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Introduction: Childhood growth is a sensitive marker of health. Animal studies show

increased height and weight velocity in the presence of fungal as well as antibiotic

supplement in feed. Human studies on early gut microbiota and anthropometrics have

mainly focused on bacteria only and overweight, with diverging results. We thus aimed

to investigate the associations between childhood growth [height and body mass index

(BMI)] and early fungal and bacterial gut microbiota.

Methods: In a population-based cohort, a subset of 278 pregnant mothers was

randomized to drink milk with or without probiotic bacteria during and after pregnancy.

We obtained fecal samples in offspring at four time points between 0 and 2 years

and anthropometric measurements 0 and 9 years. By quantitative PCR and 16S/ITS

rRNA gene sequencing, children’s gut microbiota abundance and diversity were analyzed

against height standard deviation score (SDS) and BMI-SDS and presented as effect

estimate (β) of linear mixed models.

Results: From 278 included children (149 girls), 1,015 fecal samples were collected.

Maternal probiotic administration did not affect childhood growth, and the groups were

pooled. Fungal abundance at 2 years was positively associated with height-SDS at

2–9 years (β = 0.11 height-SDS; 95% CI, 0.00, 0.22) but not with BMI-SDS. Also, higher

fungal abundance at 1 year was associated with a lower BMI-SDS at 0–1 year (β =−0.09

BMI-SDS; 95% CI, −0.18, −0.00), and both bacterial abundance and bacterial alpha

diversity at 1 year were associated with lower BMI-SDS at 0–1 year (β =−0.13 BMI-SDS;

95% CI, −0.22, −0.04; and β = −0.19 BMI-SDS; 95% CI, −0.39, −0.00, respectively).

Conclusions: In this prospective cohort following 0–9-year-old children, we observed

that higher gut fungal abundances at 2 years were associated with taller children

between 2 and 9 years. Also, higher gut fungal and bacterial abundances and higher

gut bacterial diversity at 1 year were associated with lower BMI in the first year of life.

The results may indicate interactions between early gut fungal microbiota and the human

growth-regulating physiology, previously not reported.

Clinical Trial Registration: Clinicaltrials.gov, NCT00159523.
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INTRODUCTION

Childhood growth constitutes a prominent and important sign
of bodily development, and thus this sensitive health marker
is assured by growth control programs worldwide (1). Human
growth comprises four overlapping phases including foetal,
infancy, childhood, and pubertal growth. Each growth phase is
driven by certain endocrine processes, as well as being influenced
by genetic, nutritional, and environmental factors (1, 2). Recent
investigations suggest that the gut microbiota could be a possible
growth regulator too (3, 4).

The gut microbiota refers to the microbial community
within our gastrointestinal tract, housing symbiotic microbes
like bacteria and fungi. The fungal proportion of the microbiota
is denoted mycobiota. Early gut microbiota patterns have been
associated with childhood obesity with various findings (5–
8), e.g., at 3 months the relative abundances of Firmicutes
and Lachnospiraceae were positively and for Bifidobacterium
spp. negatively associated with early overweight and obesity.
Associations with height velocity have been poorly explored, but
in pre-school children, height velocity has been found associated
with certain Firmicutes spp. at 3 months and higher gut bacterial
diversity at 0–3 years (4, 7, 9, 10). Since the 1950s, antibiotics have
been widely used as growth promotors in livestock production
(11). While early human antibiotic use may predispose for later
childhood obesity (12), its possible effect on height velocity is
less elucidated. A Helicobacter pylori eradication study with 1
week administering broad-spectrum antibiotics in 6–10-year-
old children showed increased height standard deviation scores
(SDS) by 20% in the intervention group compared with the
control within 1 year, even when H. pylori was not eradicated
(13). The same antibiotics-height association was observed in a
large Finnish infancy cohort (12).

When the European Union banned the use of antimicrobials
as growth promotors in animal production, the search for
non-antimicrobial growth promotors in animals led to a wide-
spread use of yeast and its cell wall products as new growth
promotors (14). In the early human gut, the most abundant yeast
genera are Debaryomyces, Candida, and Saccharomyces, with a
development toward higher diversity of species (alpha diversity)
and more Saccharomyces cerevisiae as the children age (15).
In two randomized-controlled trials in which preterm neonates
(28–32 and 30–37 weeks of gestational age, respectively) were
supplemented with a probiotic S. cerevisiae strain (Saccharomyces
boulardii), probiotic groups experienced greater weight gain than
the control group (length was not measured in one study and
increased non-significantly in the other) (16, 17). This indicates
that the early mycobiota could promote early human growth. All
the same, the possible role for mycobiota as a human growth
promotor remains unexplored.

