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Constructing APN Functions through Isotopic Shifts
Lilya Budaghyan, Marco Calderini, Claude Carlet, Robert S. Coulter, and Irene Villa,

Abstract—Almost perfect nonlinear (APN) functions over fields
of characteristic 2 play an important role in cryptography, coding
theory and, more generally, mathematics and information theory.
In this paper we deduce a new method for constructing APN
functions by studying the isotopic equivalence, concept defined
for quadratic planar functions in fields of odd characteristic.

In particular, we construct a family of quadratic APN func-
tions which provides a new example of an APN mapping over F29

and includes an example of another APN function x9 + Tr(x3)
over F28 , known since 2006 and not classified up to now. We
conjecture that the conditions for this family are satisfied by
infinitely many APN functions.

I. INTRODUCTION

This paper is concerned with functions, hence polynomials,
over finite fields. Let p be a prime, n ∈ N, and q = pn. We use
Fq to denote the finite field of order q, and follow the well-
established convention of using F?q to denote its multiplicative
group. Throughout the paper, ζ denotes a primitive element
of Fq , so that F?q = 〈ζ〉. It is an important fact that any
function from Fq to itself can be represented uniquely by an
element of the polynomial ring Fq[x] of degree less than q. For
this reason, in order to avoid abuse of notation, we consider
polynomials modulo (xq − x).

Let F ∈ Fq[x]. The value set of F over Fq is denoted by
V(F ), i.e.

V(F ) = {F (c) : c ∈ Fq}.

We also denote the set of roots of F (x) over Fq by ker(F ).
The polynomial F is a permutation polynomial (PP) over Fq
if V(F ) = Fq , and is a complete mapping over Fq if both F
and F (x) + x are PPs.

We define the difference operator of F , denoted ∆F ∈
Fq[x, y], by

∆F (x, y) = F (x+ y)− F (x)− F (y).

When there is no ambiguity about which F we are referring
to, we simply use ∆. Note that ∆F is symmetric in x and y.
For a ∈ F?q , we refer to DaF (x) = ∆(x, a) + F (a) as the
derivative of F in the direction of a.

Fix δ ∈ N. A function F is called differentially δ-uniform
if for a, b ∈ Fq , a 6= 0, the equation ∆(x, a) = b admits at
most δ solutions x ∈ Fq . Differential uniformity measures the
contribution of a function, used as a substitution box (S-box)
inside a block cipher, to the resistance of the cryptosystem to
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differential cryptanalysis, with small values of δ corresponding
to better resistance. Consequently, 1-uniform functions are
optimal; for such a function, all of its non-zero derivatives
are permutations. In cryptographic applications these functions
were coined perfect nonlinear (PN) by Nyberg [19], while they
were earlier introduced as planar functions by Dembowski
and Ostrom [14] in their seminal work on projective planes
allowing a collineation group acting transitively on the affine
points. The existence of an involution in the additive group
means such functions cannot exist in even characteristic; here,
the best resistance belongs to functions that are differentially
2-uniform. Such “(n, n)-functions” having optimal differential
uniformity are called almost perfect nonlinear (APN), see [20].
They play a prominent role in the design of block ciphers and
their study by Nyberg has allowed the Advanced Encryption
Standard (AES) to have good S-boxes. Their study is also
closely related to important questions on error correcting
codes, as APN functions define optimal codes in certain
sense (see for instance [11]). APN functions also play a
role in algebraic manipulation detection (AMD), in applied
cryptography and coding, see [13].

Further special classes of polynomials that play a central
role in our work are defined as follows. For F ∈ Fq[x]:

• F is linear if F (x) =
∑
i aix

pi . In this case both V(F )
and ker(F ) are subspaces of Fq .

• F is affine if it differs from a linear polynomial by a
constant.

• F is a Dembowski-Ostrom (DO) polynomial if F (x) =∑
0≤i≤j<n aijx

pi+pj , whit i < j if p = 2.
• F is quadratic if it differs from a DO polynomial by an

affine polynomial.
Note that a quadratic function F is APN over Fq if and only
if for all a ∈ F?q , ker(∆F (x, a)) = {0, a}.

There are several equivalence relations that preserve differ-
ential uniformity; we list them below. Let F, F ′ ∈ Fq[x]. Then
F and F ′ are:
• affine (linear) equivalent if there exist affine (respectively,

linear) permutations A1, A2 ∈ Fq[x] for which F ′ = A1◦
F ◦A2.

• extended affine equivalent (EA-equivalent) if F ′ = (A1 ◦
F ◦A2) +A for A1, A2 ∈ Fq[x] affine permutations and
A ∈ Fq[x] affine map.

• Carlet-Charpin-Zinoviev equivalent (CCZ-equivalent)
[11] if there exists an affine permutation L of Fq × Fq
that maps the graph of F , the set GF = {(x, F (x)) : x ∈
Fpn}, onto the graph of F ′, L(GF ) = GF ′ .

These equivalences are related to each other. Indeed, affine
equivalence is obviously a particular case of EA-equivalence,
which is itself a particular case of CCZ-equivalence [11]. As
the addition of a constant term does not alter the APN or
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PN property, for ease of discourse, we assume throughout the
paper that any APN or PN function F has zero constant term,
i.e F (0) = 0.

The concept of isotopic equivalence was originally defined
by Albert [1] in the study of presemifields and semifields.
A presemifield is a ring with no zero divisor, and whose
operations satisfy left and right distributivity. A semifield is
a presemifield containing a multiplicative identity. Any finite
presemifield has order a prime power q and can be represented
by S = (Fq,+, ?), with field addition + and multiplication ?
given by x ? y = φ(x, y), where φ ∈ Fq[x, y] is a bilinear
map.

Given two presemifields S1 = (Fq,+, ?) and S2 =
(Fq,+, ∗), they are called isotopic if there exist three linear
permutations T,M,N ∈ Fq[x] such that, for any x, y ∈ Fq ,
T (x ∗ y) = M(x) ? N(y). If M = N , then S1 and
S2 are called strongly isotopic. It was shown by Coulter
and Henderson [12] that there is a 1-to-1 correspondence
between commutative presemifields of odd order and planar
DO polynomials. Indeed, given a quadratic planar function
F ∈ Fq[x], a commutative presemifield SF = (Fq,+, ?) is
defined by the multiplication x ? y = ∆F (x, y). Conversely,
given a commutative presemifield SF = (Fq,+, ?) of odd
order, the function F (x) = 1

2 (x ? x) necessarily defines
a planar DO polynomial. It is natural, then, to extend the
notion (at least in odd characteristic) of isotopic equivalence
to quadratic PN functions, where two quadratic PN functions
are isotopic if and only if their corresponding presemifields
are isotopic. Furthermore, it is known that CCZ-equivalence
is a particular case of isotopic equivalence. Indeed, two planar
DO polynomials F and F ′ are CCZ-equivalent if and only
if the corresponding commutative semifields SF and SF ′ are
strongly isotopic, [9].

In this paper we move to study isotopic equivalence with
respect to APN functions in characteristic 2. In particular, we
shall introduce a new construction method for APN functions
based on isotopic equivalence. We make the following formal
definition, which is the central concept considered in this arti-
cle (and which will appear natural after we state Theorem II.1).

