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Abstract

Background: Human platelet lysate (HPL) is emerging as the preferred xeno-free supplement for the expansion of
mesenchymal stromal cells (MSCs) for bone tissue engineering (BTE) applications. Due to a growing demand, the
need for standardization and scaling-up of HPL has been highlighted. However, the optimal storage time of the
source material, i.e, outdated platelet concentrates (PCs), remains to be determined. The present study aimed to
determine the optimal storage time of PCs in terms of the cytokine content and biological efficacy of HPL.

Methods: Donor-matched bone marrow (BMSCs) and adipose-derived MSCs (ASCs) expanded in HPL or fetal bovine
serum (FBS) were characterized based on in vitro proliferation, immunophenotype, and multi-lineage differentiation.
Osteogenic differentiation was assessed at early (gene expression), intermediate [alkaline phosphatase (ALP) activity],
and terminal stages (mineralization). Using a multiplex immunoassay, the cytokine contents of HPLs produced from
PCs stored for 1-9 months were screened and a preliminary threshold of 4 months was identified. Next, HPLs were
produced from PCs stored for controlled durations of 0, 1, 2, 3, and 4 months, and their efficacy was compared in terms
of cytokine content and BMSCs’ proliferation and osteogenic differentiation.

Results: BMSCs and ASCs in both HPL and FBS demonstrated a characteristic immunophenotype and multi-lineage
differentiation; osteogenic differentiation of BMSCs and ASCs was significantly enhanced in HPL vs. FBS. Multiplex
network analysis of HPL revealed several interacting growth factors, chemokines, and inflammatory cytokines. Notably,
stem cell growth factor (SCGF) was detected in high concentrations. A majority of cytokines were elevated in HPLs
produced from PCs stored for <4 months vs. >4 months. However, no further differences in PC storage times between
0 and 4 months were identified in terms of HPLs' cytokine content or their effects on the proliferation, ALP activity, and
mineralization of BMSCs from multiple donors.
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outdated PCs for BTE applications.

Conclusions: MSCs expanded in HPL demonstrate enhanced osteogenic differentiation, albeit with considerable
donor variation. HPLs produced from outdated PCs stored for up to 4 months efficiently supported the proliferation
and osteogenic differentiation of MSCs. These findings may facilitate the standardization and scaling-up of HPL from
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Background

Adult mesenchymal stromal cells (MSCs) from various tissue
sources, most frequently bone marrow (BMSCs) and adipose
tissue (ASCs), are increasingly being used in bone tissue en-
gineering (BTE) strategies for reconstruction of clinically
challenging bone defects [1]. Although the use of whole tis-
sue fractions, such as bone marrow concentrates and adipose
stromal vascular fractions (SVFs), offers the feasibility of
minimum cell manipulation and cost-effectiveness, the yield
of MSCs obtained is relatively low. MSCs represent < 1% of
the mononuclear cell fraction in the bone marrow and ap-
proximately 1.4% in adipose SVF [2]. This has encouraged
ex vivo expansion strategies, which aim to exponentially
amplify the number of BMSCs or ASCs available for im-
plantation and thereby improve clinical outcomes.

The use of safe, standardized, and efficacious culture
conditions is a critical aspect of Good Manufacturing
Practice (GMP)-grade MSC expansion. Supplements pro-
viding growth factors (GFs), proteins, and enzymes for
ex vivo MSC expansion are broadly categorized as xeno-
geneic (animal-derived), xeno-free (human-derived), or
chemically defined [3, 4]. Although fetal bovine serum
(FBS) is commonly used for MSC expansion [5], several
limitations of FBS supplementation have been highlighted
[3, 6]. European guidelines advocate the use of “non-ru-
minant” over “ruminant materials” for the manufacture of
human medicinal products [7]. Accordingly, an increase
in the use of “xeno-free” supplements, such as human
platelet lysate (HPL), to develop GMP-compliant MSC ex-
pansion protocols has recently been reported [4, 8].

HPL is defined as a cell-free, protein- and GF-rich bio-
logical material produced from platelet concentrates (PCs)
initially intended for transfusion [9]. Platelets release a
wide range of physiological GFs and cytokines, which can
significantly enhance cell growth and function. Pooled-
and/or single-donor apheresis PCs are routinely prepared
by blood establishments for transfusion and, depending
on local regulations, stored for a maximum of 4-7 days
before being discarded [9]. It is estimated that 5-20% of
PCs produced in transfusion centers become “outdated”
and utilizing these for HPL production is reported to be
an ethically and economically optimal strategy, due to
comparable efficacy of HPL produced from “fresh” and
outdated PCs [6]. The current literature consistently dem-
onstrates that HPL is at least comparable, and often

superior, to FBS in supporting MSC proliferation, stromal
phenotype, chromosomal stability, and multi-lineage dif-
ferentiation potential [10]. Interestingly, MSCs expanded
in HPL have been reported to demonstrate enhanced
osteoblastic differentiation potential, suggesting particular
benefits of HPL expansion for BTE applications [4]. A
clinically validated protocol for MSC expansion in HPL
for BTE applications has recently been published [11].

The importance of HPL in GMP-grade MSC production
is highlighted by the publication of several recent consen-
sus statements [9, 12—14]. The most common themes in
these reports are the need to scale-up HPL production by
blood establishments and, more urgently, the need for
standardization of HPL products. There is currently con-
siderable large variation in the methods used to produce
HPL, which is further complicated by the availability of
several inadequately defined commercial HPL products. A
need for standardization has been described at various
levels of the HPL production process, such as the source
material (pooled buffy coats vs. apheresis PCs and fresh
vs. outdated PCs) and storage medium [plasma vs. platelet
additive solution (PAS) or a combination]. Moreover, the
pool sizes, i.e., the number of PC units or individual dona-
tions that are pooled to produce a single HPL product,
method of platelet lysis, use of pathogen inactivation strat-
egies, and quality control/release criteria for the final
product vary between manufacturers [14].

