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8.1  Introduction 

The general public is familiar with weather forecasts and their utility, and the field of weather 
forecasting is well established. Even the theoretical limit of the weather forecasting – two weeks – is 
known. In contrast, familiarity with climate prediction is low outside of the research field, the 
theoretical basis is not fully established, and we do not know the extent to which climate can be 
predicted. Variations in climate, however, can have large societal and economic consequences, as they 
can lead to droughts and floods, and spells of extreme hot and cold weather. Thus, improving our 
capabilities to predict climate is important and urgent, as it can enhance climate services and thereby 
contribute to the sustainable development of humans in this era of climate change. 

Climate is predictable because of processes internal to the climate system and factors external to the 
climate system (Latif and Keenlyside, 2011). The El Niño Southern Oscillation (ENSO) is the most well-
known and most predictable example of climate variability (Philander, 1990; Latif and Keenlyside, 
2009; Tang et al., 2018). ENSO originates primarily from two-way interaction between ocean and 
atmosphere in the tropical Pacific that give rise to a preferred timescale of 2 – 7 years. The first 
successful predictions of ENSO were based on intermediate complexity models in the mid-1980’s Cane 
et al., 1986; see Chapter 3). Great progress was made in understanding and modelling ENSO (Neelin 
et al., 1998; Yu and Mechoso, 2001) in the 1990’s. This progress was facilitated by the step-wise 
enhancement in the observational network (Chapter 1; McPhaden et al., 1998) and rapid increase in 
computer power. Current coupled general circulation models (CGCMs) are able to skilfully predict 
ENSO events 6 to 12 months in advance (Latif et al., 1998). Now multiple centres around the world 
perform operational seasonal forecasts (Kirtman et al., 2014). There is a model based consensus that 
the predictability limit for ENSO might be around one year (Newman and Sardeshmukh, 2017), 
although some stronger events might be predicted up to two years in advance (Luo et al., 2008b). 

Research during the last decade is showing that ENSO is not the sole source of climate predictability, 
and that other climate phenomenon in other regions and on other timescales are predictable. There 
is currently great interest in extending climate predictions to the shorter sub-seasonal timescale 
(Vitart and Robertson, 2018), with the World Climate Research Programme (WCRP) and the World 
Weather Research Programme (WWRP) launching the Sub-seasonal to Seasonal Prediction Project 
(S2S) in November 2013 (Robertson et al., 2014). The Madden-Julian Oscillation (MJO) dominates 
intra-seasonal variability in the tropics and could form the basis for sub-seasonal climate prediction in 
both the tropics and extra-tropics (Zhang, 2005, Vitart, 2017). On inter-annual time-scales, there are 
phenomena in the tropical Atlantic and Indian Ocean that are to partly independent of ENSO. Relevant 
here are the Atlantic Niño and the Indian Ocean Dipole (IOD) phenomena that are both linked to strong 
anomalies in regional climate, as described in Chapters 1 and 5. On longer decadal timescales, Atlantic 



multi-decadal variability (AMV) and Pacific decadal variability (PDV) are linked to large-scale 
fluctuations in climate and weather extremes. There is a growing consensus that AMV and many of its 
impacts can be predicted up to a decade in advance (Yeager and Robson, 2017). In contrast, PDV is 
hardly predictable a few years in advance (Doblas-Reyes et al., 2013a).  

The interaction between phenomena in different regions and across timescales could also make 
climate more predictable. In particular, there is a scale-interaction between the MJO and ENSO, such 
that MJO variability can trigger ENSO events that further enhance MJO activity (Levine et al., 2016). 
This type of non-linear interaction can extend ENSO predictability. Recent studies have also shown 
that both Atlantic Niño and IOD can interact with ENSO variability, modifying its dynamics and 
predictability (See review by Cai et al., 2019). Lastly, recent studies indicate that AMV impacts on the 
Pacific provide a basis for multi-year predictability in the Indo-Pacific region, if this connection is 
properly represented in climate prediction models (Ruprich-Robert et al., 2016; Chikamoto et al., 
2015). The interaction among such phenomena, however, is complex and can vary in time, and is not 
fully understood. 

The previous chapters have discussed the mechanisms for climate variability in the different regions, 
interactions between these regions, and the impacts on continental climate. The principal goal of this 
chapter is to synthesize understanding of the potential of inter-basin interactions to enhance climate 
prediction. Special attention is given to the predictability of the key phenomena that can provide a 
basis for climate prediction beyond ENSO. 

8.2  Intra-Seasonal Predictability 

Sub-seasonal to seasonal climate prediction aims to close the gap between weather forecasts and 
seasonal predictions, focusing on predicting climate from 2 weeks to 2 months  (Vitart et al., 2016). 
On these timescales prediction of climate is both an initial value problem – as in weather forecasting 
– and a boundary value problem, as in seasonal forecasting (Vitart and Robertson, 2018). In the first 
case, sources of predictability come from intra-seasonal variability in atmospheric phenomena, such 
as the MJO (Madden and Julian, 1972) and sudden stratospheric warmings (Baldwin et al., 2003). In 
the second case, atmospheric predictability comes from the influence of the slowly varying 
components of the climate system on the statistics of high-frequency chaotic atmospheric variability 
(Palmer, 1993). Tropical and extra-tropical sea surface temperature (SST), Arctic sea ice, soil moisture, 
and snow cover can all give rise to sub-seasonal predictability (e.g., Weisheimer et al., 2011, Orsolini 
et al., 2016). 

8.2.1  The Madden Julian Oscillation 

The MJO is the most important sources of sub-seasonal predictability, because it dominates intra-
seasonal variability; its dynamics give rise to a preferred 30-90 day timescale, and its impacts are global 
(Zhang, 2005). An MJO lifecycle diagram of outgoing longwave radiation (OLR) at the top of the 
atmosphere and surface winds illustrates the predictable dynamics (Figure 8.1). MJO events develop 
over the Indian Ocean as atmospheric deep convection becomes organized at planetary scales and 
propagates eastward with a speed of around 5 m s-1, reaching the western Pacific after about 2–3 
weeks (Hendon and Salby, 1994). The atmospheric convection is associated with a zonally overturning 
circulation with low-level easterlies to the east of the deep convection and westerlies to the west, and 



reverse upper level circulation (Hsu et al., 2004). After reaching the dateline, MJO events continue to 
propagate eastward much more rapidly (30-35 m s-1) as dry atmospheric disturbances, until they reach 
the Indian Ocean where they may trigger the next event (Zhang, 2005). This cycle underlies the 
predictability of the MJO. 

The impacts of the MJO extend across the globe and have major consequences for society and 
economy. MJO effects can explain up to 35 % of the intra-seasonal rainfall variance in boreal summer 
over the western North Pacific, and up to 25% over the South Pacific in austral summer (Pariyar et al., 
2019). The MJO impacts the Australian monsoon and Indian Summer monsoon (Wheeler and Hendon, 
2004), and it is linked to most of the extended breaks in the Indian Summer monsoon (Joseph et al., 
2009), and also affects rainfall over south eastern Asia (Zhang et al., 2009). It alters precipitation over 
equatorial Brazil (De Souza and Ambrizzi, 2006), and can increase daily precipitation by more than 30% 
and double the frequency of extreme rainfall events over central-east South America (Grimm, 2019). 
It also affects rainfall variability over western and eastern Africa (Niang et al., 2017, Mutai and Ward, 
2000).  