Definition I.1. Let F,L ∈ Fq[x]. The isotopic shift of F by
L, denoted by FL, is the polynomial given by

FL(x) = ∆F (x, L(x)) = F (x+ L(x))− F (x)− F (L(x)).
(1)

The paper is organized as follows. In Section II we show
how isotopic shifts arise naturally in the study of planar
functions. This result acts as motivation for studying isotopic
shifts in the parallel area of APN functions. Before narrowing
our scope to APN maps, in Section III we make some general
observations on isotopic shifts. We then restrict ourselves
to considering isotopic shifts of APN functions. Firstly, in
Section IV, we consider how we may obtain the same function
by isotopically shifting a given APN map F in characteristic
2 by different L. Then, in Section V, we begin our main
study, that of isotopic shifts of quadratic APN functions by
linear maps (in particular in characteristic 2). We show that
only bijective or 2-to-1 linear maps can possibly produce an

APN function from the isotopic shift of a quadratic APN. As
an aside, we show how to construct all q-to-1 maps on Fqn .
We then proceed in Section VI to concentrate specifically on
isotopic shifts of Gold functions in characteristic 2. Highlights
of our results are as follows:
• A family of quadratic APN functions is constructed over

F2km using isotopic shift method (see Theorem VI.3). For
k = m = 3, this family provides an APN function which
is not CCZ-equivalent to any APN function belonging to
an already known class, see Section VII-B. For k = 4,
m = 2, we obtain APN maps equivalent to x9 + Tr(x3),
a function known since 2006 [3] and which has not been
part of any known family of APN functions up to now.

• We show that an isotopic shift of an APN function can
lead to APN functions CCZ-inequivalent to the original
one, even if we shift only Gold functions by linear
monomials, see Lemma VI.6.

• We show that every quadratic APN function over F26 is
EA-equivalent to an isotopic shift of x3 and also EA-
equivalent to an isotopic shift of x3 + ζ−1 Tr(ζ3x9).

We also provide computational data in the last section of the
paper.

II. ISOTOPIC EQUIVALENCE FOR PLANAR QUADRATIC
FUNCTIONS REVISITED

Our first result shows that the concept of isotopic shifts is,
in fact, a very natural concept. Recall that istopic shifts FL
are defined in (1).

Theorem II.1. Let F, F ′ ∈ Fq[x] be quadratic planar func-
tions (null at 0). If F and F ′ are isotopic equivalent then F ′

is EA-equivalent to some isotopic shift FL of F by a linear
permutation polynomial L ∈ Fq[x].

Proof. By definition, quadratic planar functions are isotopic
equivalent if the presemifields defined by them are isotopic.
That is, the presemifields defined by multiplications ? and ∗,
with x ? y = ∆F ′(x, y) and x ∗ y = ∆F (x, y), respectively,
are isotopic. Note that the linear parts of F and F ′ do not
play a role in these operations. In the calculations below, we
replace then the quadratic functions by their DO parts (that is,
we erase their linear parts, without loss of generality up to EA-
equivalence). Then we have x?x = 2F ′(x) and x∗x = 2F (x).
For some linear permutations T,M,N ∈ Fq[x], we get

T (x ? y) = M(x) ∗N(y), (2)

for all x, y ∈ Fq . Hence, T (x?x) = T (2F ′(x)) = 2T (F ′(x))
and T (x ? x) = M(x) ∗ N(x) = ∆F (M(x), N(x)), which
leads to 2T (F ′(M−1(x))) = ∆F (x,N(M−1(x))). As this
holds for all x ∈ Fq , we see that this is, in fact, a polynomial
identity, and F ′ is EA-equivalent to FL with L = N ◦M−1,
a linear permutation.

Theorem II.1 shows that, for isotopic equivalent quadratic
planar functions, what takes us beyond CCZ-equivalence is
the isotopic shift by a linear permutation L. In the past
years classes of APN mappings were used for constructing
planar functions. For this reason we investigated whether the
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isotopic shift, which can construct PN functions in fields of
odd characteristic, can also construct APN maps in fields of
even characteristic. For linear shifts of APN functions, we do
not restrict L to be a permutation. As with planar quadratic
functions, we will see that an isotopic shift of an APN map
can lead to APN functions CCZ-inequivalent to the original
map.

III. GENERIC RESULTS ON ISOTOPIC SHIFTS

With regards to isotopic shifts, an easy first observation is
that for any F ∈ Fq[x] and any permutation L ∈ Fq[x], we
have

FL(L−1(x)) = FL−1(x), (3)

where L−1 is the compositional inverse of L. In particular,
thanks to EA-equivalence, if L is a linear permutation polyno-
mial, then FL and FL−1 have the same differential uniformity.
Along similar lines, we have the following theorem.

Theorem III.1. Let F, F ′ ∈ Fq[x] be arbitrary polynomials.
If F and F ′ are EA-equivalent, say F (x) = A1 ◦F ′ ◦A2(x)+
A(x), in addition with the restriction A2(0) = 0, then for L ∈
Fq[x], FL is affine equivalent to F ′M where M = A2◦L◦A−1

2 .

Proof. Since F = A1◦F ′◦A2+A with A2 linear permutation
polynomials, we have

FL(x) =∆F (x, L(x)) = F (x+ L(x))− F (x)− F (L(x))

=A1

(
F ′(A2(x) +A2(L(x)))− F ′(A2(x))

− F ′(A2(L(x)))
)

+A(0)

=A1

(
F ′(A2(x) +M(A2(x)))− F ′(A2(x))

− F ′(M(A2(x)))
)

+A(0),

and with A3(x) = A1(x) + A(0) we have FL = A3 ◦ F ′M ◦
A2.

Corollary III.2. If F, F ′ ∈ Fq[x] are EA-equivalent and
quadratic, then for L ∈ Fq[x], FL is EA-equivalent to F ′M
where M = Ā2 ◦ L ◦ Ā2

−1, Ā2(x) = A2(x) +A2(0).

Proof. If F ′ is quadratic then F ′◦A2(x) = F ′(Ā2(x))+N(x),
N affine. Hence we have FL(x) = A1 ◦F ′M ◦ Ā2(x) +A3(x),
A3 affine.

Let GL = GL(n, p) be the general linear group of degree
n over Fp and S be the set of all polynomials in Fq[x] of
degree less than q. Then GL has a natural conjugation action
on S given by F · L = L(F (L−1(x))) mod (xq − x) for
F ∈ S and L ∈ GL (here F · L means F is being acted on
by L by the conjugation action). In the most general sense,
we are interested in isotopic shifts of arbitrary polynomial
F ∈ S by arbitrary polynomial L ∈ S . Set NGL(L) to be
the stabiliser of L under the conjugation action of GL. Then
Theorem III.1 shows that isotopic shifts of F by elements of S
split naturally into affine equivalent “conjugacy classes” of the
action of GL as FL and F ′L will be affine equivalent whenever
F ′ = M◦F ◦M−1 and M ∈ NGL(L). More generally, we will
be interested in isotopic shifts of elements of S by elements of
End = End(Fnp ) (the larger set of endomorphisms, i.e. linear

transformations). Note that the action of GL on S may be
restricted to an action on End.

We will be mainly concerned with the case where F is a
quadratic APN function and L is linear. We note that, for F
quadratic and L,M arbitrary polynomials,

FL + FM = FL+M . (4)

IV. ISOTOPIC SHIFTS OF APN FUNCTIONS

Throughout this section, q = 2n for some n ∈ N. We
first consider how an isotopic shift of an APN function may
generate the zero polynomial. (We remind that throughout the
paper, we assume any APN function has zero constant term.)

Theorem IV.1. Let F ∈ Fq[x] be an APN function and L ∈
Fq[x]. Then FL is the zero function if and only if L(a) ∈ {0, a}
for all a ∈ F?q . Furthermore, if L is linear, then FL is the zero
function if and only if L is either the zero polynomial or the
polynomial x.

