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Abstract

Reaction rates (fluxes) in a metabolic network can be analyzed using constraint-based

modeling which imposes a steady state assumption on the system. In a deterministic

formulation of the problem the steady state assumption has to be fulfilled exactly, and the

observed fluxes are included in the model without accounting for experimental noise. One

can relax the steady state constraint, and also include experimental noise in the model,

through a stochastic formulation of the problem. Uniform sampling of fluxes, feasible in both

the deterministic and stochastic formulation, can provide us with statistical properties of the

metabolic network, such as marginal flux probability distributions. In this study we give an

overview of both the deterministic and stochastic formulation of the problem, and of avail-

able Monte Carlo sampling methods for sampling the corresponding solution space. We

apply the ACHR, OPTGP, CHRR and Gibbs sampling algorithms to ten metabolic networks

and evaluate their convergence, consistency and efficiency. The coordinate hit-and-run with

rounding (CHRR) is found to perform best among the algorithms suitable for the determin-

istic formulation. A desirable property of CHRR is its guaranteed distributional convergence.

Among the three other algorithms, ACHR has the largest consistency with CHRR for

genome scale models. For the stochastic formulation, the Gibbs sampler is the only method

appropriate for sampling at genome scale. However, our analysis ranks it as less efficient

than the samplers used for the deterministic formulation.

Introduction

Cell metabolism involves many chemical reactions, catalyzed by thousands of enzymes, and is

often represented as metabolic networks [1]. The dynamics of a metabolic network, consisting

of m metabolites and n reactions, can be mathematically modelled by a system of Ordinary

Differential Equations (ODEs) written in short form as

dx
dt
¼ SvðxðtÞ;α; tÞ: ð1Þ

Here, x 2 Rm is a vector containing of metabolite concentrations, α 2 Rk is a vector of

parameters, S 2 Rm�n
is the stoichiometric matrix, i.e. a matrix representation of the network,

and vðx;α; tÞ 2 Rn
are the flux rates in the n reactions [2].
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The stoichiometric matrix S is constructed so that element Sij is positive (negative) if metab-

olite i is created (consumed) by reaction j, represented by the flux rate vj, and is assumed con-

stant. A challenge is to establish models of the different flux rates, in general nonlinear in x,

and to estimate the k parameters in α through in-vivo and in-vitro experiments. The non-lin-

earity of the ODE system also makes the system susceptible to chaotic behavior, bifurcation

and sensitivity to parameter values [3].

In Flux Balance Analysis (FBA) [4] the model system is assumed to be in a steady state

dx
dt
¼ S v ¼ 0; ð2Þ

i.e. the problem goes from being a set of differential equations in x to become an algebraic

problem, with the flux rates v as unknowns. Often the flux rates are constrained with upper

and lower bounds

vlb � v � vub: ð3Þ

However, since a typical metabolic network has fewer metabolites than reactions, i.e. m<

n, the system in Eqs (2) and (3) is in general undetermined. The system might have many feasi-

ble solutions in a closed convex polytope, the n-dimensional analogue to the three dimensional

polyhedron, formed by the intersection of the kernel of S and the linear inequalities in Eq (3)

[5]. A unique solution might be found by introducing an objective function which aims to

optimize some biological functionality, for example maximizing cell growth rate or ATP pro-

duction of an organism [2]. A challenge in FBA is to choose the most appropriate objective

function.

An alternative to FBA, which avoids the need to specify an objective function, is to sample

(uniformly) from the flux polytope defined by Eqs (2) and (3). The solution space can then be

characterized statistically from the set of sampled v vectors in terms of a probability density

function (pdf), which we denote by p(v) [6]. We will distinguish between a deterministic and

stochastic formulation of given metabolic model and the associated flux measurements. The

stochastic formulation is more flexible in that it can account for measurement error and allows

relaxation of the steady state condition in Eq (2).

Fig 1 illustrates the key concepts used in this paper. The simple metabolic network consists

of a single input flux, v1, m = 1 metabolite, and a single output flux v2, i.e. n = 2 fluxes in total.

The resulting constrained steady state equation is given in Fig 1a). Panel b) shows the polytope

representing the solution space, which in this case is a line segment in the v1-v2 plane. Panel b)

also shows the uniform pdf’s p(v1) and p(v2) indicating that all flux values in the feasible inter-

vals are “equally probable”.

Fig 1 illustrates how the deterministic and stochastic frameworks differ in the way they

incorporate flux measurements. In the deterministic case (Panel c), fixing v1 experimentally

uniquely determines v2. Both pdf’s collapse to point masses, and all other a-priori feasible val-

ues have zero probability. In a stochastic framework (Panel d), on the other hand, the uncer-

tainty in the measurement of v1 can be taken into account. When this uncertainty is combined

with constraints imposed by the polytope, the resulting pdf’s p(v1) and p(v2) are non-degener-

ate as shown in Panel d), and displays the marginal likelihood of each feasible flux value.

Another limiting assumption of the deterministic formulation is the exact steady state

assumption. This assumption is not always realistic and should be relaxed to have a model

compatible with the stochastic nature of biological networks [7, 8]. In Fig 1e), we relax the

steady state assumption (2), while still incorporating the uncertain measurement v1. This leads

to wider pdf’s (Panel e versus d), and the solution polytope is not necessarily convex any more.
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For genome-scale metabolic models the dimension (n) of the polytope formed by Eqs (2)

and (3) is typically high and deterministic sampling from such polytopes is challenging [9].

Hence, Monte Carlo (MC) approximations are often used [10]. In Wiback et al. [11] a MC

rejecting sampling algorithm was used to sample low dimensional polytopes. However, this

algorithm becomes inefficient when n is large, so a more commonly used algorithm is the hit-

and-run (HR) [12, 13], which is a Markov Chain Monte Carlo (MCMC) method. Almaas et al.

[14] originally applied the HR algorithm to the bacterium Escherichia coli metabolic network.

The algorithm efficiently samples from the solution space as long as the polytope is isotropic in

scales of the fluxes, i.e. being independent on direction in the high dimensional sample space.

Fig 1. Solution space and sampling pdf p(v) (pink curve) under different experimental setups. (a): Example

metabolic network and corresponding mathematical model. (b): Deterministic formulation without measurements. (c)

and (d): Flux measurement of v1 (orange circle) available in deterministic setup (c) and stochastic setup (d). (e):

Relaxed steady state assumption and flux measurement of v1 in stochastic setup.

https://doi.org/10.1371/journal.pone.0235393.g001
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High dimensional polytopes that are very narrow in some directions are difficult to sample

properly. To cope with this anisotropy problem, the artificial centering hit-and-run (ACHR)

algorithm has been developed [15]. The ACHR algorithm and an algorithm based on ACHR,

known as optimized general parallel sampler (OPTGP) [16], are widely used to sample the

solution space of metabolic models. However, both samplers suffer from convergence prob-

lems due to the non-Markovian nature of ACHR [17]. The ACHR algorithm is implemented

in both the COnstrained Based Reconstruction and Analysis (COBRA) toolbox [18] (in

Matlab) and COBRApy (in Python). The OPTGP is available only in COBRApy. Recently,

rounding procedures have been proposed to remove the heterogeneity issue of the solution

space, and then a modified version of HR is used [17, 19]. Coordinate hit-and-run with round-

ing (CHRR) [19] is also implemented in the COBRA toolbox. The algorithms mentioned so

far are designed to sample the polytope formed by a deterministic formulation of the model

(Fig 1b and 1c). The run time and convergence of the two ACHR based algorithms and CHRR

are compared using three constraint-based models in the study by Herrmann et al. [6].

