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Abstract. An undirected graph G is d-degenerate if every subgraph of G has a vertex of degree
at most d. By the classical theorem of Erd\H os and Gallai from 1959, every graph of degeneracy d > 1
contains a cycle of length at least d + 1. The proof of Erd\H os and Gallai is constructive and can
be turned into a polynomial time algorithm constructing a cycle of length at least d + 1. But can
we decide in polynomial time whether a graph contains a cycle of length at least d + 2? An easy
reduction from Hamiltonian Cycle provides a negative answer to this question: Deciding whether a
graph has a cycle of length at least d+2 is NP-complete. Surprisingly, the complexity of the problem
changes drastically when the input graph is 2-connected. In this case we prove that deciding whether
G contains a cycle of length at least d + k can be done in time 2\scrO (k) \cdot | V (G)| \scrO (1). In other words,
deciding whether a 2-connected n-vertex G contains a cycle of length at least d+logn can be done in
polynomial time. Similar algorithmic results hold for long paths in graphs. We observe that deciding
whether a graph has a path of length at least d+1 is NP-complete. However, we prove that if graph
G is connected, then deciding whether G contains a path of length at least d+k can be done in time
2\scrO (k) \cdot n\scrO (1). We complement these results by showing that the choice of degeneracy as the ``above
guarantee parameterization"" is optimal in the following sense: For any \varepsilon > 0 it is NP-complete to
decide whether a connected (2-connected) graph of degeneracy d has a path (cycle) of length at least
(1 + \varepsilon )d.

Key words. longest path, longest cycle, fixed-parameter tractability, above guarantee parame-
terization
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1. Introduction. The classical theorem of Erd\H os and Gallai [11] says that

Theorem 1 (see Erd\H os and Gallai [11]). Every graph with n vertices and more
than (n - 1)\ell /2 edges (\ell \geq 2) contains a cycle of length at least \ell + 1.

Recall that a graph G is d-degenerate if every subgraph H of G has a vertex of
degree at most d, that is, the minimum degree \delta (H) \leq d. Respectively, the degen-
eracy of graph G, is dg(G) = max\{ \delta (H) | H is a subgraph of G\} . Since a graph of
degeneracy d has a subgraph H with at least d \cdot | V (H)| /2 edges, by Theorem 1 it
contains a cycle of length at least d+ 1. Let us note that the degeneracy of a graph
can be computed in polynomial time (see, e.g., [28]), and thus, by Theorem 1 deciding
whether a graph has a cycle of length at least d+ 1 can be done in polynomial time.
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1588 FOMIN ET AL.

In this paper we revisit this classical result from the algorithmic perspective.
We define the following problem.

Input: A graph G and a positive integer k.
Task: Decide whether G contains a cycle of length at least dg(G) + k.

Longest Cycle Above Degeneracy

Let us first sketch why Longest Cycle Above Degeneracy is NP-complete
for k = 2 even for connected graphs. We can reduce Hamiltonian Cycle to Long-
est Cycle Above Degeneracy with k = 2 as follows. For a connected noncomplete
graph G on n vertices, we construct the connected graph H from the disjoint union of
G and the complete graph Kn - 2 on n - 2 vertices by making one vertex of G adjacent
to all the vertices of Kn - 2. Thus, the obtained graph H has | V (G)| + n - 2 vertices
and is connected; its degeneracy is n  - 2. Then H has a cycle with dg(H) + 2 = n
vertices if and only if G has a Hamiltonian cycle.

Interestingly, when the input graph is 2-connected, the problem becomes fixed-
parameter tractable (FPT) being parameterized by k (we refer to the book of Cygan
et al. [9] for the formal definition of the notion). Let us recall that a connected graph
G is (vertex) 2-connected if for every v \in V (G), G  - v is connected. Our first main
result is the following theorem.

Theorem 2. On 2-connected graphs Longest Cycle Above Degeneracy is
solvable in time 2\scrO (k) \cdot n\scrO (1).

Similar results can be obtained for paths. Of course, if a graph contains a cycle
of length d+1, it also contains a simple path on d+1 vertices. Thus, for every graph
G of degeneracy d, deciding whether G contains a path on dg(G) + 1 vertices can be
done in polynomial time. Again, it is easy to show that it is NP-complete to decide
whether G contains a path with d + 2 vertices by a reduction from Hamiltonian
Path. The reduction is very similar to the one we sketched for Longest Cycle
Above Degeneracy. The only difference is that this time graph H consists of the
disjoint union of G and Kn - 1. The degeneracy of H is d = n - 2, and H has a path
with d + 2 = n vertices if and only if G contains a Hamiltonian path. Note that
graph H used in the reduction is not connected. However, when the input graph G
is connected, the complexity of the problem changes drastically. We now define the
following.

Input: A graph G and a positive integer k.
Task: Decide whether G contains a path with at least dg(G) + k ver-

tices.

Longest Path Above Degeneracy

The second main contribution of our paper is Theorem 3, which is obtained as a
corollary of Theorem 2.

Theorem 3. On connected graphs Longest Path Above Degeneracy is solv-
able in time 2\scrO (k) \cdot n\scrO (1).

We also show that the parameterization lower bound dg(G) that is used in Theo-
rems 2 and 3 is tight in some sense. We prove that for any 0 < \varepsilon < 1, it is NP-complete
to decide whether a connected graph G contains a path with at least (1 + \varepsilon )dg(G)
vertices and is NP-complete to decide whether a 2-connected graph G contains a cycle
with at least (1 + \varepsilon )dg(G) vertices.
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Related work. Hamiltonian Path and Hamiltonian Cycle problems are
among the oldest and most fundamental problems in Graph Theory. In parameter-
ized complexity the following generalizations of these problems, Longest Path and
Longest Cycle, were heavily studied. The Longest Path problem is to decide,
given an n-vertex (di)graph G and an integer k, whether G contains a path of length
at least k. Similarly, the Longest Cycle problem is to decide whether G contains
a cycle of length at least k. There is a plethora of results about parameterized com-
plexity (we refer to the book of Cygan et al. [9] for the introduction to the field) of
Longest Path and Longest Cycle (see, e.g., [4, 5, 7, 6, 12, 14, 22, 23, 24, 33])
since the early work of Monien [29]. The fastest known randomized algorithm for
Longest Path on an undirected graph is due to Bj\"orklund et al. [4] and runs in
time 1.657k \cdot n\scrO (1). On the other hand, very recently Tsur gave the fastest known
deterministic algorithm for the problem running in time 2.554k \cdot n\scrO (1) [32]. Respec-
tively, for Longest Cycle, the current fastest randomized algorithm running in time
4k \cdot n\scrO (1) was given by Zehavi [34], and the best deterministic algorithm constructed
by Fomin et al. [13] runs in time 4.884k \cdot n\scrO (1).