Proof. Suppose FL(x) = 0. As F is APN, we know that for all
a ∈ F?q , ∆F (x, a) = 0 if and only if x ∈ {0, a}. Now FL(x) =
∆F (x, L(x)), so that for all a ∈ F?q , L(a) ∈ {0, a} is forced.
Conversely, if L(a) ∈ {0, a} for all a ∈ F?q , then clearly
FL(a) = ∆F (a, L(a)) = 0, while FL(0) = ∆F (0, L(0)) = 0.
Hence FL(x) = 0.
Now suppose L is linear. Since L(a) ∈ {0, a} for all a ∈ Fq ,
we have Fq = V(L)⊕ker(L). Suppose 0 < dim(ker(L)) < n.
Then there exist v ∈ V(L) (which implies v = L(v)) and
z ∈ ker(L) with vz 6= 0 and v + z 6= 0. Thus v = v + 0 =
L(v) +L(z) = L(v+ z) ∈ {0, v+ z}, a contradiction. Hence
ker(L) = Fq or ker(L) = {0}. In the former case, L(x) = 0,
while in the latter case L(x) = x.

Our motivation for establishing this result is not directly
related to being concerned with generating the zero polyno-
mial, but with the more practical problem of understanding
how distinct L can yield the same isotopic shift of a given
DO APN function.

Corollary IV.2. Let F ∈ Fq[x] be a DO APN function and
L,M ∈ Fq[x]. The following statements hold.

(i) FL = FM if and only if L(a) + M(a) ∈ {0, a} for all
a ∈ F?q .

(ii) Suppose L,M are linear. Then FL = FM if and only if
L = M or L(x) = M(x) + x as polynomials.

Proof. We have from (4) that FL = FM if and only if
FN (x) = 0, where N = L + M . Both results now follow
from Theorem IV.1.

A consequence of Corollary IV.2 is that there is a sort of
duality that occurs among isotopic shifts, between L(x) and
L(x)+x. That is, any conditions derived on L for the isotopic
shift FL to be APN apply equally to both L(x) and L(x) +x.

V. ISOTOPIC SHIFTS OF QUADRATIC APN FUNCTIONS

In this section, we restrict ourselves to isotopic shifts of
quadratic APN functions by linear polynomials. In the planar
case, for the isotopic shift to be planar we require the linear
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polynomial involved to be a permutation polynomial. The
corresponding result for the APN case is as follows. Here we
again assume q = 2n.

Theorem V.1. Let F ∈ Fq[x] be a quadratic APN function
and L ∈ Fq[x] be linear. Set M(x) = L(x)+x. If FL is APN,
then the following statements hold.

(i) L is either a permutation or 2-to-1, and L is injective
on V(L).

(ii) M is either a permutation or 2-to-1, and M is injective
on V(M).

Proof. We need only establish (i), as the duality spelled
out in Corollary IV.2(ii) will then imply (ii). As F is a
quadratic polynomial, ∆F (x, a) is a linear operator for all
a ∈ F?q . Consequently, ∆FL

(x, a) is also linear, and FL
being APN is equivalent to ker(∆FL

(x, a)) = {0, a} for all
a ∈ F?q . Applying the linear operator identity to the difference
operators involved one can show that, for any a ∈ F?q ,

∆FL
(x, a) = ∆F (x, L(a)) + ∆F (a, L(x)). (5)

Suppose L is not a permutation polynomial, so that there
exists some z ∈ ker(L) with z 6= 0. Then ∆FL

(x, z) =
∆F (z, L(x)). Clearly, any x ∈ ker(L) satisfies ∆FL

(x, z) =
0, so that {0, z} ⊆ ker(L) ⊆ ker(∆FL

(x, z)) = {0, z}. Thus
ker(L) = {0, z} is forced and L is 2-to-1. Furthermore, since
∆FL

(x, z) = ∆F (z, L(x)) and ∆F (z, z) = 0, we must have
z 6∈ V(L). Thus, viewed as a vector space over F2, we have
Fq = V(L)⊕ 〈z〉. Since L(x+ z) = L(x) for all x ∈ Fq , we
must have L(V(L)) = V(L).

We have the following corollary, which eliminates some
possibilities for L when the field has square order.

Corollary V.2. Set q to be an even power of 2. Let F ∈ Fq[x]
be a quadratic APN function and L ∈ F2[x] be linear. If FL
is APN over Fq , then L is 2-to-1.

Proof. Set M(x) = L(x) + x. Suppose, by way of contradic-
tion, that FL is APN over Fq and L is a permutation polyno-
mial. Then L(1) = 1 is forced. Thus M(1) = M(0) = 0. Now
F4 = {0, 1, γ, γ + 1} is a subfield of Fq , and since L ∈ F2[x]
is a permutation polynomial, we must have either L(γ) = γ
or L(γ) = γ + 1.

If L(γ) = γ, then M(γ) = 0, so that M has more than two
roots, and this contradicts Theorem V.1 (ii). If L(γ) = γ + 1,
then M(γ) = 1, and so 1 ∈ V(M). But then 0, 1 ∈ V(M)
and M(0) = M(1), so that M is not injective on V(M),
again contradicting Theorem V.1 (ii). Thus, L cannot be a
permutation polynomial.

In light of Theorem V.1, understanding how to construct
2-to-1 mappings would be of some utility. We therefore take
a brief interlude from considering the role of isotopic shifts
in the theory of APN functions to develop some theory on
2-to-1, or more generally q-to-1, functions.

A. On q-to-1 Fq-linear maps

For this subsection, q is an arbitrary prime power. The
number of Fq-linear q-to-1 maps over Fqn (or equivalently

the number of matrices with entries in Fq of rank n − 1) is
given by the following Proposition (see for instance [17]).

Proposition V.3. The number of Fq-linear q-to-1 maps over
Fqn is given by

qn − 1

q − 1

n−2∏
i=0

(qn − qi).

Theorem V.4. A Fq-linear map L ∈ Fqn [x] is q-to-1 if and
only if L(bx) = M(xq − x) for some Fq-linear permutation
M ∈ Fqn [x] and some b ∈ F?qn .

Proof. It is clear that L(bx) = M(xq − x) is a (linear) q-to-1
map whenever M is a permutation. Now suppose L is a q-to-1
Fq-linear map over Fqn . Then ker(L) = 〈b〉 for some b ∈ F?qn .
Set L1(x) = L(bx), so that ker(L1) = Fq . Then xq−x divides
L1(x), and consequently, L1(x) = M(xq − x) for some Fq-
linear map over Fqn (see for example [18, Exercise 3.68]).
Suppose that M is not a permutation. Then, since L1 is q-to-
1 we have ker(M) = 〈z〉 for some z /∈ V(xq − x) and Fqn =
V(xq − x)⊕ 〈z〉. Consequently, M is injective on V(xq − x).
Set S = V(M(xq−x)) = M(V(xq−x)) and let w ∈ F?qn \S.
Now, consider M1 defined by M1(y + cz) = M(y) + cw for
all y ∈ V(xq − x) and c ∈ Fq . It is easy to check that M1 is
a linear permutation over Fqn , and M(xq −x) = M1(xq −x)
for all x ∈ Fqn .

We have the following corollary, showing it is also not
particularly difficult to construct 2-to-1 linear maps satisfying
Theorem V.1(i).

Corollary V.5. Let n be a positive integer, L be a linear
permutation over F2n and z ∈ F?2n . Set M(zx) = L(x2 + x).
The following statements hold.

(i) M is 2-to-1 with ker(M) = {0, z}.
(ii) For y ∈ F2n we have L(y) 6∈ V(M) if and only if

x2 + x + y is irreducible over F2n . In particular, z 6∈
V(M) if and only if x2 +x+ y is irreducible over F2n ,
where y ∈ F?2n is the unique pre-image of z under L.

Proof. Part (i) is immediate from Theorem V.4. For (ii),
L(y) ∈ V(M) if and only if there exists u ∈ F2n satisfying
L(u2 + u) = L(y), but this is equivalent to u being a root of
x2 + x+ y.