The MJO modulates the occurrence of tropical cyclone activity over the Indian and Pacific Oceans, and 
over Atlantic (Maloney and Hartmann, 2000; Liebmann et al., 1994). The large-scale heating anomalies 
associated with MJO, as it propagates over the Indian Ocean and into the Western North Pacific (Figure 
8.1), also drive poleward propagating atmospheric Rossby waves that affect extra-tropical weather 
(Matthews and Meredith, 2004; Zhou and Miller, 2005). For example, when the MJO convection is 
active over the Indian Ocean (western Pacific) there is a tendency for occurrence of the positive 
(negative) North Atlantic Oscillation phase; this gives rise to predictability well beyond the weather 
prediction limit (Cassou, 2008). The MJO has also been linked to extreme temperature events around 
the globe (Lee and Grotjahn, 2019; Matsueda and Takaya, 2015). 

Despite the prominence of the MJO, understanding of the phenomena remains incomplete (Zhang et 
al., 2013; DeMott et al., 2015). Although no existing theory is completely satisfactory, there is 
agreement that the MJO is primarily an intrinsic mode of atmospheric variability, and that interaction 
with the ocean can modulate its characteristics. Key aspects of the three main classes of theories are 
as follows. Observations show that low-level wind convergence (Figure 8.1) causes the build-up of 
moisture to the east of the organized deep convection that preconditions the eastward displacement 
of deep convection by around 10 days (Hendon and Salby, 1994). Based on this, a class of theories 
posits that the MJO results from coupling between atmospheric circulation and convection, involving 
frictionally driven low-level convergence (Maloney and Hartmann, 1998, Majda and Stechmann, 
2009). However, warm SST and low-level convergence are also observed east of the MJO deep 
convection (Woolnough et al., 2000). Thus, another class of theories indicates that the warm SSTs 
contribute in driving the low-level convergence, through destabilizing the lower atmosphere (Flatau 
et al., 1997, Marshall et al., 2016, Tseng et al., 2015). In addition, the westerly winds to the west of 
the deep convection (Figure 8.1) drive enhanced evaporation and thereby are an important supply of 
moisture for the MJO. Therefore, still another class of theories considers the energy supply from ocean 
mixed layer by wind induced evaporation as key to the MJO amplitude and timescale (Maloney and 
Sobel, 2004, Sobel et al., 2010). Further research is required to determine whether these various 
theories can be unified and/or modified. 



 

Figure 8.1: The MJO lifecycle in terms of eight phases from its development of over the Indian Ocean 
(top), strengthening and eastward propagation over the maritime continent (middle), until it crosses 
the dateline to rapidly propagate around the rest of equator (bottom). OLR anomalies in Wm-2 are 
shaded; negative values indicate atmospheric deep convection. Vectors show 10m wind anomalies. 
The eight phases are computed by composite analysis of the multi-variate MJO index from Wheeler 
and Hendon (2004), and using NOAA OLR data and ERA-interim winds. (Figure created by Sunil 
Pariyar.) 

8.2.2  Numerical simulation and prediction of the MJO 

The majority of numerical models fail to simulate the basic characteristics of the MJO (DeMott et al., 
2015, Jiang et al., 2015; Ahn et al., 2017). In particular, models underestimate variance in the 30-90 
day timescale and tend to simulate too much variability on longer timescales. They also generally fail 
to simulate eastward propagation of MJO like disturbances or obtain eastward propagations that are 



too fast. In addition, models that poorly simulate the MJO tend not simulate the low-level convergence 
that occurs to the east of deep atmospheric convection.  

Despite these model deficiencies, the skill in predicting the MJO has improved dramatically such that 
its evolution can be now predicted up to four weeks in advance (Lee et al., 2016, Neena et al., 2014, 
Vitart, 2017). In particular, re-forecasts from ten operational prediction systems in the S2S database 
show that the European Centre for Medium Range Weather Forecast (ECMWF) system can reasonably 
predict the MJO evolution at around 34-days lead, while five other systems are skilful out to about 20-
days lead (Figure 8.2) (Vitart and Robertson, 2018; Vitart, 2017). This is a dramatic improvement 
compared to systems from two decades before that had skill of less than 2 weeks (e.g., Hendon et al., 
2000), well below that of empirical based forecasts that achieve skill out to about 20 days (Waliser et 
al., 1999). It is also a marked improvement compared to a set of ~10 year older systems from the 
Intraseasonal Variability Hindcast Experiment (ISVHE) that were skilful in predicting the MJO 15-20 
days in advance during austral summer (Neena et al., 2014). Further improvement is expected, as 
perfect model studies indicate the MJO can be skilfully forecast 40-45 days in advance (Neena et al., 
2014, Rashid et al., 2011, Xiang et al., 2015). 

Skill in predicting the MJO may depend on the season, phase and amplitude of the MJO. In particular, 
skill tends to be higher in austral summer, when the MJO is most active; however the difference in 
skill among seasons varies among models, and the currently most skilful model has even higher skill 
scores in boreal summer (Vitart, 2017, Rashid et al., 2011). Perfect predictability analysis indicates that 
forecasts with a stronger initial MJO signal are more skilful (by ~10 days) than those started from 
weaker events (Neena et al., 2014), but differences are less clear when predicting observed variability 
(Rashid et al., 2011, Xiang et al., 2015). There is evidence of skill dependence on the initial and target 
MJO phase (Rashid et al., 2011, Xiang et al., 2015, Neena et al., 2014), and also on ENSO phase (Lee et 
al., 2016). Further work is however required to understand the dependence of MJO skill on such 
factors. 

A better understanding of the causes of differences in skill among forecast systems can be useful to 
improve MJO forecast skill (Figure 8.2). The main factors that contribute to skilful climate prediction 
are advanced models and accurate observations, together with appropriate techniques to initialize 
ensemble forecasts. In the case of MJO prediction, the primary source of poor skill currently appears 
to be related to model errors in simulating the MJO. Predictions systematically underestimate the MJO 
amplitude by up to 50% within the first 10 days, and show large discrepancies in terms of eastward 
propagation speed (Vitart, 2017). Analysis of re-forecasts performed routinely between 2002-2012 
with the ECMWF system showed that the skill in predicting the MJO improved at about 1 day per year 
of model development (Vitart, 2014), such that the ECMWF system is now far superior to other 
operational systems. The skill improvement of this system was mainly attributed to improvements in 
MJO simulation associated with the parameterisation of atmospheric convection. This finding is 
further supported by prediction case-studies of selected MJO events (Klingaman et al., 2015, 
Klingaman and Woolnough, 2014). Improving the representation of ocean-atmosphere interaction 
may also enhance skill (Marshall et al., 2016). Apart from model improvement, MJO skill is enhanced 
by increasing ensemble size through better sampling of unpredictable variability (Neena et al., 2014, 
Vitart, 2017). Better initialisation approaches could also lead to better skill, but this aspects has been 
hardly investigated and simple nudging techniques can give good results (Xiang et al., 2015). 



 

	

Figure 8.2: Current skill in forecasting the MJO from 10 operational prediction systems. The forecast 
lead time (days) when the MJO bivariate correlation drops to 0.6 (orange bars) and to 0.5 (yellow bars) 
is shown. The skill is computed over the common 1999-2010 re-forecast period, as available from the 
S2S database (Vitart et al., 2016). The 10% confidence interval for the bivariate correlation of 0.6 is 
shown by black vertical bar, as computed by a 10,000 re-sampling bootstrap. (From Figure 1 in Vitart 
and Robertson, 2018). 

