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1. Introduction

The group of the translations of a vector space over a prime field is an elementary 
abelian regular subgroup of the corresponding symmetric group, and its normaliser, 
the affine general linear group, is a well-understood mathematical object. Regular sub-
groups of the affine group and their connections with algebraic structures, such as radical 
rings [16] and braces [19], have already been studied in several works [18,24,27,28]. More 
recently, elementary abelian regular groups have been used in cryptography to define 
new operations on the message space of a block cipher and to implement statistical and 
group theoretical attacks [13,15,20]. All these objects are well-known to be conjugated to 
the translation group, but this fact does not provide a simple description and representa-
tion of their elements which is useful to the cryptanalyst. For this reason, we address the 
problem of giving a convenient matrix representation of some elementary abelian regular 
subgroups of the affine groups and, in some cases, we classify them in terms of their 
conjugacy classes. The idea behind the cryptographic attack resulting from this work is 
the one of using alternative group structures on the message space of a block cipher to 
detect a bias in the distribution of the encrypted messages, as we will describe in the 
following section in more detail. Although the approach of using alternative operations 
in place of the XOR (the usual sum over a binary vector space) is not new [1,7], the idea 
of using groups isomorphic to the translation group was never considered.

1.1. Organisation of the paper

The paper is organised as follows. In Section 2 we introduce the notation and present 
the main focus of the work, also providing a description of the idea which is behind the 
use of translation groups in cryptography. In Section 3 we present our main result, i.e. 
Theorem 3.11, which proves a description of the translation groups useful in block ciphers 
cryptanalysis. Section 4 is mainly devoted to the case of binary fields, to combinatorial 
aspects of the topic and to a classification of conjugacy classes in low dimension. In 
Theorem 4.1 and Theorem 4.7 we provide a bound on the numbers of groups as in 
Theorem 3.11.

2. Preliminaries

Let us start by introducing the notation used throughout this work.
Let p be a prime number, n ≥ 2 a positive integer and V

def= (Fp)n be the n-dimensional 
vector space over Fp. The i-th component of the vector v ∈ V is denoted by vi ∈ Fp. The 
canonical basis of V is composed by the vectors {ei}ni=1, where e j

i = 1 if and only if i = j, 
otherwise it is 0. The vector subspace generated by vectors v1, . . . , vm ∈ V is denoted 
by Span{v1, . . . , vm}, where m ≥ 1. Let Sym(V ) be the group of all the permutations 
on V . In this paper we use postfix notation for function evaluation, i.e. if g ∈ Sym(V )
and v ∈ V we write vg to mean g(v). The identity of Sym(V ) is denoted by 1V and if 
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g1, . . . , gm ∈ Sym(V ), where m ≥ 1, we denote by 〈g1, . . . , gm〉 the group they generate. 
Let GL(V ) be the general linear group on V , i.e. the group of the linear permutations 
of V , and let us denote by T the group of all the translations on V , i.e. T def= {σa |
a ∈ V, σa : V → V, x �→ x + a}. Then, let the affine general linear group AGL(V ), the 
normaliser of T in the symmetric group, be represented as AGL(V ) = GL(V ) � T . Let 
(Fp)i×j denote the set of all matrices with entries over Fp with i rows and j columns. 
The identity matrix is denoted by 1n.

In this work we will also use some basic ring-theoretical notions that are summarised 
here for the convenience of the reader. Let R be a ring. An element r ∈ R is called 
nilpotent if rm = 0 for some m ≥ 1 and it is called unipotent if r − 1 is nilpotent, i.e. 
(r − 1)m = 0 for some m ≥ 1. Analogously, if H ≤ GL(V ) is a subgroup of unipotent 
permutations, then H is called unipotent. An element M ∈ GL(V ) is said upper unitri-
angular in a basis {v1, . . . , vn} on V if and only if viM − vi ∈ Span{vi+1, . . . , vn} for all 
1 ≤ i ≤ n. The map M is called upper unitriangular if it is upper triangular with respect 
to the canonical basis. The group of upper unitriangular linear maps is here denoted by 
U(V ).

The idea of the cryptographic application of this study is described in the following 
section.

2.1. Motivation and links to the theory of block ciphers

Let T < Sym(V ) be elementary abelian regular. As already mentioned, from a result 
due to Dixon [23] (see also [5] for an easy proof), there exists g ∈ Sym(G) such that 
T = T g def= g−1Tg. Since T inherits from T its regularity, and recalling that for each 
a ∈ V we denoted by σa ∈ T the translation sending 0 to a, it is possible to represent 
T = {τa | a ∈ V }, where the map τa is the unique in T sending 0 to a. Once this 
labelling is established, it is possible to define an additive law ◦ on V by letting for 
each a, b ∈ V a ◦ b 

def= aτb. It is easy to check that (V, ◦) is an abelian group whose 
corresponding translation group is T◦ = T . Moreover, letting the multiplication of a 
vector by a non-zero element s ∈ Fp be defined as

sv
def= v ◦ · · · ◦ v︸ ︷︷ ︸

s

,

it is easily checked that if s, t ∈ Fp and v, w ∈ V , then

s(v ◦ w) = sv ◦ sw,
(s + t)v = sv ◦ tv,

(st)v = s(tv),

and pv = 0 since T is elementary. This proves that (V, ◦) is a vector space over Fp, 
and since |V | < ∞, (V, ◦) and (V, +) are isomorphic vector spaces. We will denote by 



M. Calderini et al. / Journal of Algebra 569 (2021) 658–680 661
AGL(V, ◦) def= AGL(V )g the normaliser of T◦ = T and by GL(V, ◦) the stabiliser of {0}
in AGL(V, ◦). Since in this paper we will always deal with different operations at the 
same time, for sake of clarity we will sometimes denote T as T+, AGL(V ) by AGL(V, +)
and GL(V ) by GL(V, +).