VI. ISOTOPIC SHIFTS OF GOLD FUNCTIONS

For the remainder of this paper we fix q = 2n. The DO
monomials in characteristic 2 which are APN are the so-called
Gold functions Gi(x) = x2i+1 over F2n with gcd(i, n) = 1.
First studied by Gold [16] in context of sequence design and
rediscovered in 1993 by Nyberg in [20], Gold functions have
played an important role in the study of APN functions, and,
in particular, in understanding CCZ-equivalence [8]. For Gi
and any L ∈ Fq[x], we use Gi,L to denote the isotopic shift
of Gi by L; that is

Gi,L(x) = x2i

L(x) + xL2i

(x). (6)

It is an easy observation that Gi and Gn−i are linearly
equivalent. In fact, this is a necessary and sufficient condition
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for Gold functions to be linear equivalent, and if they are not
linear equivalent, then they are not CCZ-equivalent [21]. This
linear equivalence extends to isotopic shifts as Gi,L(x)2n−i

=
Gn−i,L(x).

A. General restrictions on L

We expand on (6) further. Let the linear polynomial L be
represented as L(x) =

∑n−1
j=0 bjx

2j

. Then expanding in (6)
we have

Gi,L(x) =

n−1∑
j=0

(
bjx

2i+2j

+ b2
i

j x
2i+j+1

)
,

Gi,L(x2n−1

)2 =

n−1∑
j=0

(
b2jx

2i+2j

+ b2
i+1

j x2i+j+1
)

=x2i

M(x) + xM2i

(x) = Gi,M (x),

where M(x) =
∑n−1
j=0 b

2
jx

2j

. We also have, with ζ primitive
and N(x) =

∑n−1
j=0 bjζ

2j−1x2j

,

ζ−(2i+1)Gi,L(ζx)

= ζ−(2i+1)
n−1∑
j=0

(
bjζ

2i+2j

x2i+2j

+ b2
i

j ζ
2i+j+1x2i+1+1

)
=

n−1∑
j=0

(
bjζ

2j−1x2i+2j

+ (bjζ
2j−1)2i

x2i+1+1
)

= x2i

N(x) + xN2i

(x) = Gi,N (x).

From the above two equivalences we can perform a restric-
tion over one non-zero coefficient of the linear function L(x).
Fixing an integer j such that 0 < j ≤ n − 1, then we can
restrict the search of all possible linear functions L(x) with
bj 6= 0 to those with bj = ζk with 0 ≤ k < 2j − 1 and k
either 0 or odd. We summarise with the following statement.

Proposition VI.1. Let q = 2n, Fq = 〈ζ〉 and Gi = x2i+1 be
APN over Fq . Suppose Gi,L as (6) is constructed with L(x) =∑n−1
j=0 bjx

2j

. Then Gi,L is linear equivalent to Gi,M , where
M(x) =

∑n−1
j=0 (bjζ

k(2j−1))2t

x2j

for any k, t integers.

When L is a linear function, the linear operator of Gi,L has
the following form:

∆a(x)=∆Gi,L(x, a)=xL(a)2i

+aL(x)2i

+x2i

L(a)+a2i

L(x). (7)

Our next result is related to Theorem V.1 and shows that in
certain situations we may obtain, for Gold functions, slightly
stronger restrictions on L than those outlined in Theorem V.1.
We say L is a q-polynomial over Fqn if L(x) =

∑
bix

qi . Any
q-polynomial over Fqn is a linear transformation of Fqn over
Fq .

Theorem VI.2. Let q = 2m, with m > 1, and suppose Gi =
x2i+1 is APN over Fqn . If Gi,L as in (6) is APN over Fqn with
L a q-polynomial, then L is a complete mapping over Fqn .

Proof. Since Gi,L(x) is a quadratic APN function, we have
ker(∆a(ax)) = {0, 1}, for a ∈ F?qn . For x ∈ F?q , we have
L(ax) = xL(a). So, if x ∈ F?q \ {0, 1}, from (7) we have

0 6= ∆a(ax)

= axL(a)2i

+ ax2i

L(a)2i

+ (ax)2i

L(a) + a2i

xL(a)

= axL(a)
(
L(a)2i−1 +x2i−1L(a)2i−1 +a2i−1x2i−1 +a2i−1

)
= axL(a)

(
L(a)2i−1 + a2i−1

)
(x2i−1 + 1).

As Gi is APN over Fqn , we know gcd(2i − 1, qn − 1) = 1,
so that z 7→ z2i−1 is a bijection. Consequently, x2i−1 = 1
if and only if x = 1, which we have excluded. Hence, for
all a ∈ F?qn , we must have L(a) 6= 0 and L(a)2i−1 6= a2i−1.
This latter condition is equivalent to L(a) 6= a for all a ∈ F?qn ,
again because z 7→ z2i−1 is a bijection. Since L is a linear
transformation, we conclude L is a complete mapping over
Fqn .

We now prove a theorem which provides a construction of
quadratic APN functions containing new examples of such
functions.

Theorem VI.3. Let n = km, F?2n = 〈ζ〉 and d = gcd(q −
1, q

k−1
q−1 ), where q = 2m. Let d′ be the positive integer having

the same prime factors as d, each being raised at the same
power as in qk−1

q−1 , hence such that gcd(q − 1, qk−1
(q−1)d′ ) = 1.

Let U = 〈ζd′(q−1)〉 be the multiplicative subgroup of F?qk
of order

(
qk−1

(q−1)d′

)
and consider the set W = {yζj ; j =

0, . . . , d′ − 1, y ∈ U}. Let L ∈ Fqk [x] be a q-polynomial and
let Gi = x2i+1 be an APN Gold function over Fqk (i.e. such
that gcd(i, n) = 1). Then Gi,L as in (6) is APN over Fqk if
and only if the following conditions are satisfied:

(i) for any u ∈W , L(u) 6∈ {0, u};
(ii) if n is even then |{L(u)

u : u ∈W} ∩ F22 | ≤ 1;
(iii) for distinct u, v ∈W satisfying u2i

L(v)+vL(u)2i 6= 0,
we have

v2i

L(u) + uL(v)2i

u2iL(v) + vL(u)2i 6∈ F?q .

Proof. Any element x ∈ F?qk can be expressed in the form x =
ut with u ∈W and t ∈ F?q . Indeed, since F?qk = 〈ζ〉, we have
x = ζd

′z+j , for some integers z and j where 0 ≤ j ≤ d′ − 1.
For ease of notation, set l = qk−1

(q−1)d′ . Since gcd(q− 1, l) = 1,
for any such z, there exist integers r and s such that z =
r(q − 1) + sl. Hence we have

x = ζd
′z+j = ζd

′r(q−1)ζjζd
′sl = ut, (8)

where, denoting y = ζd
′r(q−1) ∈ U , we have u = yζj ∈ W

and t = ζd
′sl = ζs(

qk−1
q−1 ) ∈ F?q . Since |W×F?q | = |W | · |F?q | =

(d′|U |) · (q− 1) = d′ · qk−1
d′(q−1) · (q− 1) = qk − 1 = |F?qk |, two

distinct elements in F?qk cannot have the same representation,
u and t are unique. Using the representation (8) for x, we have
L(x) = tL(u).

Let a ∈ F?qk and ∆a(x) from (7). Then Gi,L is APN over
Fqk if and only if ker(∆a) = {0, a} for all a ∈ F?qk . Now
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apply the representation (8) for both x = ut and a = vs with
u, v ∈W and t, s ∈ Fq . Then

∆a(x) = u2i

t2
i

sL(v) + v2i

s2i

tL(u)

+ uts2i

L(v)2i

+ vst2
i

L(u)2i

= ts
(
t2

i−1
(
u2i

L(v) + vL(u)2i
)

+ s2i−1
(
v2i

L(u) + uL(v)2i
) )
.

So in this representation, Gi,L is APN over Fqk if and only if
the only solutions to ∆vs(ut) = 0 are t = 0, or u = v and
t = s.