Nevertheless, there is a clear consensus that the use of
outdated pooled PCs as the source material is the opti-
mal strategy for large-scale HPL production. Although
the storage time of PCs varies between blood centers
based on national regulations, recent recommendations
call for immediate freezing of outdated PCs, i.e., within
7 days after collection, for subsequent HPL production—
this represents an efficient use of resources and mini-
mizes waste [9]. However, for many blood centers, it
may not always be possible to initiate HPL production
on the day of (or soon after) PC expiry, and the max-
imum duration for which PCs can be stored before being
used to prepare an efficient HPL remains unknown. If
outdated PCs can be stored for a standardized period to
produce an optimal HPL product, it would facilitate lo-
gistical solutions and encourage more blood establish-
ments to incorporate HPL production into their
protocols. Thus, optimizing the storage time of PCs
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would be a step towards addressing both the
standardization and scaling-up of HPL production.

In the context of BTE, a recent study demonstrated
differential effects of commercial HPL products on the
mineralization capacity of BMSCs, although the mecha-
nisms and HPL components contributing to these differ-
ences were not studied [15]. It would be of interest to
investigate the effects of PC storage times on the cyto-
kine contents of HPL, and subsequently the proliferation
kinetics and osteogenic differentiation potential of HPL-
expanded MSCs. Therefore, the objectives of this study
were to characterize HPL in terms of its cytokine con-
tent and efficacy for MSC expansion (vs. FBS), particu-
larly for BTE applications, and to investigate the effect of
PC storage time on the cytokine content and efficacy of
HPL in terms of MSC proliferation and osteogenic
differentiation.

Materials and methods

Production of HPL

PC preparation and storage

The HPL herein (Bergenlys®, Bergen, Norway) is pre-
pared from outdated pooled whole blood-derived PCs.
The PCs are prepared at the Department of Immunology
and Transfusion Medicine, Haukeland University Hos-
pital, Bergen, Norway, according to established proce-
dures and in line with national and EU quality
requirements. Briefly, written informed consent is ob-
tained from volunteer, healthy blood donors (aged 18—
70 years) complying with national guidelines for blood
donation. Whole blood is processed with the Reveos®
Automated Blood Processing Unit (Terumo BCT, Lake-
wood, CO, USA). All donations are tested for ABO and
RhD blood groups, infectious disease markers (HIV1/2,
HBYV, HCV), and sterility (aerobic bacteria). Donor infor-
mation and manufacturing details are stored to ensure
traceability of the final product. PCs (~ 300 mL) are gen-
erated by manually pooling five interim platelet units
(IPUs) in 30% plasma and 70% platelet additive solution
(Terumo BCT) and subsequently leukocyte-filtered
(Immuflex®, Terumo BCT). Pooled PCs containing > 2 x
10! platelets (and < 1 x 10° leukocytes) are X-ray irradi-
ated at a dose of 25 Gy and stored at 22 °C + 2 °C under
agitation for no longer than 7 days for use as transfusion
units. All unused (or outdated) 7-day-old PCs are frozen
at — 80 °C within 24 h for subsequent HPL production.

HPL production

Unused 7-day-old PCs were used for HPL production
via the freeze/thaw lysis method [16]. Briefly, four differ-
ent PCs (each PC containing buffy coats from five do-
nors =4 x 5 = 20 donors per HPL product) were exposed
to multiple freezing (- 80 °C for at least 3 h) and thawing
cycles [+37°C in a plasma thawer (Plasmatherm®,
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Barkey GmbH Co. KG, Leoppoldshoehe, Germany) for
15 min] to ensure platelet lysis before pooling. Pooled
PCs were then centrifuged at 3000xg (4°C, 15 min) to
remove platelet fragments and aliquoted as the final
HPL product. No fibrinogen depletion step was per-
formed. HPL aliquots were stored at — 80 °C and thawed
overnight at 4 °C for subsequent use in experiments.

Cell culture with HPL

Isolation and expansion of donor-matched BMSCs and ASCs
The biological efficacy of HPL was tested in various cel-
lular assays using human BMSCs and ASCs. Donor-
matched BMSCs and ASCs were isolated and expanded
according to established protocols [17]. Briefly, human
adipose tissue and bone marrow aspirates were obtained
after informed parental consent and ethical approval
(2013-1248/Regional Ethical Committee, South East,
Norway) from patients aged 8—14 years undergoing sur-
gery at the Department of Plastic Surgery, Haukeland
University Hospital. For each donor, BMSCs and ASCs
were isolated in 5% HPL and 10% FBS (GE Healthcare,
South Logan, UT, USA) supplemented growth media
[Dulbecco’s modified Eagle’s medium (DMEM, Invitro-
gen, Carlsbad, CA, USA) with 1% antibiotics (penicillin/
streptomycin; GE Healthcare)]. In HPL-supplemented
media, 1IU/mL of heparin was added to prevent gel-
ation and the medium was sterile filtered (0.2 um) before
use. Cells were sub-cultured and expanded according to
a clinically validated protocol with a seeding density of
4000 cells/cm® [11]; passage 2—4 cells from at least three
different donors were used in experiments. Cell number
and viability were assessed using 0.4% Trypan blue stain
(Invitrogen) and a Countess® Automated Cell Counter
(Invitrogen).

