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Abstract In work of Connes and Consani, Γ-spaces have taken a new importance.

Segal introduced Γ-spaces in order to study stable homotopy theory, but the new

perspective makes it apparent that also information about the unstable structure

should be retained. Hence, the question naturally presents itself: to what extent are

the commonly used invariants available in this context? We offer a quick survey

of (topological) cyclic homology and point out that the categorical construction is

applicable also in an N-algebra (aka. semi ring or rig) setup.
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Alain Connes introduced cyclic homology in 1981 as a generalization of de Rham

homology suitable for non-commutative geometry. Boris Tsygan reintroduced it in

1983 as an “additive” version of algebraic K-theory (see Section 1for a brief overview

with citations of the part of the theory relevant for our considerations). Almost

immediately it became apparent that cyclic homology was a very good invariant for

studying K-theory, at least rationally. However, for torsion information one needed

to extend the construction from rings to so-called S-algebras (i.e., replacing the

ring Z of integers with the sphere spectrum S), resulting in Bökstedt, Hsiang and

Madsen’s topological cyclic homology TC. A possible framework for extending

cyclic homology in this direction is Segal’s category of Γ-spaces, generalizing the

concept of abelian groups in a way that also allows objects where the axioms of

an abelian group are perhaps only true up to some notion of equivalence – see

Section 2.1 for an elementary introduction to Γ-spaces where we try to explain why

the structure is virtually forced upon us from the algebraic origins.

Bjørn Ian Dundas
University of Bergen, Bergen, Norway, e-mail: dundas@math@uib.no

1

dundas@math@uib.no


2 Bjørn Ian Dundas

Actually, in many of these examples there is one axiom that does not hold at all –

the existence of negatives. For instance, at the outset there are no sets with a negative

number of elements or vector spaces of negative dimension. However, experience

– starting in elementary school – has taught us that we get a much more effective

theory if we adjoin negatives.

Stable homotopy theory is the study of such examples after adjoining negatives by

a process dubbed stabilization. This is an enormously successful theory: the sphere

spectrum sees much more combinatorial data than the ring of integers does, and some

of this combinatorial data is reflected in the number theory revealed by algebraic

K-theory. In fact, Thomason [60] showed that algebraic K-theory can be viewed as a

localization from the category SMC of small symmetric monoidal categories to the

homotopy category (with respect to stable equivalences) of Γ-spaces.

Example 0.0.1 One crucial difference between abelian groups and stable homotopy

theory is how symmetries behave. For instance, if A is an S-algebra we can consider

the smash A∧A – the analog of the tensor product or, in algebraic geometry, a

product X × X . The cyclic group of order two acts and we can consider the fixed

points (A∧A)C2 – analog to the symmetric product (X × X)/C2.

What does not have an analog in the algbraic or geometric situation is that in

stable homotopy theory (A∧A)C2 is much like a form of Witt vectors: there is a

“restriction” map (A∧A)C2 → A (it is not any sort of multiplication! At the level

of path components it is the extension of the group π0 A by (π0 A ⊗ π0 A)/C2 by the

cocycle (x, y) 7→ −x ⊗ y) which often is the first step of a lift, either from finite

characteristic to infinite characteristic or higher up in the so-called chromatic tower

of stable homotopy theory. The restriction map is essential for the construction of

TC in Section 1.5 and can be viewed as the source of most of the verifications we

know of the so-called “red-shift conjecture” in algebraic K-theory.

The restriction map reappears below in a special context as a composite of the

geometric diagonal of Section 2.3.4 and isotropy separation in Section 2.2.1.

However, algebraic K-theory kills much information one might be interested in.

For a ring A, the Grothendieck group K0(A) is obtained from the isomorphism classes

of finitely generated projective A-modules by introducing objects of “negative rank”.

For many situations this is a rather innocent operation (from the natural numbers one

obtains the integers), but in other situations group completion can drastically alter

the object at hand.

Example 0.0.2 If k is a field, consider the category Vectcount
k

of all k-vector spaces

of countable dimension. Then kn ⊕ k∞ � k∞ for all n ≤ ∞, and if you group

complete with respect to sum – essentially introducing negative dimensions – you

have cancellation, leaving you with the rather uninformative trivial group. This sorry

state of affairs is sometimes referred to as the Eilenberg swindle. This is in stark

contrast with the situation where you only consider finite dimensional vector spaces

which leads to the usual algebraic K-theory, which is far from trivial and (the higher

homotopy) contains much information about the field.



Cyclic homology in a special world 3

For all its categorical defects, the category SMC of small symmetric monoidal

categories is in many ways the natural philosophical relaxation of the category of

abelian groups. We must perhaps live without negatives and that laws like commu-

tativity only hold up to isomorphism. While we want to retain as much information

about SMC as possible, in order to obtain a situation we can calculate with, some

localization seems necessary.

One choice is to study the localization of SMC with respect to the unstable
equivalences: a symmetric monoidal functor f : c→ d inSMC is a weak equivalence

if the map of nerves Nc → Nd is a weak equivalence in spaces. Mandell [46]

improves on Thomason’s result by showing that the localization ofSMC with respect

to unstable equivalences is equivalent to the localization of the category of Γ-spaces

with respect to the special equivalences (we will discuss these in Section 2.2.3).

Fourty years after Segal’s discovery, Γ-spaces reappear in work of Connes and

Consani [18] where it becomes clear that this generalization of abelian groups fits

as a common framework for many of the current efforts of understanding the “field

with one element”. The rôle of the field with one element is taken by the sphere

spectrum S and the rôle of the tensor product is taken by the smash product ∧, see

Section 2 for further details. However, for Connes and Consani it is vital that we

do not adjoin negative elements; we are no longer in the realm of stable homotopy

theory and many of the identifications we are used to no longer hold. A priori this

has serious consequences for invariants - we may have used identifications that only

hold after having adjoined negatives.

What follows is a tentative study of to what extent we can hope to extend invariants

to a context that handles symmetric monoidal categories well without adjoining

negatives by treating (successfully) the case of topological cyclic homology, see

Section 3. Central to this is that the underlying machinations of the restriction map

of Example 0.0.1 carry through.

The reader should be aware of the fact that this is only a tentative study: ultimately

we are after a theory that better reflects the intuition of how modules over the field

with one element should behave. In order to achieve this, there are reasons to not

take spaces as our primitive notion, but rather quasi-categories (i.e., the Joyal model

structure on the category of spaces). However, this theory is more technical and not

at all suited for a survey-type paper of this sort. While most things follow a path very

similar to the one sketched below, but we have not yet written down all the details

and hope to return to it in a future paper.

Overview

In Section 1 we give a quick overview of the history and some results pertaining to

cyclic homology that are relevant to our discussion.

In Section 2 we study the equivariant theory you get from Γ-spaces when you

stop short of group completing. This is the so-called special model and the most

important output is that the categorical model adapts to the current situation. The

category of Γ-spaces is in many ways a much less friendly world than most of its
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competitors modelling stable homotopy theory, but it is almost finitely generated (a

technical term of Voevodsky’s) which means that we retain just enough control also

over the special situation.

In Section 3 we see that the equivariant control we obtained in Section 2 is exactly

what is needed in order to set up TC in the special situation.

Lastly we collect some results on modules and monoids that are of interest, but

require input that did not fit with the equivariant focus of the rest of the paper. In

particular, one of the examples Connes and Consani pay special attention to is the

so-called Boolean algebra B = {0, 1} with 1 + 1 = 1. In Section 4 we show that

B is “specially solid”: the multiplication map B∧LB → B is a special equivalence.

