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Climate warming has caused the seasonal timing of many components of ecological food 

chains to advance. In the context of trophic interactions the match-mismatch hypothesis 

(MMH) postulates that differential shifts can lead to phenological asynchrony with negative 

impacts for consumers. However, at present there has been no consistent analysis of the 

links between temperature change, phenological asynchrony, and individual-to-population 

level impacts across taxa, trophic levels and biomes at a global scale. Here, we propose five 

criteria that all need to be met to demonstrate that temperature-mediated trophic asynchrony 

poses a growing risk to consumers. We conduct a literature review of 109 papers studying 

129 taxa, and find that all five criteria are assessed for only two taxa, with the majority of taxa 

only having one or two criteria assessed. Crucially, nearly every study was conducted in 

Europe or North America, and most studies were on terrestrial secondary consumers. We 

thus lack a robust evidence base from which to draw general conclusions about the risk that 

climate-mediated trophic asynchrony may pose to populations worldwide. 

 

The shifting seasonal timing of key life history events, such as the budburst of trees, emergence of 

insects or the migration and breeding times of vertebrates, is one of the three universal ecological 

responses to climate warming1,2 alongside range shifts and reductions in organismal body size3,4. 

Such shifts in phenology have provided some of the earliest and strongest evidence that rising 

temperatures have left a discernible imprint on the planet’s ecosystems5–8. For many consumer 

species, phenological events are timed to coincide with peak abundance of a predictable food 

resource. However, the strength and direction of the phenological response to temperature 

frequently differs among species occupying different trophic levels, leading to asynchrony between 

resource and consumer (box 1). The consequences of such asynchrony were first studied in the 

early 1900s in the context of trophic interactions between fish larvae and their zooplankton 

resource. This generated the classic match-mismatch hypothesis9. Fish larvae were found to spawn 

at a relatively fixed date, but zooplankton phenology was more variable across years, causing 

annual variation in asynchrony between consumer and resource. The degree of asynchrony 

(referred to as mismatch by Cushing) was proposed to account for annual fluctuations in fish 

recruitment to the population9. In recent years, the hypothesis that changing temperatures might 

increase the frequency of costly trophic asynchrony between consumers and their resources has 

been increasingly discussed10–13. The impact of asynchronous phenological interactions on the fates 

of consumer species was identified as a key uncertainty in the fifth assessment report of the IPCC14. 

Phenological asynchrony and mismatch are often used interchangeably in the ecological 

literature, but the meaning of the term “mismatch” is more ambiguous, as it is in some cases used to 

imply only dissimilar responses of adjacent trophic levels13, and in other cases implying negative 

impacts on the consumer15. In this paper we refer to “trophic asynchrony” when the consumer 



demand does not coincide with the phenology of the resource, and to the match-mismatch 

hypothesis (MMH) when asynchrony has negative impacts on fitness or populations (box 1). We 

note that the MMH is normally conceptualised from a unidirectional, bottom-up perspective (i.e., 

asynchrony leading to detrimental effects on consumers), rather than potential top-down effects 

upon prey and resources16. 

Asynchrony has been detected in many study systems7,17,18, but to demonstrate negative 

consequences of asynchrony on the consumer (i.e., the MMH), several conditions need to be met. 

For trophic asynchrony to be identified as detrimental, the consumer must depend on a short, 

seasonally-pulsed or ephemeral resource19–25, and it should be established whether asynchrony 

might be an adaptive baseline state26–28. Moreover, there should be negative effects of asynchrony 

on consumer fitness29–34. Ultimately, asynchrony becomes of conservation concern when it affects 

mean demographic parameters and leads to population declines13,35–38. Although components of the 

MMH and consequences for population trends can be identified, these are based on very few and 

specific study systems. We therefore lack a general overview of how often trophic asynchrony leads 

to population declines. 

Box 1: Glossary of terms widely used in the study of trophic asynchrony 

Phenology: the study of cyclically recurring biological events, such as the seasonal 

timing of tree leafing, insect hatching, or animal migration and reproduction. In this 

work, we also use it to refer to the events themselves, as has become the norm in the 

literature. 