Abbreviations: Bb-12, Bifidobacterium animalis subsp. lactis Bb-12; BMI,

body mass index; CFU, colony-forming unit; CI, confidence interval; CT,

Cycle threshold; ITS, internal transcribed spacer; GH, growth hormone; La-

5, Lactobacillus acidophilus La-5; LGG, Lactobacillus rhamnosus GG; OTU,

operational taxonomic unit; qPCR, quantitative polymerase chain reaction;

QIIME, Quantitative Insights into Microbial Ecology; rrn, ribosomal RNA

operons; SDS, standard deviation score; sp./spp., species (singular/plural).

The objective of the current study was therefore to study
associations between early gut fungal and bacterial microbiota
and childhood height-SDS and BMI-SDS in a longitudinal cohort
of healthy children up to the age of 9 years.

MATERIALS AND METHODS

Materials
The aim of the current study was to investigate the association
between early gut microbiota and childhood growth. The
stool samples analyzed in this study were collected during a
randomized trial of probiotics (ProPACT) (18). In total, 415
mothers were randomized to drink probiotic or placebo milk
from inclusion to 3 months post partum. The probiotic milk
contained 5 × 1010 colony-forming units (CFUs) of each of
Lactobacillus rhamnosusGG and Bifidobacterium animalis subsp.
lactis Bb-12 and 5 × 109 CFUs of Lactobacillus acidophilus
La-5, whereas the placebo milk was sterile and contained no
probiotic bacteria. This maternal probiotic administration led
to an increased presence and abundance of LGG in the infants’
gut microbiotas at 10 days and 3 months, but no significant
difference at 1 and 2 years, as previously shown (18). Apart from
this, there were no other statistically significant differences in
the microbiota composition or diversity between the groups (18).
Since we considered these differences to beminimal, the two arms
were pooled in the analysis of the present study.

In total, 278 of 415 participating children supplied 1,015 fecal
samples at 10 days, 3 months, 1 and 2 years after birth (Table 1).
The stool samples were collected from the diaper and transferred
to a tube with 10ml Cary-Blair transport medium (∼20 times
dilution) before immediate freezing at −18◦C at home. The
parents were instructed to collect one big spoon of fecal matter
with an enclosed spoon as sampling equipment. After transport
to the laboratory, the samples were stored at −80◦C before
further analyses. Self-reported questionnaires about the health
and environment of the child were collected in pregnancy, 6
weeks after birth, at 1 and 2 years, with information on mode
of delivery, breast-feeding length, antibiotic administration to
mother and offspring, and gestational age.

Ethics Approval and Consent to Participate
The parents signed an informed consent at inclusion and
were once more informed when the anthropometry data were
drawn, with the ability to withdraw, which two participants
did. The study protocol was approved by the Regional Ethical
Committee of Central Norway (2014/1796; Trial registration at
Clinicaltrials.gov NCT00159523, registered 08.09.2005).

Methods
Anthropometric Measurements
Height and weight were measured at routine follow-ups at
public health centers. Height was measured supine <2 years
and standing thereafter with a stadiometer, and weight was
measured with a digital weight, according to Norwegian
guidelines. Anthropometrics were collected and converted to
SDS (z-scores) based on a large Norwegian child population
reference (19). BMI-SDS constitutes a more explanatory and
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TABLE 1 | rRNA gene quantification and 16S/ITS rRNA gene region sequencing of fecal samples.

10 Days 3 Months 1 Year 2 Years Total

All fecal samples (count) 274 246 247 248 1,015

Detected bacterial DNA (16S rRNA gene region) 266 (97%) 243 (99%) 247 (100%) 243 (98%) 999 (98%)

Sequenced 16S rRNA V3–V4 gene region amplicons (after rarefaction)a 178 (65%) 193 (78%) 216 (87%) 170 (69%) 757 (75%)

Detected fungal DNA (ITS rRNA gene region) 153 (54%) 148 (60%) 163 (66%) 189 (76%) 653 (64%)

Sequenced ITS gene region amplicons (after rarefaction)a 15 (6%) 4 (2%) 7 (3%) 11 (4%) 37 (4%)

aSamples were sequenced if the qPCR cycle threshold was <35 cycles to provide trustworthy results in the sequencing procedure. Few samples were excluded due to rarefaction.

TABLE 2 | Maternal and offspring characteristics.