The idea of using an application of the group-theoretical study of translation groups 
to block ciphers comes from the fact that the translation is the standard way the user 
introduces its key in the encryption process (in cryptographic terms, the key is XOR-
ed to the message). In order to explain this fact and to let the reader figure out the 
potential attacks coming from alternative translation groups, we will give here a little 
and self-contained introduction to block ciphers. A block cipher on the message space 
V is a set of many invertible function in Sym(V ), called encryption functions. Popular 
examples may be found e.g. in [11,22]. Each encryption function is of the type of

ρσk1ρσk2 . . . ρσkr
,

where ρ ∈ Sym(V ) and the parameter r ∈ N are fixed by the designer and made publicly 
available, and the sequence (k1, k2, . . . kr) ∈ V r represents the encryption key chosen by 
the user. Once the key (k1, k2, . . . kr) and the message m ∈ V to be sent are chosen by the 
sender, it delivers mρσk1ρσk2 . . . ρσkr

to the receiver. If the receiver is entitled to recover 
the message, i.e. if it knows the secret key, it can apply the inverse of the encryption 
function and obtain the original message m. The security of this process, i.e. the inability 
of a non-authorised party to recover the message, strongly relies on the way the function 
ρ is designed. Indeed, the process of designing ρ is one of the most important phases 
in the definition of a block cipher, and it is usually carried out in order to guarantee 
that the obtained block cipher is resistant against each known attack (e.g. linear [25]
and differential [8] cryptanalysis). Giving details and properties that the function ρ has 
to satisfy is out of the scope of this work, for whose purposes is enough to know that a 
minimum and crucial requirement is that ρ /∈ AGL(V ). As a matter of fact, the farthest 
it lies from the affine group, the better. This guarantees that the group 〈 ρ, T 〉, called the 
group of the round functions, is not the affine group AGL(V ). Such a group, introduced 
in [21] for the first time, has been carefully studied ever since researchers have shown 
that some of its properties can reveal weaknesses of the cipher [2–4,6,17,26,29,31,32]. 
Although it is rather easy to select ρ such that 〈 ρ, T 〉 is different from AGL(V ), it not 
as easy to prove that 〈 ρ, T 〉 is not contained in any conjugate of AGL(V ) in Sym(V ). If 
this is the case, i.e. if there exists g ∈ Sym(V ) such that 〈 ρ, T 〉 < AGL(V )g, then there 
exists an operation ◦ such that

〈 ρ, T 〉 ≤ AGL(V, ◦), (1)

which means that each encryption function is affine with respect to the operation ◦, 
a serious threat for the security of the cipher. A description of the attack that can be 
performed in this case is shown in [14]. Another example in this regard, i.e. a successful 
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attack against a block cipher which makes use of an operation as described above, can 
be found in [20]. For the reason explained before, since our interest is in determining if 
and when the group of the round functions is as in Eq. (1), we focus on investigating 
operations ◦ such that T < AGL(V, ◦). Such hypothesis is also decisive in the application 
studied in [20], where the classical differential attack (see e.g. [9,10]) is generalised to 
alternative operations. Moreover, we will always assume T◦ < AGL(V ), since it guaran-
tees fast computation, crucial in the application to cryptanalysis. The related problem 
of determining conditions on ρ /∈ AGL(V ) which ensure that ρ ∈ AGL(V, ◦) for some 
operation ◦ is still open. Some partial results can be found in [13,15,20].

In the next section we will introduce our novel results and in particular we will describe 
all elementary abelian regular groups T◦ < AGL(V, +) such that T+ < AGL(V, ◦).

3. Abelian regular subgroups of the affine groups

Keeping in mind the construction of Sec. 2, we now focus on groups conjugated to 
T which are affine groups. A seminal work for this research is the paper [16], where the 
authors give an easy description of the abelian regular subgroups of the affine group 
in terms of commutative associative algebras that one can define on the vector space 
(V, +). Here we summarise their main results. Recall that a Jacobson radical ring is a 
ring (V, +, ·) such that (V, �) is a group, where the operation � defined as a �b = a +b +a ·b, 
for each a, b ∈ V . Note that in general the operation � does not induce a vector space 
structure on V . The proof of the next result may be found in [16].

Theorem 3.1. Let K be any (finite or infinite) field, and (V, +) be a vector space of any 
dimension over K. There is a one-to-one correspondence between

1. abelian regular subgroups of AGL(V, +),
2. commutative, associative K-algebra structures (V, +, ·) that one can impose on the 

vector space structure (V, +), such that the resulting ring is radical.

In this correspondence, isomorphism classes of K-algebras correspond to conjugacy 
classes of abelian regular subgroups of AGL(V, +), where the conjugation is under the 
action of GL(V, +).

The correspondence mentioned in the previous result may be written explicitly, pro-
ceedings as follows. Let T < AGL(V ) be abelian and regular. Since T is regular, 
reasoning as in Sec. 2 its elements can be labelled as T = {τa | a ∈ V }. For each 
a ∈ V , from the hypothesis, there exists Ma,T ∈ GL(V, +) and σb ∈ T+ for some b ∈ V

such that τa = Ma,T σb. In order to keep the notation lighter, Ma,T will be simply de-
noted by Ma. For any a ∈ V , let us define the map δa

def= Ma − 1V . Then, operation ·
defined on V by letting x · a = xδa is such that the structure (V, +, ·) is a commutative 
K-algebra and the resulting ring is radical. Moreover, notice that 0τa = a by definition, 
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then a = 0τa = 0Maσb = b, hence τa = Maσa for each a ∈ V . Denoting by ◦ the 
operation induced by T , let us now define the set

Ω(T ) = Ω◦
def= {Ma | a ∈ V } < GL(V ),

and denote by T◦ = T .

Proposition 3.2. Let T < AGL(V ) be an elementary abelian regular subgroup. Then for 
each a ∈ V , Ma ∈ GL(V ) has order p and it is unipotent. In particular Ω(T ) is a 
unipotent subgroup of GL(V ).

Proof. Let a ∈ V . Since T is elementary, τa has order p, so aτ p−1
a = 0. For each x ∈ V

we get

x = xτpa = (xMa + a)τ p−1
a = (xM2

a + aτa)τ p−2
a = . . . = xMp

a + aτ p−1
a ,

therefore 0 = Mp
a − 1V = (Ma − 1V )p. �

Let us now define an important V -subspace:

W (T ) def= {a | σa ∈ T } = {a | σa = τa}.

We will sometimes denote W (T ) by W◦. It is easily checked that W (T ) is a subspace of 
(V, +) and (V, ◦). Such a subspace is nontrivial for the following theorem, proven in [16]. 
It is straightforward but important to notice that if a ∈ W (T ), then x + a = x ◦ a holds 
for each x ∈ V , and consequently Ma = 1n.

Theorem 3.3 ([16]). Let T ≤ AGL(V, +) be an abelian regular subgroup. If V is finite, 
then T ∩ T = 〈1V 〉.