This can be seen as a disappointment: although we have deviced a theory that avoids

the Scylla of group completing the monoidal structure of a symmetric monoidal

category, we still must deal with the Charybdis of weak equivalences which is akin

to inverting the morphisms. In this example these processes are much the same (not

quite: otherwise everything would be zero). One fix is to consider the Joyal structure

referred to above, but this is as mentioned postponed to another day.

Notational conventions

1. The category of symmetric monoids is symmetric monoidal with unit N =

{0, 1, 2, . . . } and tensor ⊗N (defined exactly as the usual tensor product). To

avoid the rig/semi-ring controversy (we find neither alternative particularly at-

tractive, but we really dislike “semi-rings”) we call the monoids with respect to

the tensor in symmetric monoids N-algebras.
2. If C is a category and c, c′ are objects, then C(c, c′) is the set (or space according

to flavor) of morphisms c → c′ in C. The functor c′ 7→ C(c, c′) is denoted

C(c,−).

3. If X and Y are pointed sets, then the wedge X ∨ Y ⊆ X × Y is the subset where

one of the coordinates is the base point and the smash product is the quotient

X∧Y = X × Y/X ∨ Y .

4. We use “k+” as shorthand for the set {0, 1, . . . , k} pointed at 0 and [k] for the

ordered set {0 < 1 < · · · < k}. The category of pointed finite sets is called Γo

and the category of nonempty totally ordered finite sets is called ∆.

5. Objects in the categoryS∗ of pointed simplicial sets will be referred to as spaces.
A Γ-space is a pointed functor from Γo to S∗.

6. If X is an object on which a group G acts, then XG → X is the “inclusion of fixed

points” (as defined e.g., by a categorical limit over G).
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1 Cyclic homology

1.1 Prehistory

The connection between algebraic K-theory and de Rham cohomology was pointed

out already in the early days of higher algebraic K-theory (ca. 1972). For a commu-

tative ring A, Gersten provided a map to the Kähler differentials

d log: K∗A→ Ω
∗
A

and Bloch [5] proved that the “tangent space”TKn(A) = ker{Kn(A[ǫ]/ǫ
2) → Kn(A)}

contains Ωn−1
A

as a split summand when A is local, 1/2 ∈ A and n > 0. Also other

connections between algebraic K-theory and homological theories were investigated,

for instance the Dennis trace map to Hochschild homology HH(A).

1.2 Cyclic homology

In 1980 Alain Connes was searching for a cohomology theory of de Rham type

[14] suitable for non-commutative algebras and introduced cyclic homology the year

after [15], [17]. A few years later, Tsygan [61] rediscovered cyclic homology and

in parallel with Loday and Quillen [42] proved that in characteristic zero, cyclic

homology HC∗−1(A) is isomorphic to the primitive part of the homology of the Lie

algebra gl(A). Goodwillie completed the picture by showing [31] that in the context

of a nilpotent extension of associative rings, the relative algebraic K-theory agrees,

rationally and up to a shift in grading, with relative cyclic homology.

It is tempting to think of the map used by Goodwillie between relative K-theory

and cyclic homology as a “logarithm” from the general linear group GL(A) to its

“tangent space”, the Lie algebra gl(A). In this interpretation the rationality assump-

tion is necessary for the coefficients in the Taylor expansion of the logarithm to be

defined, the nilpotence assures convergence and finally the need for taking primitives

stems from the correspondence in rational stable homotopy between homology and

homotopy. See [19] and [63] for ideas along this line.

Connes demonstrated [16] that the Hochschild homology is a cyclic object and its

associated spectrum HH(A) comes with an action by the circle T (see Section 3.0.1

for more on cyclic objects). In this interpretation, cyclic homology corresponds to

the homotopy orbits HC(A) = HH(A)hT (the double complex is a concrete algebraic

representation of the fact that the classifying space BT � CP∞ of the circle T has
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a single cell in each even dimension). Goodwillie (and Jones [38]) showed that

the Dennis trace factors through the homotopy fixed points HH(A)hT (which was

dubbed “negative cyclic homology”). The difference between the homotopy orbits

and fixed points is measured by the “norm map” N : ΣHH(A)hT → HH(A)hT (note

the suspension which is responsible for the above observed shift in grading) which

is part of a fiber sequence

ΣHH(A)hT → HH(A)hT → HH(A)tT.

The last term – the “Tate construction” on HH(A) and whose homotopy groups are

referred to as periodic homology – is defined by this sequence, and vanishes in

certain key situations. Most notably, in the rational nilpotent situation the relative

periodic homology vanishes.

1.3 The “topological” version

However, as Goodwillie and Waldhausen pointed out, Hochschild homology in

itself contains much too little information to be a useful starting point for measuring

algebraic K-theory and they conjectured the existence of a version built on the sphere

spectrum S instead of the integers Z and the smash product ∧ instead of the tensor

product ⊗. This idea was realized by Bökstedt and dubbed “topological Hochschild

homology”, THH(A) or – emphasizing that this is nothing but Hochschild homology

over S – HHS(A).

Topological Hochschild homology has a richer inner life than Hochschild homol-

ogy over the integers, and Bökstedt, Hsiang and Madsen [10] used this to define

topological cyclic homology and prove an algebraic K-theory version of the Novikov

conjecture. Although predating the first fully adequate setups for S-algebras , their

approach critically used the ability to move freely between S and Z as ground rings

and that rationally the difference is very small.

Topological Hochschild homology gained further credibility from the fact [62],

[56], [27], [26] that it agreed with stable K-theory as predicted by Goodwillie and

Waldhausen. Stable K-theory is a version of Bloch’s tangent space, where the dual

numbers A ⋉ ǫA = A[ǫ]/ǫ2 is replaced by a square zero extension A ⋉ M where

the connectivity of M is allowed to tend to infinity – it is the differential of algebraic

K-theory in a way made precise by Goodwillie’s calculus of functors. Related to

early ideas of Goodwillie, Lindenstrauss and McCarthy [41] show that it actually is

(relatively) fair to think of TC as the Taylor tower of K-theory. This also sheds light

on the nature of the action by cyclic group Cn ⊆ T: it is a remnant of the action by

the symmetric group hiding behind the denominator n! in the usual Taylor series.

Much of this insight was clear already at the time of [47].

It is not only the connection to algebraic K-theory that makes topological cyclic

homology and its relatives interesting. Topological cyclic homology carries inter-

esting information from an algebro-geometric and number theoretic point of view,
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as a theory with close connections to motivic, étale, crystalline and de Rham coho-

mology. Some of this was clear from the very start, but some aspects have become

apparent more recently, see e.g., [33] and [34].

1.4 The cyclotomic trace

The cyclotomic trace K → TC, first defined by Bökstedt, Hsiang and Madsen [10],

refined in [22] and beautifully pinned down in [6] and [7], is of crucial importance

for two reasons:

1. TC has surprisingly often been possible to calculate

2. the homotopy fiber K inv of the cyclotomic trace K → TC is very well behaved.

The starting point for many applications is that the K-theory of finite fields is known

by Quillen [50] and that topological cyclic homology is possible to calculate in a

number of difficult situations. From there the following omnibus theorem will take

you a long way

Theorem 1.4.1 Let A → B be a map of connective S-algebras such that the map

π0 A→ π0B is a surjection with kernel I .