Our theorems about Longest Path Above Degeneracy and Longest Cycle
Above Degeneracy fit into an interesting trend in parameterized complexity called
``above guarantee"" parameterization. The general idea of this paradigm is that the
natural parameterization of, say, a maximization problem by the solution size is not
satisfactory if there is a lower bound for the solution size that is sufficiently large. For
example, there always exists an assignment for the values of the variables of a Boolean
formula in the conjunctive normal form that satisfies at least half of the clauses or
there is always an edge-cut of a graph containing at least half of the edges. Thus,
nontrivial solutions occur only for the values of the parameter that are above the
lower bound. This indicates that for such cases it is more natural to parameterize
the problem by the difference of the solution size and the bound. The first paper
about the above guarantee parameterization was from Mahajan and Raman [26], who
applied this approach to the Max Sat and Max Cut problems. This approach was
successfully applied to various problems; see, e.g., [1, 8, 16, 17, 18, 19, 20, 25, 27].

For Longest Path, the only successful above guarantee parameterization known
prior to our work was parameterization above the shortest path. More precisely, let
s, t be vertices of an undirected graph G. Clearly, the length of any (s, t)-path in G
is lower bounded by the shortest distance, d(s, t), between these vertices. Based on
this observation, Bez\'akov\'a et al. in [3] introduced the Longest Detour problem
that asks, given a graph G, two vertices s, t, and a positive integer k, whether G
has an (s, t)-path with at least d(s, t) + k vertices. They proved that for undirected
graphs, this problem can be solved in time 2\scrO (k) \cdot n\scrO (1). On the other hand, the
parameterized complexity of Longest Detour on directed graphs is still open. For
the variant of the problem where the question is whether G has an (s, t)-path with
exactly d(s, t)+k vertices, a randomized algorithm with running time 2.746k \cdot n\scrO (1) and
a deterministic algorithm with running time 6.745k \cdot n\scrO (1) were obtained [3]. These
algorithms work for both undirected and directed graphs. Parameterization above
degeneracy is ``orthogonal"" to the parameterization above the shortest distance. There
are classes of graphs, like planar graphs, that have constant degeneracy and arbitrarily
large diameter. On the other hand, there are classes of graphs, like complete graphs,
of constant diameter and unbounded degeneracy.

Our approach. Our algorithmic results can be seen as nontrivial algorithmic
extensions of classical theorems of Dirac [10] and Erd\H os and Gallai [11]. In particular,
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1590 FOMIN ET AL.

to show Theorem 2, we use the famous Dirac's theorem.

Theorem 4 (see Dirac [10]). Every n-vertex 2-connected graph G with minimum
vertex degree \delta (G) \geq 2 contains a cycle with at least min\{ 2\delta (G), n\} vertices.

We give a high-level overview of the ideas used to prove Theorem 2. Let G be
a 2-connected graph of degeneracy d. If d = \scrO (k), we can solve Longest Cycle
Above Degeneracy in time 2\scrO (k) \cdot n\scrO (1) by making use of one of the algorithms
for Longest Cycle. Assume now that d \geq c \cdot k for some constant c, which will be
specified in the proof. Then, we find a d-core H of G (a connected subgraph of G
with the minimum vertex degree at least d). This can be done in linear time by one
of the known algorithms; see, e.g., [28]. If the order of H is sufficiently large, say
| V (H)| \geq d+ k, we use Theorem 4 to conclude that H contains a cycle with at least
| V (H)| \geq d+ k vertices.

The most interesting case occurs when | V (H)| < d + k. Suppose that G has a
cycle of length at least d+k. It is possible to prove that there is also a cycle of length
at least d+ k that hits the core H. Consider the terminal points, that is, the vertices
in which this cycle enters and leaves H. The interesting property of the core H is
that, loosely speaking, for any ``small"" set of terminal points, inside H the cycle can
be rerouted in such a way that it will contain all vertices of H.

A bit more formally, we prove the following structural result. We define a system
of segments in G with respect to V (H), which is a family of internally vertex-disjoint
paths \{ P1, . . . , Pr\} in G (see Figure 1). Moreover, for every 1 \leq i \leq r, every path
Pi has at least three vertices, its end-vertices are in V (H), and all internal vertices
of Pi are in V (G) \setminus V (H). Also the union of all the segments is a forest with every
connected component being a path.

H

P1 Pr

Fig. 1. Reducing Longest Cycle Above Degeneracy to finding a system of segments
P1, . . . , Pr (complementing the segments into a cycle is shown by dashed lines).

We prove that G contains a cycle of length at least d+ k if and only if
\bullet either there is a path with at least d + k  - | V (H)| internal vertices whose
end-vertices are in V (H) and all internal vertices outside H or

\bullet there is a system of segments with respect to V (H) such that the total number
of vertices outside H used by the paths of the system is within the interval
[d+ k  - | V (H)| , 2 \cdot (d+ k  - | V (H)| )].

The proof of this structural result is built on Lemma 2, which describes the possibility
of routing in graphs of large minimal degree. The crucial property is that we can
complement any system of segments with bounded number of terminal points by
segments inside the core H to obtain a cycle that contains all the vertices of H as is
shown in Figure 1.

Since | V (H)| > d, the problem of finding a cycle of length at least d + k in
G boils down to one of the following tasks. Either find a path of length at least
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d + k  - | V (H)| + 1 with its end-vertices in H and all internal vertices outside H,
or find a system of segments with respect to V (H) such that the total number of
internal vertices used by the paths of the system is at least d + k  - | V (H)| and is
upper bounded by 2(d+ k  - | V (H)| ). In the first case, we can use one of the known
algorithms to find in time 2\scrO (k) \cdot n\scrO (1) such a long path. In the second case, we can
use color-coding to solve the problem.