We will show soon that W (T ) plays an important role for the characterisation of maps 
in the group T .

Our purpose is, given an operation ◦ induced by the group T = {τa | a ∈ V }, 
to describe the matrices Ma for each a ∈ V , where τa = Maσa. We show now some 
preliminary results.

Let U be a subspace of V . Then for all γ ∈ GL(V ) such that Uγ = U , the action 
of γ over V/U is well defined by means of the map γ̄ : [v] �→ [vγ] in GL(V/U). Let us 
prove now the following characterisation, recalling that U(V ) denotes the group of upper 
unitriangular linear maps.

Lemma 3.4. Let Mi ∈ U(V ) be a unitriangular map acting as the identity on the quo-
tient V/Span{ei+1, . . . , en}, for each 1 ≤ i ≤ n. Then, the affine transformations Miσei

generate a transitive subgroup of AGL(V ).
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Proof. Denote by τei the transformation Miσei . Let us start by observing that for each 
1 ≤ i ≤ n the action of Mi over V/Span{ei+1, . . . , en} is well defined and from the 
hypotheses τei acts on vectors of V leaving the first i − 1 coordinates unchanged. Let 
now v = (v1, v2, . . . , vn) and w = (w1, w2, . . . , wn) be two elements of V and let us 
show that there exists τ ∈ 〈τe1 , τe2 , . . . , τen〉 such that vτ = w. Let γ1 ∈ Fp such that 
v1 + γ1 = w1. So

v (τe1)
γ1

= (w1, v2 + c2, . . . , vn + cn) def= v′,

for some ci ∈ Fp for 2 ≤ i ≤ n, where ci depends on v, τe1 and γ1. Analogously, if γ2 ∈ Fp
is such that (v′)2 + γ2 = w2, then

v′ (τe2)
γ2

= (w1, w2, v3 + d3, . . . , vn + dn),

for some d i ∈ Fp for 3 ≤ i ≤ n. In this way, we obtain

τ
def= (τe1)

γ1
(τe2)

γ2
· · · (τen)γ

n

such that vτ = w, hence the transitivity is proven. �
Remark 3.5. Notice that in the conditions of Lemma 3.4, if ◦ denotes the operation 
induced by T = 〈τe1 , τe2 , . . . , τen〉, then {ei}ni=1 is a basis of (V, ◦). However, this is not 
true in general. In the following example on V = (F2)3 indeed, the canonical basis is not 
a basis for (V, ◦). Let T◦ be defined in the following way:

T◦
def= 〈M(1,0,1)σ(1,0,1),M(0,1,1)σ(0,1,1),M(1,1,1)σ(1,1,1)〉,

where

M(1,0,1)
def=
(0 1 1

0 1 0
1 1 0

)
, M(0,1,1)

def=
(1 0 0

1 0 1
1 1 0

)
and M(1,1,1)

def= 1n.

Then the translations τe1 , τe2 , τe3 are respectively individuated by the matrices

Me1
def=
(1 0 0

1 0 1
1 1 0

)
, Me2

def=
(0 1 1

0 1 0
1 1 0

)
and Me3

def=
(0 1 1

1 0 1
0 0 1

)
.

It is a straightforward check that e1 ◦ e2 = e3.

Let us now show a more general result which will be useful later. The following well-
known result (see e.g. [30, pag. 62]) is needed.

Theorem 3.6. Let H ≤ GL(V ) be a group of unipotent matrices. Then there exists a basis 
of V in which all elements of H are upper triangular.
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Lemma 3.7. Let G < GL(V ) be a unipotent subgroup and let U ⊆ V be a subspace such 
that for all v ∈ U and g ∈ G we have vg = v, i.e. G is a subgroup of the pointwise 
stabiliser of U . Let d 

def= dim(U) and m 
def= n − d. Then all elements of G are upper 

triangular in a basis {v1, . . . , vm, vm+1, . . . , vm+d}, where {vm+1, . . . , vm+d} is any basis 
of U .

Proof. Since G fixes all the elements of U , it acts as a group of unipotent maps on V/U . 
From Theorem 3.6 there exists a basis [v1], . . . , [vm] of V/U , such that [vi]g − [vi] lies in 
Span{[vi+1], . . . , [vm]} for all g ∈ G. Then, all elements of G are upper triangular in the 
basis {v1, . . . , vm, vm+1, . . . , vn}, since vig − vi = 0 for all m + 1 ≤ i ≤ n. �

The previous result reads in the way displayed below, when specified to our case.

Corollary 3.8. Let T < AGL(V ) be an elementary abelian regular group. Let d 
def=

dim(W (T )) and let m 
def= n − d. Then all elements of Ω(T ) are upper triangular in 

a basis {v1, . . . , vm+1, . . . , vn}, where {vm+1, . . . , vn} is any basis of W (T ).

Proof. By Proposition 3.2, Ω(T ) is unipotent. Moreover, by definition, for all v ∈ W (T )
and M ∈ Ω(T ) we have vM = v. Hence, the claim follows from Lemma 3.7. �

The results obtained so far may be summarised in the following theorem. According 
to this result, when considering an operation ◦ we can always assume, up to conjugation, 
that W◦ is generated by the last vectors of the canonical basis.

Theorem 3.9. Let T < AGL(V ) be an elementary abelian regular group. Let d 
def=

dim(W (T )) and let m 
def= n − d. Then there exists g ∈ GL(V ) such that Ω(T g) < U(V )

and W (T g) = Span{em+1, . . . , en}.

Proof. From Corollary 3.8, all the elements of Ω(T ) are upper triangular with respect 
to a basis {v1, . . . , vn} of V , whose last d vector form a basis of W (T ). Let g ∈ GL(V )
such that vig = ei for each 1 ≤ i ≤ n. It is easy to check that Ω(T g) = Ω(T )g, then for 
all M ∈ Ω(T ) we have

eig
−1Mg − ei = viMg − vig = (viM − vi)g.

Since viM − vi ∈ Span{vi+1, ..., vn}, we have (viM − vi)g ∈ Span{ei+1, ..., en}. In 
conclusion, from (τv)g : x �→ x (Mv)g g + vg, we also obtain W (T g) = W (T )g =
Span{em+1, . . . , en}. �

Till now we have assumed that the subgroup T is an affine group. For reasons already 
explained in Sec. 2 and related to the application in cryptography of this construction, 
we are interested in groups whose normalisers contain the group of translations T+, 
i.e. in operations T◦ for which, given g ∈ Sym(V ) such that T = T g

+, we also have 
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T+ < AGL(V, ◦) = AGL(V, +)g. Let us report a result from [16] which is useful for our 
purpose.

