the “true” mutational landscape). In contrast, simulated in silico WGS data allow users to generate 
variants under controlled scenarios with predefined parameters for which the “true” values are known, comple-
menting the validation with real data. In several previous publications, performance comparisons of different 
variant calling pipelines (e.g. GATK, Samtools, Freebayes, SNVer and Stralka2), using both real and simulated 
WGS data, have been investigated, with results shown to vary according to the chosen pipelines and datasets to 
which they have been applied23,24,27–34. Until now, none of the studies have evaluated the three pipelines (GATK, 
DRAGEN and DeepVariant) together using multiple sets of WGS data for benchmarking. Importantly, by com-
bining different datasets, the accuracy of genomic variant identification can be compared in a more systematic 
way, potentially providing a deeper understanding about their performance.

In this study, we obtained raw WGS data of NA12878 and “synthetic-diploid” samples from public reposito-
ries and constructed two sets of synthetic WGS data using a read simulator. A comprehensive benchmarking of 
GATK, DRAGEN, DeepVariant and their combinations was conducted using both real and simulated data. We 
aimed to evaluate the accuracy and efficiency of these pipelines for SNP and short indel detection, and identify 
the most precise and efficient combination of tools for small variant calling. These were assessed according to 
performance, concordance and time consumption, in order to provide a useful guideline of reliable variant 
identification for genetic medical research and clinical application.

Materials and methods
Sources of WGS benchmarking dataset acquisition.  NA12878 (HG001) WGS data.  The NIST ref-
erence material NA12878 (HG001) was sequenced at NIST, Gaithersburg, MD for the PrecisionFDA Truth Chal-
lenge. WGS library preparation was conducted using Illumina TruSeq (LT) DNA PCR-free sample Prep kits 
(FC-121-3001), and paired-end reads, insert size: ~ 550 bp were generated on HiSeq 2500 platform with rapid 
run mode (2 flow cells per genome). Raw paired-end fastq files (HG001-NA12878-50x_1.fastq.gz and HG001-
NA12878-50x_2.fastq.gz) were obtained from https​://preci​sion.fda.gov/chall​enges​/truth​. In addition, another 
set of NA12878 raw WGS data sequenced in Supernat et al. was downloaded from the NCBI SRA repository 
(accession number: SRR6794144)24, using the SRA Toolkit.

“Synthetic‑diploid” WGS data.  Paired-end raw fastq files of “synthetic-diploid” WGS data were obtained from 
the European Nucleotide Archive (accession number: SAMEA3911976). The reference material, from a mixture 
of CHM1 (SAMN02743421) and CHM13 (SAMN03255769) cell lines at 1:1 ratio, was sequenced on HiSeq 
X10 platform using a PCR-free library protocol (Kapa Biosystems reagents)27. Two independently replicated 
runs, ERR1341793 (raw reads ERR1341793_1.fastq.gz and ERR1341793_2.fastq.gz downloaded from https​
://www.ebi.ac.uk/ena/brows​er/view/ERR13​41793​) and ERR1341796 (raw reads ERR1341796_1.fastq.gz and 
ERR1341796_2.fastq.gz downloaded from https​://www.ebi.ac.uk/ena/brows​er/view/ERR13​41796​) were used 
for the benchmarking exercises.

Simulated WGS data.  In addition to real WGS data, reads were synthesized in silico using the tool Neat-Gen-
Reads v2.035. Briefly, two independent sets of simulated paired-end reads in fastq format, together with true 
positive variant datasets in VCF format, were generated from a random mutation profile (average mutation rate: 
0.002) and a user defined mutation profile (using the golden truth callset assembled from CHM1 and CHM13 
haploid cell lines), respectively. The simulation was performed on the basis of the human reference genome build 
GRCH37 decoy, with a read length of 150 bp, an average coverage of 40X, and a median insert size of 350 ± 70 bp.

Implementation of variant calling pipelines.  Germline variant calling was performed using the pipe-
lines: (1) GATK v4.1.0.036, (2) DRAGEN v3.3.11 and (3) DeepVariant v0.7.2 (see flowchart in Fig. 1)23.