Organization of this paper. In section 2 we give basic definitions and state
some known fundamental results. Sections 3--4 contain the proof of Theorems 2
and 3. In section 3 we state structural results that we need for the proofs, and in
section 4 we complete the proofs. In section 5, we give the complexity lower bounds
for our algorithmic results. We conclude the paper in section 6 by stating some open
problems.

2. Preliminaries. We consider only finite undirected graphs. For a graph G, we
use V (G) and E(G) to denote its vertex set and edge set, respectively. Throughout
this paper we use n = | V (G)| to denote the order of the input graphG andm = | E(G)| 
to denote its size. For a graph G and a subset U \subseteq V (G) of vertices, we write G[U ]
to denote the subgraph of G induced by U . We write G  - U to denote the graph
G[V (G) \setminus U ]; for a single-element set U = \{ u\} , we write G  - u. For a vertex v, we
denote by NG(v) the (open) neighborhood of v, i.e., the set of vertices that are adjacent
to v in G. For a set U \subseteq V (G), NG(U) = (

\bigcup 
v\in U NG(v)) \setminus U . The degree of a vertex

v is dG(v) = | NG(v)| . The minimum degree of G is \delta (G) = min\{ dG(v) | v \in V (G)\} .
For a graph property \Pi , it is said that H is an inclusion maximal induced subgraph
of G satisfying P if H satisfies \Pi , but the property does not hold for any induced
subgraph H \prime of G with V (H) \subset V (H \prime ). A d-core of G is an inclusion maximal induced
connected subgraph H with \delta (H) \geq d. Every graph of degeneracy at least d contains
a d-core that can be found in linear time (see [28]). A vertex u of a connected graph G
with at least two vertices is a cut vertex if G - u is disconnected. A connected graph
G is 2-connected if it has no cut vertices. An inclusion maximal induced 2-connected
subgraph of G is called a block. Let \scrB be the set of blocks of a connected graph G,
and let C be the set of cut vertices. Consider the bipartite graph Block(G) with the
vertex set \scrB \cup C, where (\scrB , C) is the bipartition, such that B \in \scrB and c \in C are
adjacent if and only if c \in V (B). The block graph of a connected graph is always a
tree (see [21]). A path P in G is a connected subgraph of G with at most two vertices
of degree at most one whose remaining vertices have degree two. We use P = v1 \cdot \cdot \cdot vk
to denote the path with the vertices v1, . . . , vk and the edges vi - 1vi for i \in \{ 1, . . . , k\} ;
the vertices v1 and vk are the end-vertices of P , and v2, . . . , vk - 1 are the internal
vertices. For a path P with end-vertices s and t, we say that P is an (s, t)-path. We
say that G is a linear forest if each connected component of G is a path. A cycle in
G is a connected subgraph whose vertices have degree two. We denote by v0v1 \cdot \cdot \cdot vk,
where v0 = vk, to denote the cycle with the vertices v1, . . . , vk and the edges vi - 1vi
for i \in \{ 1, . . . , k\} . The contraction of an edge xy is the operation that removes the
vertices x and y together with the incident edges and replaces them by a vertex uxy

that is adjacent to the vertices of NG(\{ x, y\} ) of the original graph. If H is obtained
from G by contracting some edges, then H is a contraction of G.

We summarize below some known algorithmic results which will be used as sub-
routines by our algorithm.

Proposition 1 (see [13, 34]). Longest Cycle is solvable in time 2\scrO (k) \cdot n\scrO (1).

We also need the result about the variant of Longest Path with fixed end-
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1592 FOMIN ET AL.

vertices. In the (s, t)-Longest Path, we are given two vertices s and t of a graph G
and a positive integer k. The task is to decide whether G has an (s, t)-path with at
least k vertices.

Proposition 2 (see [13]). (s, t)-Longest Path is solvable in time 2\scrO (k) \cdot n\scrO (1).

We use the following reduction of Longest Path to Longest Cycle.

Lemma 1. Let G\prime be the graph obtained from a graph G by adding a new vertex v
and making it adjacent to every vertex of G. Then G has a path with at least k vertices
if and only if G\prime has a cycle with at least k + 1 vertices. Moreover, G\prime is a connected
graph with dg(G\prime ) = dg(G) + 1, and if G is connected, then G\prime is 2-connected.

Proof. Let P = v1 \cdot \cdot \cdot vk be a path in G. Clearly, C = vv1 \cdot \cdot \cdot vkv is a cycle in G\prime .
For the opposite direction, assume that G\prime has a cycle with at least k + 1 vertices. If
C is a cycle in G, then the deletion of any edge of C gives a path with at least k + 1
vertices. Assume that C is not a cycle of G. Then v \in V (C) and C can be written as
vv1 \cdot \cdot \cdot v\ell v, where \ell \geq k and v1, . . . , v\ell \in V (G). Then P = v1 \cdot \cdot \cdot v\ell is a path in G with
at least k vertices. To see that dg(G\prime ) = dg(G) + 1, it is sufficient to observe that for
every U \subseteq V (G), \delta (G\prime [U \cup \{ v\} ]) = \delta (G[U ]) + 1. Trivially, G\prime is connected and it is
easy to see that G\prime is 2-connected whenever G is connected.

In particular, Lemma 1 implies that G has a path with at least dg(G)+k vertices
if and only if G\prime has a cycle with at least dg(G\prime ) + k vertices.

3. Segments and rerouting. In this section we define systems of segments and
prove structural results about them. These combinatorial results are crucial for our
algorithm for Longest Cycle Above Degeneracy. We start with the following
rerouting lemma.

Lemma 2. Let G be an n-vertex graph, and let k be a positive integer such that
\delta (G) \geq max\{ 5k - 3, n - k\} . Let \{ s1, t1\} , . . . , \{ sr, tr\} , r \leq k, be a collection of pairs of
vertices of G such that (i) si, ti /\in \{ sj , tj\} for all i \not = j, i, j \in \{ 1, . . . , r\} , and (ii) there
is at least one index i \in \{ 1, . . . , r\} such that si \not = ti. Then there is a family of pairwise
vertex-disjoint paths \scrP = \{ P1, . . . , Pr\} in G such that each Pi is an (si, ti)-path and\bigcup r

i=1 V (Pi) = V (G), that is, the paths cover all vertices of G.