Lemma 3.10. Let T < AGL(V ) be abelian and regular. Then for each σx ∈ T+ and 
τy ∈ T we have

[σx, τy] = σx·y,

where · denotes the product of the Fp-algebra related to T as in Theorem 3.1, and 

[σx, τy] 
def= σ−1

x τ−1
y σxτy.

In our case, from Lemma 3.10 we obtain that T normalises T < AGL(V ) if and only 
if σx·y ∈ T for all x, y ∈ V . Indeed, if for all σx ∈ T we have T σx = T , then

σx·y = σ−1
x τ−1

y σxτy ∈ T .

Conversely, if σx·y ∈ T for each x, y ∈ V , then

T � σx·yτ
−1
y = σ−1

x τ−1
y σx.

Finally notice that the condition σx·y ∈ T for all x, y ∈ V is equivalent to x · y · z = 0
for all x, y, z ∈ V .

We are now ready to prove one of the main results of this work, i.e. the structure of 
affine translation groups whose normalisers contain the group T+. Before doing so, let us 
recall that for sake of simplicity, proceeding as in Sec. 2, given a group T = T◦ < AGL(V ), 
we denote by AGL(V, ◦) the normaliser in Sym(V ) of T , which is AGL(V, +)g where 
g ∈ Sym(V ) is such that T = T g.

Theorem 3.11. Let T < AGL(V, +) be elementary abelian regular and let ◦ be the 
operation induced on V . Let d 

def= dim(W (T )), let m 
def= n − d and let us assume 

W (T ) = Span{em+1, . . . , en}. Then, T+ < AGL(V, ◦) if and only if for all My ∈ Ω(T )
there exists a matrix By ∈ (Fp)m×d such that

My =
(

1m By

0 1d

)
. (2)

Proof. By Theorem 3.9, there exists another group operation � on V such that the cor-
responding translation group is conjugated, by an element of GL(V ), to T◦ and satisfies 
W (T�) = W (T◦) and Ω(T�) = {Ma | a ∈ V } < U(V ). Let y ∈ V and let Ay ∈ (Fp)m×m

an upper-triangular matrix and By ∈ (Fp)m×d such that

My =
(
Ay By

0 1

)
.

d



M. Calderini et al. / Journal of Algebra 569 (2021) 658–680 667
Notice that the lower structure of the matrix derives by the property ei ∈ W (T�) for 
each m + 1 ≤ i ≤ n, i.e. y � ei = eiMy + y = y + ei for each m + 1 ≤ i ≤ n. Recall that

T+ < AGL(V, �) ⇐⇒ ∀x, y ∈ V x · y ∈ W (T�) (3)

⇐⇒ ∀x, y ∈ V xMy − x ∈ W (T�), (4)

where the equivalence in Eq. (3) derives from Lemma 3.10. From Eq. (4) instead, 
considering x ∈ Span{e1, . . . , em} we obtain that xMy − x ∈ W (T�) if and only if 
Ay = 1m.

In order to conclude, we need to prove that each conjugate T◦ = T�
g is such that 

all the matrices in the group Ω(T◦) are as in Eq. (2), provided that g ∈ GL(V ) and 
W (T◦) is spanned by the last d vectors of the canonical basis. Let g ∈ GL(V ) such 
that T◦ = T g

� . Since W (T�)g = W (T�
g) = W (T◦), then Span{em+1, . . . , en}g =

Span{em+1, . . . , en} and also Span{em+1, . . . , en}g−1 = Span{em+1, . . . , en}. Conse-
quently

g =
(
G1 G2
0 G3

)
and g−1 =

(
G−1

1 G2
′

0 G−1
3

)
,

for some G1 ∈ (Fp)m×m, G2, G2
′ ∈ (Fp)m×d and G3 ∈ (Fp)d×d. Thus, if M ∈ Ω(T�) we 

have

Mg =
(
G−1

1 G2
′

0 G−1
3

)(
1m Bm×d

0 1d

)(
G1 G2
0 G3

)
=
(

1m B′
m×d

0 1d

)
,

therefore the claim follows from Ω(T◦) = Ω(T�
g) = Ω(T�)g. �

The characterisation given above allows to construct an isomorphism between the 
vector spaces (V, ◦) and (V, +), which can be computed very efficiently (see [14]). This 
makes some attacks feasible [14,20]. Moreover, Theorem 3.11 can be used to determine 
the maps contained in GL(V, ◦) ∩ GL(V, +) (see [13,20]).

4. Even characteristic and combinatorial formulas

In this section we specialise our focus to the cryptographically-relevant case of binary 
fields. Let us assume from now on that p = 2. In this case, we can prove (see Theorem 4.1
and Theorem 4.7) an upper bound on the number of the elementary abelian regular 
subgroups as in Theorem 3.11. Moreover, we can calculate the number of these groups if 
the co-dimension of W (T◦) is 2 or 3. To conclude, we report the full classification of the 
elementary abelian regular subgroups of AGL(V, +) up to dimension 6. Before doing so, 
let us prove the following result which bounds the dimension of the subspace W (T◦).

Proposition 4.1. Let T < AGL(V, +) be elementary abelian regular and let d 
def=

dim(W (T )). If T = T , then
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(−1)n + 3
2 ≤ d ≤ n− 2.

Proof. From Theorem 3.3 and from the hypothesis we have 1 ≤ d ≤ n − 1. Let us now 
assume that W (T ) contains n − 1 linearly independent vectors v1, v2 . . . , vn−1 ∈ V and 
let vn ∈ V independent from v1, . . . , vn−1. Let ◦ be the operation induced by T . Then, 
vi ◦ vn = vi + vn, thus viMvn = vi for all 1 ≤ i ≤ n − 1. Moreover, vn ◦ vn = 0 and so 
vnMvn = vn. Then, if v ∈ V , then

v ◦ vn =
(∑

i<n

ξivi + ξnvn

)
Mvn + vn =

∑
i<n

αivi + αnvn + vn = v + vn,

which implies d = n, a contradiction. If n is even, then d > 1, i.e. T ∩T contains at least 
four elements. A proof of this fact may be found in [13]. �

Let us now prove that if T normalises T and the co-dimension of W (T ) is at most 5, 
then we also have that T normalises T .