Trophic level: the position that an organism occupies in the food chain. Primary 

consumers are herbivores (e.g., winter moth, caribou), and secondary consumers are 

omnivores or carnivores (e.g., great tit, herring) 

Phenological sensitivity/response: the interannual variation in phenology that relates 

to interannual variation in a biotic or abiotic cue, for example an advance in breeding in 

response to temperature. 

Phenological/trophic asynchrony: when the seasonal peak in consumer demand for 

a resource does not coincide with the seasonal peak in availability of that resource. 

The match-mismatch hypothesis (MMH): poses that trophic asynchrony has 

negative consequences for consumer fitness or population size. This is also sometimes 

referred to as trophic mistiming. 



Table 1. Criteria of evidence that climate change induced trophic asynchrony is increasing and deleterious for the 
consumer (the MMH), with a consideration of the data and methods that can be used. 

Criterion Evidence required Data and Methods  

1. An ephemeral 
resource 
contributes a large 
proportion of the 
consumer’s diet 

A large proportion of the diet 
is typically composed of a 
species or food type that 
shows a pulsed seasonal 
distribution 

A variety of methods for quantifying diet composition 
exist, including direct observation of feeding, gut 
content dissection, faecal/regurgitate dissection, 
metabarcoding and stable isotope analysis. Requires 
that relevant aspects (e.g., biomass, abundance) of the 
favoured resource are measured over time within at 
least one season and analysis reveals a pulsed intra-
year relationship.  

 
2. Asynchrony 
between consumer 
and resource 
phenology is 
increasing over 
time 

Analysis of time-series of 
consumer and resource 
phenology, with a test of 
whether trends in timing  differ 
and whether this leads to an 
increase or decrease in 
asynchrony 

Requires a time series that covers a period of 
temperature change. A large number of phenological 
time series exist, as recorded by researchers, citizens, 
herbaria, etc. Statistical analysis of increasing 
asynchrony is easily achieved by including an 
interaction between year and species. Inference of 
whether asynchrony is increasing or decreasing 
requires inspection of predictions based on estimated 
elevations and slopes of the modelled relationships for 
each species18. 

 
3. Variation in 
asynchrony is 
driven by 
interannual 
variation in 
temperature 

Identification of the time 
period(s) over which 
consumer and resource is 
sensitive to temperature. 
Evidence that differential 
temperature sensitivity is the 
driver 

A variety of methods exist for identifying the time period 
over which phenology of each species responds to 
temperature48–51. Confidence in attribution can be 
increased by experiments26 or by including year as a 
term in the model41, thereby de-trending the phenology 
data52. Estimating temporal trends in temperature 
variables is also worthwhile, as differing trends may 
generate asynchrony53,54. 

4. Asynchrony 
impacts negatively 
on consumer 
fitness 

A suitable measure of 
consumer fitness decreases 
with increasing asynchrony 

Can be assessed within years (relative fitness) or 
among years (mean fitness) or both30,31. Depending on 
how asynchrony varies across individuals or years, the 
relationship between fitness and asynchrony may be a 
linear decline or a humped relationship. If the former, 
care may need to be taken to establish causation55. 
Ideally, models should take into account both 
asynchrony with peak resource and phenological 
distribution of the resource56,57. Studies of impacts on 
relative fitness are informative regarding selection and 
opportunities for adaptation, whereas studies on mean 
fitness may be informative regarding demographic 
rates13 

5. Asynchrony 
impacts negatively 
on consumer 
population size, 
density, or growth 

 

Negative effects of 
asynchrony on fitness (4) that 
have a negative effect on 
population size/growth, as 
assessed over multiple years 

Requires long-term data on asynchrony and population 
size or density. The impact of asynchrony on 
demographic rates can be incorporated into a 
population model58 or the causal pathways between 
asynchrony and population growth can be assessed in 
a structural equation model59. It is important to rule out 
a causal effect of other variables (e.g., land-use, 
resource availability, sea ice, range shifts) that could 
cause populations to change over time24. Such 
confounding effects can partially be accounted for by 
including year as a term to detrend the analysis41,52. An 
alternative approach involves modelling a population’s 
ability to persist on the basis of demographic and 
quantitative genetic parameters45,60. 