Note that we allow \{ si, ti\} to be a pair of the same vertices, and in this case Pi

is a single-vertex trivial path. Notice also that condition (ii) ensures that at least one
path is nontrivial.

Proof. We prove the lemma in two steps. First, we show that there exists a family
\scrP \prime of pairwise vertex-disjoint paths connecting all pairs \{ si, ti\} . Then we show that
if the paths of \scrP \prime do not cover all vertices of G, it is possible to enlarge a path such
that the new family of paths covers more vertices.

We start by constructing a family of vertex-disjoint paths \scrP \prime = \{ P1, . . . , Pr\} in
G such that each Pi \in \scrP \prime is an (si, ti)-path. We prove that we can construct paths
in such a way that each Pi has at most three vertices. Let T =

\bigcup r
i=1\{ si, ti\} and

S = V (G) \setminus T . Notice that | S| \geq n - 2k \geq \delta (G) + 1 - 2k \geq 3k  - 2. We consecutively
construct paths of \scrP \prime for i \in \{ 1, . . . , r\} . If si = ti, then we have a trivial (si, ti)-
path. If si and ti are adjacent, then edge siti forms an (si, ti)-path with two vertices.
Assume that si \not = ti and siti /\in E(G). The already constructed paths contain at most
r - 1 \leq k - 1 vertices of S in total. Hence, there is a set S\prime \subseteq S of at least 2k - 1 vertices
that are not contained in any of the already constructed paths. Since \delta (G) \geq n - k,
each vertex of G has at most k  - 1 nonneighbors in G. By the pigeonhole principle,
there is v \in S\prime such that siv, tiv \in E(G). Then we can construct the path Pi = sivti.
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We proved that there is a family \scrP \prime = \{ P1, . . . , Pr\} of vertex-disjoint (si, ti)-paths
in G. Among all such families, let us select a family \scrP = \{ P1, . . . , Pr\} covering the
maximum number of vertices of V (G). If

\bigcup r
i=1 V (Pi) = V (G), then the lemma holds.

Assume that | 
\bigcup r

i=1 V (Pi)| < | V (G)| . Suppose | 
\bigcup r

i=1 V (Pi)| \leq 3k  - 1. Since si \not = ti
for some i, there is an edge uv in one of the paths. Since n \geq \delta (G)+1 \geq 5k - 2, there
are at least 2k - 1 vertices uncovered by paths of \scrP . Since \delta (G) \geq n - k, each vertex
of G has at most k  - 1 nonneighbors in G. Thus, there is w \in V (G) \setminus (

\bigcup r
i=1 V (Pi))

adjacent to both u and v. But then we can extend the path containing uv by replacing
uv by the path uwv. The paths of the new family cover more vertices than the paths
of \scrP , which contradicts the choice of \scrP .

Suppose | 
\bigcup r

i=1 V (Pi)| \geq 3k. Because the paths of \scrP are vertex-disjoint, the
union of edges of paths from \scrP contains a k-matching. That is, there are k edges
u1v1, . . . , ukvk of G such that for every i \in \{ 1, . . . , k\} , vertices ui, vi are consecutive
in some path from \scrP and ui \not = uj , ui \not = vj for all nonequal i, j \in \{ 1, . . . , k\} . Let
w \in V (G) \setminus (

\bigcup r
i=1 V (Pi)). We again use the observation that w has at most k  - 1

nonneighbors in G and, therefore, there is j \in \{ 1, . . . , k\} such that ujw, vjw \in E(G).
Then we extend the path containing ujvj by replacing edge ujvj by the path ujwvj ,
contradicting the choice of \scrP . We conclude that the paths of \scrP cover all vertices of
G.

Let G be a graph, and let T \subset V (G) be a set of terminals. We need the following
definitions.

Definition 1 (terminal segments). We say that a path P in G is a terminal T -
segment if it has at least three vertices, both end-vertices of P are in T , and internal
vertices of P are not in T .

For every cycle C hitting H, removing the vertices of H from C turns it into a
set of terminal T -segments for T = V (H). So here is the definition.

Definition 2 (system of T -segments). We say that a set \{ P1, . . . , Pr\} of paths
in G is a system of T -segments if it satisfies the following conditions:

(i) for each i \in \{ 1, . . . , r\} , Pi is a terminal T -segment;
(ii) P1, . . . , Pr are pairwise internally vertex-disjoint; and
(iii) the union of P1, . . . , Pr is a linear forest.

Let us remark that we do not require that the end-vertices of the paths \{ P1, . . . , Pr\} 
cover all vertices of T .

The following lemma will be extremely useful for the algorithm solving Longest
Cycle Above Degeneracy. Informally, it shows that if a 2-connected graph G
is of large degeneracy but has a small core H, then deciding whether G has a path
of length d + k can be reduced to checking whether G either has a sufficiently long
path with the internal vertices outside H and the end-vertices in H or has a system
of T -segments with terminal set T = V (H) with sufficiently many internal vertices
whose total number is \scrO (k).

Lemma 3. Let d, k \in \BbbN . Let G be a 2-connected graph with a d-core H such that
d \geq 5k - 3 and d > | V (H)|  - k. Then G has a cycle with at least d+ k vertices if and
only if one of the following holds (where p = d+ k  - | V (H)| ):

(i) There are distinct s, t \in V (H) and an (s, t)-path P in G with all internal
vertices outside V (H) such that P has at least p internal vertices.

(ii) G has a system of T -segments \{ P1, . . . , Pr\} with terminal set T = V (H), and
the total number of vertices of the paths outside V (H) is at least p and at
most 2p - 2.
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1594 FOMIN ET AL.

Proof. We put T = V (H). First, we show that if (i) or (ii) holds, then G has
a cycle with at least d + k vertices. Suppose that there are distinct s, t \in T and
an (s, t)-path P in G with all internal vertices outside T such that P has at least p
internal vertices. By Lemma 2, H has a Hamiltonian (s, t)-path P \prime . By taking the
union of P and P \prime we obtain a cycle with at least | T | + p = d+ k vertices.