Assume Gi,L is APN over Fqk . Then L is a complete
mapping on Fqk by Theorem VI.2; hence Condition (i) is
satisfied. For showing Condition (ii), suppose that n is even
and |{L(u)

u : u ∈ W} ∩ F22 | > 1. Since L is a complete
linear mapping, the elements of {L(u)

u : u ∈ W} ∩ F22

cannot be in F?2 and since |{L(u)
u : u ∈W} ∩ F22 | > 1 these

elements are then α and α2, where α is a primitive element
of F?22 . There exist then two (distinct) elements u, v ∈ W
such that L(u) = αu and L(v) = α2v. In this case we
have u2i

L(v) + vL(u)2i

= u2i

α2v + vα2u2i

= 0, because
i being odd (n being even), we have α2i

= α2, and similarly
v2i

L(u)+uL(v)2i

= 0. Hence ∆vs(ut) = 0 for any s, t ∈ Fq .
Therefore Condition (ii) must hold. To establish Condition
(iii), assume u2i

L(v) + vL(u)2i 6= 0. As ker(∆vs) = {0, vs},
we know that for all t ∈ F?q , we must have

t2
i−1 + s2i−1

(
v2i

L(u) + uL(v)2i

u2iL(v) + vL(u)2i

)
6= 0.

As Gi is APN over Fqk by hypothesis, we know gcd(2i −
1, q − 1) = 1, and so t2

i−1 ranges over all of F?q as t does.
Consequently, we must have

v2i

L(u) + uL(v)2i

u2iL(v) + vL(u)2i 6∈ F?q ,

which is Condition (iii).
Conversely, assume that Conditions (i), (ii) and (iii) hold.

Since L(ut) = tL(u), we have that L is a complete mapping
by (i). Assume that ∆vs(ut) = 0. We must show t = 0, or
u = v and t = s. Assume that t 6= 0, we have:

t2
i−1
(
u2i

L(v) + vL(u)2i
)

+s2i−1
(
v2i

L(u) + uL(v)2i
)

= 0.

(9)
Firstly, suppose u = v. Then (9) becomes(
t2

i−1 + s2i−1
)(

u2i

L(u) + uL(u)2i
)

= 0. Thus

t2
i−1 = s2i−1 or u2i

L(u) = uL(u)2i

. By (i), L(u) 6= 0,
so the latter reduces further to L(u)2i−1 = u2i−1. But this
is equivalent to L(u) = u, which cannot hold by (i). Thus
t2

i−1 = s2i−1, from which we deduce t = s, as required.
It remains to show that ∆vs(ut) = 0 has no solutions when

t 6= 0 and u 6= v. Suppose x = ut is a solution such that
u2i

L(v)+vL(u)2i

= 0. Then (9) forces v2i

L(u)+uL(v)2i

=
0 also. So we have

L(v)

v
+
L(u)2i

u2i = 0 and
L(u)

u
+
L(v)2i

v2i = 0.

Combining, we find

L(u)

u
=
L(u)22i

u22i ,

so L(u)
u ∈ F22i . If n is odd we have F22i ∩ F2n = F2, which

implies that L(u)
u is equal to 0 or 1. This is not possible due

to Condition (i). On the other hand, if n is even then F22i ∩
F2n = F22 . Hence L(u)

u = α, primitive element in F?22 , and
L(v)
v =

(L(u)
u

)2i

= α2i

= α2. This leads to a contradiction for
Condition (ii). Hence, if x = ut is a solution, then u2i

L(v) +
vL(u)2i 6= 0. Now dividing by u2i

L(v)+vL(u)2i

in (9) yields

t2
i−1 + s2i−1

(
v2i

L(u) + uL(v)2i

u2iL(v) + vL(u)2i

)
= 0.

However, there are no solutions to this equation by (iii). This
proves Gi,L is APN over Fqk .

The case where n = 3m with m ≥ 3 will be of particular
interest. As we shall discuss later in the computational results
section, applying Theorem VI.3 in this case leads to a new
APN function CCZ-inequivalent to known APN families.

Following the same steps of Theorem VI.3 we can extend
the previous result as follows.

Corollary VI.4. Let n = km and d = gcd(q−1, q
k−1
q−1 ), where

q = 2m. Let d′, U and W be defined as in Theorem VI.3.
Let L ∈ Fqk [x] be a q-polynomial and let Gi = x2i+1 be a
Gold function over Fqk (even not APN). Then Gi,L as in (6)
is differentially 2j-uniform over Fqk , where j = gcd(i,m), if
and only if the following conditions are satisfied:

(i) for any u ∈W , L(u)2i−1 /∈ {0, u2i−1};
(ii) for distinct u, v ∈W satisfying u2i

L(v)+vL(u)2i 6= 0,
we have

v2i

L(u) + uL(v)2i

u2iL(v) + vL(u)2i 6∈ U ′,

where U ′ = 〈ζ̄
q−1
d̄ 〉, ζ̄ = ζ

qk−1

q−1 and d̄= gcd(2i−1, q−1).

Proof. Let a ∈ F?qk and ∆a(x) as (7). If we consider x ∈ Fq ,
then we have

∆a(ax) = axL(a)
(
L(a)2i−1 + a2i−1

)
(x2i−1 + 1),

implying that aF2j ⊆ ker(∆a). Then Gi,L is differentially
2j-uniform over Fqk if and only if ker(∆a) = aF2j for all
a ∈ F?qk . Moreover, if Gi,L is differentially 2j-uniform then
we have that Condition (i) holds.

Now, consider any x ∈ Fqk , and apply the representation
(8) for both x = ut and a = vs with u, v ∈W and t, s ∈ Fq .
Then

∆a(x)=u2i

t2
i

sL(v)+v2i

s2i

tL(u)+ uts2i

L(v)2i

+vst2
i

L(u)2i

= ts
(
t2

i−1
(
u2i

L(v) + vL(u)2i
)

+ s2i−1
(
v2i

L(u) + uL(v)2i
) )
.

So, Gi,L is differentially 2j-uniform if and only if the only
solutions to ∆vs(ut) = 0 are t = 0, or u = v and t ∈ sF?2j . For
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establishing Condition (ii), assume u2i

L(v) + vL(u)2i 6= 0.
As ker(∆vs) = vsF2j , we know that for all t ∈ F?q , we must
have

t2
i−1 + s2i−1

(
v2i

L(u) + uL(v)2i

u2iL(v) + vL(u)2i

)
6= 0.

Since U ′ = {t2i−1 : t ∈ F?q}, we must have

v2i

L(u) + uL(v)2i

u2iL(v) + vL(u)2i 6∈ U ′,

which is Condition (ii).
Conversely, assume that Conditions (i), (ii) hold. Assume

that ∆vs(ut) = 0. We must show t = 0, or u = v and t ∈
sF?2j . Assume that t 6= 0, we have:

t2
i−1
(
u2i

L(v)+vL(u)2i
)
+s2i−1

(
v2i

L(u)+uL(v)2i
)

=0. (10)

Supposing u = v, (10) becomes(
t2

i−1 + s2i−1
)(

u2i

L(u) + uL(u)2i
)

= 0.

Thus t2
i−1 = s2i−1 or u2i

L(u) = uL(u)2i

. By (i), u2i

L(u) 6=
uL(u)2i

, so t2
i−1 = s2i−1, from which we deduce t ∈ sF?2j ,

as required.
Now, we need to show that ∆vs(ut) = 0 has no so-

lutions when t 6= 0 and u 6= v. Suppose x = ut is a
solution such that u2i

L(v) + vL(u)2i

= 0. Then (10) implyes
v2i

L(u) + uL(v)2i

= 0 also. So, as in Theorem VI.3 we
obtain L(u)

u ∈ F22i which contradicts Condition (i). Thus, if
x = ut is a solution, u2i

L(v) + vL(u)2i 6= 0. Dividing by
u2i

L(v) + vL(u)2i

in (10) we obtain

t2
i−1 + s2i−1

(
v2i

L(u) + uL(v)2i

u2iL(v) + vL(u)2i

)
= 0.