Locally constant If I is nilpotent, then the map K inv A → K inv(B) is a stable

equivalence [22]

Rigidity If π0 A and π0B are commutative and (π0 A, I) is a Henselian pair, then

the map K inv(A) → K inv(B) is a stable equivalence with mod-n coefficients for

n ∈ N [13]

Closed excision If C → B is a map of connective S-algebras and D = A ×h
B

C

the homotopy pullback, then

K invD //

��

K invC

��
K inv A // K invB

is a homotopy pullback square [40]. �

Closed excision was proved rationally by Cortiñas [20], after completion by

Geisser and Hesselholt [28] for rings and in general by Dundas-Kittang [23]. Land

and Tamme’s preprint [40] removes an unnecessary surjectivity condition from the

integral result of [24].

The combined outcome of the calculations of TC and Theorem 1.4.1 has been that

a vast range of calculations in algebraic K-theory has become available, at least after

profinite completion, but also integrally when coupled with motivic calculations.

Even a somewhat random and very inadequate listing of results would include [10],

[9], [35], [52], [4], [53], [54], [51], [36], [29], [30], [3], [49], [32], [2], [1], [43]. See

[45] and [22] for more background on these methods.
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1.5 The original construction of TC

Bökstedt, Hsiang and Madsen [10] relied on equivariant stable homotopy theory to

produce a “naively invariant” theory out of categorical fixed points with respect to

the finite cyclic subgroups Cm of the circle. In particular, if m|n the model for THH

provided by Bökstedt comes with a hands-on restriction map

Rm
n : THH(A)Cn → THH(A)Cm

related to the restriction map in Example 0.0.1. The restriction map has very good

homotopical properties; for instance, if p is a prime, it fits into the “fundamental

cofibration sequence”

THH(A)hCpn
// THH(A)Cpn

R
pn−1

pn
// THH(A)

C
pn−1,

i.e., the homotopy fiber of the restriction map R
pn−1

pn is naturally equivalent to the

homotopy orbits THH(A)hCpn . The algebraic analog of the restriction map is the

restriction map of truncated Witt vectors, and the inclusion of fixed points

Fm
n : THH(A)Cn → THH(A)Cm

turns out to mirror the Frobenius. Focusing on one prime p, one defines

TC(A, p) = holim
←−−−
F,R

THH(A)Cpn .

Note that one has full homotopic control of this construction. For instance, if a map

A → B induces an equivalence THH(A) → THH(B), the fundamental cofibration

sequences guarantee that the same is true for all Cpn -fixed points and ultimately

TC(A, p) → TC(B, p) is an equivalence too.

After p-completion, the inclusion of the p-power roots of unity induces an equiv-

alence of classifying spaces lim−→n BCpn = BCp∞ → BT, and so the target of the

natural map

TC(A, p) → holim
←−
F

THH(A)Cpn → holim
←−
F

THH(A)hCpn

(given by restricting to the Frobenius maps and mapping the fixed points to the

homotopy fixed points) is equivalent after p-completion to THH(A)hT, and one defines

integral topological cyclic homology by the pullback
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TC(A) //

��

THH(A)hT

��∏
p prime

TC(A, p)p // ∏
p prime

THH(A)hTp .

Hesselholt and Madsen packaged in [35] the information about the nature of

the restriction map in the language of stable equivariant homotopy theory via their

notion of cyclotomic spectra by focusing on the so called geometric fixed pointsΦN

(which we’ll discuss more extensively in Section 2.2 and 2.3) and one way of stating

this is that there is an equivalence between THH(A) and its Cp-geometric fixed points

ΦCp THH(A), see Lemma 3.1.1.

1.6 The Nikolaus-Scholze approach

The fundamental cofibration sequence/cyclotomic structure implies that the cat-

egorical fixed points of topological Hochschild homology is a homotopy invari-

ant (for instance, THH(A)Cp is the homotopy pullback of a diagram of the form

THH(A)hCp → THH(A)tCp ← THH(A)). Nikolaus and Scholze [48] showed that this

gives rise to an extremely elegant formula expressing topological cyclic homology

in terms of functors that are manifestly homotopy invariant; namely as the homotopy

fiber of a certain map

THH(A)hT → THH(A)tT̂
from the homotopy fixed points to the profinite completion of the Tate-construction

of topological Hochschild homology.

2 The special version

We have seen that there are many reasons to consider Γ-spaces. If we are especially

careful (as we will be) it models symmetric monoidal categories very faithfully

but still has very good algebraic properties and is a common framework for various

points of view of the “vector spaces over the field with one element”. In what follows,

we explore how we can formulate some important invariants in this special context.

2.1 Γ-spaces as a generalization of symmetric monoids

Graeme Segal introduced Γ-spaces as an infinite delooping machine in [58], and

Manos Lydakis [44] realized that this very down-to earth approach actually pos-
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sessed very good properties. Other useful sources for the properties of Γ-spaces are

Bousfield and Friedlander [11] and Schwede [57]. As we try to elucidate below,

apart from being very concrete, one of the benefits of Γ-spaces is that their algebraic

origin is very clear.

A symmetric monoid is a set M together with a multiplication and a unit element

so that any two maps M×j → M obtained by composing maps in the diagram

∗
unit // M

m7→(1,m) //

m7→(m,1) //
M × M

twist

��multiplicationoo M × M × M(m1,m2m3)←[(m1,m2,m3)oo

(m1m2,m3)←[(m1,m2,m3)oo

are equal. The diagram is mirrored by the diagram of sets

∅ // {1}

17→2 //

17→1 //
{1, 2}

1↔2

��1←[1,2oo {1, 2, 3}.1←[1,2 2←[3oo

1←[1 2←[2,3oo

We will need to encode the two projections M × M → M as well, and for this

purpose we add a basepoint and consider the category Γo of finite pointed sets (the

functions must preserve the base point), so that the diagram governing the axioms

of a monoid looks like

0+ // 1+
//
// 2+

��
oo 3+,oo

oo

where k+ = {0, 1, . . . , k}. Segal realized that if one wants to relax the axioms for

symmetric monoids so that they only are true up to some sort of equivalence (as for

instance is the case for symmetric monoidal categories) it is fruitful to extend this

diagram to all finite pointed sets: send k+ to HM(k+) = M×k and a pointed function

φ : k+ → l+ to

φ∗ : M×k → M×l, φ∗(m1, . . . ,mk) = (
∏

φ(j)=1

mj, . . . ,
∏

φ(j)=k

mj).

This is the so-called Eilenberg-Mac Lane construction which identifies the category

of symmetric monoids with a combinatorially easily recognizable subcategory of

the category of Γ-sets (pointed functors from the category Γo of finite pointed sets to

pointed sets): we get an isomorphism between the categories of symmetric monoids

and of the full category of Γ-sets sending ∨ to × strictly (e.g., 3+ = 1+ ∨ 1+ ∨ 1+
must be sent to the triple product of the values at 1+). The projections HM(k+) =

M×k → M = HM(1+) are given by the characteristic functions

δi : k+ → 1+, δi( j) =

{
1 i = j

0 i , j
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for i = 1, . . . k and the multiplication M × M → M is given by ∇ : 2+ → 1+ with

∇(1) = ∇(2) = 1.

We want to be able to handle not only symmetric monoids but also symmetric

monoidal categories, so we allow a simplicial direction to harbor morphisms: Let

• S∗ = pointed simplicial sets (“spaces”),

• Γo = pointed finite sets,

• ΓS∗ = “Γ-spaces” = pointed functors Γo → S∗.