Now assume thatG has a system of T -segments \{ P1, . . . , Pr\} and the total number
of vertices of the paths outside T is at least p. Let si and ti be the end-vertices of Pi

for i \in \{ 1, . . . , r\} and assume without loss of generality that for 1 \leq i < j \leq r, the
vertices of Pi and Pj are pairwise distinct with the possible exception ti = sj when
i = j  - 1. Consider the collection of pairs of vertices \{ t1, s2\} , . . . , \{ tr - 1, sr\} , \{ tr, s1\} .
Notice that vertices from distinct pairs are distinct and tr \not = s1. By Lemma 2, there
are vertex-disjoint paths P \prime 

1, . . . , P
\prime 
r in H that cover T such that P \prime 

i is a (ti, si+1)-path
for i \in \{ 1, . . . , r - 1\} and P \prime 

r is a (tr, s1)-path. By taking the union of P1, . . . , Pr and
P \prime 
1, . . . , P

\prime 
r we obtain a cycle in G with at least | T | + p = d+ k vertices.

To show the implication in the other direction, assume that G has a cycle C with
at least d+ k vertices.

Case 1: V (C)\cap T = \emptyset . Since G is a 2-connected graph, there are pairwise distinct
vertices s, t \in T and x, y \in V (C) and vertex-disjoint (s, x) and (y, t)-paths P1 and
P2 such that the internal vertices of the paths are outside T \cup V (C). The cycle C
contains an (x, y)-path P with at least (d+ k)/2+ 1 \geq p vertices. The concatenation
of P1, P , and P2 is an (s, t)-path in G with at least p internal vertices and the internal
vertices are outside T . Hence, (i) holds.

Case 2: | V (C) \cap T | = 1. Let V (C) \cap T = \{ s\} for some vertex s. Since G is
2-connected, there is a shortest (x, t)-path P in G - s such that x \in V (C) and t \in T .
The cycle C contains an (s, x)-path P \prime with at least (d+ k)/2 + 1 \geq p vertices. The
concatenation of P \prime and P is an (s, t)-path in G with at least p internal vertices and
the internal vertices of the path are outside T . Therefore, (i) is fulfilled.

Case 3: | V (C)\cap T | \geq 2. Since | V (C)| \geq d and | T | < d, we have that V (C) \setminus T \not =
\emptyset . Then we can find pairs of distinct vertices \{ s1, t1\} , . . . , \{ s\ell , t\ell \} of T \cap V (C) and
segments P1, . . . , P\ell of C such that (a) Pi is an (si, ti)-path for i \in \{ 1, . . . , \ell \} with
at least one internal vertex and the internal vertices of Pi are outside T , (b) for
1 \leq i < j \leq \ell , the vertices of Pi and Pj are distinct with the possible exception

ti = sj if i = j - 1 and, possibly, t\ell = s1, and (c)
\bigcup \ell 

i=1 V (Pi) \setminus T = V (C) \setminus T . If there
is i \in \{ 1, . . . , \ell \} such that Pi has at least p internal vertices, then (i) is fulfilled.

Now assume that each Pi has at most p  - 1 internal vertices; notice that p \geq 2
in this case. We select an inclusion minimal set of indices I \subseteq \{ 1, . . . , \ell \} such that
| 
\bigcup 

i\in I V (Pi)\setminus T | \geq p. Notice that because each path has at most p - 1 internal vertices,
| 
\bigcup 

i\in I V (Pi) \setminus T | \leq 2p  - 2. Let I = \{ i1, . . . , ir\} and i1 < \cdot \cdot \cdot < ir. By the choice of
Pi1 , . . . , Pir , the union of Pi1 , . . . , Pir is either the cycle C or a linear forest. Suppose
that the union of the paths is C. Then I = \{ 1, . . . , \ell \} , \ell \leq p, and | V (P ) \cap T | = \ell .
Note that because | V (H)| > d, we have that p = d+ k - | V (H)| < k. We obtain that
C has at most (2p  - 2) + p \leq 3p  - 2 < 3k  - 2 < d + k vertices (the last inequality
follows from the fact that d \geq 5k - 3); a contradiction. Hence, the union of the paths
is a linear forest. Therefore, \{ Pi1 , . . . , Pir\} is a system of T -segments with terminal
set T = V (H), and the total number of vertices of the paths outside T is at least p
and at most 2p - 2, that is, (ii) is fulfilled.

We have established the fact that the existence of a long (path) cycle is equivalent
to the existence of an (extended) system of T -segments for some terminal set T with
at most p \leq k vertices from outside T . Towards designing an algorithm Longest
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GOING FAR FROM DEGENERACY 1595

Cycle Above Degeneracy, we define the following auxiliary problem which can
be solved using the well-known color-coding technique.

Input: A graph G, T \subset V (G) and positive integers p and r.
Task: Decide whether G has a system of T -segments \{ P1, . . . , Pr\} such

that the total number of internal vertices of the paths is p.

Segments with Terminal Set

Lemma 4. Segments with Terminal Set is solvable in time 2\scrO (p) \cdot n\scrO (1).

Proof. Our algorithm for Segments with Terminal Set uses the color-coding
technique introduced by Alon, Yuster, and Zwick in [2]. As is usual for algorithms
of this type, we first describe a randomized Monte Carlo algorithm and then explain
how it could be derandomized.

Let (G,T, p, r) be an instance of Segments with Terminal Set.
Notice that if paths P1, . . . , Pr are a solution for the instance, that is, \{ P1, . . . , Pr\} 

is a system of T -segments and the total number of internal vertices of the paths is p,
then | \cup r

i=1V (Pi)| \leq p+2r. If r > p, then because each path in a solution should have
at least one internal vertex, (G,T, p, r) is a no-instance. Therefore, we can assume
without loss of generality that r \leq p. Let q = p+2r \leq 3p. We color the vertices of G
with q colors uniformly at random. Let P1, . . . , Pr be paths in G, and let si, ti be the
end-vertices of Pi for i \in \{ 1, . . . , r\} . We say that the paths P1, . . . , Pr together with
the ordered pairs (si, ti) of their end-vertices form a colorful solution if the following
is fulfilled:

(i) \{ P1, . . . , Pr\} is a system of T -segments,
(ii) | \cup r

i=1 V (Pi) \setminus T | = p,
(iii) if 1 \leq i < j \leq r, u \in V (Pi), and v \in V (Pj), then the vertices u and v have

distinct colors unless i = j - 1, u = ti, and v = sj (in this case the colors can
be distinct or the same).