In the study by Van den Meersche et al. [20] a general framework to solve a linear inverse

problem using a MCMC algorithm is presented. The suggested framework can be used to sam-

ple the solution space of a metabolic network model which is constructed to encode an exact

steady state assumption, bounded fluxes and flux observations with related experimental noise

(Fig 1d). A function is available in the limSolve R package [21] to perform the sampling in this

framework.

Another option is to relax the steady state constraint in Eq (2) while including the flux data

and corresponding noise (Fig 1e). Considering these assumptions, a statistical model using

Bayesian framework has been introduced by Heinonen et al. [22], and a truncated multivariate

normal (TMVN) posterior distribution for the fluxes has been presented. Efficient sampling

from a truncated multivariate normal distribution is a challenging task, and often Gibbs sam-

pling is applied [23]. The Bayesian metabolic flux analysis (BMFA) is implemented in the

COBRA toolbox by Heinonen et al. [22].

To our knowledge this is the first time that both available deterministic and stochastic

frameworks are reviewed and corresponding sampling algorithms are compared to each other.

In this study we have evaluated ACHR, OPTGP and CHRR algorithms which are appropriate

for the deterministic formulation. Even if we use different criteria than the ones used by

Herrmann et al. [6] our results are in good agreement with their findings. In addition, we have

evaluated sampling algorithms xsample() and Gibbs which are related to the stochastic formu-

lation. These algorithms have not been discussed by Herrmann et al. [6].

First we give an overview of available MC sampling algorithms for the different cases pre-

sented in Fig 1, and discuss their pros and cons. Then, an assessment of algorithms in terms of

convergence, consistency and efficiency is given. We conclude the paper with a discussion on

which framework and sampling algorithm might be better to use considering restrictions in

the model and level of uncertainty for available flux measurements.

Survey of sampling algorithms

Below follows a brief description each of the algorithms included in this study, cast in a com-

mon notation. For more details the reader is referred to the background papers.

Deterministic formulation

We begin by describing the standard hit-and-run (HR) algorithm to sample from a convex set.

We then review HR related algorithms to approximate uniform sampling from a convex
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polytope, which is a convex set of points, constructed by the exact steady state in Eq (2) and

the capacity constraints in Eq (3) on metabolic fluxes.

The Hit-and-Run sampling algorithm (HR). The standard HR algorithm collects sam-

ples from a given N dimensional convex set P by choosing an arbitrary starting point v(0) 2 P,

setting a = 0 where a is the iteration number and going iteratively through three steps:

1. choosing an arbitrary direction θ(a) uniformly distributed on the boundary of the unit

sphere in RN
;

2. finding the minimum (maximum) value of l 2 R denoted by λmin (λmax) such that v(a) +

λθ(a) 2 P and choose a random step size λ(a) 2 [λmin, λmax];

3. generating a new sample v(a+1) = v(a) + λ(a) θ(a) by taking a step of size λ(a) from the current

sample v(a) in the direction θ(a) and then set a = a + 1.

The HR technique is a MCMC approach since it generates a new sample by using only the

current sample point, which is the definition of the Markov property. Convergence to the tar-

get distribution is guaranteed for a MCMC sampling approach, see for instance [24].

The simple HR algorithm performs effectively in a high dimensional space as long as the

solution space is isotropic. A bottleneck of the standard HR is the diffusion in the presence of

narrow corners in the solution space due to tightly constrained fluxes. In narrow regions HR

has to take small steps and consequently the new sample is close to the previous one. This pre-

vents the sampler to perform a full exploration of the solution space of an irregular shape in a

finite time, and is known as slow mixing.

Artificial Centering Hit-and-Run (ACHR). The artificial centering hit-and-run (ACHR)

was proposed by Kaufman et al. [15] to overcome the problem of slow mixing. In a highly het-

erogeneous solution space a uniform direction choice on the boundary of the unit sphere is a

poor choice. The core idea of the ACHR is to use optimal direction choices in HR to allow for

larger steps along the elongated directions. In each iteration the sampler tries to approximate a

center for the space by computing the mean of all the samples generated so far for each coordi-

nate. Then it chooses randomly a sample from all the samples generated and find a new direc-

tion by normalizing the difference between the selected sample and the current approximated

center. Considering an arbitrary starting point v(0) 2 P, a number of warm up samples Mwarm

� N, setting a = 0 and an initial center ĉ ¼ vð0Þ, ACHR generates samples iteratively by per-

forming four steps:

1. generate a direction: if a<Mwarm (warm up phase), select a direction θ(a) as in the stan-

dard HR approach. Otherwise (main phase) choose a number i uniformly distributed on

{0, 1, . . ., a} and compute a direction θðaÞ ¼ vðiÞ� ĉ
kvðaÞ� ĉk;

2. choose a random step size λ(a) as in the standard HR;

3. generate a new sample v(a+1) = v(a) + λ(a) θ(a) and then set a = a + 1;

4. update the artificial center by setting ĉ ¼ aĉþvðaÞ
aþ1

.

In each iteration of ACHR in the main phase, the direction is dependent on all previous

iterates and directions and this makes the sampler a non-Markovian algorithm. Therefore it is

not guaranteed that the sequence of iterates converges toward the target distribution.

For genome scale metabolic models, this algorithm might perform slow to sample the poly-

tope formed by the solution space. To make the sampling process faster, an algorithm named

the optimized general parallel sampler (OPTGP) was proposed by Megchelenbrink et al. [16].

In this algorithm the flux through each reaction is maximized and minimized to generate the
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2n warm-up points. From warm up points, this algorithm generates multiple short chains in

parallel using the approximated center as in ACHR and it takes only the kth point of the chain

as a sample point [16]. In the study by Megchelenbrink et al. [16] it has been shown that the

OPTGP performs more efficient than the ACHR by generating samples with higher random-

ness in a shorter time. Clearly, the ACHR is at the core of the OPTGP and this leads to a non-

Markovian algorithm. Even though both algorithms are commonly used in the literature, both

of them suffer from convergence problems [17].

Coordinate Hit-and-Run with Rounding (CHRR). As mentioned, the performance of

the HR algorithm can be strongly affected by irregularity in the shape of the polytope P repre-

senting the solution space, known as ill-conditioning. Suppose Rb is the radius of the biggest

ball that can be placed inside the polytope and Rs is the radius of the smallest ball inscribing

the polytope. The time a sampling algorithm takes to converge to the target distribution is

called the mixing time τ and in Lovász et al. [25] it has been shown that the mixing time of the

HR algorithm scales by

t ’ OðN2
R2

s

R2
b
Þ; ð4Þ

where N is the dimension of the polytope. The degree of ill-conditioning for the sampling

problem is measured by Rs/Rb, known as the sandwiching ratio of the body. This ratio depends

on the orders of magnitude of the flux scales and in genome scale problems this number can

reach 105 which indicates very high irregularity of the polytope to be sampled [17].