However, there are no solutions to this equation by (ii).

We conclude this section with the following result for linear
function L having coefficient in F2.

Proposition VI.5. Set q = 2n with n an even integer. Suppose
Gi = x2i+1 is APN over Fq . Then for any L ∈ F2[x] linear
function, Gi,L defined as in (6) is not APN.

Proof. Let L(x) =
∑
j∈J x

2j

, for some J ⊆ {0, ..., n − 1}.
Then

Gi,L(x) =
∑
j∈J

[x2j+i+1 + x2j+2i

].

Let ∆1(x) from (7), so that ∆1(x) =
∑
j∈J [(x2j+i

+ x) +

(x2j

+ x2i

)]. It is easy to check that F4 ⊂ ker(∆1). Indeed,
let F4 = {0, 1, α, α+ 1}, we have that 0, 1 ∈ ker(∆1). Since
Gi is APN then i is odd, α2i

= α+ 1 and

(α2j+i

+α)+(α2j

+α2i

) = ((α+1)2j

+α)+(α2j

+α+1) = 0.

Thus, ∆1(α) = 0, which implies F4 ⊂ ker(∆1).

B. Restricting L to having 1 term

First we consider the case when the linear map is just a
monomial, L(x) = ux2j

. It follows from (3) that we need
only consider j where j ≤ n/2.

Lemma VI.6. Let Gi = x2i+1 be APN over Fq , q = 2n,
L(x) = ux2j ∈ Fq[x] and Gi,L as in (6). The following
statements hold.

(i) If j = 0 and u ∈ F2n \ F2, then Gi,L is linearly
equivalent to Gi.

(ii) If n is odd, j = i, and u ∈ F?2n , then Gi,L is
linearly equivalent to G2i and (provided n > 3) CCZ-
inequivalent to Gi.

(iii) If n = 2j, then Gi,L is linearly equivalent to G|j−i|
whenever ux2i

+ u2i

x2j+i

is a permutation. In such
cases, Gi,L is CCZ-equivalent to Gi if and only if j = 2i
or 2i− j = n.

(iv) If gcd(j, n) = 1, then Gi,L is not APN over Fq . Except
for the case when n odd and j = i.

(v) If gcd(j + i, |j − i|, n) > 1, then Gi,L is not APN over
Fq . In particular, if n is even and j is odd Gi,L is not
APN.

Proof. Firstly, set L(x) = ux with u 6∈ F2. Then Gi,L =

(u + u2i

)Gi, which is clearly linearly equivalent to Gi. Now
let L(x) = ux2j

, u ∈ F?2n . Then

Gi,L(x) = ux2i+2j

+ u2i

x2i+j+1. (11)

If i = j, then (11) becomes Gi,L(x) = ux2i+1

+ u2iG2i(x),
which is APN and equivalent to G2i provided gcd(2i, n) = 1;
i.e. provided n is odd. It was shown by Budaghyan, Carlet
and Leander [5] that these two functions are CCZ-inequivalent
provided n > 3. This proves (ii). For (iii), it is easily checked
that

Gi,L(x) = (ux2i

+ u2i

x2j+i

) ◦ G|j−i|(x).

The statement in (iii) on equivalence is clear.
Now, let gcd(j, n) = 1. For a ∈ F?q , set ∆a(x) as in (7).

Then

∆a(ax) = ua2j+2i

(x2j−i

+ x)2i

+ u2i

a2j+i+1(x2j+i

+ x).

Now, Gi,L is APN if and only if ker(∆a(ax)) = {0, 1} for all
a ∈ F?q . Let L1(x) = x2j−i

+ x and L2(x) = x2j+i

+ x, so
that

∆a(ax) = ua2j+2i

L1(x)2i

+ u2i

a2j+i+1L2(x).

If n is even, j and i are odd numbers and the obtained function
cannot be APN since F4 ⊆ ker(L1)∩ker(L2), and for all x ∈
ker(L1)∩ker(L2) we have that x is a solution of ∆a(ax) = 0.
If n is odd, from (ii) we have that for j = i, Gi,L is APN.
Then, let us consider j 6= i. In this case, ker(L1) ( Fq and
ker(L2) ( Fq since 0 < |j−i| < n and 0 < j+i < n, so there
exists some element x̄ ∈ F?q \ {1} (note that F2 ⊆ ker(L1) ∩
ker(L2)) such that L1(x̄)L2(x̄) 6= 0. Now ∆a(ax) = 0 is
equivalent to

L1(x)2i

+ u2i−1a(2j−1)(2i−1)L2(x) = 0.
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Since a 7→ a(2j−1)(2i−1) is a permutation of Fq (both i and j
are coprime with n), there exists a such that a(2j−1)(2i−1) =
L1(x̄)2i

u2i−1L2(x̄)
, implying x̄ ∈ ker(∆a(ax)). So Gi,L is not APN.

Then, statement (iv) is proved.
Let us consider statement (v). From the proof of (iv), we

have that for all x ∈ ker(L1) ∩ ker(L2), x is a solution of
∆a(ax) = 0. Then, since gcd(j + i, |j − i|, n) = d > 1, for
some integer d, we have F2d ⊆ ker(L1)∩ker(L2) and so Gi,L
cannot be APN.

C. Restricting L to having 2 terms

Consider now L as a linear binomial.

Lemma VI.7. Let m be a positive integer, q = 2n with n =
2m, and

L(x) = ux2m

+ vx, (12)

with u, v ∈ F?q and v 6= 1. Set z = v + v2i

. If Gi,L is APN,
then Gi,M is an APN function EA-equivalent to Gi,L for the
following choices of linear M ∈ Fq[x]:

(i) M(x) = uζ2m−1x2m

+ vx;
(ii) M(x) = ux2m

+ wx, where w + w2i

= z2m

;
(iii) M(x) = u2x2m

+ wx where w + w2i

= z2.

Proof. Given linear L as in (12), equation (6) is of the form

Gi,L(x) = u2i

x2m+i+1 + ux2m+2i

+ zx2i+1. (13)

We want to prove that in each case the obtained function is
EA-equivalent to the original map.

Case (i). If instead of u we consider uζ2m−1 in (13), then we
obtain
Gi,M (x) = u2i

ζ2i(2m−1)x2m+i+1 + uζ2m−1x2m+2i

+

zx2i+1,
which is linear equivalent to Gi,L as Gi,M (ζ−1x) =

ζ−2i−1Gi,L(x).
Case (ii). For M as specified, we have Gi,M is linear equivalent

to Gi,L since
Gi,M (x) = u2i

x2m+i+1 + ux2m+2i

+ z2m

x2i+1,
Gi,M (u−2m

x2m

)2m

= u−2i−1Gi,L(x).

Case (iii). In this last case we obtain Gi,M (x2)22m−1

= Gi,L(x)
since
Gi,M (x) = u2i+1

x2m+i+1 + u2x2m+2i

+ z2x2i+1.

Lemma VI.8. Let m be an even positive integer and q = 22m.
Suppose Gi is APN over Fq . Set L(x) = ux2m

+vx with v ∈ Fq
satisfying v+ v2i

= 1 and u = w2m−1 for w ∈ F?q . Then Gi,L
is an APN function over Fq EA-equivalent to Gm−i.

Proof. In this case the isotopic shift of Gi by L is given by

Gi,L(x) =u2i

x2m+i+1 + ux2m+2i

+ x2i+1

=w2m+i−2i

x2m+i+1 + w2m−1x2m+2i

+ x2i+1.

Now note w2i+1Gi,L(xw−1) = x2m+i+1+x2m+2i

+x2i+1, and
this latter function was shown to be EA-equivalent to x2m−i+1

in [10].