The GATK pipeline workflow was applied following best practices (https​://softw​are.broad​insti​tute.org/gatk/
best-pract​ices). The raw paired-end reads were mapped to the GRCH37.37d5 reference genome by BWA-mem 
v0.7.1537. Aligned reads were converted to BAM files and sorted based on genome position after marking dupli-
cates using Picard modules. The raw BAM files were refined by Base Quality Score Recalibration (BQSR) using 
default parameters. The variant calling (SNPs and indels) was performed with the HaplotypeCaller module. To 
speed up efficiency, the whole genome was split into 14 fractions and run in parallel, followed by merging of all 
runs into a final VCF file. Additionally, we used Variant Quality Score Recalibration (VQSR) to filter the original 
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VCF files following GATK recommendations for parameter settings: HapMap 3.3, Omni 2.5, dbSNP 138, 1000 
Genome phase I for SNPs training sets, and Mills- and 1000 Genome phase I data for indels.

The DRAGEN pipeline (https​://www.illum​ina.com/produ​cts/by-type/infor​matic​s-produ​cts/drage​n-bio-it-
platf​orm.html) followed a similar procedure as described for GATK best practices, including mapping and 
alignment, sorting, duplicate marking, haplotype calling and VQSR filtering.

The DeepVariant pipeline was run via a Singularity framework in accordance with online instructions (https​://
githu​b.com/googl​e/deepv​arian​t). In general, this consisted of three steps: (1) make_example module—consumes 
reads and the reference genome to create the TensorFlow example for evaluation with deep learning models. (2) 
call_variants module—consumes TFRecord files created by the make_example module and evaluates the model 
on each example in the input TFRecord. (3) postprocess_variants module—reads the output TFRecord files 
from the call_variants module, combines multi-allelic records and writes out a VCF file. DeepVariant only used 
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Figure 1.   The flowchart of benchmarking analysis of different variant calling pipeline (GATK, DRAGEN and 
DeepVariant) combinations.
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transformed aligned sequencing reads for variant calling, and so processed BAM file from GATK or DRAGEN 
pipelines was fed as input.

Six VCF files were finally generated per each WGS dataset; these represent different parameter settings and 
processing combinations of the pipelines in terms of their workflows, as depicted in Fig. 1 (i.e. DV_gatk4—GATK 
for BAM file and DeepVariant for variant calling; DV_dragen3—DRAGEN for BAM file and DeepVariant for vari-
ant calling; GATK4_raw—GATK for both BAM file and variant calling; GATK4_vqsr—callset from GATK4_raw 
filtered with VQSR; Dragen3_raw—DRAGEN for both BAM file and variant calling and Dragen3_vqsr—callset 
from Dragen3_raw filtered with VQSR). In addition, a merged VCF file was generated by combining the vari-
ants called by DV_gatk4, DV_dragen3, GATK4_raw and Dragen3_raw using bcftools v1.10.238, and only variants 
called with the support of at least two pipelines were kept.

Computing environment and resources.  Variant calling processes were run both on a high-perfor-
mance computing (HPC) cluster and on a local virtual machine (VM) within the sensitive data platform (TSD) 
at the University of Oslo. The settings of each node in the HPC cluster include 64 AMD CPU cores with a total 
size of 512 GB physical memory, a CentOS 7 operating system and a BeeGFS network file system. The FPGA 
hardware infrastructure was installed on one node specific for the DRAGEN pipeline application. The local 
VM had 40 CPU cores with a total 1.5 TiB physical memory, 2 TiB local disk with ext4 file system format and 
CentOS 7.