To reduce the sandwiching ratio and eliminate ill-conditioning, an approach is presented

in Haraldsdottir et al. [19] that consists of two steps; rounding and sampling. In the rounding

phase a maximum volume inscribed ellipsoid is built, based on the presented algorithm in

Zhang et al. [26], to match closely the heterogeneous polytope. Then the polytope is rounded

through transforming the inscribed ellipsoid to a unit ball. A variant of HR algorithm known

as coordinate hit-and-run (CHR) [27] is used to sample from the rounded polytope. In the

CHR algorithm the direction θ(a) is selected randomly along the coordinate directions instead

of picking randomly from the unit sphere in RN . Otherwise the CHR algorithm operates simi-

lar to the HR. After running the CHR algorithm the sampled points are transformed back to

the original space through an inverse transformation. Since the CHRR uses CHR Markov

chain for sampling purpose, its convergence to the target distribution is guaranteed in contrast

to ACHR based algorithms [28].

Stochastic formulation

In this part we review the studies of Van den Meersche et al. [20] and Heinonen et al. [22] in

which statistical frameworks have been proposed to analyze metabolic fluxes while integrating

flux measurements with their noise in the formulation and relaxing the steady state assump-

tion in Eq (2). To our knowledge, these two studies are the only studies presenting sampling

algorithms applicable at genome scale.

Sampling linear inverse problems (xsample()). In the deterministic formulation repre-

sented by Eqs (2) and (3) if the experimental values for some of the fluxes are available, they

are integrated in the formula by fixing the fluxes at the given values. However, we do not

account for the uncertainty of the flux measurements in the equations if we fix the fluxes at

their measured values and this might result in overconfidence in outcomes and conclusions.

In Van den Meersche et al. [20] the uncertainties corresponding to the experimental values
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were included in the Eqs (2) and (3) by adding a noise term to the algebraic equation

Av ¼ bþ �; ð5Þ

where the data vector is denoted by b and corresponding uncertainties are encoded by

�� N(0, S). The diagonal matrix S = diag(σ1, . . ., σn) represents the variances of flux data.

The matrix A is a diagonal matrix where aii is one in the presence of data for vi and otherwise

zero. The model describes the exact steady state phase of the network considering the limited

capacity of the fluxes and it also accounts for the available flux measurements with their exper-

imental noise.

Van den Meersche et al. [20] provided a function named xsample() in R [29] to produce a

set of samples of fluxes v in this framework. The function produces the samples by carrying

out a two-staged process. First the equality constraint S v = 0 is eliminated since all solutions v

for this system of equations can be written as

v ¼ Gu ð6Þ

where G 2 Rn�ðn� rsÞ is an orthonormal matrix formed by the basis for the null space of S (rs is

the rank of S). The linearly dependent variables v 2 Rn
are transformed to linearly indepen-

dent variables u 2 Rn� rs . The constraints in terms of u are

AGu ¼ bþ � ð7Þ

vlb � Gu � vub: ð8Þ

In the second stage the variables u are sampled from a proposed TMVN distribution with

probability density function

pðuÞ /

(
e� 1

2
ðAGu� bÞTS� 1ðAGu� bÞ if vlb � Gu � vub

0 otherwise
: ð9Þ

To sample from this distribution, the xsample() applies the Metropolis algorithm [30]. The

xsample() function in R allows to examine three different jump (proposal) algorithms. How-

ever, here we discuss only one of them named the mirror algorithm which has been found to

perform more efficient for high-dimension problems [20]. This algorithm uses the inequality

constraints in Eq (8) as reflective planes. Assume u(a) is a feasible sample and a new point will

be drawn

uðaþ1Þ

0 2 NðuðaÞ;OÞ ð10Þ

where the normal distribution is in the unrestricted space with mean u(a) and a set of fixed

standard deviations collected in the diagonal matrix O ¼ diagðo1; . . . ;on� rs
Þ. If the point

uðaþ1Þ

0 fulfills all inequalities in Eq (8), it is accepted as the point u(a+1) to be evaluated by the

acceptance ratio test in the Metropolis algorithm [40]. But if the point uðaþ1Þ

0 violates some

inequalities, it is mirrored consecutively in the hyperplane formed by violated inequalities

[20]. Then the resulting point u(a+1) satisfies all inequalities and will be evaluated through the

acceptance ratio test to be accepted or rejected.

The diagonal elements of the matrix O are the jump lengths of the Markov Chain. The

jump lengths define the step lengths taken and they determine the distance covered within

the solution space in one iteration and also the number of reflections in the solution space
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boundaries. Due to this the jump lengths have a significant influence on the efficiency of this

algorithm.

Bayesian Metabolic Flux Analysis (BMFA). So far we have considered frameworks in

which the metabolic network is constrained to the exact steady state. In 2016, it was shown

that metabolites can accumulate or deplete in a metabolic network [8] and recently MacGilliv-

ray et al. [7] studied metabolic networks under the relaxed steady state assumption through

the so-called RAMP model. They have presented an argument that the exact steady state con-

straint (Eq (2)) on the fluxes should be relaxed to be in agreement with the stochastic nature of

a cell. In 2019, a statistically relaxed steady state model was presented in Heinonen et al. [22]

Sv ¼ 0þ β; ð11Þ

where β� N(0, Γ) is a vector of disturbances around the steady state assumption S v = 0. The

allowed variances around the steady state are collected in the diagonal matrix Γ = diag(γ) =

diag(γ1, . . ., γm). Note that by considering very small variances, γ! 0, the model will be com-

patible with the strict steady state case.

Heinonen et al. [22] implemented Eq (11) in a Bayesian framework in which multivariate

Gaussian priors for fluxes were assumed. The prior mean for a flux was set to zero or to the

closet value to zero considering the flux upper and lower bounds. The prior variances as a

hyperparameter defines the a priori values a flux can take. A TMVN distribution TMVN(μ, C,

vlb, vub) was proposed as the target distribution from which fluxes v were sampled. For sampling

purpose, Heinonen et al. [22] used the Gibbs algorithm [31], which is a MCMC algorithm suit-

able for Bayesian models. Detailed formulas for the mean vector μ and the covariance matrix C
can be found in [22].

In Heinonen et al. [22], the flux variables v were first transformed to uncorrelated variables

~v ¼ L� 1ðv � μÞ using a Cholesky decomposition of the covariance matrix C = LLT to make

the sampling process more efficient. Thereafter the problem was converted to sample ~v
from the distribution TMVNð0; I; ~v lb; ~vubÞ where I is the identity matrix, ~v lb ¼ vlb � Lμ and

~vub ¼ vub � Lμ. In the Gibbs algorithm an initial sample point ~vj
ð0Þ

is drawn from the Gaussian

prior distribution for j = 1. . .n. Then, at each iteration the algorithm cyclically (j = 1. . .n)

draws ~vj from the conditional posterior density pð~vj j ~v � jÞ, where ~v � j is a vector including all

fluxes except the flux ~vj. Using properties of the TMVN distribution, it can be shown that these

conditional distributions again are within the TMVN, and Heinonen et al. [22] has provided

closed form expressions for the upper and lower bounds ~v lb and ~vub.