Note that (up to natural isomorphism) it is enough to specify a Γ-space on the skeletal

subcategory containing the objects of the form k+ only.

2.1.1 Smash as a generalization of tensor

The smash product – even more than its sibling the tensor product – is often shrouded

in mystery, but I insists it is a natural object forced on us by bilinearity and can be

motivated as follows: Fiddling with the functoriality of the Eilenberg-Mac Lane

construction

H : sMon→ ΓS∗, M 7→ HM = {k+ 7→ M×k}

defined above we see that a transformation HM → HN is uniquely given by its

value on 1+: it comes from a unique homomorphism M → N , and the canonical

map sMon(M, N) → ΓS∗(HM,HN) is an isomorphism (actually, of spaces, but

you may ignore this enrichment if you just want to understand the smash of Γ-sets).

However, sMon(M, N) is obviously itself a symmetric (simplicial) monoid and

HsMon(M,N)(k+) � sMon(M, N×k) � ΓS∗(HM,HN×k) � ΓS∗(HM,HN(−∧k+))

(where k ′
+
∧k+ � k ′k+ is the smash of finite pointed sets), so if we define the internal

morphism object by ΓS∗(X,Y) = {k+ 7→ ΓS∗(X,Y(−∧k+))} ∈ ΓS∗ for arbitrary

X,Y ∈ ΓS∗ we get a natural isomorphism of Γ-spaces

HsMon(M, N) � ΓS∗(HM,HN).

Now, we want the smash product to be the adjoint:

ΓS∗(X∧Y, Z) � ΓS∗(Y, ΓS∗(X, Z)),

and the usual Yoneda yoga “solving the equation with respect to X∧Y” gives us the

smash product by means of a concrete coend formula

X∧Y =

∫ m+,n+ ∈Γ
o

Γo(m+∧n+,−)∧X(m+)∧Y (n+)

i.e., as the “weighted average of all pointwise smash products”. Even more concretely,

we have an identification between maps X∧Y → Z ∈ ΓS∗ and transformations
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X(m+)∧Y (n+) → Z(m+∧n+) natural in m+, n+ ∈ Γ
o, specifying X∧Y up to unique

isomorphism.

This affords ΓS∗ the structure of a closed symmetric monoidal category. This

categorical construction is a special case of the Day construction known since the

1970’s but it was Lydakis who realized that it actually was the relevant construction

for stable homotopy theory [44].

The unit for the smash is the inclusion Γo ⊆ S∗ denoted either by S or Γo(1+,−)

and often referred to as the sphere spectrum (since under the equivalence between

the stable homotopy categories of Γ-spaces and connective spectra S corresponds to

the actual sphere spectrum).

Hence it makes sense to talk about monoids with respect to the smash products,

and we refer to these as S-algebras. By design, the Eilenberg-Mac Lane construction

is lax symmetric monoidal from (sMon,⊗,N) to (ΓS∗,∧, S) and so takes N-algebras

(aka. rigs or semi rings - they do not necessarily have additive inverses but otherwise

satisfy the axioms of rings) to S-algebras.

2.1.2 Special Γ-spaces

Although simplicial monoids are too restrictive for our purposes, some Γ-spaces are

more important than others (in particular those that arise from symmetric monoidal

categories) and we consider Segal’s “up to homotopy” notion.

A Γ-space X ∈ ΓS∗ is isomorphic to the Eilenberg-Mac Lane construction of a

symmetric monoid if and only if

δk : X(k+) → X(1+)
×k, δk(x) = (δ

1
∗ x, . . . , δ

k
∗ x)

is an isomorphism for all k ≥ 0. The “up to homotopy” notion is the following

Definition 2.1.3 A Γ-space X is special if δk : X(k+) → X(1+)
×k is a weak equiva-

lence for all k.
An equivalent, and for our purposes better, way of expressing this is as follows.

For k+ ∈ Γ
o, consider the inclusion

sk : Γo(1+,−)∧k+ = Γ
o(1+,−)

∨k ⊆ Γo(1+,−)
×k
= Γ

o(k+,−).

Under the Yoneda isomorphisms X(k+) � ΓS∗(Γ
o(k+,−), X) and X(1+)

×k
�

ΓS∗(Γ
o(1+,−)∧k+, X) we see that δk corresponds to s∗

k
: ΓS∗(Γ

o(k+,−), X) →

ΓS∗(Γ
o(1+,−)∧k+, X). Let

L = {sk | k+ ∈ Γ
o}.

Example 2.1.4 Among examples of special Γ-spaces we have those that arise from

symmetric monoidal categories: The Eilenberg-Mac Lane construction extends from

symmetric monoids to symmetric monoidal categories – and in this guise it is often

referred to as algebraic K-theory –

H : SMC → ΓS∗
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by incorporating automorphisms into the construction (functorially rectifying the

pseudo-functor you get by taking the formula for monoids either through one of the

standard machines or by hand), and all special Γ-spaces are unstably equivalent to

something in its image [46].

This is yet another manifestation of the idea that ΓS∗ represents the categorifica-

tion of the category of symmetric monoids. Driving home this message, de Brito and

Moerdijk [8] prove a special refinement of the famous Barratt-Priddy-Quillen theo-

rem: “the canonical map S→ HΣ is a fibrant replacement in the special structure”,

where Σ is the category of finite sets and isomorphisms.

The problem is that standard operations of special Γ-spaces give output that is not

special (case in point: the smash product), and the standard remedy is to allow for

all Γ-spaces, but localize with respect to L. We will need to do this in the presence

of extra symmeries, so we will bake this into the presentation from the start.

2.2 Symmetries on Γ-spaces

From now on, let G be a finite group. A pointed G-set is a pointed set together

with an action of G preserving the base point. Let (deleting “the category of” for

convenience)

• Γo
G

: finite pointed G-sets and all (not necessarily equivariant) pointed maps

• SG: pointed simplicial G-sets and all (not necessarily equivariant) pointed maps;

GS∗: pointed simplicial G-sets and pointed G-equivariant maps

• ΓGSG : pointed G-functors Γo
G
→ SG and G-natural transformations; ΓGS∗:

pointed functors Γo → GS∗ and natural transformations; in other words, G-

objects in ΓS∗.

To elucidate the distinctions, let us list some functors connecting these (see Shi-

makawa [59])

• the inclusion ν : Γo ⊆ Γo
G

giving a finite pointed set the trivial G-action is an

inclusion of a skeleton with retraction Γo
G
→ Γo the forgetful functor.

• sending X ∈ ΓGSG to {k+ → X(νk+)} ∈ GS∗ induces an equivalence

ν∗ : ΓGSG → ΓGS∗ with inverse ΓGS∗ → ΓGSG sending Y ∈ ΓGS∗ to

{A 7→ Y (A) =
∫ k+
Γo(k+, A)∧Y (k+)} ∈ ΓGSG (with G acting diagonally on

Γo(k+, A)∧Y (k+)).

Analogous to the set of maps L determining the special Γ-spaces we have the set

LG of inclusions

sA : Γo(1+,−)∧A ⊆ Γo(A,−) ∈ ΓGSG

(where A is a G-set which for the sake of keepingLG a set is of the form k+ for some

k ∈ N and some homomorphism G → Σk) and we say that X ∈ ΓGSG is special if

the maps ΓGSG(sA, X) ∈ GS∗ are G-equivalences (i.e., for every subgroup H ⊆ G,

the map of H-fixed points ΓGSG(sA, X)
H
= ΓS∗(sA, X)

H is a weak equivalence
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X(A)H
∼
→ S∗(A, X(1+))

H

of simplicial sets).