Benchmark consensus of VCF files.  The gold standard truth callset and high confidence genomic inter-
vals (NIST v3.3.2) for the NA12878 (HG001) dataset were obtained from https​://ftp-trace​.ncbi.nlm.nih.gov/
giab/ftp/relea​se/NA128​78_HG001​/NISTv​3.3.2/GRCh3​7/HG001​_GRCh3​7_GIAB_highc​onf_CG-IllFB​-IllGA​
TKHC-Ion-10X-SOLID​_CHROM​1-X_v.3.3.2_highc​onf_PGand​RTGph​asetr​ansfe​r.vcf.gz and https​://ftp-trace​
.ncbi.nlm.nih.gov/giab/ftp/relea​se/NA128​78_HG001​/NISTv​3.3.2/GRCh3​7/HG001​_GRCh3​7_GIAB_highc​
onf_CG-IllFB​-IllGA​TKHC-Ion-10X-SOLID​_CHROM​1-X_v.3.3.2_highc​onf_nosom​aticd​el.bed. To calcu-
late the performance metrics, we used hap.py (version 0.3.8, vcfeval comparison engine) for comparison of 
diploid genotypes at the haplotype level https​://githu​b.com/Illum​ina/hap.py. The variant calling of WGS data 
from the mixture of CHM1 and CHM13 was compared to the “synthetic-diploid” benchmark truth callset and 
high-confidence regions (i.e. full.37d5.vcf.gz and full.37d5.bed.gz, which are included in the CHM-eval kit tool 
and available at https​://githu​b.com/lh3/CHM-eval, version 20180222) using vcfeval comparison engine27. For 
benchmarking variants identified in simulated WGS data, we performed a consensus evaluation against their 
truth positive callsets, both with and without high-confidence regions (i.e. HG001_GRCh37_GIAB_highconf_
CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-X_v.3.3.2_highconf_nosomaticdel.bed), respectively. The 
definitions of true positive (TP), false positive (FP) and false negative (FN) were based on the types of variant 
matching stringencies ”genotype match” (most strict—truth and query are considered as true positives when 
their unphased genotypes and alleles can be phased to produce a matching pair of haplotype sequences for a 
diploid genome) and ”local match” (less strict—truth and query variants are counted as true positives if their 
reference span intervals are closer than a pre-defined local matching distance)39. Precision, Recall and F1-score 
were calculated as TP/(TP + FP), TP/(TP + FN) and 2*TP/(2*TP + FN + FP), respectively.

Definition of genome features for stratification analysis.  Different types of genome contexts and 
biological features were applied in stratification analysis33. (1) Low complexity regions: ‘*_merged_slop5.bed.gz’ 
defined by the Global Alliance for Genomics and Health (GA4GH) Benchmarking Team (https​://githu​b.com/
ga4gh​/bench​marki​ng-tools​/tree/d8844​8a68a​79ed3​22837​bc8eb​4d5a0​96a71​0993d​/resou​rces/strat​ifica​tion-bed-
files​/LowCo​mplex​ity). (2) GC content intervals: ‘*_slop50.bed.gz’ defined by GA4GH Benchmarking Team 
(https​://githu​b.com/ga4gh​/bench​marki​ng-tools​/tree/d8844​8a68a​79ed3​22837​bc8eb​4d5a0​96a71​0993d​/resou​
rces/strat​ifica​tion-bed-files​/GCcon​tent). (3) coding/conserved regions: ‘refseq_uion_cds.sort.bed.gz’ defined 
by GA4GH Benchmarking Team (https​://githu​b.com/ga4gh​/bench​marki​ng-tools​/tree/d8844​8a68a​79ed3​22837​
bc8eb​4d5a0​96a71​0993d​/resou​rces/strat​ifica​tion-bed-files​/Funct​ional​Regio​ns) were used for simulated data 
analysis; ‘func.37m.bed.gz’ as defined in the CHM-eval kit tool (https​://githu​b.com/lh3/CHM-eval) was used for 
‘synthetic-diploid’ data analysis. (4) B allele frequency: it was calculated using AD fields in the VCF file, which 
records the number of reads coverage for the reference and alternative alleles. In addition, we down-sampled 
raw reads in real (NA12878_PrecisionFDA and NA12878_ SRR6794144) and simulated data using the tool seqtk 
v1.340, and generated read files in 10× and 20× sequencing depth for benchmarking comparisons.

Results
Quality summary of WGS datasets.  The two NA12878 WGS datasets, derived from PrecisionFDA and 
SRR6794144, had 542,906,383 and 379,033,340 read pairs, with a median insert size of 553 bp and 540 bp, and an 
average coverage of ~ 50× and ~ 37× (Table S1). For “synthetic-diploid” datasets, two independent replicate runs 
had 414,011,224 and 514,732,237 read pairs, with a median insert size of 354 bp and 329 bp, and a sequencing 
depth of ~ 40× and ~ 50×, respectively. About 98.7–99.4% of the sequencing reads in the real WGS data could be 
aligned to the reference genome (GRCh37.hs37d5). In comparison, two simulated datasets, Sim_random and 
Sim_user, had 390,319,108 and 390,296,059 read pairs with a sequencing depth of ~ 40×, and almost 100% of 
the reads could be aligned to the reference genome (Table S1). Among the datasets, the NA12878_SRR6794144 
displayed an unexpectedly high level of duplicate mapped reads (26%), compared to the others (0.2–2.6%).