A summary of the sampling algorithms and their main characteristics are presented in the

Table 1.

Experimental setup and implementation

The four sampling algorithms (ACHR, OPTGP, CHRR and Gibbs) were applied to sample

from ten metabolic models, which were obtained from the BiGG database [32]. The sampling

Table 1. A summary of sampling algorithms and their main characteristics.

Sampling algorithm Programming language Convergence guaranteed? Relevant formulation

ACHR Matlab/Python No Deterministic

OPTGP Python No Deterministic

CHRR Matlab Yes Deterministic

Gibbs/BMFA Matlab Yes Stochastic

xsample() R Yes Stochastic

https://doi.org/10.1371/journal.pone.0235393.t001
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algorithms were applied on one core model (E. coli core) and nine genome scale metabolic

models with the number of fluxes ranging from n = 95 to n = 3741. The M = 20, 000 samples

were generated for each flux in each model, with a thinning parameter of 1000 in each sam-

pling algorithm where we kept every 1000 draw from the target distribution and discarded the

rest.

The OPTGP and Gibbs algorithm sampled from the full models, while ACHR and CHRR

sampled from reduced versions of the models, obtained as follow. The upper and lower bounds

on the fluxes (vlb and vub) were changed to the minimum and maximum achievable flux values

computed through flux variability analysis [33]. Then, the model was reduced by discarding the

reactions which could not carry any flux (null reactions with maximum and minimum achiev-

able values less than a threshold). Table 2 shows summary statistics for each metabolic model,

including the number of reactions before (n) and after (nred) reduction. Also shown are AFR

values, i.e. Average Flux Range of the full models calculated by AFR ¼ 1=n
Pn

j¼1
ðvub

j � vlb
j Þ.

In both ACHR and CHRR the number of initial iterations that have been discarded at the

beginning of the sampling (warm up) was set to Mwarm = 20, 000. The design of the OPTGP

algorithm is such that it always generates a fixed number (2n) of warm up points. For BMFA

there is no warm up phase since its Gibbs algorithm starts out from the posteriori mode of a

truncated normal distribution.

In the BMFA framework the variances γi around the relaxed steady state condition of

Eq (11) were set to γi = 0.0001 (i = 1. . .m), as in Heinonen et al. [22]. Defining a nearly strict

steady state condition by using such small variances (γi) should not have a large impact on

generated samples by Gibbs algorithm. The average flux ranges (AFR) reported in Table 2

indicate that the models have different flux ranges and in the BMFA framework, the prior

variances for fluxes should be adjusted according to the flux ranges. For all models except

iLJ478 and iSB619, the prior variances for fluxes were set to (min(0.5(vub − vlb), 1000))2 to

cover the flux ranges. To avoid numerical instabilities in the covariance matrix for the iLJ478

and iSB619, the prior variances were set to (min(0.5(vub − vlb), 500))2 and (min(0.5(vub − vlb),

100))2, respectively.

The implementations of the ACHR and CHRR algorithms available via the sampleCbModel()
function from the COBRA toolbox (version 3.0) [18] of Matlab was used. The bmfa() from the

COBRA toolbox was applied to generate the samples based on the Gibbs algorithm used in the

BMFA. We have made a minor change in the script of the bmfa() function in order to allow the

Table 2. Constraint-based metabolic models and run times (min) for different sampling algorithms. The m, n, nred denote the number of metabolites, reactions of the

full model and of the reduced model, respectively. The AFR is the Average Flux Range of the full model. The 20, 000 samples for each flux in each metabolic model were

drawn on an Intel Core i7 at 2.5 GHz. In all sampling algorithms the thinning parameter was set to 1000.

Network Run time

Model m n nred AFR ACHR (Deterministic) OPTGP (Deterministic) CHRR (Deterministic) Gibbs/BMFA (Stochastic)

E. coli core 72 95 87 1474 68.78 min 14.81 min 6.17 min 69.96 min

iAB_RBC_283 342 469 453 1080 99.67 min 18.53 min 9.46 min 1148.50 min

iLJ478 570 652 380 1292 91.08 min 19.83 min 7.64 min 1884.00 min

iSB619 655 743 450 1267800 96.09 min 20.83 min 9.55 min 2173.50 min

iHN637 698 785 522 1257 103.38 min 22.13 min 7.85 min 2483.50 min

iAT_PLT_636 738 1008 1008 1444 132.55 min 27.56 min 13.81 min 2244.80 min

iJN746 907 1054 652 1329200 116.40 min 24.80 min 10.67 min 3179.70 min

iSDY_1059 1888 2539 1502 1248 148.64 min 40.15 min 18.40 min 17393.00 min

iJO1366 1805 2583 1687 1242 192.22 min 38.43 min 21.93 min 18177.00 min

Recon1 2766 3741 2467 1414100 308.97 min 51.71 min 36.20 min 22268.00 min

https://doi.org/10.1371/journal.pone.0235393.t002
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user to adjust the prior variations for fluxes according to the flux ranges of a metabolic model.

The samples from OPTGP algorithm were drawn using the optGPSampler() function from the

COBRA toolbox in Python (COBRApy) [34].

Three of the algorithms (ACHR, OPTGP and CHRR) were run on a computer with an Intel

Core i7 processor (2.5 GHz). The run time of the algorithms while sampling each of the ten

models were measured using tic/toc function in Matlab and time function in Python which

reports the elapsed “wall-clock” time (Table 2). Both OPTGP and CHRR were run in parallel

on four threads, while both ACHR and Gibbs were run on a single thread, since their current

implementation can not exploit parallelism. The more computationally demanding Gibbs

algorithm was run on a server with 32 Cores (2.7 GHz). A pro-rata conversion was applied in

order for its run time to be comparable to that of the three other algorithms. To this end 200

samples from the Gibbs sampler were generated on the Intel Core i7 processor, and the corre-

sponding run time formed the basis of the conversion factor.

Convergence diagnostics

The M = 20, 000 samples from each algorithm have been validated and compared in R [29].

A sample generated by a MCMC algorithm is guaranteed to be representative of the true flux

distribution only if the sample chain has converged (in distribution). It is hence customary

to apply one or more convergence diagnostics to avoid incorrect inference [6]. In the present

study we investigated and compared four different convergence diagnostics. Distributional

convergence may be assessed within a chain or across multiple chains run in parallel, started

from different values inside the solution space. Not all the implementations of the algorithms

used here allows the starting to be controlled, so we focused our comparison on single-chain

diagnostics. The diagnostics were applied separately to each flux of a model, and we have pre-

sented the proportion of converged chains as a summary statistic.

When applying a MCMC method there are three constants that must be specified. First, the

number of warm up samples, Mwarm, determines how many samples must be discarded ini-

tially before distributional convergence is achieved. Then sampling continues for M iterations,

which yields the sample v(1), . . ., v(M) that is used for inference. The third constant is the so

called “thinning” parameter, which in the current study was set to 1000 in all sampling algo-

rithms. This means that only every 1000th sample from the underlying Markov chain was

kept. The purpose is to reduce the autocorrelation. Note that autocorrelation in the chain per

se does not invalidate the inference drawn, but it reduces the information content.