Participant characteristics ProPACT participants with fecal

samples (n = 278)

ProPACT participants without

fecal samples (n = 136)

P-valuea

Maternal age at delivery [mean (SD), years] 30.0 (4.3) 29.3 (4.8) 0.03

Cesarean sections [No. (%)] 35 (12.6) –b –b

Allocated to probiotics [No. (%)] 141 (50.5) 63 (43.6) 0.42

Maternal higher education [No. (%)] 217 (77.8) 79 (58.5) < 0.01

Female offspring [No. (%)] 149 (53.4) 57 (54.3) 0.88

Gestational age [mean (SD), weeks] 40.3 (1.57) 40.2 (1.68) 0.47

Birth weight [mean (SD), g] 3,633 (485) 3,617 (446) 0.78

Birth length mean (SD; cm) 50.5 (1.94) 51.5 (6.09) 0.18

Breastfed after 3 months [No. (%c)] 224 (97.4) 39 (97.5) 0.97

Formula fed after 3 months [No. (%c)] 98 (36.3) 18 (40.0) 0.63

Breastfed beyond 1 year [No. (%c)] 73 (28.1) 9 (29.0) 0.99

CHILDREN RECEIVING ANTIBIOTIC TREATMENT WITHIN [NO. (%C)]

6 weeks 6 (2.5) 1 (1.5) 0.61

1 year 36 (13.9) 12 (14.3) 0.93

2 years 117 (41.9) 22 (25.9) < 0.01

Pregnant mothers receiving antibiotics [No. (%c)] 16 (6.5) 2 (2.9) 0.09

Overweight (BMI-SDS ≥1) at 7–9 years [No. (%c)] 44 (18.2) –b –b

Obesity (BMI-SDS ≥2) at 7–9 years [No. (%c)] 6 (2.5) –b –b

aP-values calculated using χ2 test for binary variables and t-test for continuous variables.
bNot available.
cPercentage of total respondents of the present questionnaire.

precise way to describe children’s weight development since BMI-
SDS is adjusted for age and sex. Likewise, height-SDS better
presents the height growth and indicates along which height
percentile curve the child grows. To identify data errors and
outliers, we identified height-SDS and weight SDS values ≤3
and >3, as well as measurements where height decreased in two
consecutive measurements. These growth curves were evaluated,
and datapoints were removed when one could assume that the
measurements were incorrectly recorded. To ensure good-quality
anthropometric data before analysis, all individual growth curves
were modeled for inspection.

Microbiota Analyses
The microbiota analyses are thoroughly explained in the
Supplementary Material. Briefly, stool samples were
homogenized before DNA was extracted using a bacterial
protocol (20) as no fungal protocols for fecal DNA extraction
were validated. However, although different extraction kits

may produce differing total amounts of DNA, the relative
proportions of various DNA abundances seem to largely
correspond within the assays (21). We used bacteria-targeted
primers (V3–V4 part of 16S rRNA gene) (22) and fungi-targeted
primers (ITS1 part of 18S rRNA gene) (23) for quantification
by quantitative PCR (qPCR). The qPCR cut-off value was set
to the negative control if fungal abundance was lower than
negative control, or excluded from analysis if cycle threshold
value (CT value) at ≥45. CT values were converted to fungal
and bacterial DNA concentrations using standard curves
(Supplementary Material). Fungal quantification of the rRNA
18S/ITS1 gene region has been performed previously in bovine
rumen studies (24), and recently, strongly correlated abundance
estimations have been obtained using the ITS region (25). These
qPCR quantifications of the microbial rRNA genes [16S (V3–V4)
for bacteria and ITS1 for fungi] were therefore used as abundance
markers in this study. The majority of bacterial samples were
sequenced (Table 1). Ensuring high-quality sequencing, only

Frontiers in Pediatrics | www.frontiersin.org 3 November 2020 | Volume 8 | Article 572538

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Schei et al. Early Gut Microbiota and Growth

FIGURE 1 | Abundances and alpha diversities for fungi and bacteria. Abundance and alpha diversity data for fungi and bacteria for children’s samples at different ages

[10 days, 3 months, 1, and 2 years; fungal data reported in (15)]. The average fungal abundances (A) decreased significantly (P = 0.01) from 10 days (2.83 log ITS/ml)

to 1 year (2.19 log ITS/ml). The dashed blue line indicates the sequencing cut-off for fungi. Similarly, the bacterial abundance (B) decreased significantly (P = 0.04)

from 10 days (6.31 log 16S/ml) to 3 months (6.06 log 16S/ml), and then increased toward 1 year (7.00 log 16S/ml, P < 0.01). There was insufficient data to determine

the effect of age on the fungal alpha diversity (C); however, bacterial alpha diversity (D) increased steadily from its lowest at 10 days (1.30 H′) and highest at 2 years