Benchmarking of GATK, DRAGEN and DeepVariant variant calling pipelines.  The accuracy of 
germline variant calls using NA12878 and “synthetic-diploid” WGS datasets was first compared. For SNP calls, 
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all benchmarked pipelines (and their combinations) had F1-score, recall and precision values higher than 0.963, 
0.932 and 0.986, respectively. Specifically, Dragen3_raw showed the highest F1-score value in NA12878_Pre-
cisionFDA dataset, while DV_Dragen3 outperformed the others in F1-score for the NA12878_SRR6794144 
dataset (Fig. 2A,C). DV_gakt4 had the best performance with respect to accuracy for the two replicate runs of 
“synthetic-diploid” datasets (Fig. 2E,G; Table S5). Furthermore, we found that F1-scores in five of the six combi-
nations are close to each other, except for GATK4_vqsr with a range of values 0.989–0.996. The lower F1-score of 
GATK4_vqsr is mainly due to a poor performance in recall metrics, although precision metrics can reach a high 
value in real datasets (Fig. 2).

Compared to SNP calls, the metrics of indel calls is more diverse; F1-scores range from 0.905 to 0.989 in 
NA12878 dataset and from 0.912 to 0.961 in the “synthetic-diploid” dataset (Fig. 2B,D,F,H). Notably, DV_dragen3 
showed a higher F1-score than others in two datasets of NA12878, whereas the accuracy of Dragen3_raw gave 
the best performance in two replicate runs of “synthetic-diploid” (Table S5). Again, GATK4_vqsr suggested a 
poor F1-score value in all benchmarked datasets. By contrast, the benchmark evaluation on two simulated WGS 
datasets showed similar F1-score metrics for SNP and indel calls, respectively, in which Dragen3_raw was scored 
as having the best accuracy regardless of whether the benchmarking was done with a high confidence bed file 
or not (Figure S1). In total, our results indicate that the Dragen3_raw and DV_dragen3 achieve better F1-scores 
for small variant calls in analyses of real and simulated datasets.

In order to minimize false negatives, variants called by at least two of the benchmarked pipelines (i.e. GATK4_
raw, Dragen3_raw, DV_gatk4 and DV_dragen3) were merged. In the real data, a minor improvement in recall 
metrics benefits F1-score except for indel calling in the “synthetic-diploid” datasets (Fig. 2), although a few more 
false positives were also introduced. In comparison, no improvement in recall values for SNPs and indels calling 
after variants merging was found in the simulated data (Figure S1).

Stratification analysis of different genome contexts.  We stratified the performance and evaluated 
benchmarking metrics in different genome contexts. Recall, precision and F1-scores that were compared in 
conserved and coding regions for the “synthetic-diploid” datasets were displayed in Table S2. The performances 
of all pipeline combinations (except GATK4_vqsr) were similar to each other, with F1-score ranging from 
0.9944 to 0.9967 for SNP calls. Although the metrics of indel calls were variable in F1-score, differences between 
DV_gatk4, DV_dragen3, Dragen3_raw and GATK4_raw were not significant (Table S2). Similarly, stratification 
analysis on conserved/coding regions using simulated WGS datasets showed analogous F1-scores among the 
different pipeline combinations (Table S3).

In addition, the performance when stratified by sequence complexity, GC content, B allele frequency and 
sequencing depth was evaluated. As expected, the metric values (F1-score, recall and precision) of SNPs and 
indels tend to decrease with an increase in abundance of tandem repeats, and all pipelines gave a poor accuracy 
of variant calling in the low complexity regions with repeat lengths > 200 bp (Figure S2). GC content analysis on 
SNPs and indels showed a similar pattern, with a poor performance of F1-score in regions of high and low GC 
composition (Figure S3). A significant fall in precision was found at the allele fraction interval “0.1–0.2” for SNP 
and indel calling in stratification analysis of B allele frequencies (Figure S4). The low performance of this metric 
is not surprising, as it is difficult to phase genotypes and infer whether a polymorphic site is heterozygous or 
homozygous accurately under such allele fractions. With respect to the performance on WGS data in a gradient 
of read coverage, the quality of variants calling (e.g. F1-score, recall and precision) dropped with decreasing 
sequencing depth for all pipelines (Figure S5). At a very low depth of coverage (e.g. 10X), the DRAGEN pipeline 
alone (i.e. Dragen3_raw) or in combination with DeepVariant (i.e. DV_dragen3) provided a better accuracy in 
our comparisons, while GATK (i.e. GATK4_raw) was more susceptible to errors.