Not only is there now skill in predicting the MJO, but it is now possible to skilfully predict some of its 
important climatic impacts several weeks in advance, including tropical cyclone activity and extra-
tropical weather. The MJO impact on tropical cyclones discussed above is likely most predictable over 
the Southern Hemisphere in austral summer, as the MJO is strongest and most predictable in this 
season. We highlight two published examples of successful sub-seasonal tropical cyclone forecasts. 
First, on the January 13th, 2019 the ECMWF system forecast 20-30% increased chance of landfalling 
tropical cyclones on Queensland, Australia from 26th January to 4th of February (i.e., around 3 weeks 
later); tropical cyclone Yasi made landfall on northern Queensland on February 3rd, causing an 
estimated AU$3.5 billion in damage (Vitart and Robertson, 2018). Secondly, operational forecasts 
systems predicted that Vanuatu was at increased risk of a tropical cyclone hit 2-3 weeks in advance of 
tropical cyclone Pam devastating Vanuatu on March 13th 2015 (Vitart, 2017). 

Improved MJO driven teleconnections to the Northern Hemisphere have resulted in increased skill in 
predicting winter and summer weather over Eurasia. For example, several operational systems 
predicted high probability for extreme temperatures over Russia from three weeks before the summer 
2010 Russian heat wave (Vitart and Robertson, 2018). Also, many systems capture the observed 
teleconnection to the Northern Hemisphere in boreal winter; however, they tend to overestimate the 
signals in the Pacific sector, and underestimate the connection to the North Atlantic – European sector 
(Vitart, 2017; Vitart et al., 2016); this teleconnection has been shown to increase skill scores in 
predicting the North Atlantic Oscillation on intra-seasonal timescales (Lin et al., 2010). 



The development of multi-model probabilistic sub-seasonal forecasts is justified, as multi-model 
approaches can increase forecast reliability through sampling model uncertainties (e.g., Palmer et al., 
2004). This has been investigated using the WWRP/WCRP Sub-seasonal to seasonal prediction project 
(S2S) data base and the extended logistic regression (ELR) approach (Vigaud et al., 2017a, Vigaud et 
al., 2018). ELR is a more robust means of computing probabilistic information from small ensembles 
than directly counting the number of members exceeding a given threshold. It allows for 
straightforward calibration and combination of probabilistic forecasts from multiple models, through 
averaging of the resulting forecast probabilities from individual models. This approach was applied to 
sub-monthly forecasts of rainfall from three ensemble prediction systems for the period 1999-2010: 
ECMWF, National Centers for Environmental Prediction (NCEP) and the China Meteorological 
Administration (CMA); in particular forecasts of tercile category were assessed for January-March and 
July-September over North America (Vigaud et al., 2017a), and September to April for East Africa and 
Western Asia (Vigaud et al., 2018). Separately calibrating each model produces reliable probabilistic 
for week-1, but not for weeks 2-4. However, the multi-model probabilistic forecasts have some 
reliability out to week 4 (Figure 8.3), through removing negative skill scores present in individual 
models. 

(a) Single model system 

 

(b) Multi-model system 

 

Figure 8.3: Reliability diagrams for week 1 to 4 forecast of the below-normal rainfall category in JFM 
over continental North America for (a) single model system and (b) multi-model system. The 
ECMWF system is shown in (a) while the multi-model in (b) includes the ECMWF, NCEP, and CMA 
systems. In both cases ELR is used to calibrate the forecasts. The reliability diagram compares the 
forecast probabilities to the observed frequency of the event. A reliable forecast system follows the 
diagonal line. (From Figures 3 and 4 in Vigaud et al., 2017a). 

 

The skill in such sub-seasonal rainfall predictions is related to skill in forecasting the MJO as well as 
ENSO. Figure 8.4 illustrates an example of the probabilistic prediction skill for week 2+3 rainfall (15-28 
days ahead) averaged over the tropical Atlantic region (15°S-15°N, 0-70°W), for forecasts initialized 
during various phases of ENSO and MJO in austral summer (Dec-Feb). Contrasting mean ranked 
probability skill score (RPSS) values suggest that skill is significantly enhanced for starts during La Niña.  
The asymmetry between ENSO phases might suggest nonlinearities in skill relationships to ENSO, but 
only a small 11-year 1999–2010 sample of years was used here that contained no strong El Niño 
events. However, the apparent non-linearity could be partly explained by El Niño induced droughts 

FIG. 3. Reliability diagrams for the below-normal, normal, and above-normal categories from ECMWF forecasts with starts in
(a)–(c) JFM and (d)–(f) JAS with color coding based on week leads. The frequencies with which each category is forecasted are indicated as
bins centered on an integer multiple of 0.10 in histograms plotted under the respective tercile category diagram. The bins are projected
along the same x axis (forecast probabilities from 0 to 1) and scaled from 0% to 100%. Note that only bins with more than 1% of the total
number of forecasts in each category are plotted in the relative diagrams for each lead. Diagrams are computed for all points over
continental North America between 208 and 508N latitudes.
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FIG. 4. Reliability diagrams for the below- and above-normal categories from the MME of ECMWF,
NCEP, and CMA forecasts with starts in (a),(b) JFM and (c),(d) JAS with color coding based on week leads.
The frequencies with which each category is forecasted are indicated as bins centered on an integermultiple of
0.10 in histograms plotted under the respective tercile category diagram.The bins are projected along the same
x axis (forecast probabilities from 0 to 1) and scaled from0% to 100%.Note that only bins withmore than 1%
of the total number of forecasts in each category are plotted in the relative diagrams for each lead. Diagrams
are computed for all points over continental North America between 208 and 508N latitudes.
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over North East Brazil translating into less skill while predicting low rainfall amounts compared to La 
Niña (Vigaud et al., 2017b). 

Maximum skill is found during MJO phase 7, when convection is enhanced over the Western Pacific. 
MJO-induced latent heating anomalies in the warm pool could remotely increase convection over the 
tropical Atlantic through an equatorial wave mechanism similar to the boreal summer season, when 
these are known to increase convection over the neighbouring North American and West African 
monsoon regions (Lavender and Matthews, 2009; Matthews, 2004), and which could thus also lead to 
more skillful predictions over the tropical Atlantic in winter.  

(a) ENSO 

 

(b) MJO 

 

Figure 8.4: Mean multimodel Week 3–4 Ranked Probability Skill Score 
(RPSS) averaged over 15S-15N and 0-70W for forecasts initialized during 
observed phases of Niño3.4 index (a) and MJO phases (b) measured by 
the RMM1 and RMM2 indices of Wheeler and Hendon (2004). Dashed 
lines correspond to the 10% level of significance using Monte Carlo 
simulations. ENSO phases are defined ad: neutral when the absolute 
value of Niño3.4 is smaller than 0.5, and El Niño and La Niña for Niño3.4 
greater than 0.5 and lower than −0.5 respectively. The forecasts used 
are described in (Vigaud et al., 2018). (Figure created by author.) 

 

8.2.3 Interactions between MJO and ENSO 

We next discuss the potential of sub-seasonal forecasts for enhancing seasonal forecasts of ENSO. 
Although ENSO predictions are skilful up to a year in advance, there is a spring predictability barrier 
that causes a notably drop in prediction skill as forecasts cross boreal spring (Duan and Wei, 2013, 
Webster, 1995) (Sec. 8.3.1). Key factors causing the spring predictability barrier are the greater 
influence of atmospheric noise and weaker coupled ocean-atmosphere interaction during boreal 
spring (ibid).  