Immunophenotype of BMSCs and ASCs

The immunophenotype of BMSCs and ASCs in HPL
and FBS was assessed by flow cytometry based on the
expression of specific surface antigens, as previously de-
scribed [17] according to the “minimal criteria” for de-
fining MSCs [18]. Briefly, the cells in HPL and FBS were
incubated with conjugated antibodies against selected
“negative” (CD34, CD45, HLA-DR) and “positive”
(CD73, CD90, CD105) MSC markers (all from BD Bio-
sciences, San Jose, CA, USA) and STRO-1 (Santa Cruz
Biotechnology, Dallas, TX, USA) following the manufac-
turers’ recommendations. Quantification was performed
with a BD LSR Fortessa cell analyzer (BD Biosciences),
and data were analyzed using flow cytometry software
(FlowJo V10, Flowjo, LLC, Ashland, OR, USA).

Cell proliferation based on DNA quantification
BMSCs and ASCs in HPL and FBS were seeded in 24-
well plates at a density of 4000 cells/cm?. After 1, 7, and
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14 days of culture, DNA quantification was performed
using the Quant-IT® PicoGreen dsDNA Assay Kit
(Thermo Fisher Scientific, Carlsbad, CA, USA) according
to the manufacturer’s instructions. Briefly, cells were
lysed in 0.1% Triton X-100 and the PicoGreen staining
solution was added and incubated for 5 min at RT pro-
tected from light, before fluorescence was measured at
480 nm (Ex)/520nm (Em) with a microplate reader.
DNA concentrations (ng/mL) were calculated based on
known standards.

Multi-lineage differentiation of BMSCs and ASCs

The ability of BMSCs and ASCs to differentiate into
multiple stromal lineages was tested as previously de-
scribed [17]. Briefly, for adipogenic differentiation, cells
in HPL and FBS were cultured in StemPro® adipogenic
differentiation medium (Invitrogen) or standard growth
medium (control). After 14 days, intracellular lipid for-
mation was assessed via Oil red O (Sigma-Aldrich) stain-
ing. For quantification, the stain was extracted using
99% isopropanol (Sigma-Aldrich) and absorbance was
measured at 540nm using a microplate reader. For
osteogenic differentiation, cells in HPL and FBS were
cultured in osteogenic differentiation medium prepared
by adding final concentrations of 0.05 mM L-ascorbic
acid 2-phosphate, 10 nM dexamethasone, and 10 mM [
glycerophosphate (all from Sigma-Aldrich) to the re-
spective growth media. Cells in standard growth
medium served as controls. After 21 days, extracellular
calcium deposition was evaluated via Alizarin red S
staining (Sigma-Aldrich). For quantification, the stain
was dissolved in cetylpyridinium chloride (Sigma-Al-
drich) and absorbance was measured at 540 nm using
the microplate reader.

Gene expression

After 7 days of osteogenic induction, the expression of
osteogenesis-related genes (Supplementary Table 1) was
assessed in BMSCs and ASCs in HPL and FBS via quanti-
tative real-time polymerase chain reaction (qPCR) using
TaqMan® real-time PCR assays (Thermo Fisher Scientific).
RNA extraction and cDNA synthesis were performed as
previously described [17]. The expressions of the genes of
interest were normalized to that of glyceraldehyde 3-
phosphate dehydrogenase (GAPDH). Data were analyzed
by the AACt method, and results are presented as fold
changes in HPL groups relative to FBS groups.

Alkaline phosphatase (ALP) activity

After 7 and 14 days, ALP activity in the cells was mea-
sured using the SIGMAFAST BCIP/NBT assay (Sigma-
Aldrich). Following manufacturer’s instructions, cells
were lysed in 0.1% Triton-X100 buffer, mixed with a
working solution containing a phosphatase substrate and
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alkaline buffer solution, and incubated at 37 °C for 15
min, and absorbance was measured at 405nm using a
microplate reader.

Cytokine content in HPL

Multiplex assay and cytokine network analysis

The concentrations of 48 cytokines (Supplementary
Table 2) in HPL were measured using a multiplex im-
munoassay—Bio-Plex’ Pro 48-plex Human Cytokine
Screening Panel (Bio-Rad Laboratories, CA, USA) and a
Bio-Plex® 200 System (Bio-Rad), according to the manu-
facturer’s instructions. The cytokines included various
GFs, inflammatory mediators, and chemokines involved
in regulating MSC growth and function. To validate the
multiplex data, concentrations of three selected GFs,
namely platelet-derived growth factor BB (PDGEF-BB),
transforming growth factor-p1 (TGEF-P1), and vascular
endothelial growth factor (VEGF), were measured in
representative batches of HPL via enzyme-linked im-
munosorbent assay (ELISA) kits (R&D Diagnostics,
Wiesbaden, Germany) following the manufacturer’s pro-
tocols. Interactions between cytokines were analyzed
using the Search Tool for the Retrieval of Interacting
Genes/Proteins (STRING) database and online software
[19]. Cytokines were clustered according to the Markov
Cluster algorithm and the STRING global score as previ-
ously reported [20].

Screening of different storage times to identify a threshold
The first multiplex assay included several HPL batches
produced from PCs with different storage times (range 1—
9 months). These HPLs, and corresponding PC units, were
identified and screened retrospectively from a biobank,
i.e, not collected and intentionally frozen for specific pe-
riods of time (as performed later in the study). In order to
determine whether the duration of frozen storage of PCs
affects the cytokine content of subsequently produced
HPL, the storage times were divided into two categories:
storage <4 months and >4 months. Categorization was
based on (a) recommendations regarding “quarantine
storage” of GMP-grade blood products which state that
the product must only be released if the donors have been
tested negative for transmissible diseases twice, i.e., at the
time of blood donation and re-tested as negative 4 months
(or longer) thereafter [13, 21], and (b) current practices at
the HPL production site (Haukeland Hospital Bloodbank),
which are in line with the above recommendations.