The analysis of substitution signatures and contexts of false positive and negative variants in the NA12878_
SRR6794144 dataset demonstrated that there were more calls with A > T, C > A, G > T and T > A substitutions in 
GATK4_raw false positive variants than the expected distribution shown in the true gold callset (Figure S6A), 
which supports earlier findings reported by Supernat et al.24. Additionally, more C > A substitutions in both 
false positive and negative variants called by Dragen3_raw were found. In comparison, more A > C and T > G 
substitutions were identified in false positive variants called by GATK4_raw than expected in the NA12878_Preci-
sionFDA dataset (Figure S6B). Interestingly, a SNP type bias in the real data indicated a pipeline-specific feature. 
However, in the simulated data, both false positives and negatives called by all pipeline combinations seemed to 
be independent of compositional biases with respect to the base change (Figure S6C and D).

Comparison of variant calling concordance.  The venn diagrams in Fig. 3 illustrate the intersection of 
SNPs and indels called by GATK4_raw, Dragen3_raw, DV_gatk4 and DV_dragen3. For both real and simulated 
datasets, around 91.7–99.6% SNPs were jointly reported by all the pipeline combinations, and over 95.3–99.95% 
of SNPs could be detected by at least two pipeline combinations. The fractions of SNPs uniquely called by 
GATK4_raw, Dragen3_raw, DV_gatk4 and DV_dragen3 were only 0.002–1.62%, 0.045–2.56%, 0.005–0.31% and 
0.0004–0.32%, respectively. By contrast, there were 83.5–99.4% indel variants commonly detected by multiple 
combinations in all datasets, except for NA12878_SRR6794144, in which only 69.7% of total indels were jointly 
identified (Fig. 3). Although indels have a larger divergence of calling concordance compared to SNPs, the high 
number of variants detected by multiple combinations and low orphan variants support a good agreement in the 
identification of SNPs and indels by different pipelines.

Comparison of execution time.  To better assess the operating efficiency, the pipeline processing pro-
cedure was divided into upstream (Fastq to BAM file) and downstream (BAM to VCF file) workflows, and the 
runtime of each workflow was measured. For benchmarking execution time on a HPC cluster, Dragen3_raw/
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Figure 2.   Accuracy evaluation of variant calling pipelines on real WGS datasets NA12878_PrecisionFDA 
(A,B), NA12878_SRR6794144 (C,D) and “synthetic-diploid” CHM1-13 (E,F for replicate ERR1341793, G,H for 
replicate ERR1341796). For each dataset, seven different combinations (i.e. DV_gatk4, DV_dragen3, Dragen3_
raw, Dragen3_vqsr, GATK4_raw, GATK4_vqsr and Merged) were compared. The performance metrics (F1-score, 
Recall and Precision) of SNP and indel calls were estimated using a “genotype match” approach for NA12878 
and a “local match” approach for the “synthetic-diploid” CHM1-13.
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Figure 3.   Venn diagrams showing the intersection of variants called by different pipeline combinations 
on NA12878_PrecisionFDA (A), NA12878_SRR6794144 (B), “synthetic-diploid” CHM1-13 (C—replicate 
ERR1341793; D—replicate ERR1341796) and two simulated WGS datasets (E—random mutation profile; F—
user defined mutation profile). The number of SNP and indel variants are shown together using separator ‘/’. The 
callsets Dragen3_vqsr and GATK4_vqsr are not included in the comparison as they are subsets of Dragen3_raw 
and GATK4_raw, respectively.
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vqsr took from 30 min to 1.5 h in the upstream analysis. This was significantly lower than GATK4_raw/vqsr, with 
a speed-up gain in the range of 17× to 33× (Fig. 4). In the downstream workflow, Dragen3_raw/vqsr still outper-
formed GATK4_raw/vqsr and DV_gatk4/DV_dragen3, despite the degree of speed-up gain being lower than that 
of the upstream workflow. Similarly, DRAGEN showed a big advantage in running speed when compared on a 
local VM, with a time requirement of even less than that of benchmarked on the HPC cluster (Figure S7). Over-
all, compared to the other pipelines, DRAGEN platform provided an ultra-rapid analysis solution for germline 
variant calling using WGS data.