(2.86 H′, P < 0.01). Cesarean section was associated with a non-significant trend toward lower bacterial alpha diversity at 3 months of age (1.09 vs. 1.36 H′, P =

0.06). Diamonds indicate sample means and error bars cover the 95% CI.

fungal samples <35 CT were sequenced, hence only 37 fungal
samples underwent sequencing. The 16S and ITS1 rRNA gene
regions were sequenced with Illumina MiSeq and thereafter
processed with the Quantitative Insights into Microbial Ecology
pipeline and UPARSE for operational taxonomic unit (OTU)
clustering, described previously (15, 20). Rarefaction cut-offs of
2,000 bacterial reads/sample and 6,000 fungal reads/sample were
used to ensure even representation while retaining most samples.
Taxonomic annotation of the OTUs were done against the
Greengenes database v13.8 for bacteria, and using a self-curated
concordance system for fungi, as there are no well-established
methods for fungal annotation (15).

Statistics
The influence of fungal and bacterial abundances and bacterial
diversity on height-SDS and BMI-SDS was estimated using
linear mixed models, accounting for repeated anthropometric

measurements with individuals as random intercept and age as
fixed slope and random slope in a maximum likelihood model.
The distributions of bacterial and fungal abundances were right
skewed and therefore log transformed. Abundances and diversity
were tested against breastfeeding, length of breastfeeding, and
delivery mode with linear mixed models. The models were tested
for interaction between the abundance/diversity and age, which
did not change the estimates and was therefore not included
in the final model. The analyses were also controlled for use
of antibiotics within 2 years without substantial effect on the
associations; thus, unadjusted analyses are reported. Probiotic
supplementation and antibiotic use were not associated with
growth and are therefore not included. However, statistically
significant associations were stratified into probiotic and placebo
groups to ensure that the effect estimators for growth were
consistent and to look for possible confounding by probiotics.
The growth data were divided into three age groups for analysis:
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FIGURE 2 | Bar charts of fungal and bacterial gut communities. (A) Mean relative abundances for the fungal genera (>1% abundant) for each age group. Each color

designates a genus. Number of samples for each bar is stated in brackets below the bar. (B) Mean relative abundances for the bacterial genera for each age group.

Each color designates a genera. The number of samples is stated in brackets below the bar.

0–1, 1–2, and 2–9 years. These analyses were computed in
StataMP15 (StataCorp) and remained uncorrected due to their
exploratory nature. Alpha diversity was measured in Shannon-
index (H′), representing the individual microbial diversity and
computed using PAST (26). Fungal diversity was only used as
material description and not in the final analyses due to a low
sample size. Fungal detection in samples were tested against
antibiotic administration in children and length of breastfeeding
and showed no significant differences. Correlation of consecutive
samples was evaluated with Pearson’s pair-wise correlation. The
microbial calculations and heatmaps were conducted in R using
PhyloSeq (27). The OTU analyses were conducted with ANCOM
in R (28), with zero-prevalence cut-off at 0.9, corrected for
multiple comparisons by the Benjamini-Hochberg procedure and
dichotomised into high and low SDS for height and weight at 0
SDS. The significance level was set to α = 0.05.

RESULTS

Study Population
From the 415 mother-child pairs in the ProPACT study, we
included 278 participants with at least one childhood fecal sample
and clinical follow-up data (67%). Included participants’ health
characteristics are compared with those without fecal samples
(Table 2), showing that included mothers were 8 months older
and more educated, and their offspring had received more
antibiotics between the first and second years of life.

Fungal and Bacterial Abundances and
Diversities
The fungal and bacterial abundances and alpha diversities at
different ages are shown in Figures 1, 2. The fungal data have
been reported previously (15) but not in relation to bacterial data.

There was no association between mode of delivery and fungal
abundance, bacterial abundance, or bacterial alpha diversity
in fecal samples collected from children; nor did antibiotic
treatment within 6 weeks, 1, or 2 years of age correlate with fungal
abundance, bacterial abundance, or bacterial alpha diversity (not
shown). Duration of breastfeeding was not associated with fungal
abundance, bacterial abundances, or bacterial alpha diversity in
the mixed model analysis including all age groups. In a subgroup
analysis, breastfeeding longer than 1 year was associated with
lower bacterial diversity at 1 year −0.23 H′ (95% CI, −0.06 to
−0.39), P = 0.007) but not at 2 years.