2.2.1 Fixed points

If f : G ։ J is a surjective group homomorphism with kernel N we let

[−]N,ΦN : ΓGSG → ΓJSJ

be the categorical and geometric fixed point functors sending X ∈ ΓGSG to the

objects in ΓJSJ sending V ∈ Γo
J

to

XN (V) = [X( f ∗V)]N,

Φ
N X(V) =

coeq




∨

W ∈Γo
G

Γo(WN,V)∧[X(W)]N ⇔

∨

W,W ′∈Γo
G

Γo(WN,V)∧[Γo(W ′,W)∧X(W ′)]N



(with the two maps in the coequalizer given by functoriality Γo(W ′,W)∧X(W ′) →

X(W) and composition Γo(WN,V)∧Γo(W ′,W)N → Γo([W ′]N,V)). Although

weird-looking when presented like this without any motivation, the geometric fixed

points are in many ways more convenient. In particular, ΦN preserves much struc-

ture, like colimits and smash; a fact that becomes particularly potent when coupled

with the isomorphism

ΦN (Γo(A,−)∧K) � Γo(AN,−)∧KN

(for A ∈ Γo
G

and K ∈ SG) obtained from the dual Yoneda lemma plus the fact that

for G-spaces fixed points commute with smash. This isomorphism is the Γ-space

version of “geometric fixed points commute with forming the suspension spectrum”.

By writing out the definitions we see that ΦN has a very special effect on the

elements of LG:

Lemma 2.2.2 If f : G ։ J is a surjective group homomorphism with kernel N and

A ∈ Γo
G

, then

ΦNΓo(A,−)
dual Yoneda

�

//

ΦN sA
��

Γo(AN,−)

s
AN

��
ΦN (Γo(1+,−)∧A)

dual Yoneda

�

// Γo(1+,−)∧AN

commutes.
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Note that since [ f ∗V]N = V , we have a canonical isotropy separation map

XN → ΦN X .

2.2.3 Model structures

We record a minimum of the model theoretic properties that we need. Readers

unfamiliar with this technology can for a large part ignore this and the next section at

the price of accepting as black boxes the special equivalences and the few references

to (co)fibrant replacements occurring later (in particular to Lemma 2.2.9).

The projective model structure on ΓGSG is the one where a map X → Y is a

fibration (resp. weak equivalence) if for every subgroup H ⊆ G and V ∈ Γo
G

the

induced map X(V)H → Y(V)H is a (Kan) fibration (resp. weak equivalence) in S∗.

As sets of generating cofibrations and generating acyclic cofibrations for the

projective structure on ΓGSG we may choose

IG = {Γ
o
G(A,−)∧(G/H × ∂∆[n])+→ Γ

o
G(A,−)∧(G/H × ∆[n])+}A,H, 0≤n

JG = {Γ
o
G(A,−)∧(G/H × Λ

n
k )+ → ΓoG(A,−)∧(G/H × ∆[n])+}A,H, 0<n, 0≤k≤n,

where A varies over Γo
G

and H over the subgroups of G and Λn
k
⊆ ∆[n] is the

k-th horn in the n-simplex. The source and targets of the maps in IG and JG are

finitely presented, and so the projective structure is finitely generated. The internal

morphism object is

ΓGSG(C, Z) = {V 7→ ΓGSG(C, Z(V∧−))} ∈ ΓGSG .

Cell induction imply that smashing with a cofibrant object preserves projective

equivalences.

Definition 2.2.4 The special model structure on ΓGSG is the one obtained from the

projective model structure by (left Bousfield) localizing with respect to LG . The

weak equivalences and fibrations in the special structure are referred to as special

equivalences and special fibrations, whereas – since the cofibrations are the same in

the projective structure and its localizations – we refer to the cofibrations simply as

cofibrations without any qualifications.

Note 2.2.5 Even if we started with the Joyal structure, the cofibrations would remain

the same.

Explicitly, a map A→ B ∈ ΓGSG with A, B cofibrant is a special equivalence if

and only if for all specially fibrant (special and projectively fibrant) Z ∈ ΓGSG the

induced map

ΓGSG(B, Z) → ΓGSG(A, Z)

is a weak equivalence on all fixed points. In general, a map is a special equivalence

if its (projective) cofibrant replacement is.
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Lemma 2.2.6 Smashing with a cofibrant object preserves special equivalences.

Proof Let C ∈ ΓGSG be cofibrant. Since smashing with cofibrant objects preserve

projective equivalences, we may consider the case of a special equivalence A→ B

with A and B cofibrant. If Z is specially fibrant and V ∈ Γo
G

, then the map Z(V∧−) →

S∗(V, Z) ∈ ΓGSG is a projective equivalence and so the internal morphism object

ΓGSG(C, Z) is specially fibrant. By the adjointness of smash and internal morphism

object this implies that A∧C → B∧C is a special equivalence. �

2.2.7 Special fibrant replacements and geometric fixed points

We need some control over special fibrant replacements in ΓGSG , so for the moment

we allow ourselves to be a bit technical. For sA : Γo(1+,−)∧A→ Γo(A,−) ∈ LG , let

s̃A : Γo(1+,−)∧A  MA

be the result of applying the simplicial mapping cylinder construction to sA, so that

s̃A is a cofibration while localizing with respect to L̃G = {s̃A} still gives the special

structure on ΓGSG . Finally, we let Λ(LG) = {s̃A�i | s̃A ∈ L̃G, i ∈ IG}. Here � is

the “pushout product”: if f : X → X ′ and g : Y → Y ′, then f�g is the universal

map form the pushout to the final vertex X ′∧Y ′ in

X∧Y
f∧id //

id∧g

��

X ′∧Y

id∧g

��
X∧Y ′

f∧id // X ′∧Y ′.

The following results show that we have good control over the specially fibrant

objects.

Lemma 2.2.8 Consider a map f : X → Y ∈ ΓGSG with Y specially fibrant. Then

f is a special fibration if and only if f has the right lifting property with respect

to Λ(LG) ∪ JG . In particular, X is specially fibrant if X → ∗ has the right lifting

property with respect to Λ(LG) ∪ JG .

By the small object argument,we construct a specially fibrant replacement functor

X → X f G as a relative (Λ(LG)∪ JG)-cell. A cell induction using Lemma 2.2.2 then

gives that

Lemma 2.2.9 If f : G ։ J is a surjection of groups with kernel N and X ∈

ΓGSG then the geometric N-fixed points applied to the specially fibrant replacement,

ΦN (X) → ΦN (X f G), is a special equivalence in ΓJSJ .

Note 2.2.10 There is a slight variant that is occasionally useful. Note that the source

and targets in Λ(LG) ∪ JG are cofibrant, so smashing one of these with a projective
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equivalence X
∼
→ Y ∈ ΓGSG gives a projective equivalence. Since cofibrant replace-

ments are projective equivalences we get that all the maps in (Λ(LG) ∪ JG )∧ΓGSG
are special equivalences. Applying this to the construction in [25, 3.3.2] we get a

fibrant replacement ΓGSG-functor

id→ RG .

In particular, we get an induced map of internal morphism objects

RG : ΓGSG(X,Y ) → ΓGSG(RGX, RGY ) ∈ ΓGSG,

RGX is specially fibrant and X → RGX is a special equivalence (it may not be a

cofibration).