In particular, westerly wind bursts on sub-monthly timescales that are often related to the MJO can 
determine whether an El Niño event will develop into a strong event or will even develop at all. A 
prime example of this are the evolution of conditions in the Pacific during 2014 and 2015 (Levine and 
McPhaden, 2016; Hu and Fedorov, 2016). Operational systems forecasts made during the early part 
of 2014 predicted the occurrence of a major El Niño event on the basis of the build-up of ocean heat 
content in the equatorial Pacific. However, no El Niño event developed because instead of westerly 
wind bursts there was a strong easterly wind burst that terminated the development of the event. In 
contrast, in 2015 there was a series of westerly wind bursts linked to MJO activity that influenced the 
rapid development of one of the strongest events of the last few decades. The strong 1997/98 El Niño 
event is another example of an event influenced by the MJO and one that was poorly predicted 
(McPhaden, 1999). 

Improved sub-seasonal forecasts of the MJO in boreal spring could enhance prediction of El Niño 
events because of following factors. Firstly MJO variability together with equatorial upper ocean heat 
content can explain more 60% of the peak SST anomalies at 2-3 seasons lead (McPhaden et al., 2006). 
Secondly, the relation between MJO and ENSO is strongest during boreal spring, as this is when MJO 
is most symmetric about the equator and most sensitive to SST at the warm pool edge (Hendon et al., 
2007). Thirdly, the feedback involving the MJO, westerly wind bursts, and SST that occur at the 
western edge of the warm pool in the Pacific can further enhance predictability (Lengaigne et al., 2004, 
Levine et al., 2016; Marshall et al., 2016). These relations appear less important for La Niña events and 
may explain the greater strength of El Niño events (Levine et al., 2016). Further research on these 
topics is required to realise any potential gains in ENSO prediction skill from sub-seasonal climate 
prediction. 

8.3  Seasonal predictability in the tropics 

The ability to predict climate on seasonal timescales arises from the interaction of the atmosphere 
with the slower varying components of the climate system. As for sub-seasonal prediction, seasonal 
prediction is an initial value and boundary value problem. However, now the initial state of the slower 
varying components of the climate system becomes more important, rather than that of the 
atmosphere. These slower varying components include the ocean, sea ice, and land-surface 
conditions. Accounting for external forcing on the climate system is also necessary during this era of 
rapid global warming (Doblas-Reyes et al., 2006). There are several recent reviews of seasonal 
prediction (Doblas-Reyes et al., 2013b; Luo et al., 2015; Kirtman et al., 2014; Barnston et al., 2017; 
Becker et al., 2014), and thus here we only provide a brief overview of the status of seasonal 
prediction. We instead focus more on the potential of inter-basin interactions to enhance seasonal 
prediction. 

8.3.1 Seasonal prediction of the Tropical Pacific 

On seasonal timescales ENSO is the primary source of predictability. Ocean-atmosphere interaction is 
of critical importance for ENSO  (Timmermann et al., 2018), and in general for climate predictability in 
the tropics (Chang et al., 2006b) (Chapters 1-5). In this respect SST is a key variable, as it is used to 
characterize patterns of climate variability that can drive large-scale atmospheric teleconnections, 
influencing climate over the globe (Chapter 2). Therefore, we illustrate the current level of seasonal 
prediction skill in terms of the anomaly correlation skill in predicting SST at six- and twelve-months 



lead; using other metrics would not change the key points summarized below. We present the average 
skill of the North American Multimodel Ensemble (NMME), considering forecasts started February, 
May, August and November of each of year from 1985-2010 (Kirtman et al., 2014). The NNME brings 
together multiple state-of-the-art models in order to increase forecast reliability, through accounting 
for model uncertainties (Palmer et al., 2004).  

Before summarizing SST prediction skill, we discuss the skill in predicting societally more relevant 
quantities. Considering all four seasons, six-month lead prediction of surface temperature is skilful 
over the tropical oceans and partly over equatorial Africa and South America (Figure 8.5a); while 
three-month lead prediction of rainfall is essentially only skilful over the tropical Pacific (Figure 8.5b). 
Such low skill in seasonal prediction of rainfall and surface temperature over continental regions is 
well known (Weisheimer and Palmer, 2014). There is, however, skill in predicting rainfall over tropical 
land regions in specific seasons. In particular, there is a high level of predictability during the rainy 
season over northeast Brazil (boreal spring; Folland et al., 2001; Coelho et al., 2006), West Africa 
(boreal summer; Suárez-Moreno and Rodríguez-Fonseca, 2015; Philippon et al., 2010), and East Africa 
(June - September; Gleixner et al., 2017) at more than one season lead. There is also skill in predicting 
changes in some climatic extremes; for example, seasonal predictions of Atlantic hurricane numbers 
show relatively high skill, because key environmental factors can be predicted (Camargo et al., 2007). 

 

 

Figure 8.5: Current seasonal prediction skill of state-of-the-art system: anomaly correlation skill in 
predicting (a) 2-m temperature at 6-months lead, (b) precipitation at 3-months lead, (c, d) SST at 6- 
and 12-months lead. Skill is computed as the average over four start dates and 13 models from the 
North American Multimodel Ensemble (Kirtman et al., 2014) for the period 1985-2010. Only 



correlations significantly different from zero at the 95% level are shaded; stippled shaded areas 
indicate regions were persistence skill beats model skill. (e, f) Skill of the multi-model mean (thick 
black), individual models (thin grey lines), and persistence (dashed lines) in predicting SST averaged 
over the Nino3.4 (5°N-5°S, 170°W-120°W) region for predictions started February 1st and May 1st. 
Figure is based on the model output used in Wang et al. (2019). (Figure created by author) 

 

SST prediction skill at six-month lead is greatest over the central and eastern equatorial Pacific, where 
anomaly correlations exceed 0.6 over most of the region and are above 0.7 in large regions (Figure 
8.5c). This skill is derived from the ability of models to predict ENSO. Prediction skill drops to around 
0.4 over the equatorial Pacific by 12 months lead (Figure 8.5d). The greatest drop in ENSO prediction 
skill occurs as the cross boreal spring is crossed – the spring predictability barrier. In particular, 
predictions of the Nino3.4 SST index (a common ENSO index) started February 1st of all 13 models 
exhibit a sharp drop in skill around April, while all models maintain high level of skill for predictions 
started May 1st (Figure 8.5e,f).  A lower signal to noise in boreal spring is a key cause of the spring 
barrier (Sec. 8.2.3). The drop-in skill is particularly obvious in the persistence statistical forecasts 
commonly used as a bench mark. Dynamical forecasts are less effected by the spring predictability 
barrier than statistical forecasts, likely because of more efficient use of ocean data (McPhaden, 2003). 

Factors limiting climate prediction include model error, inaccuracies in initial conditions, and intrinsic 
sensitivity to initial conditions associated with non-linearities in the climate system. There is evidence 
that our ability to predict ENSO is now mainly limited by the third factor, and thus the theoretical 
predictability limit for ENSO may be around 12 months (Newman and Sardeshmukh, 2017). Climate 
models can now simulate key ENSO characteristics reasonably well (Bellenger et al., 2014). There is a 
well-established observational network in the tropical Pacific has been designed to support seasonal 
prediction (Chapter 1; Smith et al., 2019). Furthermore, prediction systems using data assimilation 
approaches and simpler analogue approaches achieve similar levels of skill, indicating that data-model 
inconsistencies are not limiting ENSO prediction (Ding et al., 2018). Lastly, the skill of state-of-the-art 
prediction systems is close to the theoretical limit of skill of linear inverse models, which represent 
the climate as a stochastic forced linear-dynamical system (Newman and Sardeshmukh, 2017).   