Identifying a specific threshold for PC storage time

Since a preliminary threshold of 4 months was identified
in the screening assay, a more focused custom-designed
multiplex assay with 16 selected cytokines was per-
formed to identify a specific threshold, if any, between 0
and 4 months. For this purpose, HPL batches were
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specially produced from PCs frozen for controlled dura-
tions of 1, 2, 3, and 4 months. A reference HPL batch of
PCs frozen and processed immediately (“0 months”) was
also included. The custom assay was a modification of
the 48-plex panel (Bio-Rad) previously described. For
both multiplex assays, data was analyzed using the Bio-
Plex Manager Software (Bio-Rad) and final cytokine con-
centrations were derived in pg/mL.

Effect of frozen PC storage time on HPL efficacy

MSC morphology and proliferation kinetics

To investigate whether PC storage times affected the
biological performance of HPL, cellular assays were per-
formed using BMSCs. Previously cryopreserved passage
1 BMSCs were expanded for three additional passages in
HPL produced from 0-, 1-, 2-, 3-, or 4-month PCs. At
approximately 80% sub-confluence, cells from all condi-
tions were harvested, counted, and re-seeded at 4000
cells/cm?, following the same clinically validated proto-
col [11]. The population doubling (PD) rate was deter-
mined using the following formula [22]:

= loglO(Np) - loglO(N;)
N log10(2)

Ny is the harvested cell number and Nj; is the plated
cell number. The PD for each passage was calculated
and added to the PD of the previous passages to gener-
ate data for cumulative population doublings (CPD).
Additionally, the population doubling time (PDT), i.e.,
the average time between two doublings, was calculated
using the following formula [22]:

log2 x At
X =
loglO(Ny) - loglO(N;)

MSC osteogenic differentiation

To investigate whether PC freezing times affected the
osteogenic differentiation potential of BMSCs, cells ex-
panded for two passages with HPL produced from 0-, 1-,
2-, 3-, or 4-month PCs were plated for osteogenic differ-
entiation assays. The differentiation medium was pre-
pared by adding osteogenic supplements (as described
above) to the respective growth media. Osteogenic dif-
ferentiation was assessed via an ALP assay after 7 and
14 days (as described above) and via Alizarin red S stain-
ing of extracellular calcium deposits after 21 days (as de-
scribed above) in osteogenically induced and non-
induced BMSCs. Additionally, quantification of DNA
per sample in the ALP experiment was performed as
previously described. ALP activity was normalized to the
amount of DNA per corresponding sample (ng/mL).
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Statistical analysis

Statistical analyses were performed using the IBM SPSS
version 17.0 software package (SPSS Inc., Chicago, IL,
USA). Data are represented as arithmetic means + SD,
unless specified. For gene expression, statistical analyses
are based on delta-Ct values and data are presented as
relative fold changes. The student ¢ test and one-way
analysis of variance (ANOVA), followed by a post hoc
Tukey’s test for multiple comparisons, were applied
when appropriate and p <0.05 was considered statisti-
cally significant.

Results

Characterization of HPL efficacy

Isolation and characterization of BMSCs and ASCs
Donor-matched BMSCs and ASCs demonstrating charac-
teristic plastic adherence and fibroblastic morphology
were successfully expanded in both HPL- and FBS-
supplemented media. Distinct morphological differences
were observed between cells in HPL and FBS—the former
being smaller and more spindle-shaped; these differences
were more apparent at earlier passages (Fig. 1a). BMSCs
and ASCs in both HPL and FBS demonstrated the charac-
teristic MSC phenotype, ie, >95% of the cells were
positive for the stromal markers CD73, CD90, and
CD105, while < 5% of the cells expressed HLA-DR or the
hematopoietic markers CD34 and CD45 (Fig. 1b, Supple-
mentary figure 1). A trend for higher expression of STRO-
1 was observed in HPL-cultured BMSCs and ASCs
(Fig. 1c). Cell proliferation over 14 days was significantly
greater in HPL-cultured BMSCs and ASCs based on DNA
quantification (Fig. 1c).

Multi-lineage differentiation of BMSCs and ASCs

BMSCs and ASCs in both HPL- and FBS-supplemented
media demonstrated the capacity to differentiate into
adipocytes and osteoblasts, with some differences. Osteo-
genic differentiation in HPL and FBS was assessed at the
gene, protein, and functional levels. Expression of early
osteogenesis-related genes RUNX2 and BMP2 was signifi-
cantly upregulated in HPL-cultured BMSCs and ASCs after
7 days (Fig. 3a). Interestingly, expressions of SPP1 and
BGLAP, typically associated with later stages of osteogenesis,
were also upregulated in HPL-cultured cells; BGLAP was sig-
nificantly upregulated in ASCs. Intracellular ALP activity
after 7 and 14 days was higher in HPL- vs. FBS-cultured
BMSCs and ASCs; these differences were more pronounced
in ASCs (Fig. 3b). While BMSCs generally presented higher
ALP activity compared to ASCs at 7 days, the activity at
14 days was comparable between the two cell types. Signifi-
cantly greater mineral deposition via Alizarin red S staining
was observed in HPL- vs. FBS-cultured BMSCs and ASCs
after 21 days, suggesting an enhanced osteogenic differenti-
ation capacity of these cells (Fig. 3c). A trend for superior
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mineralization was observed in BMSCs as compared to
ASCs. After 14 days of induction, ASCs demonstrated super-
ior adipogenic differentiation, i.e., greater accumulation of
intracellular lipid vesicles, compared to BMSCs, as revealed
by quantification of Oil red O staining (Fig. 2e). HPL-
cultured ASCs and BMSCs demonstrated similar adipogenic
differentiation vs. their FBS-cultured counterparts (Fig. 2f).

No adipogenic or osteogenic differentiation of cells was ob-
served in the standard growth media (data not shown).

Characterization of HPL cytokine content

Multiplex assay and cytokine network analysis

A multiplex immunoassay was performed using HPLs
produced from frozen PCs stored for 1-9 months. Thirty
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(See figure on previous page.)