It is straightforward to see that any colorful solution is a solution of the original
problem. From the other side, if (G,T, p, r) has a solution P1, . . . , Pr, then with
probability at least q!

qq > e - q all distinct vertices of the paths of a solution are colored
by distinct colors, and for such a coloring P1, . . . , Pr is a colorful solution. Since
q \leq 3p, we have that the probability is lower bounded by e - 3p. This implies that if
(G,T, p, r) is a yes-instance, then the probability that for a random coloring, no system
of segments forming a solution is a colorful solution with respect to the coloring is
upper bounded by 1 - e - 3p. This immediately implies that if after trying e3p random
colorings there is no colorful solution for any of them, then the probability that
(G,T, p, r) is a yes-instance is at most (1 - e - 3p)e

3p

< e - 1 < 1.
We construct a dynamic programming algorithm that decides whether there is a

colorful solution. Denote by c : V (G) \rightarrow \{ 1, . . . , q\} the considered random coloring.
In the first step of the algorithm, for each nonempty X \subseteq \{ 1, . . . , q\} and distinct

i, j \in X, we compute the Boolean function \alpha (X, i, j) such that \alpha (X, i, j) = true if
and only if there are s, t \in T and an (s, t)-path P such that P is a two-terminal T -
segment, | V (P )| = | X| , c(s) = i, c(t) = j and each vertex of P receives a unique color
from X. We define \alpha (X, i, j) = false if | X| < 3. For other cases, we use dynamic
programming.

To compute \alpha (X, i, j), we do the following auxiliary computations. For each
v \in V (G) \setminus T and each nonempty Y \subseteq X \setminus \{ i\} , we compute the Boolean function
\beta (Y, i, v) such that \beta (Y, i, v) = true if and only if there are s \in T and an (s, v)-path
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P \prime such that V (P \prime ) \setminus \{ s\} \subseteq V (G) \setminus T , c(s) = i, | V (P ) \setminus \{ s\} | = | Y | , and each vertex of
V (P ) \setminus \{ s\} is colored by a unique color from Y .

We compute \beta (Y, i, v) recursively starting with one-element sets. For every Y =
\{ h\} , where h \not = i, and every v \in V (G) \setminus T , we set \beta (Y, i, v) = true if c(v) = h and
v is adjacent to a vertex of T colored i, and we set \beta (Y, i, v) = false otherwise. For
Y \subseteq \{ 1, . . . , q\} \setminus \{ i\} of size at least two, we set \beta (Y, i, v) = true if c(v) \in Y and there
is w \in NG(v) \setminus T with \beta (Y \setminus \{ c(v)\} , i, w) = true, and \beta (Y, i, v) = false otherwise.

We set \alpha (X, i, j) = true if and only if there are t \in T and v \in NG(t) \setminus T such
that c(t) = j and \beta (X \setminus \{ i, j\} , i, v) = true.

The correctness of computing \beta and \alpha is proved by standard arguments in a
straightforward way. Notice that we can compute the tables of values of \beta and \alpha 
in time 2q \cdot n\scrO (1). First, we compute the values of \beta (Y, i, v) for all v \in V (G) \setminus T ,
i \in \{ 1, . . . , q\} , and nonempty Y \subseteq \{ 1, . . . , q\} \setminus \{ i\} . Then we use the already computed
values of \beta to compute the table of values of \alpha .

Next, we use the table of values of \alpha to check whether a colorful solution exists.
We introduce the Boolean function \gamma 0(i,X, \ell , j) such that for each i \in \{ 1, . . . , r\} ,
X \subseteq \{ 1, . . . , q\} , integer \ell \leq p, and j \in X, \gamma 0(i,X, \ell , j) = true if and only if there are
paths P1, . . . , Pi and ordered pairs (s1, t1), . . . , (si, ti) of distinct vertices of T such
that each Ph is an (sh, th)-path and the following is fulfilled:

(i) \{ P1, . . . , Pi\} is a system of T -segments,
(ii) | \cup i

h=1 V (Ph) \setminus T | = \ell ,
(iii) if 1 \leq f < g \leq i, u \in V (Pf ), and v \in V (Pg), then the vertices u and v have

distinct colors unless f = g  - 1, u = tf , and v = sg when the colors could be
the same,

(iv) c(ti) = j.
Notice that if \ell < i, then \gamma 0(i,X, \ell , j) = false. Our aim is to compute \gamma 0(r,X, p, j) for
X \subseteq \{ 1, . . . , q\} and j \in \{ 1, . . . , q\} . Then we observe that a colorful solution exists if
and only if there are X \subseteq \{ 1, . . . , q\} and j \in \{ 1, . . . , q\} such that \gamma 0(r,X, p, j) = true.

If i = 1 and \ell \geq 1, then

(3.1) \gamma 0(1, X, \ell , j) =

\biggl( \bigvee 
h\in X\setminus \{ j\} 

\alpha (X,h, j)

\biggr) 
\wedge 
\bigl( 
| X| = \ell + 2

\bigr) 
.

For \ell \geq i > 1, we use the following recurrence:

\gamma 0(i,X, \ell , j) =

\biggl( \bigvee 
j\in Y\subset X,h\in Y \setminus \{ j\} 

(\alpha (Y, h, j) \wedge \gamma 0(i - 1, (X \setminus Y ) \cup \{ h\} , \ell  - | Y | + 2, h))

\biggr) 

\vee 
\biggl( \bigvee 

j\in Y\subset X,h\in Y \setminus \{ j\} ,h\prime \in X\setminus Y

(\alpha (Y, h, j) \wedge \gamma 0(i - 1, X \setminus Y, \ell  - | Y | + 2, h\prime ))

\biggr) 
.

(3.2)

The correctness of (3.1) and (3.2) is proved by the standard arguments. Since
the size of the table of values of \alpha is 2q \cdot n\scrO (1) and the table can be constructed
in time 2q \cdot n\scrO (1), we obtain that the values of \gamma 0(r,X, p, j) for X \subseteq \{ 1, . . . , q\} and
j \in \{ 1, . . . , q\} can be computed in time 3q \cdot n\scrO (1). To see this, note that we consider
all X \subseteq \{ 1, . . . , q\} and all Y \subset X. Hence, the number of considered pairs of sets X
and Y is at most 3q. Therefore, the existence of a colorful solution can be checked in
time 3q \cdot n\scrO (1).