2.3 Fixed points of smash powers

The (co)domains of the generating cofibrations behave nicely with respect to the

smash product:

Lemma 2.3.1 If A, A′ ∈ Γo
G

and K,K ′ ∈ SG , then the smash

ΓoG(A, B)∧Γ
o
G(A

′, B′) → ΓoG(A∧A′, B∧B′)

(for B, B′ ∈ Γo
G

) induces an isomorphism

(ΓoG(A,−)∧K)∧(ΓoG(A
′,−)∧K ′) � ΓoG(A∧A′,−)∧K∧K ′.

2.3.2 Smash powers

If X ∈ ΓGSG we can form smash indexed over arbitrary finite sets S:

∧

S

X = X∧ . . .∧X

(either by choosing orderings on every S and coherently sticking to these choices

or defining the S-fold smash in a symmetric fashion from scratch as we did for

S = {1, 2}). This will at the outset only be functorial with respect to bijections of

sets, but if X has more structure (if for instance X is an S-algebra) then we obtain

more functoriality as in [12]. However, the functoriality in mere bijections means

that all the symmetries of S are present in the smash:
∧

S X is an Aut(S)-object in

ΓGSG , or equivalently, an element in Γo(Aut(S) × G)S∗ ≃ ΓAut(S)×GSAut(S)×G .

For some applications one may want to consider cases where S varies over sets

with some prescribed group interacting with G. However, for our current purposes, it

even suffices to focus on the symmetries of S, not on the symmetries of the incoming



18 Bjørn Ian Dundas

Γ-spaces. So, for simplicity we’ll start with X ∈ ΓS∗ and since then “G” is freed

from its duties and is such a good letter for a group, we let G be a group acting on S

and view the S-fold smash as a functor
∧

S

: ΓS∗ → ΓGSG .

Note that
∧

S

(Γo(A,−)∧K) � Γo(A∧S,−)∧K∧S = ΓoG(A
∧S,−)∧K∧S

is cofibrant (where A∧S is considered as an object in Γo
G

and K∧S an object in SG)

and a cell induction yields

Lemma 2.3.3 If S is a finite G-set, then the S-fold smash
∧

S : ΓS∗ → ΓGSG pre-

serves cofibrations.

2.3.4 The Geometric diagonal

The geometric fixed points treat smash powers of cofibrant objects like fixed points

of sets treat cartesian power. The beginning of the induction needed to show this is

Lemma 2.3.5 If f : G ։ J is a surjection of groups with kernel N , then the dual

Yoneda lemma gives isomorphisms

ΦN (
∧

S

(Γo(A,−)∧K)) �Γo([A∧S]N,−)∧[K∧S]N

�ΓoJ (A
∧S/N,−)∧K∧S/N

�

∧

S/N

(Γo(A,−)∧K).

Inspired by the observation 2.3.5 we define, following the pattern laid out in e.g.,

[12], [37], [39], a chain of natural (in X ∈ ΓS∗) transformations connecting
∧

S/N X

and ΦN
∧

S X , which in the case when X is cofibrant(!) gives an isomorphism

Φ
N
∧

S

X �
∧

S/N

X

called the geometric diagonal. The tricky part is the functoriality in S. For Ex-

ample 0.0.1 there is no requirement, and for topological Hochschild homology, as

discussed in Section 3.1, when X is an S-algebra and G is a cyclic group we only need

functoriality with respect to the structure maps in the (subdivisions of the simplicial)

circle. For commutative S-algebras this is much more demanding since we have to

be more careful with our cofibration hypotheses and typically we want functoriality

with respect to a wide range of functions of finite sets.



Cyclic homology in a special world 19

3 TC in a special world

It is relatively straightforward to express (topological) Hochschild homology in Γ-

spaces: you simply do exactly as Goodwillie and Walhausens envisioned: in the

standard complex replace the tensor with the smash (tensor over S). Just as in the

algebraic case there are flatness concerns, but that is all you need to worry about

(and taken care of by the unproblematic demand that the input being cofibrant).

However, if you want to make further refinements like cyclic homology you need

to take a right derived version (aka a fibrant replacement). Magically, Bökstedt’s

topological Hochschild homology is an explicit version of such a right derived ver-

sion: its very construction has built in deloopings with respect to all finite subgroups
of the circle. This extremely fortunate state of affairs is crucially used in [10] for the

definition of topological cyclic homology; most importantly the restriction map is

simply obtained by restricting an equivariant map to the fixed points.

Since we want to avoid group completion we do not want to deloop, but we do want

to retain homotopical control. Luckily, the categorical approach works wonderfully,

as we now will sketch.

3.0.1 Cyclic objects

Connes’ cyclic categoryΛ and its variantsΛa (for a = 1, 2, . . . ,∞ withΛ = Λ1) can

be obtained as follows. Fixing a there is an object [n]a ∈ Λa for each n = 0, 1, . . . .

For fixed m and n the set of morphismsΛ∞([m]∞, [n]∞) is the set of order preserving

functions f : 1
m+1Z→

1
n+1Z with f ( i

m+1 + 1) = f ( i
n+1 ) + 1 for all i. Fixing a < ∞,

we let Λa([m]a, [n]a) be the quotient of Λ∞([m]∞, [n]∞) by the equivalence relation

generated by f ∼ f + a. Composition in Λa is composition of functions.

The cyclic group Ca of order a acts on Λa by the identity on objects and by

f 7→ f − 1 on Λa([m]a, [n]a). This means that functors from Λa comes with a

natural Ca-action. The group of automorphisms AutΛa
([n]a) is cyclic of order a(n+1)

generated by the class ta,n of the function 1
n+1
Z→ 1

n+1
Z given by i 7→ i + 1

n+1
. The

faithful inclusion ja : ∆→ Λa is given by j[n] = [n]a and by sending φ ∈ ∆([m], [n])

to the class of the function 1
m+1Z→

1
n+1Z with i

m+1 7→
φ(i)
n+1 for 0 ≤ i ≤ m.

A functor X from Λ
o

= Λ
o

1
to some category is called a cyclic object in that

category and the composite j∗X = X j = X j1 is referred to as the underlying

simplicial object.

A particularly important example is the cyclic set S1
= Λ[0]modeling the circle.

An element in S1
n = Λ([n], [0]) can be composed uniquely into an automorphism of

[n] followed by the unique map [n] → [0] coming from ∆. Hence, S1
n is identified

with the cyclic group AutΛ([n]) of order n + 1. Restricting to ∆op we have the usual

simplicial circle: j∗S1
= ∆[1]/∂∆[1].
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3.0.2 Edgewise subdivision

Essentially because |S1 | is homeomorphic to the circle, the geometric realization of

cyclic object comes equipped with an action by the circle group T = |S1 |. Bökstedt,

Hsiang and Madsen [10] introduced the edgewise subdivision as a way of making

the action of the finite cyclic subgroups of T combinatorial. Let sdr : ∆ → ∆ be

the r-fold concatenation S 7→ S ⊔ · · · ⊔ S. Note that sdr [k − 1] = [kr − 1] and that

sdr sds
= sdrs . This extends to the cyclic situation

∆
sdr

//

jar

��

∆

ja

��
Λar

sdr
// Λa

by setting sdr (tar ) = ta. Precomposing any cyclic object X with sdr gives sdr X =

X ◦ sdr , the r-fold edgewise subdivision of X , giving us a functor from cyclic objects

to Λr -objects. We note that (sdr X)k−1 = Xkr−1 and that

(sdmnS1)/Cn � sdmS1.