Fig. 2 Multi-lineage differentiation of BMSCs and ASCs in HPL. a Osteogenic differentiation: relative expression (fold changes) of early, intermediate,
and late osteogenic gene markers in BMSCs and ASCs after 7 days of induction. Data represent means; each symbol represents a single donor (n =23
donors) based on the average of 2 2 experimental replicates; statistical analyses are based on delta-Ct values; *p < 0.05; **p < 0.001. b ALP activity in
BMSCs and ASCs after 7 and 14 days of osteogenic induction. Data represent means + SD (n = 3 donors); **p < 0.001. Representative images of Alizarin
Red S (ARS) staining (c) and quantification (d) after 21 days. e Adipogenic differentiation: representative images of Oil red O (ORO) staining and
quantification (f) after 14 days. Scale bars 100 um. Data represent means + SD (n = 3 donors); **p < 0.001

of the 48 cytokines tested, including various GFs (n =
11), chemokines (n=9), and inflammatory mediators
(n =10), were reliably detected in all tested HPLs. Cyto-
kine concentrations, in comparison to previous studies,
are reported in Table 1. Concentrations of three selected
GFs, i.e.,, PDGF-BB, TGF-1, and VEGF, were validated
via ELISA (Supplementary figure 2). The cytokine net-
work analysis identified two major clusters of GFs, and
chemokine/inflammatory mediators; stem cell growth
factor (SCGF/CLEC11A) and stem cell factor (SCF/
KITLG) were clustered separately (Fig. 3). Clear and
abundant interactions were identified between the clus-
ters including synergistic relations between several pro-
teins that contribute to MSC proliferation, chemotaxis,
and osteogenic differentiation.

Screening of different storage times to identify a threshold
Of these 30 cytokines, the concentrations of 27 cytokines
were significantly reduced in the >4-month group while
only one cytokine, i.e., regulated upon activation, normal
T cell expressed and secreted (RANTES), was signifi-
cantly increased vs. the <4-month group. In addition to
the known predominant cytokines PDGF-BB and TGEF-
B1, high levels of SCGF and macrophage inhibitory fac-
tor (MIF) were detected in HPL. Other GFs, such as
basic fibroblast growth factor (b-FGF), hepatocyte
growth factor (HGF), SCF, VEGF, and all inflammatory
mediators [various interleukins (IL), tumor necrosis
factor-a (TNF-a), and TNEF-f] were present in relatively
lower concentrations (Fig. 4).

Identifying a specific threshold for PC storage time

After a preliminary threshold of 4 months was identified, a
second multiplex immunoassay with 16 selected cytokines
was performed to identify a specific threshold, if any, for
cytokine degradation between 0 and 4 months. Signifi-
cantly lower concentrations were detected at 0 and 1
months for SCF and at 2 months for GCSF (Fig. 5). No
significant differences were observed between the different
storage times for any of the other tested cytokines, and no
definitive threshold below 4 months could be identified.

Effect of frozen PC storage time on HPL efficacy

MSC morphology and proliferation kinetics

PC storage time did not seem to affect the biological per-
formance of HPL; no differences in BMSC morphology

were observed between the different storage times over
three serial passages (Fig. 6a). The proliferation data re-
vealed lower PD rate (fewer doublings) and higher PDT
with increasing passages. No significant differences were
observed with regard to kinetics-related variables (PD,
CPD, PDT) or absolute DNA amounts between the differ-
ent PC storage times (Fig. 6b).

MSC osteogenic differentiation

To investigate whether PC storage times affected the
osteogenic differentiation potential of BMSCs, ALP ac-
tivity (7, 14days) and mineralization (21 days) were
assessed. When combining data from all donors, no sig-
nificant differences in ALP (Fig. 7a) or mineralization
(Fig. 7b) were observed between the different PC storage
times. Considerable variation was observed between the
different BMSC donors in all groups—a trend for higher
mean ALP activity (at 7 days) and mineralization, with
lower inter-donor variation, was observed in the 3-
month storage group. When analyzing data from indi-
vidual donors, some differences in ALP activity and
mineralization were observed, i.e., BMSCs from the same
donor showed different activities in HPLs from different
PC storage times, although these differences did not
reach statistical significance for any of the donors. Over-
all, donor-related properties rather than PC storage time
seemed to influence the osteogenic potential of HPL-
cultured BMSCs.

Discussion
HPL is emerging as the preferred xeno-free supplement
for the GMP-grade expansion of MSCs for BTE applica-
tions [1, 11]. Accordingly, there is a growing need for
standardization and scaling-up of HPL production [12,
14]. Current GMP guidelines call for HPL release criteria
to include testing for specific cytokines and biological ef-
ficacy based on cellular assays [9, 12]. In the present
study, a scalable and GMP-compliant HPL was produced
based on previously published methods and character-
ized for its cytokine content and efficacy for MSC
expansion. Consistent with previous reports, HPL sup-
ported the expansion, stromal phenotype, and multi-
lineage, particularly osteogenic, differentiation of MSCs
in comparison to FBS [17].