Proposition 4.2. Let T < AGL(V ) be elementary abelian regular, and let ◦ be the op-
eration induced. Let d 

def= dim(W (T )) and m 
def= n − d. If 2 ≤ m ≤ 5, then AGL(V, ◦)

contains T .

Proof. The claim follows if we prove that if x, y ∈ V , then x · y ∈ W (T ). Let x, y ∈ V

and let us assume by contradiction x · y /∈ W (T ). Then there exists z /∈ W (T ) such that 
x · y · z = 0. Let us show that x, y, z, x · y, x · z, y · z, x · y · z are linearly independent. Let 
ξi ∈ F2 for 1 ≤ i ≤ 7 such that

ξ1x + ξ2y + ξ3z + ξ4x · y + ξ5x · z + ξ6y · y + ξ7x · y · z = 0.

By multiplying each member of the previous equation by y·z we obtain ξ1x ·y·z = 0, which 
implies ξ1 = 0. In the same way, by multiplying by x ·z we prove ξ2 = 0. Proceeding in this 
way one proves that ξi = 0 for each 1 ≤ i ≤ 7. This proves that x, y, z, x ·y, x ·z, y ·z, x ·y ·z
are linearly independent and none of these belongs to W (T ). Using a similar argument 
one proves that Span{x, y, z, x · y, x · z, y · z, x · y · z} ∩W (T ) = {0}. This implies m ≥ 6, 
a contradiction. �

We have presented the previous result in the way which best fit our needs. However, 
it can be stated more generally in the following way.

Proposition 4.3. Let T1, T2 < Sym(V ) be elementary abelian regular. Let d be such that 
2d = |T1 ∩ T2|, m 

def= n − d and let us assume 2 ≤ m ≤ 5. Then T1 is contained in the 
normaliser of T2 if and only if T2 is contained in the normaliser of T1.
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Example 4.4. Notice that Proposition 4.2 does not hold, in general, for m ≥ 6. Let 
(V, +, ·) be the exterior algebra over a vector space of dimension three, spanned by 
e1, e2, e3. Hence a basis of V is composed by

e1, e2, e3, e4 = e1 ∧ e2, e5 = e1 ∧ e3, e6 = e2 ∧ e3, e7 = e1 ∧ e2 ∧ e3.

The associated translation group T◦ is such that W (T◦) = Span{e7}, but we have

Me1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0
1 0 1 0 0 0

1 0 1 0 0
1 0 0 0

1 0 0
1 1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

From Theorem 3.11, AGL(V, ◦) cannot contain the group T+.

Let us now point out, starting from Theorem 3.11, some properties of the matrices 
in Ω(T◦) defining the operation ◦. Let us assume T◦ < AGL(V ) be elementary abelian 
regular and let us denote, as usual, d 

def= dim(W (T◦)) and m 
def= n −d. Let 1 ≤ i = j ≤ m. 

Since ei ◦ ei = eiMei + ei = 0 we obtain that the i-th row of Bei is zero, where

Mei =
(1m Bei

0 1d

)
.

Instead, from ei ◦ ej = eiMej + ej = ejMei + ei = ej ◦ ei, we obtain that the j-th row of 
Bei equals the i-th row of Bej . Moreover, let x ∈ V . Then

x ◦ ei ◦ ej = (xMei + ei) ◦ ej
= (xMei + ei)Mej + ej

= xMeiMej + eiMej + ej

= xMeiMej + ei ◦ ej ,

which proves that Mei◦ej = MeiMej , i.e.

Mei◦ej =
(

1m Bei + Bej
0 1d

)
.

This fact is easily generalised as follows.

Proposition 4.5. Let T◦ < AGL(V ) be an elementary abelian regular group. Let d 
def=

dim(W (T◦)) and m 
def= n −d. Moreover, let us assume W (T◦) = Span{em+1, . . . , en} and 

T < AGL(V, ◦). Let x ∈ V , x = ξ1e1 ◦ · · · ◦ ξnen for some ξi ∈ F2. Then
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Mx =

⎛
⎜⎝1m

m∑
i=1

ξiBei

0 1d

⎞
⎟⎠ .

Proof. From the hypothesis we have that the canonical basis of (V, +) is a basis also for 
(V, ◦) (see Remark 3.5). Moreover, Bei = 0 for 1 ≤ i ≤ m and Bei = 0 for m ≤ i ≤ n. 
The claim follows straightforwardly by writing x in terms of eis in (V, ◦). �
4.1. Some combinatorial results

In this section we will examine some combinatorial aspects of our topic, focusing on 
counting the number of abelian regular subgroups of the affine group which are useful 
in cryptographic contexts. In the next result we will count them in terms of points of 
a given geometric variety. Let T◦ be as in Proposition 4.5. For each 1 ≤ i ≤ m we will 
denote the entries in the matrix Mei in the following way:

Mei =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b
(i)
1,1 . . . b

(i)
1,d

1m
...

...
b
(i)
m,1 . . . b

(i)
m,d

0 1d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5)

In what follows, in order to keep the notation more compact, given a positive integer s
we will denote by [s] the set {1, . . . , s}.

Theorem 4.6. Let d ≥ 1. The number of elementary abelian regular subgroups T◦ <

AGL(V, +) such that dim(W (T◦)) = d and T+ < AGL(V, ◦) is
[
n

d

]
2
· |V(Im,d)|, (6)

where m = n − d, Im,d is the ideal in F2

[
b
(s)
i,j

∣∣∣i, s ∈ [m], j ∈ [d]
]

generated by S0 ∪ S1 ∪
S2 ∪ S3 with

S0
def=
{(

b
(s)
i,j

)2
− b

(s)
i,j

∣∣∣∣i, s ∈ [m], j ∈ [d]
}
,

S1
def=

⎧⎨
⎩

m∏
i=1

d∏
j=1

(
1 +
∑
s∈S

b
(s)
i,j

)∣∣∣∣∣∣S ⊆ [m], S = ∅

⎫⎬
⎭ ,

S2
def=
{
b
(s)
i,j − b

(i)
s,j

∣∣∣i, s ∈ [m], j ∈ [d]
}
,
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S3
def=
{
b
(i)
i,j

∣∣∣i ∈ [m], j ∈ [d]
}
,

V(Im,d) is the variety of Im,d and 
[
n

d

]
2

def=
d−1∏
i=0

2n−i − 1
2d−i − 1 is the Gaussian binomial.