However, there are also strong reasons to expect that ENSO predictability extends beyond a year. 
Model exhibit significant errors in the tropical Pacific, and most of the important processes and 
feedbacks for ENSO are biased (Bellenger et al. 2014, Vijayeta and Dommenget 2018). Furthermore, 
there are several studies that indicate that strong ENSO events may predicted up to two years in 
advance (Chen et al., 2004, Luo et al., 2008b). To date, analysis of ENSO predictability has largely 
focused on the dynamics in the tropical Pacific, involving the coupling between upper ocean heat 
content, SST, and the overlying atmospheric circulation (Figure 8.6). However, as we will discuss 
further below, the interaction among basins can extend ENSO predictability beyond a year. 

 

 

 

  



 

 

 

Figure 8.6: Schematic of feedback mechanisms and interactions underlying tropical climate variability. 
The primary driver of climate variability in the tropical Pacific including ENSO is ocean-atmosphere 
interaction within the basin involving slow ocean dynamics and rapid atmospheric response to SST 
anomalies. The impact of tropical Pacific climate variability extends to the tropical Atlantic and Indian 
Oceans, where it perturbs the ocean-atmosphere interaction within these basins. At the same time 
tropical Atlantic and Indian Ocean climate variability can impact ocean-atmosphere interaction in the 
tropical Pacific; thus, this constitutes a delayed feedback loop involving ocean-atmosphere interaction 
in remote basins that can alter the predictability of ENSO. External atmospheric noise can further 
perturb the coupled dynamics. Basin interactions involve atmospheric and oceanic teleconnections. 
Z20 refers to thermocline depth and U to surface currents. (Figure created by author.) 

8.3.2  Seasonal predictability in the tropical Indian and Atlantic Oceans – ENSO impacts and 
local processes  

Seasonal predictions also exhibit significant skill in the Indian and Atlantic Oceans, although skill is 
generally lower than in the Pacific (Figure 8.5 c,d). SST anomalies can be predicted over large parts of 
the Indian Ocean, with anomaly correlation skill exceeding 0.4 over the central and south western 
Indian Ocean at six-months lead and 0.3 over the same regions at 12-months lead. Over the tropical 
Atlantic, skill is primarily confined to the north tropical Atlantic, where anomaly correlation skill 
exceeds 0.5 at six-months lead and 0.4 at 12-months lead. 

Thermodynamic interactions contribute relatively more to seasonal prediction skill in the tropical 
Indian and Atlantic Oceans than in the Pacific. In particular, there are pronounced long-term trends in 
SST that are related to global warming in both the tropical Indian and Atlantic Oceans (Nnamchi et al., 
2016). For example, considering the reforecast period 1985-2010, around half of the correlation skill 



at six months lead and essentially all of the skill at 12 months lead in the north tropical Atlantic is 
attributed to the warming trend; in the Indian Ocean, however, the trend doesn’t contribute to 
significant skill at seasonal timescales during this period (Wang et al., 2019). 

Seasonal predictability in the tropical Indian and Atlantic Oceans also results from both local climate 
dynamics and remote forcing (Figure 8.6) and depends strongly on the season. Although a host of SST 
patterns of variability have been defined, the predictability of the tropical Indian Ocean is arguably 
best characterized by three SST patterns: the Indian Ocean Basin (IOB) mode; the Indian Ocean Dipole 
(IOD) mode; and a south-western Indian Ocean (SOWI) pattern (See Chapters 1 and 5). The IOD is a 
zonal asymmetric pattern of variability in SST, upper ocean heat content, and rainfall that occurs 
during September to November (Saji et al., 1999; Webster et al., 1999). IOD events generally co-occur 
with ENSO events, but can also occur independently (Meyers et al., 2007). Although the IOD pattern 
is observed, its statistical and physical interpretation have been questioned (Dommenget and Latif, 
2002, Hannachi and Dommenget, 2009; Dommenget, 2011). The IOB is characterized by basin-wide 
SST warming (cooling) and increased (decreased) precipitation. It is primarily caused by ENSO induced 
radiative and turbulent surface heat fluxes, with SST anomalies peaking in late boreal winter and early 
spring after an ENSO event (Yang et al., 2007; Klein et al., 1999). The SWIO SST pattern is connected 
to a regional thermocline dome and largely driven by oceanic Rossby wave-induced subsurface 
temperature variations (Xie et al., 2002). ENSO atmospheric teleconnections are the dominant forcing 
for these Rossby waves and the SST pattern, which in turn significantly impacts the atmosphere.  

Prediction skill in the Indian Ocean can be explained in terms of these SST patterns (Figure 8.5). In 
particular, skilful prediction of central Indian Ocean SST anomalies at six-months lead is connected to 
skill in predicting the IOB through skill in predicting ENSO and its thermodynamic impacts over the 
region (Zhu et al., 2015, Annamalai et al., 2003). Whereas skilful prediction of SWIO SST anomalies at 
six-months lead is connected to skill in predicting ENSO dynamical impacts and to accurate 
initialisation of upper ocean heat content over the Indian Ocean. IOD events can be generally 
predicted a season in advance, while some stronger events can be predicted at longer lead times (Luo 
et al., 2007; Luo et al., 2008a; Shi et al., 2012). Accurate initialisation of the upper ocean heat content 
in the Indian Ocean can contribute to enhance IOD prediction (Doi et al., 2017, Song et al., 2008). 
Although ENSO is the main source of IOD predictability, IOD events can be skilfully predicted in neutral 
ENSO years (Luo et al., 2008a). 

Prediction skill in the tropical Atlantic can be related to the two most prominent patterns of tropical 
Atlantic SST interannual variability: the Atlantic meridional mode (AMM) and the Atlantic Niño  (See 
Chapters 1 and 4; Chang et al., 2006b). The AMM represents asymmetric SST variations about the 
equator, associated with meridional shifts of the Intertropical Convergence Zone, and is most 
prominent in March to May (Sutton et al., 2000; Ruiz-Barradas et al., 2000; Servain et al., 1999). The 
wind evaporative SST (WES) feedback underlies the generation of the largely independent SST 
variations north and south of the equator (Xie and Philander; 1994, Ruiz-Barradas et al., 2003; 
Dommenget and Latif, 2000; Handoh et al., 2006). The Atlantic Niño (Niña) is a pattern of variability in 
SST, upper ocean heat content, winds, and rainfall that peaks in boreal summer and has similarities to 
El Niño (La Niña) (Chang et al., 2006b, Lübbecke et al., 2018) . A positive Bjerknes feedback and delayed 
negative feedback involving upper ocean heat content appear most relevant for Atlantic Niño 
variability, but they explain much less variance and have stronger seasonality than in the Pacific 



(Zebiak, 1993, Keenlyside and Latif, 2007, Ding et al., 2010, Ruiz-Barradas et al., 2000); there also exist 
other mechanisms for this variability (Lübbecke et al., 2018).  