Microbiota and Childhood Growth
(Height-SDS and BMI-SDS)
About 13 (median; IQR, 12–16) data points for both weight and
height per child were included in the analysis.

Zero- to One-Year Growth
The linear mixed regression model suggested that higher fungal
abundance at 1 year was associated with a lower BMI-SDS from
0 to 1 year (β = −0.09 BMI-SDS; 95% CI, −0.18 to −0.00; P
= 0.04) (Figure 3A). However, visualization of the relationship
between fungal abundance quartiles and height-SDS indicates
that this relationship may not be linear (Figure 4C). There was
a trend that a higher fungal abundance in the 3-month sample
also was associated to lower BMI-SDS at 0–1 year, but this did
not reach statistical significance (β = −0.10 BMI-SDS; 95% CI,
−0.20 to 0.00; P= 0.06). Bacterial abundance and bacterial alpha
diversity at 1 year were also associated with lower BMI-SDS at 0–
1 year (β =−0.13 BMI-SDS; 95% CI,−0.22 to−0.04; P= 0.004;
and β = −0.19 BMI-SDS; 95% CI, −0.39 to −0.00; P = 0.047,
respectively) (Figures 3A, 4, Supplementary Figure 1).
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FIGURE 3 | BMI-SDS and height-SDS and microbial abundance as predicted linear associations. (A) Predictions of BMI-SDS at 0–1 year for fungal and bacterial

abundances. (B) Prediction of height-SDS at 2–9 years for fungal and bacterial abundance. The predictions are shown as lines, and the colored areas cover the 95%

CI. The bacterial abundance prediction model for height-SDS remains statistically non-significant.

One- to Two-Year Growth
There were no statistically or clinically significant associations
between fungal or bacterial abundances or bacterial diversity
and height-SDS or BMI-SDS from 1 to 2 years (data
not shown).

Two- to Nine-Year Growth
Higher fungal abundance at 2 years was positively associated
with height-SDS at 2–9 years (β = 0.11 height-SDS; 95%
CI, 0.00–0.22; P = 0.04) (Figure 3B), and by visualization,
the mean height-SDS was greater for each quartile of fungal
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FIGURE 4 | Mean height-SDS and BMI-SDS at 0–1 years according to microbiota abundances at 1 year. Mean standard deviation scores (SDS) values for children at

0–1 year with four quartiles of microbiota abundances at 1 year. Group mean height-SDS at 0–1 year for four quartiles of abundances of fungi (A) and bacteria (B).

Group mean BMI-SDS at 0–1 year for high or low abundances of fungi (C) and bacteria (D).

abundance at all time points (Figure 5). There was no association
with fungal abundance at 2 years and BMI-SDS at 2–9 years.
Also, there was no association between bacterial abundance or
bacterial alpha diversity and height-SDS or BMI-SDS (Figure 3,
Supplementary Figure 1).

Microbial Taxa
Neither height-SDS nor BMI-SDS appeared to be
associated with compositions of microbial communities
(Supplementary Figure 2). For longitudinal ANCOM models
analysing individual taxa, no individual taxa were associated with
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FIGURE 5 | Mean height-SDS and BMI-SDS at 2–9 years according to microbiota abundances at 2 years. Mean standard curve deviation (SDS) values for children at

2–9 years with four quartiles of microbiota abundances at 2 years. Group mean height-SDS at 2–9 years for four quartiles of abundances of fungi (A) and bacteria (B).

Group mean BMI-SDS at 2–9 years for high or low abundances of fungi (C) and bacteria (D).

anthropometry. For ANCOMmodels including fecal samples at 2
years and anthropometry from 2 to 9 years, there was a negative
association between relative abundance of Bifidobacterium

longum and height-SDS (Supplementary Figure 3). No
other microbial taxa differed significantly with height-
SDS or BMI-SDS, indicating that the taxa abundances stay
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relatively stable with increased total abundance (at least
for bacteria).

DISCUSSION

In this prospective population study, we found that greater
abundances of gut mycobiota at 2 years were associated with
increased height in children at 2–9 years. Furthermore, greater
fungal and bacterial abundance and greater bacterial diversity at 1
year of age were associated with lower BMI-SDS in children in the
first year of life. These new findings may suggest a link between
the gut microbiota and childhood growth.