Discussion
In this study, we empirically evaluated the performance of different pipelines (and their combinations) for 
germline variant calling using real and simulated WGS data. Our results demonstrated that DeepVariant (DV_
dragen3 or DV_gatk4) shows a higher accuracy in SNP calls for one NA12878 dataset (SRR6794144) and two 
“synthetic-diploid” datasets, and in indel calls for two NA12878 datasets. Despite a better performance, the 
F1-scores obtained in NA12878 benchmarking evaluation were lower than those published in the FDA Truth 
Challenge: 0.9912–0.9959 versus 0.9996 (pFDA top) for SNP calls, and 0.9897–0.9717 versus 0.9934 (pFDA top) 
for indel calls. This variation probably results from differences in the benchmarking procedure of pFDA Truth 
challenge, in which the NA12878 sample was used for training, and the HG002 sample was used for testing. The 
top benchmarking results in pFDA Truth challenge were derived from the HG002 comparison. The accuracy of 
the DRAGEN pipeline (Dragen3_raw) gave a better performance in both SNP and indel calls for the simulated 
dataset, and in indel calls for the “synthetic-diploid” datasets, despite not achieving as high F1-score metrics as 
DeepVariant in the benchmark of the NA12878 dataset. In fact, the differences in benchmarking scores between 
DRAGEN and DeepVariant are quite small (Fig. 2 and Figure S1). In particular, stratification analysis of con-
served and coding regions suggests nearly the same accuracy between them. Thus, merging variants called by 
multiple pipelines can reduce false negatives in a benchmarking study, which potentially benefits the F1-score. 
However false positives will be introduced by this, in particular for incongruent genotypes phased by different 
callers. In terms of a tradeoff relationship between recall and precision, the F1-score does not always indicate an 
improvement (it depends on the ratio between reduction of false negatives and gain of false positives).

The most important advantage of the DRAGEN platform is computational time, and consequently throughput 
of the massive volumes of data. Indeed, in this study the running efficiency of the DRAGEN platform was far 
superior to both GATK and DeepVariant with the support of hardware-based accelerations. Based on these con-
siderations, and the accuracy results we measured, it seems reasonable to recommend that either the DRAGEN 
pipeline is used alone (Dragen3_raw), or in combination (DV_Dragen3), where DRAGEN is used for upstream 
processing and DeepVariant for downstream processing, to obtain a balance in accuracy and efficiency for ger-
mline variant calling from WGS data.

Although the DRAGEN platform provided the best performance in running efficiency in this study, real 
execution time on HPC clusters never reached the performance stated by the manufacturer. Even when a bench-
marking comparison was performed on a local VM, where faster I/O communication on the local ext4 file sys-
tem could benefit the running speed compared to a BeeGFS network file system on a HPC cluster, only minor 
improvements in time consumption could be observed (Figure S5). Thus, there is still room for optimizing 
runtime of DRAGEN platform with regards to its implementation at the infrastructure and hardware levels. 
Compared to DRAGEN, optimization of running efficiency for GATK and DeepVariant was not achieved in 
the computing environment of our study. For example, DeepVariant could gain a 2.5× speedup using a high-
performance graphics processing unit, since its variant calling algorithm is based on image analyses. For GATK, 
the genome was split into 14 fractions by chromosomes, scaffolds and contigs, and were run in a “scatter–gather” 
strategy. There were 64 cores per node in the HPC cluster, therefore the genome could ideally be split into the 
same number of divisions as the number of cores, and be run in parallel. Despite these optimizations, neither 
DeepVariant nor GATK would achieve the efficiency of DRAGEN, as no hardware-accelerated implementations 
of genomic analyses algorithms have been developed for them.

Two types of high confidence benchmark truth call sets: the GiaB reference data (sample NA12878) and the 
“synthetic-diploid” mixture of two haploid cell lines were applied to evaluate the performance of germline vari-
ant callers using real data. The construction of the truth set, and strengths and weaknesses based on variant type 
and genome context should be considered. The GiaB benchmark sets were built from the consensus of multiple 
variant callers on Illumina short-read sequencing with the aid of a pedigree analysis, integration of structural 
variants identified with long fragment technologies by PacBio and 10X Genomics, and HuRef genome analysis 
using Sanger sequencing39. Nearly all the “true” variants in NA12878 sample are present in the resource files 
(e.g. dbSNP, 1000 genomes and the training data for DeepVariant) used for pipeline running. In this case, the 
results are likely overfitting as the answer has been used all along. Furthermore, truth callset of NA12878 excludes 
more difficult types of variants in the region with moderately diverged repeats, and segmental duplications, as 
consensus in such regions has not been reached. This will tend to bias GiaB datasets towards “easy-to-sequence-
and-analyze” genome regions.