As for the Indian Ocean, current skill in predicting tropical Atlantic SST results mainly from ENSO 
teleconnections. This is the case for predictions of north tropical Atlantic SST anomalies at six-months 
lead (Figure 8.5c; Chang et al., 2003). In particular, El Niño (La Niña) events cause the trade winds to 
weaken (strengthen) over the north tropical Atlantic in boreal winter, driving anomalous warm (cold) 
SST that peak in the subsequent spring (Alexander et al., 2002). While this is main source of 
predictability for the AMM, ocean dynamics in the Guinea Dome may enhance AMM predictability 
(Doi et al., 2010). The local AMM conditions can act to reinforce or cancel the remote ENSO forcing, 
and thus provide conditional predictability (Giannini et al., 2004; Barreiro et al., 2005). 

The poor skill in predicting Atlantic Niño variability leads to low prediction skill in the south tropical 
Atlantic (Figure 8.5c). In particular, anomaly correlation skill for predicting the Atlantic Niño variability 
from February 1st drops rapidly to around 0.4 in May to July in the best models, hardly beating 
persistence skill (Richter et al., 2018). At best, models are only able to skilfully predict Atlantic Niño 
variability from May 1st (Prodhomme et al., 2016). Several factors may explain the low skill in this 
region: a dominant role of internal atmospheric dynamics (Richter et al., 2014, Crespo et al., 2019); 
the existence of multiple mechanisms of comparable importance to the Bjerknes feedbacks (Nnamchi 
et al., 2015; Richter et al., 2013; Foltz and McPhaden, 2010; Brandt et al., 2011), and large systematic 
model errors (Richter, 2015, Dippe et al., 2019) that affect the positive Bjerknes Feedback and 
simulated variability (Deppenmeier et al., 2016; Nnamchi et al., 2015; Jouanno et al., 2017). However, 
perhaps the most important factor is the inconsistent impact of ENSO on the equatorial Atlantic that 
results from the competing dynamic and thermodynamic affects (Chang et al., 2006a, Lübbecke and 
McPhaden, 2012). 

8.3.3  Tropical Indian and Atlantic Ocean enhancing ENSO prediction  

The tropical Atlantic and Indian Ocean do not respond passively to ENSO, but feedback on it modifying 
its dynamics and potentially enhancing its predictability (Figure 8.6; See Chapters 4 and 5, and Cai et 
al. 2019). As summarized above, El Niño events typically cause warming of the SWIO in late boreal 
summer, the development of an IOD event in boreal autumn (Figure 8.7c), and an IOB warming that 
persists into the following boreal spring (Xie et al., 2002; Du et al., 2009). The associated anomalous 
diabatic heating drives a westward shift in the Indo-Pacific Walker Circulation and a strengthening of 
the anti-cyclone over the North Western Pacific in boreal spring (Xie et al., 2002; Annamalai et al., 
2010; Luo et al., 2010; Yang et al., 2007). This leads to an enhancement of the easterly winds over the 
western equatorial Pacific and a more rapid demise of the El Niño event (Kug and Kang, 2006; 
Dommenget et al., 2006). An oceanic pathway from the Indian Ocean is also able to promote the 
transition to La Niña following an IOD event (Zhou et al., 2015). The warming of the north tropical 
Atlantic in the boreal spring following an El Niño event likewise causes easterly wind anomalies over 
the central Pacific, further contributing to the demise of the event (Dommenget et al., 2006; Ham et 
al., 2013b). Thus, both the Indian Ocean and tropical Atlantic can act like capacitors storing energy 
and then releasing it (Xie et al., 2009; Wang et al., 2017). 

Climate model experiments and conceptual studies indicate that this two-way interactions of the 
tropical Pacific with the other two tropical basins leads to ENSO variability with a more biennial 



character (Kug and Kang, 2006; Dommenget et al., 2006; Jansen et al., 2009). Furthermore, these 
feedbacks act in a similar manner to the oceanic feedbacks in the Pacific to produce a stronger delayed 
negative feedback; and there by enhance the predictability of ENSO (Dommenget and Yu, 2017). This 
is radically different to the traditional Pacific centric view of ENSO (Figure 8.6). 

The tropical Atlantic and Indian Ocean can further enhance ENSO predictability through their own 
intrinsic behaviour (Figure 8.6). In particular, conditions resembling a negative IOD event tend to 
precede El Niño events by 5 seasons (Figure 8.7a). As described above, this SST pattern can drive 
westerly wind anomalies in the western Pacific in the following spring, favouring the development of 
an El Niño event (Kug and Kang, 2006). Consistently, accounting for IOD variability enables skilful 
statistical predictions of ENSO events 14 months in advance, through providing additional information 
during the critical boreal spring period (Izumo et al., 2010). Likewise, experiments with fully coupled 
climate models show that Indian Ocean conditions prior to the El Niño onset affect El Niño prediction 
(Luo et al., 2010; Zhou et al., 2019); in particular, constraining SST in the Indian Ocean to the observed 
climatology significantly deteriorated the predictions of the 1994, 1997/98 and 2006/7 events for 
forecasts initiated prior to the boreal spring. (Analogous experiments constraining Pacific Ocean SST 
to climatology show skill degradation in prediction of major IOD events that co-occur with El Niño, 
supporting the importance of two-way basin interactions). Other experiments support a significant 
impact of the Indian Ocean initial conditions for ENSO prediction, and further indicate the importance 
of oceanic teleconnections (Zhou et al., 2019). However, not all studies show that Indian Ocean 
variability can affect ENSO prediction (Jansen et al., 2009, Frauen and Dommenget, 2012). 

 

Figure 8.7: Lag correlation of November-January Nino3.4 SST with tropical SST in proceeding seasons 
from (left) observations and (right) an ensemble of (43 CMIP5) climate model simulations. Shown are 
correlations with (top) September-November five seasons prior, (middle) March-May three seasons 
prior, and (bottom) September-November one seasons prior. Observations are for the period 1980 to 
2017; and stippling on the left panels indicates significant correlations at the 90% confidence level 
based on a Student’s t test. Stippling on right panels indicates regions where 66% of models agree 
with the sign of the ensemble mean. (Adapted from Figure 4 in Cai et al. 2019) 

Observations and model experiments indicate that Atlantic Niño variability has significantly impacted 
ENSO variations since the 1970’s, through perturbing the Walker Circulation, with cold conditions in 



the Atlantic in boreal spring to summer preceding El Niño events by 2-3 seasons (Figure 8.7b, Chapter 
4; Rodriguez-Fonseca et al., 2009; Ding et al., 2012). Being weakly influenced by ENSO (Sec. 8.3.2), 
Atlantic Niño variability is an important source of additional ENSO prediction skill. Statistical 
predictions, climate models with simplified representations of ENSO, and predictions with a complex 
climate model all indicate that accounting for Atlantic Niño variability can significantly increase ENSO 
prediction skill (Jansen et al., 2009; Frauen and Dommenget, 2012; Keenlyside et al., 2013). In 
particular, anomaly correlation skill in predicting October to December SST from February 1st is 
increased by around 0.2 when the climate model predictions include the observed evolution of 
equatorial Atlantic SST (Figure 8.8). The skill increase is largely because of the better predictions of the 
major 1982/83 and 1997/98 El Niño events, achieved through more realistic westerly wind anomalies 
over the central Pacific during boreal spring (Keenlyside et al., 2013). 