Proof. The claim follows by applying together Theorem 3.11 and Theorem 3.9. Let 
us start by computing the number of the groups as in Theorem 3.11, and then all 
the conjugates one can obtain from these. Notice that a group T◦ < AGL(V, +) such 
that W (T◦) is generated by the last d vectors of the canonical basis of V and such 
that T+ < AGL(V, ◦) is determined if the matrices Me1 , . . . , Mem (and so, equivalently, 
Be1 , . . . , Bem) are individuated, since Mei = 1n for the remaining m < i ≤ n. We will 
show that to each set of admissible matrices {Be1 , . . . , Bem} corresponds one point in 
V(Im,d) and vice versa, from a point of V(Im,d) we can obtain one set of admissible 
matrices {Be1 , . . . , Bem}. Let T◦ < AGL(V, +) be such that W (T◦) is generated by the 
last d vectors of the canonical basis of V and such that T+ < AGL(V, ◦). Let us denote 
by {Me1 , . . . , Mem} the matrices defining the operation. If ∅ = S ⊆ [m] and x = ©

i∈S
ei, 

then, from Proposition 4.5,

Mx =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∑
s∈S

b
(s)
1,1 . . .

∑
s∈S

b
(s)
1,d

1m
...

...∑
s∈S

b
(s)
m,1 . . .

∑
s∈S

b
(s)
m,d

0 1d

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since Mx = 1V , then there exist i, j such that

∑
s∈S

b
(s)
i,j = 1,

which happens if and only if

m∏
i=1

d∏
j=1

(
1 +
∑
s∈S

b
(s)
i,j

)
= 0.

For symmetry we also have that the conditions given by set S2 hold. Moreover, since 
ei is fixed from Mei , we also obtain a solution for set S3. To conclude, S0 is trivially 
satisfied, since the matrices are binary.
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Vice versa, from a solution of the ideal Im,d, we can construct Be1 , . . . , Bem as in 

Eq. (5). Consequently, we can consider the group T generated by the affine maps τei
def=

Meiσei for 1 ≤ i ≤ n, where for 1 ≤ i ≤ m

Mei
def=
(

1m Bei
0 1d

)

and Mei
def= 1n for m < i ≤ n. Since the conditions of Lemma 3.4 are satisfied, T is 

transitive, and it is abelian from the condition expressed by set S2. Moreover, if x ∈ V

and 1 ≤ i ≤ m, then

xτ2
ei = (xM2

ei + eiMei + ei).

Computing M2
ei we obtain

M2
ei =

(
1m Bei + Bei
0 1d

)
= 1n.

Hence, since from the condition given by set S3 we obtain eiMei = ei, and so τ2
ei = 1V , 

i.e. T is elementary. Moreover, T is regular, since it is abelian and transitive.
This shows a one-to-one correspondence between the points of V(Im,d) and the sub-

groups T◦ < AGL(V, +) such that W (T◦) = Span{em+1, . . . , en} and T+ < AGL(V, ◦). 
To conclude, consider a d-dimensional vector subspace W < V and let Δ = |V(Im,d)|. 
Let us denote by T1, . . . , TΔ the distinct elementary abelian regular groups such that 
W (Ti) = Span{em+1, . . . , en} and let g ∈ GL(V, +) be a transformation such that 
Wg = Span{em+1, . . . , en}. Then the groups (T1)g

−1
, . . . , (TΔ)g

−1
are pairwise distinct 

and W ((Ti)g
−1

) = W for each 1 ≤ i ≤ Δ. Now, let T� be an elementary abelian regular 
subgroup such that W (T�) = W . We have W ((T�)g) = W (T�)g = Span{em+1, . . . , en}, 
which implies (T�)g = Ti for some i, and so T� = (Ti)g

−1
. Our claim follows from the 

fact that the number of d-dimensional vector subspaces of an n-dimensional vector space 

over F2 is 
[
n

d

]
2
. �

In the next result, we give an upper bound on the number of points of the variety 
V(Im,d) defined in Theorem 4.6. A lower bound to |V(Im,d)| has been given in [13], where 
it is also shown that the upper bound of Theorem 4.7 is tight.

Theorem 4.7. Let Im,d be defined as in Theorem 4.6. Then

|V(Im,d)| ≤ 2d
m(m−1)

2 − 1 −
m−2∑
r=1

(
m

r

)(
2d − 1

)(m−r
2 )

.

Proof. Let B = (b(1)1 , . . . , b(1)m , b(2)1 , . . . , b(2)m , . . . , b(m)
1 , . . . , b(m)

m ) ∈ V(Im,d), where b(s)i =
(b(s)i,1 , . . . b

(s)
i,d ) ∈ (F2)d for all i, j as in (5), i.e. b(s)i is the i-th row of the matrix Bes .



M. Calderini et al. / Journal of Algebra 569 (2021) 658–680 673
We aim at counting how many vectors B satisfy the constrains of set S1, S2 and S3
as in Theorem 4.6. We proceed in two steps: we consider first all the solutions for S2 and 
S3 and then we exclude some of those for which the equations of S1 are not satisfied.

First step. As already pointed out before Proposition 4.5, from the conditions in S3
we have b(i)i = 0 for all i, and from those in S2, b(i)j = b

(j)
i for all i, j. Therefore, the 

matrix Be1 is determined only by the rows b(1)2 , . . . , b(1)m , being its first row equal to zero. 
Analogously, Be2 is determined only by the rows b(2)3 , . . . , b(2)m and by b(1)2 , since the first 
row of Be2 is equal to the second row of Be1 and since the second row of Be2 equal to 
zero. Iterating this argument we can consider only the vector composed as

B = (b(1)2 , . . . , b(1)m︸ ︷︷ ︸, b(2)3 , . . . , b(2)m︸ ︷︷ ︸, . . . , b(m−2)
m−1 , b(m−2)

m︸ ︷︷ ︸, b(m−1)
m︸ ︷︷ ︸)

and thus we have 2d
m(m−1)

2 solutions to the equations in S2 ∪ S3.

Second step. The entries of B must satisfy also the constrains given by S1, so for any 
subset S ⊂ [m] we can exclude the cases where

{
Bei = 0 if i ∈ S

Bei = 0 if i /∈ S.