A strength of the present study was the comparison of
donor-matched cells from two different tissue sources,
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Reference (21)* (39) 41) (42) (43) (44)** Present study
Starting <5dBCor AP <24h AP Fresh BC Exp BC 7 d BC (3 w at —80C), pathogen 5-7 d BC 7 dBC
material inactivated
Donors (n) <12 (BC) or 1 1 16 245+ 16 16 40 20
(AP)
Lysis method 1-2x F/T 2% F/T 3x F/T 1% F/T 3x F/T 3X F/T 3x F/T
Cytokines (n) 23 12 27 22 37 45 48
PDGF-AA 239412 + 53,690 10,287 +1820  11,433.75 + 308345
PDGF-AB/BB 571,730+ 381, 1244 + 13,5344 + 27407 45365  25941.5+1891.06 11,121+ 1126 11,783.482 +
036 47846 3269 917.39
TGF-B1 139,029 + 18,854 306,801.77 + 81,
171.87
b-FGF 495 + 27 77.09 + 2566+ 7.6 407 +105 569+ 10 56.48 +9.85
21.33
HGF 1594.7 + 2631 4204 5423944221
1723
VEGF-A/D 325+ 34 660.88 + 4219419 424.5 + 8891 1742 + 133/ 440.175+40.35
22190 398 4+ 60
EGF 7549+ 899 997.5 4+ 825.58 1104 + 224
IGF 1122 +54
b-NGF 8555+ 936 + 28 19.05+9.29
24.27
BDNF 3169+ 213
SCGF/CLECT11a 186,005.65 + 12,
46391
SCF/KITLG 260 + 35 30454435
G-CSF 74419 1314+94 40+ 1536 10868 4+ 13.17
GM-CSF 34+16 98.1+38 22+6.27 242340 742 +2.28
M-CSF 129,689 + 14, 129.65 + 55.04
654
MCP1/CCL2 585.75 + 645+50 152.5 4+ 30.65 1060 + 73 16.00 + 3.26
20047
MIP-1a/CCL3 47 +4 125405 29337+2030 2725+5.12 531437 159+ 024
MIP-13/CCL4 5145 1349+23 17,087 + 2385  124.25+33.93 1641 + 289 169.77 +13.01
RANTES/CCL5 2,705,600 + 496, 67.71+ 15810.8 + 376,730 + 56, 1453 + 24 8788.00 + 644.50
076 1833 7177 734
MCP3/CCL7 397 +126.25 OOR<
Eotaxin/CCL11 726+33 9154312 196 + 64 44.68 + 5.86
CTACK/CCL27 311.83+44.73
MSP/MST1 688,589 + 132,
037
MDC 470.25 + 30042
MIF 287,188 + 51, 6645.36 + 768.15
282
LIF 1473+ 114 7947 +18.88
GROa/CXCL1 11,126 + 6480 40,947 + 3148 866 + 109 1203.04 +98.03
IL-8/CXCL8 80+6 17154522  1125+53 57 +16.53 ND 2198 +3.82
MIG/CXCL9 96.33 +8.36
IP-10/CXCL10 284.7 4+ 3.1 82543337 527 465 384.76 4+ 1142
SDF1a/CXCL12 16,102 + 1506 75349 +49.21
Fractalkine/ 174.75 + 54.59

CX3CL1
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Table 1 Multiplex-based measurements of cytokine concentrations (pg/mL) in HPL (Continued)

Reference Q1n)* (39) 41) 42) (43) (44)%* Present study
IL-1a 4146 8878 + 4854 + 533 39.25+ 1844 ND
3330
IL-16 342 2489+922 67+04 447 +1.77 ND 2824039
IL-Tra 2353+48 3997 + 589 717.25+283.94 10,580 + 605
IL-2 OOR< OOR< 492+ 259 ND OOR<
IL-2ra 209.18 +81.59
IL-3 497 +1.55 OOR<
IL-4 142405 3840+ 639 30.75+ 1291 ND OOR<
IL-5 OOR < 5325+2634 ND 180.33+67.29
IL-6 3+0 159.75 + 225406 9+442 1847 +178 54.19+ 2140
6157
IL-7 32+16 418+ 1.1 27+739 145 + 24 3143+557
IL-9 1299+6.3 69+25 942 +49 20842 +20.72
IL-10 3+2 602+ 24 1085 +7.74 186 + 25 OOR <
IL-12(p40) 515+ 1391 13582+ 25.12
IL-12(p70) 1139+ 5.1 8.85+3.08 ND 12.85+4.61
IL-13 77411 291+131.16 ND OOR<
IL-15 OOR < 7.7+352 568 + 29 689.27 + 22899
IL-17 10225 +56.4 1087 +4.04 622+ 91 11.25+1.76
IL-18 2466 + 349 3437+ 1156
IL-21 ND
IL-22 ND
IL-23 ND
IL-27 2658+ 1053
IL-31 ND
TNF-a 8+2 42725+ 1333 +104 2025+ 5.56 294240 4697458
167.01
TNF-B 390.5 + 164.81 ND 246.03 + 25.05
TRAIL/TNFSF10 8628 +533
IFN-y 14+4 6.61+2.27 1546+ 74 12125 +2.59 ND 2341 +3.19
IFN-a2 6325+ 19.72 64 +40 8444129
VCAM-1 1,789,695 + 1,108,
320
ICAM-1 137,300 + 93,670
Angiopoietin-1 121,156 + 22,
164
Angiogenin 102,085+ 17,
627
IGFBP3 530,240+ 75,
663
CDA40L 29,738 + 8361 151,662+ 17,
153
TIMP-1 231,407 + 39,
966

BC buffy coats, AP apheresis, Pl pathogen inactivated, F/T freeze/thaw cycles, d days, w weeks, OOR out of range
Data represent means = SD

*No significant differences between buffy coat- and apheresis-derived HPL

**Cytokine concentrations in medium supplemented with 10% HPL
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i.e., BMSCs and ASCs, to evaluate HPL efficacy. More-
over, MSCs from each tissue type were cultured in HPL-
and FBS-supplemented media from the time of isolation
(passage 0), thus allowing true and standardized compar-
isons between xeno-free and xenogeneic-cultured cells
[23]. Since the focus herein was BTE, the in vitro osteo-
genic differentiation of BMSCs and ASCs was studied in
detail and was shown to be significantly enhanced in
HPL vs. FBS at the early (expression of osteogenic
genes), intermediate (ALP activity) and late stages (min-
eral deposition). Moreover, a trend for higher expression
of STRO-1, a marker associated increased osteogenic po-
tential [24], was observed in HPL- vs. FBS-cultured
BMSCs and ASCs. When comparing the two cell types,
osteogenic differentiation appeared to be accelerated in
HPL-cultured BMSCs vs. ASCs, based on gene expres-
sion and ALP activity during the “early” differentiation
stages, while adipogenic differentiation of HPL-cultured

ASCs was superior to that of BMSCs. One possible ex-
planation could be the “tissue source variability” of
BMSCs and ASCs [17, 25]. In context, previous studies
have reported similar or enhanced differentiation of
ASCs compared to BMSCs in vitro, but inferior bone
formation in vivo, in both xenogeneic [26, 27] and HPL-
supplemented cultures [28].