Below the four diagnostic tools are reviewed briefly. For more details the reader is referred

to the background papers. We let v(1), . . ., v(M) denote the sample chain for one specific flux.

Raftery and Lewis

Based on a single chain of flux samples (pilot chain), v(1), . . ., v(M), the Raftery and Lewis diag-

nostic [35] provided an estimate of the number of iterations in the warm up phase, Mwarm, and

the required number of further iterations, Nmax, to estimate the quantile q to within a precision

of ±e with probability p. It further determined the minimum number of iterations, Nmin, that

should be run as a pilot chain assuming independent samples. Using these statistics, this

test determined a dependence factor I = (Mwarm + Nmax)/Nmin as a measure of dependency

between consecutive samples (autocorrelation). Here we considered the chains with I> 5 as

highly autocorrelated chains that were not run long enough. Here, all statistics in Raftery and

Lewis diagnostic were calculated to estimate a quantile of 0.025 to within a precision of ±0.005

with probability 0.95 using the raftery.diag() function from the CODA R package [36].
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Geweke

Geweke [37] proposed a single-chain convergence diagnostic which compares the average

value of the first and last segments of the chain v(1), . . ., v(M). Let B1 denotes the first 10% of the

samples, and B2 denotes the last 50%. The test statistic for the Geweke diagnostic is the Z-score

Z ¼
�B1 �

�B2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

�B1
þ s2

�B2

q ; ð12Þ

where �B1 and �B2 are the averages of the two segments, and s2
�B1

and s2
�B2

are the associated

standard errors. If the chain has converged in distribution, �B1 and �B2 have the same expected

(mean) value. When M is sufficiently large, �B1 and �B2 will approximately be normally distrib-

uted, and Z will follow a standard normal distribution. Here, the Z-score was computed using

the geweke.diag() function from the CODA package in R [36]. The convergence criterion for

the Geweke diagnostic is |Z|�1.28.

Interval Based Scale Reduction Factor (IPSRF)

Our third convergence diagnostic is based on the Gelman-Rubin diagnostic [38]. This is

originally a multiple-chain diagnostic which compares the difference in across- and within-

chain variances. The idea is that if all chains have converged the sample variances will be

the same. The original Gelman-Rubin diagnostic assumes normality of the samples. As a

typical flux distribution is not normal for a genome scale metabolic model [6], a modified

version known as the Interval-based potential reduction factor (IPSRF) should instead be

used [39].

To apply the IPSRF diagnostic to a single chain, the first and last third of the chain can

be treated as two “parallel” chains. The resulting IPSRF value was estimated using the ipsrf()
function in the MCMC diagnostics toolbox in Matlab. The test criterion is IPSRF < 0.9 or

IPSRF > 1.1, in which case the single chain was considered to have not converged.

Hellinger distance

The Hellinger distance is a density based convergence diagnostic that can be used for a single

chain or multiple chains [40]. The basic idea is to compare the flux density estimated from the

first third segment of the chain, p1(v), with that of the last third segment, p3(v). The probability

densities p1 and p3 are calculated using the densityfun() function of the statip package in R

[41]. The Hellinger distance statistic is defined as

HDðp1; p3Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

Z 1

� 1

� ffiffiffiffiffiffiffiffiffiffi
p1ðvÞ

p
�

ffiffiffiffiffiffiffiffiffiffi

p3ðvÞ
q �2

dv
r

: ð13Þ

It is a proper metric, symmetric in p1 and p3. Further, it is bounded by 0�HD� 1, where

0 indicates no divergence and 1 indicates no common support between the two distributions.

As suggested by Boone et al. [40], if the Hellinger distance between the two probability density

functions of two segments was less than 0.1 (HD� 0.1), then the chain has been considered

to have converged else not. We wrote a script in R to calculate the Hellinger distance where we

used the integral() from the pracma package [42].
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Comparison of algorithms

Correlation coefficient

The two most important statistical summaries of a sample v(1), . . ., v(M) are its mean and vari-

ance:

�v ¼
1

M

XM

l¼1

vðlÞ and s2 ¼
1

M � 1

XM

l¼1

ðvðlÞ � �vÞ2: ð14Þ

If two sampling algorithms yield the same flux distributions, they should give the same val-

ues of �v (and similarly for s2) for a given reaction. We compare algorithms in terms of their

Pearson correlation across reactions for both of these quantities. In term of the sample average

the Pearson correlation between Algorithm 1 and 2 is given as

r ¼
Pn

j¼1
½ð�vj;1 � ��v 1Þð�vj;2 � ��v 2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1
ð�vj;1 � ��v 1Þ

2
ð�vj;2 � ��v 2Þ

2
q ð15Þ

where �vj;1 is the sample average for the jth flux, and ��v1 ¼
1

n

Pn
j¼1

�vj;1 is the across-flux average,

both for Algorithm 1 (and similar quantities for Algorithm 2). The Pearson correlation is well

suited as a measure of association because the flux average �v will be approximately normally

distributed by the central limit theorem. Further, r varies between −1 and +1. A perfect posi-

tive (linear) association is indicated by a value of + 1, while 0 represents no association [43].

We used CHRR as a reference in the comparison with the three other algorithms. Outliers

were determined in the following way, and subsequently omitted when calculating the Pearson

correlation. In the case of CHRR versus ACHR, say, a reaction was considered an outlier if the

difference �vCHRR � �vACHR exceeded 2 standard deviations (of this difference, across reactions).

A similar outlier criterion, based on sCHRR − sACHR, was applied on the sample standard devia-

tions s. The set of omitted reactions includes the outliers in both the means and the standard

deviations of the flux values. The value of the Pearson correlation, r, is calculated using the

cor() function from the stats package in R [29].

Kullback-Leibler divergence

We also compared the distributional shape resulting from different algorithms, using the Kull-

back-Leibler divergence (KLD) as a measure of dissimilarity. Let p1(v) and p2(v) denote flux

densities resulting from two algorithms, and define

KLDðp2jp1Þ ¼

Z 1

� 1

ln
p1ðvÞ
p2ðvÞ

� �

p1ðvÞdv: ð16Þ

It may be shown that KLD(p2|p1)�0, and that it is zero only if p1 and p2 are identical func-

tions [44]. Note that KLD(p2|p1) is not symmetric in p1 and p2, we will refer to p1 as the refer-
ence. The CHRR will be used as the reference against the three other methods. A script has

been written in R to calculate the KLD in Eq (16). The probability densities p1 and p3 are calcu-

lated using the density() function of the stats package in R [29].

We classified the accuracy of the approximation as good agreement KLD< 0.05, medium
agreement 0.05� KLD� 0.5 and poor match KLD> 0.5. This classification was adopted from

De Martino et al. [17].