The truth ”synthetic-diploid” callset was generated by assembly of long reads sequenced from two haploid 
cell lines (CHM1 and CHM13) using PacBio technology. This can be considered trustworthy, as there are no 
heterozygous sites that tend to confuse the assembly. The exclusive use of PacBio, without incorporation of the 
flaws generated from Illumina’s short-read technology, ensure there is less correlation between the failure modes 
of this method on the short-read data and confidence regions. This enables benchmarking in regions that are 
difficult to map with short reads. However, the “synthetic-diploid” callset currently contains some errors that 
were intrinsically present in the long reads27. It is thus recommended to use a less strict benchmarking strategy 
(“local matches” method) for comparisons27,39. Here, the evaluation using “genotype match” as it applied in 
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Figure 4.   Variant calling runtime of six pipeline combinations (DV_gatk4, DV_dragen3, Dragen3_raw, 
Dragen3_vqsr, GATK4_raw and GATK4_vqsr) benchmarked on a HPC cluster (A,B—NA12878_PrecisionFDA 
and NA12878_SRR6794144 datasets; C,D—“synthetic-diploid” ERR1341793 and ERR1341796 datasets; E,F—
simulated data based on a random and a user defined mutation profile).



10

Vol:.(1234567890)

Scientific Reports |        (2020) 10:20222  | https://doi.org/10.1038/s41598-020-77218-4

www.nature.com/scientificreports/

NA12878 datasets was also performed (Table S4). For SNP metrics, DeepVariant (DV_gatk4 or DV_dragen3) 
was consistently rated as the best according to their respective F1-scores. In terms of the performance metrics 
of indel calls, Dragen3_raw and GATK4_raw had a better value for the ERR1341793 and ERR1341796 datasets, 
respectively. As expected, the recall, precision and F1-score of indels are relatively low compared to the met-
rics done by the “local match” method. Precisely assessing the accuracy of genotypes from the exact sequence 
changes in REF and ALT fields of the VCF file for “synthetic-diploid” data benchmarking remains challenging. 
Consequently, a less stringent methodology, like the “local match” approach is required. One advantage is robust 
towards representational differences of variants in truth and inquiry sets. Overall, the characteristics of these 
two truth datasets make them very valuable for performing a comprehensive comparison assessment of different 
bioinformatics tools.

In addition to the real WGS data, we generated two simulated WGS datasets on the basis of a random and 
a user defined mutation profile. One advantage of using simulated in silico data for benchmarking is that all 
“true” positive SNPs and indels are known, without the presence of controversial genotypes. The calculation of 
F1-score is more accurate, due to the reduced risk of overestimating false negatives. Additionally, in simulated 
data, the read coverage across the whole genome region has a more even distribution than that found in real data, 
so variant calling errors arising from low coverage in some regions could be reduced. On the other hand, the 
accuracy of variant calling in simulated data easily reaches saturation (Figure S1), as simulated data can achieve 
a perfect alignment (almost 100%, Table S1) to the reference genome, which benefits variant calling for both 
SNPs and indels. Furthermore, a difference in stratification analysis of GC content was found between in silico 
and real data, with less divergent performance metrics shown in simulated data (Figure S3). Similarly, both false 
positive and negative variants called by benchmarked pipelines in simulated data are independent of any types of 
SNP biases in the distribution of substitution signature (Figure S6). All these systematic discrepancies between 
simulated and real data suggest in silico data cannot capture true experimental variability and are always less 
complex than the real data41,42. Specifically, the models used for data simulation may not replicate an identical 
sequence complexity in real data with regard to all biological and technological features. For examples, some 
important modelling parameters, such as PCR amplification during library preparation, GC% coverage bias, 
sequencing errors and mutation profile were empirically learned from selected known datasets without consider-
ing sample specificity and diversity broadly. As the results showed, the benchmarked pipelines can identify most 
true positives well, without introducing variable false positives when variants calling is carried out on simulated 
reads. Although the models do not fit a real scenario completely, simulation is still an important approach for 
benchmarking evaluation of different bioinformatics pipelines with similar functionality. However, it should be 
noted that the application of simulated data in benchmarking can only complement the real experimental gold 
standard data, as a useful supplement for testing and development of computational tools. In silico data do not 
replace the use of physical standards that measure the full range of variation as faced in clinical diagnostics42.