A substantial body of evidence points to the enhanced
osteogenic potential of MSCs cultured in HPL [29-36],
although the specific components contributing to this
phenomenon are unknown. In the present study, the
cytokine content of HPL was analyzed via a quantitative
multiplex immunoassay to identify potentially relevant
cytokines contributing to MSC osteogenesis. Although
previous studies have measured cytokines in HPL via
semi-quantitative assays [22, 36—40], to our knowledge,
only five studies have reported quantitative multiplex-
based assessments [21, 39, 41-44]. Considerable
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differences in cytokine concentrations are observed
across the different studies (Table 1). Moreover, it is
presently unclear which cytokines in HPL are most im-
portant, what are the optimal (minimum and/or max-
imum) concentrations of specific cytokines, and what
are the effects of HPL preparation methods on individual
cytokine concentrations [10]. Nevertheless, some cyto-
kines such as PDGF-BB, TGF-B1, and b-FGF have been
consistently identified in HPL in substantial quantities.
A previous study identified PDGF-BB, TGF-B1, and b-
FGF to be necessary for the optimal proliferation of
MSCs in HPL [21]. However, these three factors on their
own were not sufficient to promote MSC proliferation
[21]. These data are consistent with findings that combi-
nations of cytokines, rather than single GFs, are import-
ant to exert maximal effects on MSC migration and
proliferation [45]. However, in another study, even the
use of defined combinations of several recombinant GFs
and chemokines was inferior to HPL supplementation
for MSC expansion [46]. Since measurement of selected
cytokine concentrations has been cited as a “quality con-
trol” measure for GMP-grade HPL [12], further informa-
tion is needed on which cytokines (for specific MSC
applications, e.g., BTE) should be tested along with “tar-
get” concentration ranges.

In addition to established factors such as PDGF-BB
and TGF-B1, high concentrations of stem cell growth

factor (SCGF)—a cytokine not previously identified in
HPL—were detected in the multiplex analysis herein.
SCGF is a protein encoded by the CLEC11A gene (C-
type lectin domain family 11, member A) and is associ-
ated with the growth of hematopoietic progenitor cells
[47]. In the context of the bone, SCGF/CLEC11A is re-
portedly expressed in the bone marrow by a variety of
stromal cells [47, 48]. Interestingly, CLEC11A was re-
cently shown to be expressed by murine BMSCs, and its
overexpression promoted their in vitro osteogenic differ-
entiation and in vivo osteogenesis in a fracture healing
model [47]. However, a more recent study showed con-
trasting results in human BMSCs, where silencing, rather
than overexpression, of CLECI1A promoted their
in vitro osteogenic differentiation [49]. In another study,
SCGF was detected in the secretome of BMSCs under-
going osteogenic differentiation and was found to be
downregulated on days 1, 7, and 14 compared to day O
[50]. Thus, in addition to PDGF-BB and TGF-p1, SCGE/
CLEC11A signaling may be involved in the regulation of
osteogenic differentiation of HPL-cultured MSCs.
Consistent with results from the above study [49], the
in silico network analysis herein identified only a single
interaction for SCGF/CLEC11A, which was with the
chemokine stem cell factor (SCF), a ligand for the c-kit
receptor (KITLG) [51]. Like SCGF, SCF is also typically
associated with hematopoietic cell proliferation [51].
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Fig. 5 Cytokine concentrations in HPL from PCs stored for 0-4 months (m). Data represent means + SD (n = 23 HPL batches per group). *p < 0.05

Although SCF was detected at a relatively lower concen-
tration compared to SCGEF, the network analysis revealed
several interactions with the cytokine/chemokine and GF
clusters. Recently, SCF signaling has been implicated in
the mobilization, and subsequent osteogenic differenti-
ation, of BMSCs in vitro and in in vivo models of fracture
healing [52] and dental pulp/dentin regeneration [53].
Further studies are needed to elucidate the nature of the
interaction(s) between SCGF, SCF, and other cytokines in
the context of MSCs’ osteogenic differentiation.

In addition to GFs, HPL also contains a wide range of
chemokines, which regulate MSC migration, prolifera-
tion, and differentiation. Several chemokines of the CCL
and CXCL families have been identified in HPL
(Table 1). Of these, stromal derived factor-1 (SDF-1/
CXCL12) is the most extensively studied and is involved
in the recruitment of endogenous BMSCs to injury sites
[54]. Platelets have been shown to release SDF1 and re-
cruit progenitor cells to initiate wound healing at sites of
vascular injury [55]. In the context of the bone, SDF1
was shown to play a critical role in the recruitment of
murine BMSCs to the injury site during the early stages
of fracture healing, and inhibition of SDF1 led to re-
duced in vivo bone formation [56]. Moreover, SDF1

regulated BMP2-induced osteogenic differentiation of
mouse and human BMSCs; blocking SDF1 signaling led
to significantly reduced ALP activity and mineralization
of the cells [57]. Recent studies have also demonstrated
enhanced in vivo bone regeneration following delivery of
SDF1 via recruitment of endogenous MSCs to regener-
ation sites [58—61], thus highlighting the role of SDF1 in
regulating MSCs’ osteogenic differentiation.