We end this subsection by deriving a necessary condition
for specific Gi,L in certain restricted settings.

Lemma VI.9. Let m be a positive integer, n = 2m, and
q = 2n. Let u, v ∈ F?q . If Gi,L is APN over Fq with L(x) =

ux2m

+ vx, then u2i

x2i

+ ux+ v2i

+ v = 0 has no solution
x such that x2m+1 = 1.

Proof. From the given L we obtain in (6) that

Gi,L(x) = u2i

x2m+i+1 + ux2m+2i

+ (v2i

+ v)x2i+1.

If Gi,L is APN, then

a−(2i+1)∆a(ax) = (ua2m−1)2i

(x2m+i

+ x)

+ (ua2m−1)(x2m

+ x2i

) + (v2i

+ v)(x2i

+ x) 6= 0

for any a 6= 0 and x 6= 0, 1. Assume x ∈ F2m . Then we have

a−(2i+1)∆a(ax) =(
u2i

a(2m−1)2i

+ ua2m−1 + v2i

+ v
)

(x2i

+ x) 6= 0

Let y = a2m−1, then u2i

y2i

+uy+v2i

+v 6= 0 for all y ∈ Fq
such that y2m+1 = 1.

In particular when we consider the function G1 = x3 we
obtain the following.

Lemma VI.10. Let m be an even positive integer, n = 2m,
and q = 2n. Set u = ζi, with 0 ≤ i < 2m−1. If v ∈ Fq is such
that v(v+1) = ζj(2

m+1) for some 0 ≤ j < 2m−1 and G1,L is
APN over Fq with L(x) = ux2m

+ vx, then ζ(2m+1)(2j−i) +
ζi(2

m+1) 6= 1. Moreover, if there exists a positive integer l
such that ζi+l(2

m−1) + ζ2mi+l(1−2m) = 1, then i 6= j.

Proof. From the given L we obtain in (6) that

G1,L(x) = ζ2ix2m+1+1 + ζix2m+2 + ζj(2
m+1)x3.

If G1,L is APN, then

a−3∆a(ax) = (ζia2m−1)2(x2m+1

+ x)

+ (ζia2m−1)(x2m

+ x2) + ζj(2
m+1)(x2 + x) 6= 0

for any a 6= 0 and x 6= 0, 1. Assume x ∈ F2m . Then we have

a−3∆a(ax)=((ζia2m−1)2+ζia2m−1+ζj(2
m+1))(x2+x) 6= 0.

Let a = ζl for a positive integer l. Then

a−3∆a(ax) =

(ζ2(i+l(2m−1)) + ζi+l(2
m−1) + ζj(2

m+1))(x2 + x) 6= 0.
(14)

Suppose that ζ(2m+1)(2j−i) + ζi(2
m+1) + 1 = 0. Multiplying

this equality by ζi(2
m+1) and then taking its 2n−1th power we

get ζi(2
m+1) + ζ2n−1i(2m+1) + ζj(2

m+1) = 0. For l = 2n−1i,
we have i + l(2m − 1) = i2n−1(2m + 1), and so we have
a choice of a for which a−2∆a(ax) = 0, contradicting the
hypothesis.
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Assume now that there exists an integer l such that
ζi+l(2

m−1) + ζ2mi+l(1−2m) = 1. Then using (14) we find

0 6=ζ2(i+l(2m−1)) + ζ(i+l(2m−1)) + ζj(2
m+1)

= ζi+l(2
m−1)(ζi+l(2

m−1) + 1) + ζj(2
m+1)

= ζi+l(2
m−1)ζ2mi+l(1−2m) + ζj(2

m+1)

= ζi(2
m+1) + ζj(2

m+1),

implying i 6= j.

D. Restricting L to having 3 terms

From the computational analysis performed for the Gold
function G1(x) = x3, see Section VII below, we observed
that, when L has 3 terms and n = 3m, the linear polynomial

L(x) = ax22m

+ bx2m

+ cx (15)

is a good generator of APN functions via shifts of G1. In this
case, we have

G1,L(x) =a2x22m+1+1 + b2x2m+1+1

+ ax22m+2 + bx2m+2 + (c2 + c)x3.
(16)

As proved in Proposition VI.1, the polynomial L(x) generates
an isotopic shift of Gi equivalent to the one generated by

M(x)=(aζ(22m−1)j)2k

x22m

+(bζ(2m−1)j)2k

x2m

+c2
k

x. (17)

Consideration of this case led to Theorem VI.3. The case with
q = 2m, n = 3m, in Theorem VI.3 is exactly the situation that
we observed in our computational results. As we shall note in
Section VII, this specific case provides a new APN function
when n = 9 which is CCZ-inequivalent to any known APN
function.

VII. COMPUTATIONAL RESULTS

We studied the possible linear functions L(x) for which
Gi,L, as in (6), is an APN function over F2n . The obtained
APN functions have been compared, using CCZ-equivalence,
to those presented in tables of [15], where all known (at
that time) APN functions for n ∈ {6, 7, 8, 9} are listed.
For purposes of comparison, we will refer to the numbering
given in those lists. Later, in [22], many more quadratic APN
functions were constructed for the cases n = 7, 8. However,
in our computational results, we did not obtain any of the
functions of [22] (which are not already in the lists of [15]).

Note that, since for any linear L isotopic shifts by L(x)
and L(x) + x give the same function FL, whenever we have
L(x) =

∑n−1
j=0 bjx

2j

with b0 = 1 we can consider L′(x) =∑n−1
j=1 bjx

2j

instead.

A. Data for Gi,L where L has 1 or 2 terms

When L has just one term, all possible cases with 3 ≤
n ≤ 12 considering all APN Gold functions Gi = x2i+1, with
gcd(i, n) = 1, have been analysed and the only APN functions
arising are those presented in Lemma VI.6.

When L has exactly two terms, we determined those iso-
topic shifts of Gi by L that are APN over F2n for 6 ≤ n ≤ 11.

Apart from the n = 6 case, we obtained APN functions only
for n = 2m and L(x) = ux2m

+ vx. For n ∈ {12, 14, 16}
we only considered L of the form ux2m

+ vx. In particular,
we found that if n ∈ {8, 12, 16}, then Gi,L from (6) is either
equivalent to Gi or to Gm−i. In the other cases, n ∈ {10, 14},
the obtained APN maps are all equivalent to the original Gold
function Gi.

When n = 6, with F?26 = 〈ζ〉, considering GL,1 more APN
cases occur:
• L(x) = ux8 + vx = ux2m

+ vx can give functions
equivalent to G1 or to function number 2.1 in [15, Table 5]
(x3 + x10 + ζx24).

• L(x) = ux16 +vx, where u is not a cube and v+v2 = 1,
gives a function equivalent to number 1.2 in [15, Table 5]
(x3 + ζ11x6 + ζx9).

• L(x) = ux16 + vx4, where u is not a cube and v = u26,
gives a function equivalent to number 1.2 in [15, Table 5].

B. Data for Gi,L where L has 3 terms and new APN functions

When the function L has 3 terms, none of them equal to x,
we analysed Gi,L for the cases n ∈ {6, 7, 8, 9}. For n = 7 no
valid trinomial was found. For the cases n = 6, 8, 9, all the
trinomials found are F2m -polynomials and thus instances of
Theorem VI.3. In particular we obtain:
• n = 6 (k = 3, m = 2): from G1 we can construct APN

functions CCZ-equivalent to G1 and to number 1.2 in [15,
Table 5](x3 + ζ−1 Tr(ζ3x9)).

• n = 8 (k = 4, m = 2): from G1 we can construct
APN functions CCZ-equivalent to number 1.2 in [15,
Table 9](x3 + Tr(x9)); from G3 we can construct APN
functions CCZ-equivalent to number 1.11 in [15, Table 9]
(x9 + Tr(x3)), map not in any known family of APN
functions until now.