In particular, we count when the entries of the matrices Bei with i ∈ S are all zeros and 
the remaining entries of the matrices Bei with i /∈ S are all non-zero. We start considering 
those vectors B obtained when exactly one Bei is zero and others are non-zero, that is, 
we consider any set S with one element. In this case n − 1 entries of B are zero and the 
others are all non-zero. Similarly, if any pair (Bes , Bet) is equal to zero and the others 
are not, then m −1 +m −2 entries of B are zero and the others are all non-zero. Indeed, 
assuming s < t, the zero entries of B must be b(1)s , ..., b(s−1)

s , b(s)s+1, ..., b
(s)
m in order to have 

Bes = 0, and b(1)t , ..., b(t−1)
t , b(t)t+1, ..., b

(t)
m in order to have Bet = 0. Considering that b(s)t is 

already zero, we have that m − 1 +m − 2 entries of B are zero. Iterating this argument, 

if we assume that r matrices are zero, then 
r∑

i=1
(m − i) entries of B are zero and the 

others are all non-zero. Then such r matrices can be chosen in 
(
m

r

)
possible ways and 

any time 2d−1 non-zero elements may be used to fill each of the other entries of B, that 
are

m(m− 1)
2 −

r∑
i=1

(m− i) =
(
m

2

)
−

m−1∑
i=m−r

i

=
(
m

2

)
−

m−1∑
i +

m−r−1∑
i

i=1 i=1
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=
(
m

2

)
−
(
m

2

)
+
(
m− r

2

)

=
(
m− r

2

)
.

The last case is when m − 1 matrices Bei are zero. By the conditions of S2 ∪S3 also the 
last one is zero, and this happens only when B is zero. This concludes the proof. �

The following results are derived from Theorem 4.6 and are related to the special 
cases when dim(W (T◦)) ∈ {n − 3, n − 2}. Notice that the case dim(W (T◦)) = n − 2 has 
been largely considered in [20], where it has been used to perform a differential attack 
against a block cipher. The same notation as in Theorem 4.6 is used. Recall that if 
T = T◦, from Proposition 4.2, the hypothesis T◦ < AGL(V, +) is enough to guarantee 
that T+ < AGL(V, ◦), and so also Theorem 3.11 applies.

Corollary 4.8. There exist

[
n

n− 3

]
2
·
(
23(n−3) − 7(2n−3 − 1) − 1

)

distinct elementary abelian regular groups T < AGL(V ) such that dim(W (T )) = n − 3.

Proof. Proceeding as in Theorem 4.6, we need to compute the number of groups T such 
that W (T ) = Span{e4, . . . , en}. Using the notation as in Theorem 4.7, we have

Me1 =

⎛
⎜⎜⎜⎜⎝

1 0 0 0
1 0 b

(1)
2

1 b
(1)
3

1n−3

⎞
⎟⎟⎟⎟⎠ , Me2 =

⎛
⎜⎜⎜⎜⎝

1 0 0 b
(1)
2

1 0 0
1 b

(2)
3

1n−3

⎞
⎟⎟⎟⎟⎠

Me3 =

⎛
⎜⎜⎜⎜⎝

1 0 0 b
(1)
3

1 0 b
(2)
3

1 0
1n−3

⎞
⎟⎟⎟⎟⎠ , Me1Me2 =

⎛
⎜⎜⎜⎜⎝

1 0 0 b
(1)
2

1 0 b
(1)
2

1 b
(1)
3 + b

(2)
3

1n−3

⎞
⎟⎟⎟⎟⎠

Me1Me3 =

⎛
⎜⎜⎜⎜⎝

1 0 0 b
(1)
3

1 0 b
(1)
2 + b

(2)
3

1 b
(1)
3

1

⎞
⎟⎟⎟⎟⎠ , Me2Me3 =

⎛
⎜⎜⎜⎜⎝

1 0 0 b
(1)
2 + b

(1)
3

1 0 b
(2)
3

1 b
(2)
3

1

⎞
⎟⎟⎟⎟⎠
n−3 n−3
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Me1Me2Me3 =

⎛
⎜⎜⎜⎜⎝

1 0 0 b
(1)
2 + b

(1)
3

1 0 b
(1)
2 + b

(2)
3

1 b
(1)
3 + b

(2)
3

1n−3

⎞
⎟⎟⎟⎟⎠ .

The following possibilities need to be ruled out:

1. Me1 = 1n ⇔ b
(1)
2 = 0 and b(1)3 = 0,

2. Me2 = 1n ⇔ b
(1)
2 = 0 and b(2)3 = 0,

3. Me3 = 1n ⇔ b
(1)
3 = 0 and b(2)3 = 0,

4. Me1Me2 = 1n ⇔ b
(1)
2 = 0 and b(1)3 = b

(2)
3 ,

5. Me1Me3 = 1n ⇔ b
(1)
3 = 0 and b(1)2 = b

(2)
3 ,

6. Me2Me3 = 1n ⇔ b
(1)
2 = b

(1)
3 and b(2)3 = 0,

7. Me1Me2Me3 = 1n ⇔ b
(1)
2 = b

(1)
3 , b(1)2 = b

(2)
3 and b(1)3 = b

(2)
3 .

Therefore we obtain that 23(n−3) − 7(2n−3 − 1) − 1 is the number of distinct subgroups 
T such that W (T ) = Span{e4, . . . , en}. �
Corollary 4.9. There exist [

n

n− 2

]
2
· (2n−2 − 1)

distinct elementary abelian regular groups T < AGL(V ) such that dim(W (T )) = n − 2.

Proof. The proof is obtained using the same argument as in Corollary 4.8. �
Let us now prove that the groups of Corollary 4.9 belong to the same conjugacy class 

under GL(V ).

Proposition 4.10. Let T and T ′ elementary abelian regular subgroups of AGL(V, +) such 
that dim(W (T )) = dim(W (T ′)) = n − 2. Then, there exists g ∈ GL(V ) such that 
T ′ = T g.

Proof. It is enough to prove the claim for T and T ′ elementary abelian regular subgroups 
of AGL(V, +) such that W (T ) = W (T ′) = Span{e3, . . . , en}. Recall that such groups 
are defined by the corresponding (n − 2)-dimensional vectors, as shown in the proof of 
Theorem 4.7. Let us denote T = 〈τe1 , . . . , τen〉 and T ′ = 〈τ ′e1 , . . . , τ

′
en〉, whose matrices 

are respectively individuated by the vectors

B =
(
b
(1)
2,1, . . . , b

(1)
2,n−2

)
and B′ =

(
b
′ (1)
2,1 , . . . , b

′ (1)
2,n−2

)
.