Emerging evidence suggests that MSCs exert their re-
generative effects primarily via paracrine mechanisms
and modulation of immune cells, including osteoclasts
[62]. Osteoblast-osteoclast interactions are known to be
critical for bone regeneration. This is especially relevant
in BTE, where MSCs are often delivered using biomate-
rial scaffolds, which elicits an initial inflammatory/re-
sorptive response by macrophages/osteoclasts prior to
bone formation by MSCs/osteoblasts [63]. It is therefore
also of interest to consider the cytokines in HPL that
may be involved in the regulation of osteoclastic activity.
The most consistently reported of these are RANTES/
CCL5 and associated cytokines, monocyte chemotactic
protein-1 (MCP-1/CCL2), macrophage inflammatory
protein 1 (MIP-1a/CCL3 and MIP-3/CCL4), and macro-
phage migration inhibitory factor (MIF). All of these
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have been implicated in the recruitment and differenti-
ation of osteoclasts and/or their precursors [64—66].
Moreover, it has been demonstrated that RANTES se-
creted by osteoclasts promotes the migration of osteo-
blasts and MSCs in vitro [64, 67, 68] and mineralization
in vivo [68, 69].

In addition to GFs and chemokines, a number of inflam-
matory cytokines were identified in the HPL herein. The
evidence for the effects of inflammatory cytokines on
MSC:s is conflicting since these effects appear to be (a) tis-
sue/site-specific, (b) MSC type-specific, and (c) dose-
dependent, based on which a particular cytokine may
exert pro- or anti-inflammatory and pro- or anti-
osteogenic effects [54]. The most commonly reported of
these are TNF-a and IL-1, predominant during the acute
inflammatory phase of healing. The combination of HPL
and exogenous IL-la was shown to result in a transient
increase in the inflammatory response accompanied by an
increase in proliferation, without loss of differentiation po-
tential, in human osteoblasts [70] and ASCs [71].
Interferon-y (IFN-y), another major pro-inflammatory
cytokine, has consistently more anti-osteogenic effects
[54]. Nevertheless, several studies have reported

advantages of “pre-conditioning” MSCs with IFN-y, either
alone or in combination with other cytokines such as
TNF-a and IL-1, in terms of their immunomodulatory
and regenerative potential [72].

Recent studies have reported differences in MSC prolifera-
tion and osteogenic differentiation when cultured in different
HPL formulations, expressing differences in their protein
compositions [15, 73]. MSC proliferation, i.e., PD rate/time,
is considered a “key parameter” during ex vivo expansion
[11], and ALP and mineralization assays are routinely used
to test the in vitro osteogenic capacity of MSCs. In the con-
text of BTE, the in vitro PD time and ALP activity of MSCs
are reported to most likely correlate with their in vivo
mineralization capacity [74]. Accordingly, in the present
study, the growth kinetics and osteogenic potential of
BMSCs were tested in HPLs produced from the different PC
storage times; BMSCs from multiple donors were used to ac-
count for donor-related variations. No significant differences
were observed between the different PC storage times in
terms of either BMSC proliferation or ALP activity/
mineralization. However, considerable donor-related vari-
ation was observed in relation to the latter. Notably, the high-
est relative mean ALP activity and mineralization, with the
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least inter-donor variation, was observed in the 3-month PC
storage group. The results herein are consistent with a recent
study reporting on MSCs from a similar donor cohort
(healthy young patients), which reported large inter-donor
variations in xenogeneic MSCs [17]. It is well-known that
several biological (age, sex), behavioral (alcohol/tobacco use),
and disease-related (obesity, diabetes) factors influence MSC
properties including proliferation and osteogenic differenti-
ation [75]. Nevertheless, it must be acknowledged that the
observed donor variation may have confounded the detection
of significant differences between PC storage times in the
present study.

Among various aspects of HPL production which re-
quire standardization is the storage time of the source
material, i.e., PCs produced by blood establishments.
Current recommendations call for blood centers to
freeze outdated PCs (within 7 days of collection) for later

HPL production, although “the maximum period time
that PCs can be used after expiry to prepare an efficient
HPL for cell expansion is unknown” [9]. International
blood authorities advise a minimum interval of 3 months
between blood donations to allow for repeated viral test-
ing to minimize the risk of disease transmission via
platelet products. In the context of HPL, this is espe-
cially relevant when smaller PC-pool sizes are used (< 16
donors) and where pathogen reduction is not applied
[6]. In the present study, HPL produced from PCs stored
for >4 months showed a significant deterioration of sev-
eral cytokines relevant for MSCs. No significant differ-
ences between PC storage times <4 months were
observed in terms of HPL cytokine concentrations, i.e., a
clear trend for cytokine deterioration with time, or cor-
responding MSC proliferation and osteogenic differenti-
ation. Thus, the data herein did not allow for the
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detection of any statistical associations between specific
HPL cytokines and the degree of MSC osteogenic differ-
entiation. Nevertheless, our observation that outdated
PCs can be safely frozen for up to 4 months (preferably
3 months when the focus is BTE) may facilitate the im-
plementation of routines enabling more blood banks to
produce HPL. This would address the need for
standardization and scaling-up of HPL production, while
also benefiting blood bank economies.

Conclusions

The expansion of human MSCs in HPL represents a fa-
vorable strategy for BTE. MSCs expanded in HPL demon-
strate a high in vitro osteogenic differentiation potential,
albeit with considerable donor variation. Exactly which
components of HPL contribute to enhancing the osteo-
genic potential of MSCs is unclear, since HPL contains a
complex mixture of cytokines, chemokines, and inflamma-
tory mediators presenting with synergistic effects. Based
on the proteomic analysis herein, further investigation of
the role of certain cytokines, particularly SCGF, in the
regulation of MSCs’ osteogenic differentiation is war-
ranted. Finally, a maximum frozen storage time of 4
months is recommended for outdated PCs assigned for
HPL production at blood establishments.
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