PLOS ONE A comparison of Monte Carlo sampling methods for metabolic network models

PLOS ONE | https://doi.org/10.1371/journal.pone.0235393 July 1, 2020 12 / 24

https://doi.org/10.1371/journal.pone.0235393


Effective sample size

The effective sample size (ESS) of an autocorrelated MCMC sample of size M is the equivalent

number of independent draws from the target distribution. Gelman et al. [45] defines the effec-

tive sample size (for sample mean) as

ESS ¼
M

1þ 2
P1

k¼1
rk
; ð17Þ

where ρk is the autocorrelation at lag k. From a given sample v(1), . . ., v(M) the estimate of ρk is

given as

rk ¼
1

M� k

PM� k
l¼1
ðvðlÞ � �vÞðvðlþkÞ � �vÞ

1

M

PM
l¼1
ðvðlÞ � �vÞ2

; ð18Þ

where �v is the mean of the samples [46]. Due to the random walk like behaviour of MCMC

algorithms, one typically has 0� ρk� 1 which implies ESS�M. A low value of ESS/M indi-

cates that the algorithm generates highly autocorrelated samples (large ρk). The higher the

autocorrelation is, the less information about the target distribution is contained in a sample

of fixed size. Increasing the value of the thinning parameter will reduce the autocorrelation,

but this gain comes at a computational cost.

In order to compare the efficiency of two algorithms in terms of ESS, the computation time

must be taken into account since one algorithm may generate a larger number of independent

samples slowly, while another may generate highly autocorrelated samples fast. The efficiency

of each algorithm in generating independent samples per time unit for each individual flux

was measured by

E ¼
ESS

Run time
; ð19Þ

where the ESS value has been calculated with the effectiveSize() function from the CODA R

package [36] and the run time is reported in Table 2 for each algorithm across the ten models.

Results

The sampling algorithms have been compared on the ten metabolic models using the criteria

described earlier. First, the degree of convergence was investigated. Secondly, the flux densities

generated by the different algorithms were compared. Finally, the computational efficiency of

the algorithms was assessed.

We were only able to successfully apply the xsample() algorithm in one (E. coli core) out

of the ten models (details given below). Hence, the comparison of algorithms was performed

only between CHRR, ACHR, OPTGP and the Gibbs sampler.

Convergence of algorithms

For all ten models, the convergence of the generated samples was assessed (by reaction) via

the four single-chain convergence diagnostics. Fig 2 shows the percentage of reactions that

failed for each of the Raftery and Lewis diagnostic (I> 5), Geweke test (jZj>1.28), IPSRF

test (IPSRF<0.9 or IPSRF>1.1) and Hellinger distance test (HD> 0.1). In the majority of the

models, CHRR was the algorithm with the least convergence problems. All four diagnostics

agree on this, but when it comes to the ranking of ACHR, OPTGP and Gibbs sampler, the

diagnostics tell less coherent stories, so it is difficult draw general conclusions. ACHR did
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however seem to have convergence problems for many models, and the Gibbs sampler had

problems for E. coli core in particular.

We only show summaries statistics for the diagnostics. It was also possible to inspect con-

vergence for individual reactions, and when doing so we found that it is not necessarily the

same reactions that failed to converge according to the different diagnostics. Therefore a com-

bination of convergence diagnostics should be used to make a certain decision about sampling

convergence. Apparently, the IPSRF test is more liberal in accepting convergence, but it should

be noted that this conclusion is specific to our chosen settings (the default) for that diagnostic.

Comparison means and standard deviations

Fig 3 compares CHRR against each of three other algorithms in terms of sample means (�v)

and standard deviations (s) as given by Eq (14). The figure only shows four models (E. coli

core, iHN637, iAT_PLT_636 and Recon1), but plots for the remaining six models are provided

in the online Supplementary (S1 Fig).

In general, the four algorithms returned very similar sample means �v, as can be seen from

the fact that the points in the plot lie along the identity line. This is also reflected in a Pearson

correlation close to r = 1. The exception is the Gibbs sampler (versus CHRR), especially for the

Recon1 model. For this model the range of �v values was much smaller for the Gibbs sampler

than for CHRR. Note, however, that the Pearson correlation is substantial (r = 0.50), which

implies that there is still a strong linear relationship, although with slope different from 1. The

same effect, but to a much smaller degree, is also observed for the iAT_PLT_636 model. The

effect is known as “shrinkage-toward-zero”, and is caused by the prior distribution applied

to fluxes in the Gibbs algorithm. Ideally, such priors should be made “non-informative” by

choosing the prior variance sufficiently large, but in the case of Recon1 it was not possible

to make the prior cover the full flux range (AFR in Table 2) without encountering numerical

problems in the Gibbs sampler.

Fig 3 includes also the reactions for which the algorithms did not converge, but reactions

for which at least one of the two algorithms in a comparison failed the Geweke test are marked

Fig 2. Four convergence diagnostics across four algorithms and ten models. The vertical axis shows the proportions

of reactions in each model rejected by the different convergence tests: Raftery and Lewis (RL), Geweke (G), IPSRF and

Hellinger distance (HD) on the horizontal axis.

https://doi.org/10.1371/journal.pone.0235393.g002
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in red. For E. coli core there is a tendency that the largest fluxes (negative or positive) face con-

vergence problems for the Gibbs sampler, while for the other algorithms and models there is

no such clear pattern. Recall that Fig 2 summarized convergence for each algorithm separately.

The standard deviations from ACHR, OPTGP and CHRR agree well in general, i.e their

green points lie close to the identity line. For the Recon1 model, OPTGP has lower variance

than CHRR, and there is more spread (r = 0.94). The Gibbs sampler is in fairly good agreement

with CHRR, but for Recon1 its standard deviations are much smaller than those from the

Gibbs sampler. This reflects the shrinkage-toward-zero effect caused by the narrow Bayesian

priors applied in the Gibbs sampler, as discussed above. For iAT_PLT_636 the standard devia-

tions from the Gibbs sampler exceed those of CHRR, indicating that the Gibbs sampler is bet-

ter (than CHRR) able to explore the flux space for this model.

The % outliers shown on top of each plot indicates the percentage of reactions for which

large differences have been observed between the sample means or standard deviations from

two algorithms. Note that in the plots of standard deviations the reactions with the standard

deviations smaller than 99% quantile have been included.

Fig 3. Scatter plot of sample means (blue) and standard deviations s (green) for ACHR, OPTGP and the Gibbs

sampler (vertical axis) versus CHRR (horizontal axis) for four models. Sample means (�v) and standard deviations

(s) are calculated according to Eq (14). The Pearson correlation r is shown on top of each scatter plot, and the

proportion of outliers removed is given in parenthesis. The sample means and standard deviations marked in red

correspond to the reactions for which at least one of the two algorithms in a comparison failed the Geweke test. The

identity line (pink dashed) is included to ease comparison.

https://doi.org/10.1371/journal.pone.0235393.g003
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Comparison of marginal distributions

While Fig 3 compares algorithms only in terms of sample mean and standard deviation, Fig 4

compares the full distributional shape of the flux densities. The figure shows cumulative distri-

bution function of KLD (Kullback-Leibler divergence) across reactions, where CHRR is used

as the reference for each of ACHR, OPTGP and the Gibbs sampler. Only reactions for which

both algorithms in a comparison, ACHR and CHRR say, converged according to the Geweke

diagnostic are included in the figure. The KLD is affected by discrepancies in means and stan-

dard deviations, so any off-diagonal reactions in Fig 3 will result in a large KLD value. In addi-

tion, Fig 4 shows differences caused by different degree of skewness in the densities.