Let us assume first that B and B′ have the same Hamming weight, i.e. the same 
number of non-zero coordinates. In this case there exists a permutation matrix P ∈
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(F2)(n−2)×(n−2) such that BP = B′. Let P ′ ∈ (F2)n×n be the permutation matrix 
defined as

P ′ def=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
0 1 0 . . . 0
0 0
...

... P

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that when we multiply a matrix M by P ′ on the right we are permuting the last 
n −2 columns of M . On other hand, multiplying M by P ′ −1 on the left we are permuting 
the last n − 2 rows of M . Hence, we have

P ′ −1τeiP
′ = P ′ −1MeiP

′σeiP ′ = τ ′eiP ′ = τ ′eiπ

where π is the index permutation induced by P ′, thus P ′ −1T P ′ = T ′. This implies that 
two groups corresponding to vectors with the same weight are conjugated.

Let us now assume that

B = (1, . . . , 1︸ ︷︷ ︸
i

, 0, . . . , 0) and B′ = (1, . . . , 1︸ ︷︷ ︸
i+1

, 0, . . . , 0),

for some 1 ≤ i ≤ n − 3. Let P ∈ (F2)n×n be the matrix whose j-th row Pj = ej if 
j = i + 2 and Pi+2 = ei+2 + ei+3, i.e.

P
def=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
0 1 0 . . . 0
...

... 0
0 . . . 1 1 . . . 0
0 . . . 0 1 . . . 0
0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that P−1 = P . Note also that multiplying a matrix M by P on the right we are 
updating its (i + 3)-th column by summing up its (i + 2)-th and (i + 3)-th columns. On 
the other hand, multiplying a matrix M by P−1 = P on the left we are updating its 
(i + 2)-th row by summing up its (i + 2)-th and (i + 3)-th rows. Therefore

PτejP = PMejPσejP = τ ′ej

for j = i + 2 and
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Pτ(ei+2+ei+3)P = τ ′ei+2
.

Notice that the group

〈τe1 , . . . , τei+1 , τ(ei+2+ei+3), τei+3 , . . . , τen〉

is exactly T , as τ(ei+2+ei+3)τei+3 = τei+2 . Therefore PT P = T ′. We have also proved that, 
if B and B′ are such that the difference of their Hamming weights is one, by arguments 
previously used, the associated groups T and T ′ are conjugated in GL(V ).

To conclude, let us address the general case, i.e. the case of two groups obtained by 
two vectors B and B′ having Hamming weight d1 and d2. Let us assume, without loss 
of generality, d1 < d2. Let us define

B0
def= (1, . . . , 1︸ ︷︷ ︸

d1

, 0, . . . , 0), B1
def= (1, . . . , 1︸ ︷︷ ︸

d1+1

, 0, . . . , 0),

. . . , Bd2−d1
def= (1, . . . , 1︸ ︷︷ ︸

d2

, 0, . . . , 0),

and denote by T (B0), T (B1), . . . , T (Bd2−d1) the corresponding groups. Reasoning as 
above, we have that T and T (B0) are conjugated in GL(V ) since B and B0 have the same 
Hamming weight, and the same can be proved for T ′ and T (Bd2−d1). Moreover, from a 
previous argument T (Bi) is conjugated in GL(V ) to T (Bi+1), for each 0 ≤ i ≤ d2−d1−1. 
Therefore, T and T ′ are conjugated in GL(V ), which is our claim. �
4.2. Conjugacy classes in low dimension

In this last section we will focus on spaces with low dimension, i.e. with dimension up 
to 6. From Proposition 4.2 we obtain the following corollary.

Corollary 4.11. If dim(V ) ≤ 6, then T+ ⊆ AGL(V, ◦) if and only if T◦ ⊆ AGL(V, +).

The bound of the previous result is tight, as shown below.

Proposition 4.12. Let V be such that dim(V ) ≥ 7. Then there exists an elementary abelian 
regular subgroup T◦ < AGL(V, +) such that AGL(V, ◦) does not contain T+.

Proof. Let n ≥ 7 be the dimension of V . If n > 7, let us decompose V as V = V1 ⊕ V2, 
where

V1
def= Span{e1, e2, e3, e4, e5, e6, e7}

and
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Table 1
Conjugacy classes.

n # of classes classes size dim(W (T◦))
3 2 |C1| = 1 3

|C2| = 7 1

4 2 |C1| = 1 4
|C2| = 105 2

5 4 |C1| = 1 5
|C2| = 1085 3
|C3| = 6510 2
|C4| = 868 1

6 8 |C1| = 1 6
|C2| = 9765 4
|C3| = 234360 3
|C4| = 410130 3
|C5| = 820260 2
|C6| = 218736 2
|C7| = 54684 2
|C8| = 1093680 2

V2
def= Span{e8, . . . , en},

otherwise we consider only V1. Let us impose over V1 the algebra structure induced by 
the exterior algebra over a vector space of dimension 3, which is the one defined by

e1 ∧ e2 = e4, e1 ∧ e3 = e5, e2 ∧ e3 = e6, e1 ∧ e2 ∧ e3 = e7,

and over V2 the algebra structure given by the trivial product x ∗y def= 0 for each x, y ∈ V2. 
Hence we can define the following product over V :

v · w = (v1 + v2) · (w1 + w2)
def= (v1 ∧ w1 + v2 ∗ w2) = v1 ∧ w1,

where v1, w1 ∈ V1 and v2, w2 ∈ V2. It is easy to check that (V, +, ·) is a commutative 
associative F2-algebra such that the resulting ring is radical. From Theorem 3.1, such an 
algebra corresponds to an elementary abelian regular subgroup T◦ of AGL(V, +). The 
claim follows from Lemma 3.10 and from its consequences, since e1 · e2 · e3 = 0. �

Let us now give a classification of all the elementary abelian regular subgroups of 
AGL(V, +) up to dimension 6, considering only the relevant cases when 2 < dim(V ) ≤ 6. 
The results, summarised in Table 1, derive from Corollary 4.8 and Corollary 4.9 and from 
some computation performed using MAGMA [12]. For each admissible value of n, we col-
lect in Table 1 the number of conjugacy classes of elementary abelian regular subgroups 
T◦ < AGL(V, +), the number of such subgroups in each class and the corresponding 
dimension of W (T◦).
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