A greater fungal abundance in the 2-year fecal samples
was associated with taller children from 2 to 9 years and was
supported by an increasing trend in height-SDS in the quartile
analysis (Figure 5A). Assuming the range of fungal abundance
of 6 units at 2 years (Figure 1), this would represent a difference
of about 3–4 cm at 6 years of age. This finding was in accordance
with our hypothesis that a more abundant mycobiota could affect
future height. Growth stimulation by adding S. cerevisiae into the
feed has been shown in piglets and dairy cows, possibly through
the growth hormone (GH) axis (29, 30). S. cerevisiae is one of
many fungi found in the human gut mycobiota, with increasing
abundance toward 2 years of age (15). The GH axis becomes
the driving growth regulator from 1 to 2 years when entering
the childhood growth phase (1, 2), which may justify why
the association between fungal abundance and height growth
becomes apparent from 2 years of age.

Children hosting higher abundances of fungi and bacteria
and higher bacterial alpha diversity at 1 year had lower BMI in
their first year of life, in this cohort of healthy well-nourished
Norwegian children with BMI-SDS normally distributed around
zero. Assuming the same range of microbial abundance of 6 units
at 1 year (Figure 1), this would represent a BMI difference of
about 1 BMI unit at 1 year of age. We also observed a tendency
that higher fungal abundance at 3 months correlated with lower
BMI-SDS at 0–1 years. Thus, the relation between BMI-SDS and
microbial abundance and bacterial diversity depicts a process
happening after the first months of life. Our data do not prove a
causal direction in the analysis of microbial abundances/diversity
and infantile BMI. However, the indication at 3 months could
suggest that at least fungal abundance increases at least within
a few months after birth in those with lower infantile BMI-SDS.
The gut microbial abundance and diversity normally increase
from birth to 1 year (31), and having a considerably high
microbial diversity and abundance as food is introducedmight be
favorable for a lower BMI development. High bacterial diversity
has been associated with childhood and adult leanness (32), in
accordance with our finding.

Interestingly, the taxonomic analysis yielded no associations
with BMI-SDS, using established and conservative methods. This
is in contrast with several recent investigations that showed
divergent associations with BMI and microbes (5–8). The lack
of consistent findings could be due to sample variations, liberal
statistical tests, or varying methods. By investigating microbial
total abundance, we observed links to both height velocity and

lower BMI. The absolute abundances appear thus to reveal
more than the microbial composition concerning growth. More
rigorous methods and statistical tools in this research field are
required (and are under development) and will hopefully provide
more robust analyses in the future.

We found no associations between antibiotic usage and
growth. This contrasts other human studies showing increased
childhood longitudinal growth after broad-spectrum antibiotics
treatments (12, 13). The livestock growth promotors are
low doses of broad-spectrum antibiotics continually, whereas
the children in our cohort received short-time treatments
of narrow-spectrum antibiotics. Thus, the different treatment
lengths and varying antimicrobial spectrums may explain the
differing findings.

This large population-based cohort of healthy Norwegian
children has a 9-year-long follow-up that enabled us to explore
associations between childhood growth and gut microbiota. A
conservative OTU approach decreased the rate of type I error
findings, and the bacterial analysis is robust. We managed to
quantify fungal DNA abundances in most samples, although
the lack of well-established fungal DNA extraction protocols
validated for stools might have reduced the extraction rate
of fungal DNA. Underlining the difficulty of fungal analyses,
low fungal amounts in general and a bacterially focused DNA
extraction made us unable to describe the total fungal diversity
as only 37 samples were sequenced for fungi, although 64%
of samples were quantified to measure microbial abundances.
Furthermore, the parents collected the fecal samples, which
could represent a random sampling misclassification. There are
no databases for the number of repeats of fungal ribosomal
RNA operons (rrn) for every fungal species detected, which
could impair the quantification precision. Also, as for all DNA-
based microbiome sequencing studies, the proportion of inactive
transient microbes remains unknown. Therefore, these findings
should be replicated, preferably with fungal-specific extraction
kits. However, this is the first study to show an association
between childhood growth and early gut mycobiota abundance,
introducing a novel research area on how early gut mycobiota
may impact human health and might possibly serve as a growth
promotion target.

CONCLUSION

In a 9-year follow-up of healthy well-nourished children,
increased gut fungal abundance appears to be more strongly
associated with childhood anthropometrics (increased height
velocity and reduced BMI) than bacterial abundance and
diversity (reduced BMI only). Analysing gut fungi remains
challenging; nevertheless, the findings call for more research on
how the mycobiota could affect human growth physiology.
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