From [10] we know that there is a naturalCr -equivariant homeomorphism D : |sdCr
X | �

|X |, where the Cr -action on |sdCr
X | comes from the Cr -action on sdCr

X , and the

action on |X | comes from the cyclic structure on X . The resulting homeomorphism

|sdCr
XCr | � |X |Cr is T-equivariant if we let T act on |sdCr

XCr | via the cyclic

structure, and on |X |Cr through the isomorphism T � T/Cr .

3.1 (Topological) Hochschild homology

Topological cyclic homology makes sense in the special world. This is not obvious

since the classical construction relies on various objects being equivalent, and when

the meaning of “equivalent” is changed not all constructions translate. There is much

to be said, for instance in regards to compatibility, but we present only what is needed

for setting up the framework.

(Topological) Hochschild homology for S-algebras is defined exactly as ordinary

Hochschild homology, with (Ab, ⊗, Z) replaced by (ΓS∗,∧, S): if A is an S-algebra

then HHS(A) is the cyclic Γ-space

[q] 7→ A∧(q+1)
= A∧ . . .∧A,

with face maps induced by multiplication, degeneracy maps by insertion of identities

and the cyclic operator acting by cyclic permutation. As in the algebraic case where

the analogous definition is problematic unless the ring is flat, we really only ever use

this definition for sufficiently flat A – being cofibrant is more than enough. We have
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chosen to use the notation HHS rather than THH to emphasize that we are using the

categorical smash powers.

Recall the discussion of the smash powers and geometric fixed points from Sec-

tion 2.3. When A is a cofibrant, then the geometric diagonal ΦCp
∧

S⊔p A �
∧

S A

is an isomorphism 2.3.4 which is natural in A and natural enough in S to give an

isomorphism on the level of Hochschild homology:

Lemma 3.1.1 If A is a cofibrant S-algebra, then the geometric diagonal yields an

isomorphism

∆ : ΦCp sdpn+1HHS(A) � sdpnHHS(A).

Hence the considerations of Section 2.2.1 give an isotropy separation or “restric-

tion” map

|HHS(A)|Cp
� |sdpHHS(A)Cp | → |ΦCp sdpHHS(A)| � |HHS(A)|

and an inclusion of fixed points “Frobenius” |HHS(A)|Cp ⊆ |HHS(A)| and we want

to build the theory from here.

Note 3.1.2 There are technicalities regarding fibrant replacements that we for the

sake of exposition have glossed over, but which can be handled as follows. If X is a

Cpn -Γ-space (simplicial or topological) we let X → X fn be the specially Cpn -fibrant

replacement. Note that if i : Cpk ⊆ Cpn , then i∗X → i∗(X fn ) is a special Cpk -fibrant

replacement, and so naturally equivalent (but not equal) to i∗X → i∗(X) fk . In all

honesty, the “restriction map” is the chain |HHSA| fnCpn // |HHSA|
fn−1Cpn−1

given by composing the map

|HHSA| fnCpn
= [|HHSA| fnCp ]Cpn /Cp

∼
→ |HHSA|

fnCp fn−1Cpn−1

induced by fibrant replacement with (−)
fn−1Cpn−1 of

|HHSA| fnCp

�

Dn // |sdpnHHS(A)| fnCp
∼

// |sdpn HHS(A) fn | fnCp

|ΦCp (sdpnHHS(A) fn)| |sdpnHHS(A) fnCp |
� //

separation

isotropyoo |sdpnHHS(A) fn |Cp

∼

OO

|ΦCp (sdpnHHS(A))|

∼Lemma 2.2.9

OO

�

∆ // |sdpn−1 HHSA| |HHSA|
�

Dn−1oo

(the unmarked equivalences are annoying but innocent jugglings with fibrant re-

placements written out in its most primitive form), whereas the Frobenius is the

inclusion of fixed points (and change of fibrant replacement)

|HHSA| fnCpn ⊆ |HHSA|
fnCpn−1 ∼ // |HHSA|

fn fn−1Cpn−1 |HHSA|
fn−1Cpn−1 .

∼oo
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3.2 Topological cyclic homology

We define TC(A; p) as the homotopy limit over the R and F-maps (which makes

sense since the arrows pointing in the “wrong” directions are equivalences and we

can choose an explicit model taking this into account).

Note that for any T-space X , there is a chain X fnCpn → X fn hCpn
∼
← XhCpn

compatible with the inclusion of fixed points (we use ET for all the ECpn s occurring

in the homotopy fixed points), so that we get a map

holim
←−
F

|HHSA| fnCpn → holim
←−
|HHSA|hCpn ,

where after p-completion the latter object is naturally equivalent to the homotopy

T-fixed points |HHSA|hT. Ultimately, this leads us to the same definition for TC(A)

as in the stable case.

Definition 3.2.1 Let A be a cofibrant S-algebra. Then the topological cyclic homol-

ogy TC(A) is the homotopy pullback of

∏

p

TC(A; p)p →
∏

p

|HHS(A)|hTp ← |HHS(A)|hT.

Note 3.2.2 I do not know whether the set-up of Nikolaus and Scholze of Section 1.6

translates well to the special situation since the nature of the Tate-construction is

somewhat mysterious in this case.

Note 3.2.3 The extension from S-algebras to categories enriched in Γ-spaces is

straightforward and left to the reader.

4 On modules and monoids

We end by discussing some algebraic properties. In particular we show that if B is

the Boolean N-algebra, then HB-modules are specially homotopy discrete. For this

purpose we first give a more concrete characterization of special equivalences. Recall

that a map A → B of cofibrant Γ-spaces is a special equivalence if for all special

and projectively fibrant Z ∈ ΓS∗ the induced map ΓS∗(B, Z) → ΓS∗(A, Z) ∈ S∗ is a

weak equivalence. In general, a map A→ B is a special equivalence if its cofibrant

replacement is a special equivalence.

Using the fibrant replacement ΓS∗-functor of 2.2.10 (we use the enriched fibrant

replacement in order to apply it to modules) we can simplify this to the statement that

A→ B is a special equivalence if and only if RA→ RB is a projective equivalence,

which in view of the fact that RA and RB are special is the same as saying that

RA(1+) → RB(1+) is a weak equivalence of simplicial sets.
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4.0.1 Linearization

The Eilenberg-Mac Lane construction has a left adjoint L : ΓS∗ → sMon with LX

given as the coequalizer in sMon of the two maps

δ1∗ + δ
2
∗,∇∗ : N[X(2+)]⇒ N[X(1+)],

where N[−] is free functor adjoint to the forgetful functor from symmetric monoids

to pointed sets. Adapting the argument in [57, Lemma 1.2] we get

Lemma 4.0.2 The unit of adjunction A→ LH A is an isomorphism. The adjunction

is enriched in the sense that it extends to a natural isomorphism

ΓS∗(X,H A) � HsMon(LX, A) ∈ ΓS∗

and L is strong symmetric monoidal: the maps induced by the enriched adjunction

are isomorphismsN � L(S), LX ⊗N LY � L(X∧Y ). Furthermore, L preserves finite

products.

Lemma 4.0.3 The Eilenberg-Mac Lane functor H : sMon→ ΓS∗ is a right Quillen

map, both with respect to the projective and the special structures on ΓS∗.

Proof It is enough to show that H preserves acyclic fibrations and fibrations between

fibrant objects (see [21]). Since finite products preserve fibrations and equivalences,

H sends fibrations/weak equivalences to projective fibrations/equivalences. Since

acyclic fibrations in the projective and special structures coincide it is enough to show

that if M ։ N ∈ sMon is a fibration between fibrant objects then HM → HN is a

special fibration. This follows since HM,HN are specially fibrant and HM → HN

projectively fibrant. �

Note that, contrary to what is the case in other formalisms the Eilenberg-MacLane

functor very rarely takes cofibrant values.