Before discussing the results in Fig 4, we recall the qualitative (good–medium–poor) scale of

the KL divergence (KLD). To get a visual impression of what this amounts to in a density plot,

Fig 5 shows flux densities and KLD values for the Fumarase mitochondrial reaction (v553) of

the iAT_PLT_636 model. According to this KLD scale ACHR has a good similarity to CHRR

(KLD = 0.01< 0.05), and OPTGP has a medium similarity to CHRR (0.05< KLD = 0.43< 0.5)

while the Gibbs algorithm has a poor similarity to CHRR (KLD = 0.82> 0.5). Returning to Fig

4, it is seen that almost all of the reactions of the iHN637 model are in the good category for all

three algorithms. The E. coli core model is the only model for which both the ACHR, OPTGP

and the Gibbs algorithm present good consistency with CHRR for all reactions (KLD< 0.05).

For the other eight model, however, a large proportion of the reactions are in the poor category.

Taking iAB_RBC_283 as an example, for the Gibbs sampler approximately 50% of the reactions

have KLD> 0.5. For ACHR and OPTGP the proportion with KLD> 0.5 is somewhat lower

(10-15%). In Recon1 a large proportion of the reactions are outside the range of the horizontal

axis for the Gibbs sampler, and hence do not show in the plot. These reactions are affected by

the shrinkage-towards-zero effect displayed in Fig 3.

The general message from Fig 4 is that ACHR is producing flux distributions most similar

to CHRR. This conclusion is based on the fact that its cumulative distribution curve (cyan)

lies above the two others. The latter does not preclude ACHR having a lower KLD value than

OPTGP, say, for individual reactions, but it is a statement that is valid as a summary across

all reactions. For the majority of the ten models, OPTGP was much closer to ACHR in

Fig 4. Comparison of flux densities between algorithms by model in terms of the KL divergence. Each plot shows

the cumulative distribution functions of KLD across reactions, as defined in Eq (16) with CHRR as the reference.

https://doi.org/10.1371/journal.pone.0235393.g004
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comparison to the Gibbs sampler. The only exception to this was the iSB619 model for which

the cumulative distribution function for OPTGP lies below that of Gibbs sampler. In conclu-

sion, ACHR has the highest consistency with CHRR, followed by OPTGP. The Gibbs sampler

is ranked as the least consistent method with CHRR. The latter is most likely due to the shrink-

age-towards-zero effect caused by the use of informative priors in the Gibbs sampler.

Sampling efficiency

Fig 6 compares the cumulative distribution functions for the efficiency measure E, given by Eq

(19), of the different metabolic models, separately for each sampler. Recall that for two curves

that never cross each other, such as the yellow (E. coli core) and any of the blue curves in Panel

a), the distribution of E for one model (blue) is stochastically larger than the other (yellow).

The models have been categorized in four groups based on the number of reactions:

n< 100, 100< n< 1000, 1000 < n< 3000 and n> 3000. The yellow curve (E. coli core) has

the highest effective sample size per time unit for all four algorithms. This was expected as E.

coli core is the smallest model (n = 95 reactions). If it can be assumed that the number of

metabolites (m) is proportional to n, the computation time for the matrix vector product S v in

Eq (2) grows as n2 (ignoring that S is a sparse matrix). Assuming that the product S v consti-

tutes the main computational task of any of the sampling algorithm, we expect E will decrease

proportionally to n−2 as n increases. This theoretical expectation is confirmed, at least qualita-

tively, in Fig 6 for all four sampling algorithms. The largest model, Recon1, has very low sam-

pling efficiency.

When comparing the four algorithms, we first note that the scales on the horizontal axes

differ across panels in Fig 6. The CHRR has the highest sampling efficiency, followed by the

ACHR, then by the OPTGP, and finally by the Gibbs sampler. Note that ACHR and CHRR

sample the reduced models (of size nred), while OPTGP and Gibbs sample the full models (of

size n). We see from Table 2 that n/nred is never larger than 2, and attempting to account for

model size by multiplying the efficiency of the Gibbs sampler by 4, it is observed that the Gibbs

algorithm is still the algorithm with least efficiency.

Fig 5. Flux densities resulting from different algorithms and corresponding KLD values (relative to CHRR). The

reaction shown is the Fumarase mitochondrial reaction (v553) of the iAT_PLT_636 model.

https://doi.org/10.1371/journal.pone.0235393.g005
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To further illustrate how sampling efficiency depends on model size we computed the time

it takes to generate 100 independent (uncorrelated) samples. This was computed as 100(mean
(ESS))−1 � (Run time) = 100(mean(E))−1 where run time is provided in Table 2 and E is given

by (19), and the results are shown in Fig 7. As expected, the computation time in general

increases with model size, but there are exceptions to this (values of n in the rage 1000 to 2500

for OPTGP). These exceptions show that there are other aspects of a model than n that deter-

mines sampling efficiency. For most of the models, ACHR and the Gibbs sampler (right verti-

cal axis) are slower than OPTGP and CHRR (left axis). We observe that ACHR is the slowest

algorithm to generate 100 independent samples, closely followed by the Gibbs sampler which

we recall performs sampling on the full models.

To shed further light on differences in sampling efficiency between algorithms, we inspected

the autocorrelation functions ρk, given by Eq (18), for two individual reactions (Fig 8). Also

shown in the figure is the corresponding measure of effective sample size (ESS) defined in

Fig 6. Comparison of sampling efficiency across four algorithms and ten models. The vertical axis shows the

proportions of reactions being less than a given value of the efficiency measure E on the horizontal axis. The ten

different curves correspond to the ten models which are classified in four groups according to their number of

reactions (see legend).

https://doi.org/10.1371/journal.pone.0235393.g006
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Eq (17). The algorithms differ widely in how fast ρk decayed as a function of k, and conse-

quently, in the value of ESS. We note, however, that the numerical values shown in Fig 8 are

specific to the value of the thinning parameter (1000) used, so absolute values are not relevant.

The ACHR was the algorithm with the lowest ESS, followed by OPTGP. For the iAT_PLT_636

Fig 7. Computation time needed to generate 100 uncorrelated samples by model size (n) and algorithm. Each

value of n shown on the horizontal axis correspond to one of the ten metabolic models, and is taken from Table 2. The

left vertical axis is used for OPTGP and CHRR, while the right vertical axis belongs to ACHR and the Gibbs sampler.

https://doi.org/10.1371/journal.pone.0235393.g007

Fig 8. Autocorrelation ρk (acf) by lag for the flux v877 in the iAT_PLT_636 model (Panel a) and the flux v2277 in

the iJO1366 model (Panel b) for each sampling algorithm. These fluxes, v877 and v2277, correspond to 1D-myo-

Inositol 4-phosphate phosphohydrolase and Ribose-1,5-bisphosphokinase reactions in the iAT_PLT_636 and iJO1366,

respectively. The dotted blue lines indicate lag-wise 95% confidence intervals (CIs).

https://doi.org/10.1371/journal.pone.0235393.g008

PLOS ONE A comparison of Monte Carlo sampling methods for metabolic network models

PLOS ONE | https://doi.org/10.1371/journal.pone.0235393 July 1, 2020 19 / 24

https://doi.org/10.1371/journal.pone.0235393.g007
https://doi.org/10.1371/journal.pone.0235393.g008
https://doi.org/10.1371/journal.pone.0235393


model (Panel a), the Gibbs sampler yields an almost uncorrelated chain, meaning that the thin-

ning parameter could have been set to a lower number than 1000, as we currently are discarding

some useful information about the flux distributions. For iJO1366 (Panel b), CHRR had almost

no autocorrelation, while the Gibbs sampler had a substantial autocorrelation. This shows that

the details of the model plays an important role in determining which algorithms is the most

efficient in terms of generating independent samples.