It is highly recommended in GATK and DRAGEN best practices to apply variant quality score recalibration 
(VQSR) to filter raw SNP and indel calls generated by HaplotypeCaller, and to remove calling artefacts. In theory, 
VQSR balances sensitivity and specificity during variant filtering. However, the F1-score was lower in both real 
and simulated data except for Dragen3_vqsr in NA12878_SRR679414 after VQSR filtering, although precision 
reached the highest value. In Fig. 2, the precision metrics on average were raised only 0.15% and 0.5% for SNPs 
and indels, respectively, while the recall suffered from a larger fall, which is significant for GATK4_vqsr (e.g. 
reduced by 3% for SNPs and 4% for indels in NA12878_PrecisionFDA dataset). Consequently, the calculated 
F1-score did not show the expected improvement. This could potentially be explained by the fact that VQSR 
was performed on a single sample at a time, yielding instability from the convergence failure of core algorithm 
modelling. This may lead to the necessity for quite “strict” criteria in the filtering of raw variant calls and cause a 
lower recall value. In addition, we experienced some challenges in performing VQSR analysis on the simulated 
WGS data under the default parameters, as there were not enough variants to be trained as a meaningful “bad 
set”, for effective cluster discrimination. Instead, we turned down the number of max-gaussian parameters to 2 
for indels and 4 for SNPs and forced the program to group variants into a smaller number of clusters to satisfy 
the statistical requirements. Overall, our results suggest it is not necessary to perform VQSR control for one 
sample analysis, and in fact the raw unfiltered VCF files have a good balance between recall and precision for 
GATK and DRAGEN.

Several caveats and limitations of the current study needs mention. First, variant calling was performed by 
the pipelines using their default parameters. It would be interesting to attempt to optimize the parameters and 
settings for each pipeline, potentially benefitting the variant calling accuracy. However, this is in general a time-
consuming process sometimes requiring communication with the authors of each tool for a deep investigation 
of parameter usage. Second, we performed a benchmarking study using both real and simulated data. A further 
technique is to design ‘semi-simulated’ datasets that combine real experimental data with an in silico (i.e. com-
putational) spike signal. For example, by combining cells from ‘null’ (e.g. healthy) samples with a subset of cells 
from samples expected to contain a true differential signal. This strategy can create datasets with more realistic 
levels of variability and correlation, together with a ground truth. Lastly, we did not include all available germline 
variants calling pipelines for benchmarking study, and three of them (i.e. GATK, DRAGEN and DeepVariant) 
were chosen for this study, although others with similar functionality exist (e.g. Strelka2). We focused on these 
three because they represented the most up-to-date and widely used tools for germline variant calling using 
WGS data. Recently, the GATK team announced a collaboration with the Illumina DRAGEN team to co-develop 
analysis methods and pipelines for short-read variant calling. DRAGEN-GATK is likely to be released in the 
near future, which appears to be able to provide researchers with tools that are fast, reproducible and accurate 
under an open-source framework, and should deserve attention in further studies.

In conclusion, our benchmarking on real and simulated WGS datasets reveal DRAGEN and DeepVariant 
pipelines have high accuracy in small germline variant calling, and there are no significant differences in their 
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F1-score performances. The DRAGEN platform performed superiorly in ultra-rapid analysis of WGS data for 
SNP and indel detection, and therefore has great potential for implementation in routine genomic medicine, 
where speed may be of essence. The combination of DeepVariant and DRAGEN pipelines can also offer a fast, 
efficient and reliable way to analyze WGS data on a large scale, and go a long way toward reliable and consistent 
calling of variants when translating genetic variant information to medical diagnostics.

Data availability
Raw WGS data of NA12878 (HG001) were publicly obtained from https​://preci​sion.fda.gov/chall​enges​/truth​ and 
NCBI SRA repository (https​://trace​.ncbi.nlm.nih.gov/Trace​s/sra/?run=SRR67​94144​), respectively. Raw reads of 
“Synthetic-diploid” WGS data sequenced from mixed DNA of CHM1 and CHM13 cell lines were retrieved from 
the European Nucleotide Archive repository (https​://www.ebi.ac.uk/ena/data/view/SAMEA​39119​76). Raw reads 
of simulated WGS data generated and analyzed in this study are available from the corresponding authors (E.H) 
on request. The scripts used for running variant calling pipelines are available on the GitHub page: https​://githu​
b.com/senzh​aocod​e/Bench​mark_scrip​t
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