Lemma 4.0.4 If M is a nontrivial simplicial symmetric monoid, then HM ∈ ΓS∗ is

not cofibrant.

Proof If HM ∈ ΓS∗ is cofibrant, then LHM � M is cofibrant in sMon with the

projective structure ((L,H) is a Quillen pair), which is equivalent to M being a

retraction of a free (in the sense of Quillen) simplicial symmetric monoid. Hence,

it is enough to consider the case where M is free simplicial symmetric monoid. In

that case, if n is the smallest dimension in which Mn is nontrivial (here we use that

M , 0), then Mn is actually a non-trivial free symmetric monoid, and so contains

N as a retract. By Schwede [57, A3], if HM were cofibrant then HMn – and hence

HN – would be a wedge of representables.

However, HN has no proper retracts: if X ⊆ HN → X is a retract, then LX ⊆

N → LX is a retract (of symmetric monoids), implying that either LX = 0 or

LX = N. In the first case, the inclusion X ⊆ HN factors over HLX = 0, so that
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X = 0, and in the second case the composite HN→ X → HLX is an isomorphism

implying that the surjection HN→ X is an injection too.

Combining this information, we get that if HN were cofibrant, HN would be

representable, which is nonsense given that representables are finite. �

4.0.5 The special path monoid

The special analog of the set of path components is the following.

Definition 4.0.6 If X is a Γ-space, then the special path monoid of X is the symmetric

monoid π
special
0

X = π0RX(1+).

It can alternatively be seen as the monoid of all maps S→ X in the special homotopy

category, but for our purposes the characterization in terms of linearization is more

useful.

Lemma 4.0.7 A special equivalence X → Y (of not necessarily cofibrant Γ-spaces)

induces an isomorphism π0LX � π0LY . If Z is special, then the map π0Z(1+) →

π0LZ induced by the unit Z → HLZ is an isomorphism. Hence, for any X ∈ ΓS∗
we have a chain of natural isomorphisms

π
special

0
X = π0RX(1+)

�

−→ π0LRX
�

←− π0LX � coeq{Nπ0X(2+)⇒ Nπ0X(1+)}.

Proof Since L is a left Quillen functor, it sends special equivalences between cofi-

brant objects to weak equivalences, so we need to show that π0L sends projective

equivalences to isomorphisms. This is true since π0 commutes with colimits.

Likewise, if Z is special, then π0Z(1+) inherits a monoid structure and π0LZ is a

coequalizer of a diagram

Nπ0Z(1+) ⊗ Nπ0Z(1+) � Nπ0Z(2+)⇒ Nπ0Z(1+)

exactly recovering the generators π0Z(1+) ⊆ Nπ0Z(1+) �

Corollary 4.0.8 The isomorphism of Lemma 4.0.7 and the monoidality of L of

Lemma 4.0.2 induce isomorphisms

π
special
0

(X∧Y ) �π0L(X∧Y ) � π0(LX ⊗N LY ) � π0LX ⊗N π0LY

�π
special

0
X ⊗N π

special

0
Y .

In particular, if A, B ∈ sMon, then π
special

0
(H A∧LHB) � π

special

0
(H A∧HB) �

π0 A ⊗N π0B.

The superscript L signifies the derived smash, where the factors are functorially

replaced by cofibrant objects. For instance we could use the standard simplicial

replacement (symmetric version, Hochschild-style structure maps) for X∧LY with

Γ-space of q-simplices
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∨

a0,...,aq,b0,...,bq ∈Γo

X(aq)∧Y(bq)∧Γ
o(a0∧b0,−)∧

∧

j=1q

Γo(ai, ai−1)∧Γ
o(bi, bi−1).

Generally, X∧Y and X∧LY are not specially equivalent but, as we see, their path

monoids coincide. On the other hand, allowing a simplicial direction offers no real

advantage (or disadvantage) when considering B-modules (or for that matter modules

over other rigs where 1 + · · · + 1 = 1).

Example 4.0.9 Consider the Boolean algebra B = {0, 1} (0 is “false” and 1 is “true”)

with the operation + being “or” ((B,+) is isomorphic to Z/2×, the integers mod 2

under multiplication) and · being “and”. This is the N-algebra on {0, 1} defined by

1 + 1 = 1. If we force all elements to have negatives, then we can cancel 1 on each

side of the expression 1+1 = 1 resulting in 1 = 0: the group completion is the trivial

group.

The advantage of the special world is that we do not group complete and so the

theory is not trivialized, but the special theory of HB-modules is of an essentially

discrete nature unless we change the underlying weak equivalences on simplicial sets

(e.g., by using quasi-categories instead of Kan complexes as our fibrant objects).

The fact that HB-modules are specially homotopy discrete can be seen as follows.

It is enough to consider specially fibrant HB-modules M and show that the map

M → HLM → Hπ0LM � Hπ
special
0

M

is a projective equivalence, or equivalently, that M(1+) → π0M(1+) is a weak equiv-

alence. Consider the part of the functoriality of the multiplication map HB∧M → M

expressed in the diagram

(B∧M(1+)) × (B∧M(1+))

�

��

(B × B)∧M(1+)
(pr1∧id,pr2∧id)
oo

��

+∧id
// B∧M(1+)

�

��
M(1+) × M(1+) M(2+)

(δ1
∗,δ

2
∗ )

oo
∇∗

// M(1+).

Choosing a basepoint x ∈ M(1+) we see that for i > 0 the lower row defines

a group homomorphism + : πi(M(1+), x) × πi(M(1+), x) → πi(M(1+), x). If α ∈

πi(M(1+), x) and 0 ∈ πi(M(1+), x) is the constant loop, then tracing through the

diagram we see that α = 0 + α = α + 0, so that Eckmann-Hilton forces + to be

the usual group operation in πi(M(1+), x), but also α + α = α, which means that

πi(M(1+), x) = 0.

This is somewhat disappointing. For instance, it means that multiplication

B∧LB → B is a special equivalence. Since topological Hochschild homology

HHS(B) is a B-module it also means that HHS(B) → B is a special equivalence.

This is a good motivation for not only to moving from the stable to the special

world, but also from Kan simplicial sets to quasi-categories (where not all paths

have homotopy inverses, and so the argument about homotopy discreteness fails).
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If A is an S-algebra, then the fixed points of the smash powers and TC(A) are

generally not an A-module since it is built out of non-split extensions (for instance,

π
special
0

(HF2∧
LHF2)

C2 � Z/4Z is not an F2-algebra), but Example 4.0.9 still makes it

clear that the presence of elements killed by group completion puts severe restrictions

on the theory. In addition, even when such a theory is set up, it is by no means clear

that is has any of the calculational power that the original setup of Bökstedt, Hsiang

and Madsen had.

Note 4.0.10 Example 4.0.9 showed that if 1+1 = 1 in anN-algebra, then its modules

are specially discrete. It should however be noted that the∞+ 1 = ∞ encountered in

Example 0.0.2 for the category Vectcount
k

of countable vector spaces is less dramatic.

The associated Γ-space (wrt. ⊕) is specially fibrant with value at 1+ (the nerve of) the

groupoid Vectcount
k

. This groupoid has a lot of automorphisms and so is not homotopy

discrete.
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