Performance of xsample()
The xsample() function in R [29] was attempted on the reduced versions of the ten metabolic

models, but we were only able to successfully run it for the E. coli core model. The reason for

the problem may be the large variation in flux ranges for the nine other models. For instance,

the minimum and maximum of the flux ranges were of orders 10−6 and 103, respectively, in

the reduced version of iAB_RBC_283. The jump length is a compromise to sample over these

9 orders of magnitude in which a small jump length is needed for the fluxes with small range

and a large jump length is needed for the fluxes with large range. In the xsample() function,

the jump lengths which are the diagonal elements of the matrix O in Eq (10) were set to

0:5ðvub
red � vlb

redÞ in order to scale them to the range of the fluxes. However having large step

lengths made the sampling algorithm very inefficient since a lot of mirroring steps were

required and the algorithm rejected many draws in each iteration.

We also tried 0:01ðvub
red � vlb

redÞ for the jump lengths, and the algorithm was able to sample

all the models, albeit very slow. Checking the generated samples, we observed that since the

jump lengths were small the sampler moved barely from the initial flux vector. Due to this the

generated samples were highly autocorrelated and we have not included them in the further

analysis. So the best choice of jump lengths as a hyper parameter in the xsample() was not triv-

ial and one has to use a cluster with simply a lot of brute computing power to deal with this.

For the 20, 000 samples that were successfully obtained from the E. coli core model, apply-

ing the jump lengths 0:5ðvub
red � vlb

redÞ, a statistical analysis was performed similar to that above

for the other algorithms. The rates of non-convergence according to the four diagnostic tests

were: 0% (Raftery and Lewis), 18.9% (Geweke), 0% IPSRF, and 0% (Hellinger distance). These

are lower than for the other algorithms, except for the Geweke test, but still considerably lower

than the Gibbs sampler (Fig 1). However, the run time of the xsample() to generate the samples

for the E. coli core model was considerably larger than the Gibbs sampler. The scatterplots of

sample means and standard deviations against CHRR look qualitatively similar to those for the

Gibbs sampler in Fig 3.

Discussion and conclusion

In this study we have reviewed and compared five MC sampling algorithms for constraint-

based modeling of metabolic networks (Table 1). The algorithms have been classified as allow-

ing either a deterministic and stochastic formulation of the metabolic model (Fig 1). In the sto-

chastic formulation, which is the most general, the steady state assumption can be relaxed and

noisy flux observations can be incorporated in the model. However, to ensure a fair compari-

son of algorithms, all experiments were done considering no flux measurements.

We have reviewed and compared four standard convergence diagnostics that can be used

to check if the algorithms have been run for sufficiently many iterations that the samples come

from the target flux distribution. Finally, important metrics for comparing the algorithms have

been similarity of flux distributions and computational efficiency.

The algorithms have been applied to ten genome scale metabolic networks (Table 2). How-

ever, in case of the xsample() algorithm we were only able to successfully apply it to a single

PLOS ONE A comparison of Monte Carlo sampling methods for metabolic network models

PLOS ONE | https://doi.org/10.1371/journal.pone.0235393 July 1, 2020 20 / 24

https://doi.org/10.1371/journal.pone.0235393


model (E.coli), so our comparison was done with only four algorithms (ACHR, OPTGP,

CHRR and the Gibbs sampler). An efficient sampling algorithm which allows the stochastic

framework of Van den Meersche et al. [20] to be applied at genome scale is thus lacking.

Comparing the algorithms in terms of convergence, the CHRR has the least convergence

problems. This result is in agreement with the findings in Herrmann et al. [6] in which three

algorithms ACHR, OPTGP and CHRR are compared in terms of convergence and run time.

We have found that the set of reactions which fail the convergence criterion is not necessarily

the same across different diagnostic tests. Also, the proportion of reactions for which a test

fails can be substantial (Fig 2). Hence, from a practical perspective it does not seem feasible to

require that all reactions have converged before the output from an algorithm can be trusted.

Instead, the focus should be on reactions of special interest, and for those reactions one can fol-

low the recommendation of Herrmann et al. [6] that the whole suite of diagnostics should be

satisfied. Further, in our comparison of algorithms in Fig 3, there seems to be good agreement

between algorithms also for reactions that have not converged.

Convergence to the target distribution is not guaranteed for ACHR and OPTGP, while for

CHRR convergence is guaranteed due to its Markovian nature. For this the other algorithms

were compared against CHRR. We found that ACHR generates the most similar (marginal)

flux distributions to that of CHRR, followed by OPTGP. The Gibbs sampler deviated most

from CHRR, which probably is due to the informative prior distribution imposed on some of

the models.

When comparing the algorithms in terms of computational efficiency, we found that the

CHRR method outperforms the three other algorithms by generating the highest number

of independent samples per time unit for each flux. The main parameter that characterize a

model is the number of reactions (n), but we have also observed that there are other aspects of

a model that affect the performance of an algorithm.

Hamiltonian Monte Carlo (HMC) [47] is another sampling technique for exploring the

posterior distribution in the Bayesian framework. In Heinonen et al. [22], the HMC was

reported to be inefficient compared to Gibbs sampler in the genome scales metabolic models.

We tried to apply HMC via the Template Model Builder (TMB) package [48] which is a statis-

tical software platform in R [29]. Using the interval based scale reduction factor (IPSRF) [39]

as the convergence criterion, we did not get reliable convergence. Most likely, the feasible trun-

cated density region for high dimension models (n> 1000) was extremely narrow causing the

HMC constantly to hit the boundaries of the polytope.

Our study ranks the CHRR as the best sampling algorithm for cases such as Fig 1b and 1c

in which the steady state assumption has to be satisfied strictly and uncertainties in the

observed flux values (if there are any) are negligible. The CHRR is currently available in

Matlab. If an open-source programming language is preferred, a good alternative is the

OPTGP, which is available in Python. For the stochastic formulation, such as Fig 1e, in which

the flux observation and their uncertainty are encoded in a model compatible with relaxed

steady state assumption, the only sampling algorithm applicable at the genome scale is the

Gibbs sampler which is currently available in Matlab. However, this algorithm performs poorly

in terms of sampling efficiency.

Supporting information

S1 Fig. Scatter plot of sample means and standard deviations. The plots are for ACHR,

OPTGP and the Gibbs sampler (vertical axis) versus CHRR (horizontal axis) for six models.

Sample means (�v) (blue) and standard deviations (s) (green) are calculated according to the

formulas in the manuscript. The Pearson correlation r is shown on top of each scatter plot,
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and the proportion of outliers removed is given in parenthesis. The sample means and stan-

dard deviations marked in red correspond to the reactions for which at least one of the two

algorithms in a comparison failed the Geweke test. The identity line (pink dashed) is included

to ease comparison.
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