In summary, there is growing evidence that inter-basin interactions can enhance ENSO prediction. 
However, these interactions are not well reproduced by climate models (Figure 8.7 d-f) (Luo et al. 
2018). Another complication is that the impact of the Atlantic Niño on ENSO has varied and it was 
weak during middle of the 20th century (Martín-Rey et al., 2014); during these weak interaction periods 
equatorial Atlantic SST variations appear not to enhance ENSO prediction skill (Martín-Rey et al., 
2015). Finally, promising results show that extended La Niña conditions can be predict 2-years in 
advance through accounting for both the Atlantic and Indian Ocean warming (Luo et al., 2017); 
nevertheless, more work is required to understand how inter-basin interactions might affect the 
predictability of the La Niña, as well as of different flavours of El Niño (Ham et al., 2013a; Yu et al., 
2014).  

 

Fig 8.8: Anomaly correlation skill for October–December average SST for predictions starting on 1st 
February performed with (A) a fully coupled climate model and (B) the same model but with Atlantic 
SST restored to observations. The prediction period is 1980–2005; All predictions consist of nine-
member ensemble members. Shaded positive values are significantly different from zero at 5% level 
according to a one-sided Student’s t-test. Shaded non-stippled regions in (B) indicate where including 
observed Atlantic SST leads to a significant increase in skill at the 5% level, according to a one-sided t-
test applied to Fisher-Z transformed values. (Adapted from Figure 1 in Keenlyside et al., 2013).  



8.3.4 ENSO-Indian Ocean interaction as an origin of predictability in Asia 

We now present an important example of inter-basin interactions enhancing climate predictability 
over land. El Niño is significantly correlated with climate anomalies in subsequent boreal summer in 
southern, southeastern and eastern Asia, despite equatorial Pacific SST anomalies having dissipated 
(Fig. 8.9; Huang et al., 2004). The El Niño impact is manifest through the Pacific-Japan pattern, with a 
surface anomalous anticyclone in the tropical Northwestern Pacific that extends to the northern 
Indian Ocean and an anomalous low-level cyclone in the midlatitude Northwestern Pacific (Fig. 8.9a; 
Nitta, 1987, Kosaka and Nakamura, 2006); The Pacific Japan pattern affects temperature 
(Wakabayashi and Kawamura, 2004, Hu et al., 2012), precipitation (Huang and Sun, 1992, Kosaka et 
al., 2011), and tropical cyclone activity (Choi et al., 2010, Wang et al., 2013) in Southeast and East Asia.  

The lack of concurrent equatorial Pacific SST anomalies in summer indicates that the memory of 
preceding ENSO must persist elsewhere. One source of memory is the WES feedback that cause the 
persistence of SST and precipitation patterns over Northwestern Pacific and their extension into the 
northern Indian Ocean (Wang et al., 2000, Wang et al., 2003, Wang et al., 2005). The Indian Ocean 
capacitor effect is another source of memory. As described above, El Niño causes warming of the 
Indian Ocean that persists into the following boreal spring, and the teleconnections to this reinforce 
the anomalous anticyclone over the Northwestern Pacific (Xie et al., 2016). The interaction between 
these two sources of memory gives rise to an ocean-atmosphere coupled mode called the Indo-
western Pacific Ocean capacitor. In fact, this capacitor mode is a dominant mode of variability in a 
coupled model simulation where ENSO is artificially suppressed (Kosaka et al., 2013). 

 
Figure 8.9: Correlations of (a) SST (shading) and (b) tropospheric temperature (averaged over 850-250 
hPa, contours, interval is 0.1 starting from 0.3, with 0.4 and 0.7 contours thickened) and regressed 
anomalies of (a) SLP (contours, every 0.1 hPa) and (b) precipitation (shading) in June-July-August with 
respect to Niño3.4 SST in the preceding November-December-January. Stippling indicates confidence 
level > 95% for regressed anomalies under t-test. Based on JRA-55 (Kobayashi et al., 2015), CMAP (Xie 
and Arkin, 1997) and HadISST1.1 (Rayner et al., 2003) for 1979-2009. All data linearly detrended 
beforehand. (Figure created by author) 
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While the Indo-western Pacific Ocean capacitor mode can dominate without ENSO, ENSO is a leading 
driver of this capacitor mode in its decaying year. This provides seasonal predictability to South, 
Southeast and East Asian monsoon in summer (Kosaka et al., 2013, Takaya et al., 2017). Since ENSO is 
predictable after the spring prediction barrier, these mechanisms to relay the ENSO teleconnection 
and trigger the Indo-western Pacific Ocean capacitor mode can potentially provide predictability of 
the Asian summer monsoon five seasons in advance. 

8.4  Multi-Year predictability 

8.4.1 Decadal prediction 

Multi-year, near-term or decadal prediction is in a pre-operational phase, being a relatively new field 
with the first publications around 10 years ago (Smith et al., 2007; Keenlyside et al., 2008). Climate 
prediction on these timescales is primarily a boundary value problem, with skill arising from dynamics 
internal to the climate system and from the response to external radiative forcing (Meehl et al., 2009;  
Latif and Keenlyside, 2011). Skill from the former decreases with lead time and relies on accurate 
initialisation of the slower varying components of the climate system; while skill of the latter is 
primarily linked to greenhouse gas emissions and under present conditions increases with lead time 
(Keenlyside and Ba, 2010; Hawkins and Sutton, 2009). AMV and PDV are considered the primary 
sources of predictability on multi-year to decadal timescales. These patterns of climate variability and 
their global impacts have been described in Chapter 1. 

The near-term predictions performed for the Intergovernmental Panel on Climate Change (IPCC) 
assessment report five (AR5) has shown that SST variations over large parts of the global ocean can 
be predicted up to a decade in advance (Doblas-Reyes et al., 2013a). The current status in predicting 
SST five to nine years in advance is illustrated by results from the Community Earth System Model 
(CESM) decadal prediction large ensemble (Yeager et al., 2018). Skill is high in predicting SST over the 
entire Atlantic and Indian Oceans, and western and South Pacific; while skill is low over most of the 
tropical and North Pacific, and in the Southern Ocean (Figure 8.10 A).  The skill over the Indian Ocean 
and Western Pacific mainly arises from external forcing (Figure 8.10 B; Guemas et al., 2012). The low 
skill over large regions of the Pacific is associated with limited skill in predicting PDV (Doblas-Reyes et 
al., 2013a). Despite this low skill, the major 1970’s and 1990’s shifts in PDV may be predicted several 
years in advance (Ding et al., 2013; Meehl and Teng, 2012). Chapter 9 further discusses predictability 
of PDV.  

The skill in predicting Atlantic SST results mainly from external radiative forcing (Ting et al., 2009, 
Tokinaga and Xie, 2011; Booth et al., 2012). The subpolar North Atlantic is an exception: here skill is 
mainly due to the initializing the ocean (Figure 8.10B; Yeager and Robson, 2017). Although external 
forcing is the dominate source of skill in subtropical North Atlantic, teleconnections from the subpolar 
North Atlantic can enhance skill over this region (Smith et al., 2010). There are indications that 
initialization of upper ocean heat content in the subtropical South Atlantic is an important source of 
skill on decadal time scales (Figure 8.10 B). Other studies have shown that initialization can enhance 
skill in subsurface equatorial Atlantic (Corti et al., 2015). 

Skill in predicting AMV translates to skill in predicting societally relevant quantities, including rainfall 
over the Sahel (Sheen et al., 2017; Yeager et al., 2018; Mohino et al., 2016) and the number of Atlantic 



hurricanes (Smith et al., 2010, Caron et al., 2017). Skill in predicting Sahel rainfall is degraded by 
inaccurate prediction of both PDV and impacts of global warming (Mohino et al., 2016). The skilful 
prediction of Atlantic hurricane numbers is linked to skill in predicting the relative warming of the 
north tropical Atlantic compared to the rest of the tropical oceans that also contributes to changes in 
wind shear over the hurricane main development region (Smith et al., 2010). Large and systematic 
model biases in the tropical Atlantic (Richter, 2015) may degrade predictions of Atlantic hurricane 
activity, as these biases cause simulated hurricane activity to be much weaker than observed (Hsu et 
al., 2018). 