This leads us to a Monte Carlo algorithm for Segments with Terminal Set.
We try at most e3p random colorings. For each coloring, we check the existence of a
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colorful solution. If such a solution exists, we report that we have a yes-instance of
the problem. If after trying e3p random colorings we do not find a colorful solution
for any of them, we return the answer no. As we already observed, the probability
that this negative answer is false is at most (1  - e - 3p)e

3p

< e - 1 < 1, that is, the
probability is upper bounded by the constant e - 1 < 1 that does not depend on the
problem size and the parameter. The running time of the algorithm is (3e)3p \cdot n\scrO (1).

The algorithm can be derandomized, as was explained in [2] (we also refer to [9] for
the detailed introduction to the technique), by the replacement of random colorings
by a family of perfect hash functions. Currently, the best explicit construction of
such families was done by Naor, Schulman, and Srinivasan in [30]. The family of
perfect hash function in our case has size e3ppO(log p) log n and can be constructed
in time e3ppO(log p)n log n [30]. It immediately gives the deterministic algorithm for
Segments with Terminal Set running in time (3e)3pp\scrO (log p) \cdot n\scrO (1).

4. Putting it all together: Final proofs. In this section, we complete the
proofs of Theorems 2 and 3. For this, we restate Theorem 2.

Theorem 2. On 2-connected graphs Longest Cycle Above Degeneracy is
solvable in time 2\scrO (k) \cdot n\scrO (1).

Proof. Let G be a 2-connected graph of degeneracy at least d, and let k \in \BbbN . If
d \leq 5k - 4, then we check the existence of a cycle with at least d+k \leq 6k - 4 vertices
using Proposition 1 in time 2\scrO (k) \cdot n\scrO (1). Assume from now on that d \geq 5k - 3. Then
we find a d-core H of G in linear time using the results of Matula and Beck [28].

We claim that if | V (H)| \geq d + k, then H contains a cycle with at least d + k
vertices. If H is 2-connected, then this follows from Theorem 4. Assume that H is
not a 2-connected graph. By the definition of a d-core, H is connected. Observe that
| V (H)| \geq d+ 1 \geq 5k  - 2 \geq 3. Hence, H has at least two blocks and at least one cut
vertex. Consider the block graph Block(H) ofH. Recall that the vertices of Block(H)
are the blocks and the cut vertices of H and a cut vertex c is adjacent to a block B
if and only if c \in V (B). Recall also that Block(H) is a tree. We select an arbitrary
block R of H and declare it to be the root of Block(H). Let S = V (G) \setminus V (H).
Observe that S \not = \emptyset , because G is 2-connected and H is not. Let F1, . . . , F\ell be the
connected components of G[S]. We contract the edges of each connected component
F1, . . . , F\ell and denote the graph obtained from G by these contractions by G\prime . We
also denote by u1, . . . , u\ell the vertices of G\prime obtained from F1, . . . , F\ell , respectively. It
is straightforward to verify that G\prime has no cut vertices, that is, G\prime is 2-connected.
For each i \in \{ 1, . . . , \ell \} , consider ui. This vertex has at least two neighbors in V (H).
We select a vertex vi \in NG\prime (ui) that is not a cut vertex of H or if all the neighbors
of ui are cut vertices, we select vi be a cut vertex at maximum distance from R in
Block(H). Then we contract uivi. Observe that by the choice of each vi, the graph
G\prime \prime obtained from G\prime by contracting u1v1, . . . , u\ell v\ell is 2-connected. We have that G\prime \prime 

is a 2-connected graph of minimum degree at least d with at least d+ k vertices. By
Theorem 4, G\prime \prime has a cycle with at least min\{ 2d, | V (G\prime \prime )| \} \geq d+ k vertices. Because
G\prime \prime is a contraction of G, we conclude that G contains a cycle with at least d + k
vertices as well.

Now we can assume that | V (H)| < d+ k. By Lemma 3, G has a cycle with d+ k
vertices if and only if one of the following holds for p = d+ k - | T | , where T = V (H).

(i) There are distinct s, t \in T and an (s, t)-path P in G with all internal vertices
outside T such that P has at least p internal vertices.

(ii) G has a system of T -segments \{ P1, . . . , Pr\} and the total number of vertices
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of the paths outside T is at least p and at most 2p - 2.
Notice that p \leq k (because d  - | T | \leq 0). We verify whether (i) holds using

Proposition 2. To do so, we consider all possible choices of distinct s, t. Then we
construct the auxiliary graph Gst from G by the deletion of the vertices of T \setminus \{ s, t\} 
and the edges of E(H). Then we check whether Gst has an (s, t)-path of length at
least p+ 1 in time 2\scrO (k) \cdot n\scrO (1) applying Proposition 2.

Assume that (i) is not fulfilled. Then it remains to check (ii). For every r \in 
\{ 1, . . . , p\} , we verify the existence of a system of T -segments \{ P1, . . . , Pr\} in time
2\scrO (k) \cdot n\scrO (1) using Lemma 4. We return the answer yes if we get the answer yes for
at least one instance of Segments with Terminal Set, and we return no other-
wise.

Combining Theorem 2 with the reduction from Lemma 1, we immediately obtain
the restated Theorem 3.

Theorem 3. On connected graphs Longest Path Above Degeneracy is solv-
able in time 2\scrO (k) \cdot n\scrO (1).

5. Hardness for longest path and cycle above degeneracy. In this section
we complement Theorems 3 and 2 by some hardness observations.

Proposition 3. Longest Path Above Degeneracy is NP-complete even if
k = 2 and Longest Cycle Above Degeneracy is NP-complete even for connected
graphs and k = 2.

Proof. To show that Longest Path Above Degeneracy is NP-complete for
k = 2, consider a noncomplete n-vertex graph G. We construct a copy of the complete
(n - 2)-vertex graph Kn - 2, pick an arbitrary vertex v \in V (G), and make it adjacent to
every vertex of Kn - 2. Denote by G\prime the obtained graph. Because G is not a complete
graph, dg(G\prime ) \leq n - 2. Therefore, dg(G\prime ) = n - 2, because dg(Kn - 1) = n - 2. Observe
that G\prime has a path with dg(G\prime ) + 2 = n vertices if and only if G is Hamiltonian.
Since Hamiltonian Path is a well-known NP-complete problem (see [15]), the claim
follows. The claim for Longest Cycle Above Degeneracy follows from the
NP-completeness of Longest Path Above Degeneracy and the reduction from
Lemma 1.