• n = 9 (k = 3, m = 3): from G1 we can construct
APN functions not CCZ-equivalent to any function from
the known APN families (all CCZ-equivalent to N. 8 in
Table I).

Consequentially we extended the computations performed to
the case of shifts of the general Gold function Gi = x2i+1.
For 6 ≤ n ≤ 8 and Gi not equivalent to G1 no linear trinomial
L was found that can construct APN function.

For n = 9, G1,L leads us to an inequivalence result. Hence,
for n = 3m, we analysed the possible APN functions Gi,L
as in (6) constructed using the linear function L(x) of the
form ax22m

+ bx2m

+ cx. Considering Proposition VI.1 and
setting to d = c2

i

+ c, we obtained, up to EA-equivalence, the
following results:
• m = 2: The obtained G1,L’s APN cases are equivalent to
G1 or to x3 + ζ−1 Tr(ζ3x9).

• m = 3: We obtain for G1,L the values {[ζ424, ζ, ζ34],
[ζ263, ζ, ζ272], [ζ508, ζ, ζ132]}. Using iteratively Proposi-
tion VI.1 it is possible to prove that the three cases are
CCZ-equivalent to each other and, as mentioned above,
G1,L is not equivalent to any APN function from the
known APN families. For Gi,L with i 6= 1 no APN
map can be constructed.
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• m = 4: G1,L is APN for [a, b, d] ∈
{

[ζ1962, ζ3, ζ1365],
[ζ290, ζ, ζ2184], [ζ904, ζ5, ζ546]

}
. For these cases, it is

possible to prove that they are equivalent to G1. In partic-
ular, for any of the shift G1,L it is possible to find L1 and
L2 F24 -polynomials such that L1(G1,L(x)) = G1(L2(x)).
Using the same L’s, identical results are obtained for Gi,L
with i = 5.

With the restriction on the subfield F2m no choice was
found for m = 5 but for m = 6 we obtain that G1,L is
APN for [a, b, d] ∈ {[ζ37449, 1, ζ112347], [ζ149796, 1, ζ187245],
[ζ74898, 1, ζ224694]}. The same results, using the identical L’s,
can be obtained also for Gi,L for i = 5, 7.

Remark VII.1. As shown above, the conditions of The-
orem VI.3 are satisfied for many functions in dimensions
n = 6, 8, 9, 12, 18. In particular with k = m = 3 we obtain
a map G1,L not CCZ-equivalent to any known map so far. In
addition for k = 4 and m = 2 we obtain a map G3,L equivalent
to x9 +Tr(x3), an APN map known since 2006 [3] which has
not been part of any known family of APN functions up to
now. Both functions have classical Walsh spectrum (see [15]
for the definition). Computations for larger n are complicated
and we leave this as an open problem indicated in a conjecture
below.

Conjecture VII.2. The conditions of Theorem VI.3 are satis-
fied by infinitely many APN functions. That is, the family of
APN functions of Theorem VI.3 is infinite.

In Table I we list, up to CCZ-equivalence, all known
quadratic APN maps defined over F29 (with references to
families to which they belong). Note that we also have families
of non-quadratic power APN functions defined over F29 but,
as proven in [21], if a quadratic APN function is CCZ-
equivalent to a power function then it is EA-equivalent to a
Gold functions, and, therefore, we do not need to compare
the constructed functions with these power functions. In the
Table we also list Γ-ranks of the functions (Γ-rank is a CCZ-
invariant paramenter, see [15] for more details). To this list
we added the new function found with Theorem VI.3.

Table I
CCZ-INEQUIVALENT QUADRATIC APN POLYNOMIALS OVER F29

N. Functions Γ-rank Families in [15, Table 11]

1 x3 38470 Gold 1.1

2 x5 41494 Gold 2.1

3 x17 38470 Gold 3.1

4 Tr9
1(x9) + x3 47890 [6] 1.2

5 Tr9
3(x18 + x9) + x3 48428 [7] 1.3

6 Tr9
3(x36 + x18) + x3 48460 [7] 1.4

7 x3 + x10 + ζ438x136 48608 – 8.1

8 ζ337x129 + ζ424x66+ 48596 Theorem VI.3 –

ζ2x17 + ζx10 + ζ34x3

C. The cases 3 ≤ n ≤ 5

For these cases, all APN functions are classified [2] and they
are all CCZ-equivalent to the Gold functions and to the inverse

function. So, from Lemma VI.6 we have that all quadratic
APN functions can be obtained from the isotopic shifts of G1.

D. The case n = 6

For n = 6 we checked G1,L with linear L satisfying
Theorem V.1 and obtained, for every existing quadratic APN
function a CCZ-equivalent APN function G1,L. Moreover, all
these quadratic APNs can be derived both by L permutation
and a 2-to-1 map. Similar results are obtained when we
consider isotopic shifts of the APN function x3+ζ−1 Tr(ζ3x9)
(see [4, Tables 2,3]).

Note that, in general, the number of all the DO-polynomials
over F2n is q(

n
2), where q = 2n, and the number of all the

possible shifts of a fixed function F are qn. So, also for small
values of n the number of the linear shifts that we can obtain
from one fixed function is much smaller than the number
of the DO-polynomials. Moreover, for isotopic shifts we are
restricted to only shifts by linear permutation or 2-to-1 maps
which further constrains the search area. Hence, obtaining all
possible quadratic APN functions for n = 6 as an isotopic
shift of a single function, indicates that the isotopic shift is a
powerful method for constructing APN functions.

E. Additional data for isotopic shifts of x3 + Tr(x9)

In this case, the isotopic shift of F by a linear function L
is of the form

FL(x) = xL(x)(x+ L(x)) + Tr(xL(x)(x7 + L7(x))). (18)

We may immediately observe some trivial constructions.
For n even, set L(x) = ux with u a primitive cubed root of

unity in Fq , so that u2 + u+ 1 = 0. Then we have FL(x) =
x3 + Tr(x9).

Observation VII.3. For n a multiple of 3, the APN function
x3 can be obtained as an isotopic shift of x3 + Tr(x9) (set
L(x) = ux with u primitive 7-th root of unity, FL(x) =
u(u+ 1)x3).

Computational results, which are different from the two
cases above, can be summarized as follows. When the function
L has 1 term:

[n = 7] the obtained FL(x)’s are CCZ-equivalent to
number 2.2 in [15, Table 7] (x3 + x17 + x33 + x34);
[n = 8] the obtained FL(x)’s are CCZ-equivalent to F (x)
or to x9 + Tr(x3);
[n = 11] no valid monomial was found.

When the function L has 2 terms, different from x:
[n = 8] the obtained FL(x)’s are CCZ-equivalent to x9 +
Tr(x3).

F. Restricting the coefficients of L to F2

Proposition VI.5 shows that a linear function L with coef-
ficients in F2 cannot generate an APN function from isotopic
shift of Gold functions over extension fields of even degree.
This was investigated further computationally, over extension
fields of odd degree. We looked at Gi,L for valid Gi and



11

L ∈ F2[x]. Except the case n = 5, for 3 ≤ n ≤ 11 we
obtained APN shifts only for L(x) = x2i

which is the case
(ii) in Lemma VI.6. For n = 5 there are several polynomials
which take Gi to Gj for 1 ≤ i, j ≤ 2.

We also looked at isotopic shifts of x3 + Tr(x9) by linear
L ∈ F2[x]. For 7 ≤ n ≤ 12, the only linear functions for
which APN functions were obtained were for n = 7, with
L(x) = x8 or L(x) = x16. In both cases, the obtained APN
functions were CCZ-equivalent to x3+x17+x33+x34, number
2.2 in [15, Table 7].
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