 

Figure 8.10 (A) Anomaly correlation skill in predicting SST for years 5 to 9 from the CESM Decadal 
Prediction Large Ensemble experiment that consist of 40 distinct member ensemble predictions 
started 1st of November every year from 1954 to 2008. (B) Anomaly correlation skill resulting from 
initialization of the ocean. Note the two-colour scales for (A) and (B). Boxes without a gray slash are 
significant at the 10% level; dots further indicate points whose p values pass a global (70°S–70°N) field 
significance test.  (From Figure 2 in Yeager et al., 2018, © American Meteorological Society. Used with 
permission.) 

8.4.2 Interbasin interactions as a source of Pacific decadal predictability 

There is great interest in improving prediction of PDV, because of its global impacts that include 
decadal modulation of global-mean surface temperature (Dai et al., 2015). In particular, PDV led to 
the so-called “hiatus” in surface global warming from the late 1990s to the early 2010s (See Chapter 
9; Kosaka and Xie, 2013; England et al., 2014). PDV may partly arise from the Atlantic through forcing 
of inter-basin interactions (McGregor et al., 2014; Li et al., 2015; Chikamoto et al., 2016; Kucharski et 



al., 2016; Sun et al., 2017) and the Indian Ocean (Luo et al., 2012; Mochizuki et al., 2016). This finding 
is brought about by pacemaker experiments with ocean-atmosphere coupled models where SST 
anomalies are forced to follow their observed evolutions in a specific domain. 

Thermodynamically, SST warming in a tropical ocean basin tends lead to warming of the entire tropical 
ocean surface through tropospheric warming that reduces surface heat release. Indeed, El Niño 
increases Atlantic and Indian Ocean SST especially in the decay seasons. However, Atlantic and Indian 
Ocean pacemaker experiments in the aforementioned studies show enhancements of inter-basin SST 
contrasts with the tropical eastern Pacific that must involve dynamical inter-basin coupling. Influence 
of both the Atlantic and Indian Ocean on the tropical Pacific is brought about by Walker Circulation 
changes associated with the Matsuno-Gill response (Chapter 2; Li et al., 2015; Luo et al., 2012). The 
associated strengthening of surface easterlies in the equatorial western Pacific induced by either 
Atlantic or Indian Ocean warming is amplified, through the Bjerknes feedback and induces SST cooling 
the equatorial Pacific, contributing to PDV (Figure 8.11a). Other elements of PDV, especially in the 
extra-tropical North Pacific may be inherently less predictable (Newman et al. 2016)   

Interaction between the tropical Pacific and Atlantic also gives rises to a trans-basin pattern of 
variability that is predictable on multi-year timescales (Chikamoto et al., 2015). This trans-basin 
variability is characterized by a dipole pattern in sea level pressure between the tropical Atlantic and 
Pacific, that is linked to a cross-basin SST gradient and a large-scale rainfall pattern (Figure 8.11). The 
trans-basin mode can be skilfully predicted up to three years in advance, through accurate 
initialisation of the ocean state. This leads to skill in predicting climate, droughts and wildfires over 
the southwestern USA on multi-year timescales (Chikamoto et al., 2017). Trans-basin mode impacts 
also extend to other regions such as Australia (Choudhury et al., 2017). 
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Figure 8.11: (a) Correlations of SST (shading), SLP (contours) and regressed surface wind velocity 
anomalies (arrows) with respect to the leading principal component of standardized SLP over 30ºS-
30ºN shown in (b). Based on 10-year low-pass filtered annual-mean data of NOAA 20th century 
reanalysis version 2c (Compo et al., 2011) and linearly detrended Extended Reconstructed SST version 
5 (Huang et al., 2017).   Figure 1 in Yosaka et al., 2018) 

8.5  Summary and outlook 

Climate services based on predictions of climate from weeks to several years into the future are being 
demanded by society, as well as public and private sector stakeholders. Predictions on these 
timescales are of immediate and practical interest and can be more easily integrated in decision 
making than long-term climate projections (Vaughan and Dessai, 2014; Street, 2015). We have 
documented the current status in predicting climate from sub-seasonal to multi-year timescales 
focusing on the tropics. Intra-seasonal forecasts have achieved skill in predicting climatic impacts, 
including tropical cyclones and extra-tropical weather, primarily through the improving MJO 
prediction (Vitart and Robertson, 2018). Seasonal prediction skill is mainly linked to ENSO and its 
teleconnection patterns, but skill is improving in predicting patterns of climate variability in the Indian 
and Atlantic Oceans. Although seasonal prediction skill is generally low over continents, there is useful 
skill in predicting temperature, rainfall and climatic extremes in some regions and seasons (Doblas-
Reyes et al., 2013b). On multi-year timescales there is skill in predicting AMV and SST over the Indian 
Ocean and Western Pacific, but relatively little skill in predicting PDV. Skill on multi-year timescales 
also extends to climate over some continental regions and climatic extremes, like rainfall over West 
Africa and Atlantic hurricane number (Kushnir et al., 2019). 

The better representation of interactions among tropical basins and among climatic phenomena 
provides exciting possibilities to enhance climate prediction. The ENSO spring predictability barrier 
may be partly ameliorated through the improving skill in predicting the MJO and in capturing the scale-
interaction between the MJO and ENSO. Inter-basin interactions can also help ameliorate the spring 
predictability barrier, as variability in both tropical Atlantic and Indian Oceans influences the winds 
over the Western Pacific during boreal spring; furthermore, the interaction among basins can lead to 
more predictable dynamics across the tropics as schematically shown in Figure 8.6. Inter-basin 
interactions may also improve skill in predicting PDV (Chikamoto et al., 2015). 

There are many challenges to overcome in order to fully realise prediction skill from these interactions. 
Firstly, there are key uncertainties in our understanding. For example, the strength of inter-basin 
interactions is not stationary, and it is necessary to understand how low-frequency climate variability, 
long-term climate change, and internal-climate variability cause changes in these interactions. 
Likewise, it is important to understand how internal climate dynamics, changes in the background 
state, or subtle differences among events contribute to variations in teleconnections (Lee et al., 2008; 
Vitart, 2017). Secondly, model systematic errors impact the simulation of climate variability within the 
atmosphere and the individual basins, as well the interaction among them. The cold bias in the north 
tropical Atlantic weakens the teleconnections to the Indo-Pacific (McGregor et al., 2018) and the warm 
bias in the south eastern Atlantic degrades the prediction of equatorial Atlantic variability (Dippe et 
al., 2019); while the poor representation of the ITCZ in the Pacific (Mechoso et al., 1995) can also 
impact global teleconnections. Although long-term model improvement is required, alternate 



approaches to reduce model biases can enhance the simulation and prediction of climate in the short-
term (Shen et al., 2016, Vecchi et al., 2014). 

Enhancement of the observational network, increasing computing power, improved capabilities to 
model and assimilate observational data have led to a steady improvement in numerical weather 
forecasting (Bauer et al., 2015). For the same reasons, we may expect the continued improvement in 
climate prediction. 
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