Recall that a graph G has a path with at least dg(G)+1 vertices and if dg(G) \geq 2,
then G has a cycle with at least dg(G)+1 vertices. Moreover, such a path or cycle can
be constructed in polynomial (linear) time. Hence, Proposition 3 gives tight complex-
ity bounds. Nevertheless, the construction used to show hardness for Longest Path
Above Degeneracy uses a disconnected graph, and the graph constructed to show
hardness for Longest Cycle Above Degeneracy has a cut vertex. Hence, it is
natural to consider Longest Path Above Degeneracy for connected graphs and
Longest Cycle Above Degeneracy for 2-connected graphs. We show in Theo-
rems 3 and 2 that these problems are FPT when parameterized by k in these cases.
Here, we observe that the lower bound dg(G) that is used for the parameterization is
tight in the following sense.

Proposition 4. For any 0 < \varepsilon < 1, it is NP-complete to decide whether a
connected graph G contains a path with at least (1 + \varepsilon )dg(G) vertices and it is NP-
complete to decide whether a 2-connected graph G contains a cycle with at least (1 +
\varepsilon )dg(G) vertices.

Proof. Let 0 < \varepsilon < 1.
First, we consider the problem about a path with (1+\varepsilon )dg(G) vertices. We reduce
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from Hamiltonian Path which is well-known to be NP-complete (see [15]). Let G
be a graph with n \geq 2 vertices. We construct the graph G\prime as follows:

\bullet Construct a copy of G.
\bullet Let p = 2\lceil n

\varepsilon \rceil and construct a copy of the complete graph Kp. Denote by
u1, . . . , up its vertices.

\bullet For each v \in V (G), construct an edge vu1.
\bullet Let q = \lceil (1 + \varepsilon )(p  - 1)  - (n + p)\rceil . Construct vertices w1, . . . , wq and edges

u1w1, wqu2 and wi - 1wi for i \in \{ 2, . . . , q\} .
Notice that q = \lceil (1 + \varepsilon )(p  - 1)  - (n + p)\rceil = \lceil 2\varepsilon \lceil n

\varepsilon \rceil  - n  - 1  - \varepsilon \rceil \geq \lceil n  - 1  - \varepsilon \rceil \geq 1
as n \geq 2. Observe also that G\prime is connected. We claim that G has a Hamiltonian
path if and only if G\prime has a path with at least (1 + \varepsilon )dg(G\prime ) vertices. Notice that
dg(G\prime ) = p  - 1 and | V (G\prime )| = n + p + q = \lceil (1 + \varepsilon )dg(G\prime )\rceil . Therefore, we have
to show that G has a Hamiltonian path if and only if G\prime has a Hamiltonian path.
Suppose that G has a Hamiltonian path P with an end-vertex v. Consider the path
Q = vu1w1 . . . wqu2u3 . . . up. Clearly, the concatenation of P and Q is a Hamiltonian
path in G\prime . Suppose that G\prime has a Hamiltonian path P . Since u1 is a cut vertex of
G\prime , we obtain that P has a subpath that is a Hamiltonian path in G.

Consider now the problem about a cycle with at least (1+ \varepsilon )dg(G) vertices. Here
it is more convenient to modify the above reduction instead of applying Lemma 1
that cannot be used directly. We again reduce from Hamiltonian Path. Let G be
a graph with n \geq 2 vertices. We construct the graph G\prime as follows:

\bullet Construct a copy of G.
\bullet Let p = 2\lceil n

\varepsilon \rceil and construct a copy of the complete graph Kp. Denote by
u1, . . . , up its vertices.

\bullet For each v \in V (G), construct edges vu1 and vu2.
\bullet Let q = \lceil (1 + \varepsilon )(p  - 1)  - (n + p)\rceil . Construct vertices w1, . . . , wq and edges

u2w1, wqu3 and wi - 1wi for i \in \{ 2, . . . , q\} .
As before, we have that q \geq 1. Notice additionally that p \geq 3, i.e., the vertex u3

exists. It is straightforward to see that G\prime is 2-connected. We claim that G has a
Hamiltonian path if and only if G\prime has a cycle with at least (1 + \varepsilon )dg(G\prime ) vertices.
We have that dg(G\prime ) = p - 1 and | V (G\prime )| = \lceil (1 + \varepsilon )dg(G\prime )\rceil . Hence, we have to show
that G has a Hamiltonian path if and only if G\prime has a Hamiltonian cycle. Suppose
that G has a Hamiltonian path P with end-vertices x and y. Consider the path
Q = xu2w1 . . . wqu3u4 . . . upy. Clearly, P and Q together form a Hamiltonian cycle
in G\prime . Suppose that G\prime has a Hamiltonian cycle C. Since \{ u1, u2\} is a cut set of G\prime ,
we obtain that C contains a path that is a Hamiltonian path of G.

6. Conclusion. We considered the lower bound dg(G) + 1 for the number of
vertices in a longest path or cycle in a graph G. It would be interesting to consider
the lower bounds given in Dirac's theorem [10] (Theorem 4) and in the classical
theorem of Erd\H os and Gallai [11] stating that every connected n-vertex graph G
contains a path with at least min\{ 2\delta (G)+ 1, n\} vertices. More precisely, what can be
said about the parameterized complexity of the variants of Longest Path (Cycle)
where given a (2-connected) graph G and k \in \BbbN , the task is to check whether G
has a path (cycle) with at least 2\delta (G) + k vertices? Are these problems FPT when
parameterized by k? It can be observed that the bound 2\delta (G) is ``tight."" That is, for
any 0 < \varepsilon < 1, it is NP-complete to decide whether a connected (2-connected) G has a
path (cycle) with at least (2+\varepsilon )\delta (G) vertices. See also [31] for related hardness results.
Similar questions can be asked for Longest Path (Cycle) parameterized above the
average degree (the average degree of a graphG is ad(G) = (

\sum 
v\in V (G) dG(v))/| V (G)| =
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2| E(G)| /| V (G)| ) using the property that a graph G has a path with at least ad(G)+1
vertices (a cycle with at least ad(G)+ 1 vertices if ad(G) \geq 2) by the results of Erd\H os
and Gallai [11].
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