 



Five criteria for demonstrating risks of temperature-mediated asynchrony 

Here, based on ideas that have been widely discussed in the literature and which we outline above, 

we propose five criteria that must all be met for temperature-mediated phenological asynchrony to 

be both present, and causing population declines (Table 1): (1)  the consumer is highly reliant on a 

seasonally ephemeral resource; (2) the degree of trophic asynchrony between consumer and 

resource phenology is increasing over the years (evidenced by time series); (3) increasing trophic 

asynchrony is due to differing temperature responses of consumer and resource; (4) trophic 

asynchrony impacts negatively on consumer fitness, and (5) asynchrony impacts negatively on 

population growth37. In Table 1 we identify some of the methods that can be used to test each of 

these criteria. In the next section we summarise the existing biological evidence for these criteria, 

with a particular focus on general insights that have emerged from multi-species studies and formal 

meta-analyses on questions that are pertinent to the study of the MMH. The five criteria can be 

seen as a best-practice framework, but we realize that each study system poses unique challenges 

for studying these criteria. We do not intend for their application to oversimplify the complex study of 

phenology, nor do we claim that they cover everything that phenological studies need to focus on. 

 

Evidence for phenological asynchrony 

Large-scale comparative analyses of phenological responses and formal meta-analyses provide 

ample evidence that on average spring timings are advancing at mid-high latitudes, and that 

species vary in their response to temperature8,17,39. In two large multi-species analyses based on 

phenological data from the UK, the phenology of secondary consumers advanced less than primary 

producers and consumers over the years (criterion 2)17 and secondary consumers have a lower 

phenological sensitivity to temperature (criterion 3)7. For marine taxa, the magnitude of phenological 

advance varied among trophic groups, with phytoplankton, zooplankton and bony fish all more 

responsive than seabirds40,41. However, while large-scale multi-species and multi-population studies 

provide valuable insights into general trends and patterns of inter- and intra-specific variation in 

phenological responses, they do not estimate in situ responses for specific trophic interactions, nor 

do they reveal anything about fitness or population consequences. Of those studies that focus on 

trophic interactions known to be important to the consumer for a short period (criterion 1) most focus 

on a single interaction. Such studies have reported increasing asynchrony over the years (criterion 

2), for example in great tits, Parus major, and winter moth, Operophtera brumata5,42. However, a 

recent analysis of the phenological time series underpinning 27 species interactions (including but 

not limited to trophic interactions) found that whilst the degree of asynchrony has changed over the 

years, the number of cases where asynchrony had increased was roughly balanced by the number 

of cases where asynchrony had decreased18. The same study also found that whilst phenology was 



responding to temperature in the ecological systems considered, it was not possible to attribute 

temporal trends in asynchrony to long-term increases in temperature (criterion 3). 

 

Potential consequences of trophic asynchrony 

The most prominent evidence for the MMH comes from intensively-studied wild systems, such as 

that of the reliance of great tits on winter moth caterpillars to feed their young. For these birds, 

asynchrony between the timing of peak nestling demand and peak caterpillar biomass has negative 

consequences for individual fitness and annual mean fitness30,31. Meta-analyses of selection 

estimates in the wild report consistent selection pressures for earlier phenology43,44, but directional 

selection has not become stronger over time44. However, meta-analyses addressing selection on 

phenology have considered only absolute timing, rather than the timing of a consumer relative to its 

resource10, so it is unclear from these studies whether selection on consumers is being driven by 

asynchrony with resources. 

 Trophic asynchrony becomes a matter of conservation concern if it impacts negatively on 

population size (criterion 5)37. Two long-term studies of great tits found no evidence of an effect of 

asynchrony on population size31,45, whereas a study of several populations of pied flycatchers 

Ficedula hypoleuca in the Netherlands reported stronger population declines where caterpillar 

phenology was earlier36. The only multi-species studies on this theme that we are aware of are for 

birds. One of these studies found that migrant passerines breeding in European forests had 

declined more than resident and marsh inhabiting species, which the authors attributed to the 

MMH46. The other study found that, across 21 UK bird species, population declines were more 

pronounced for species that had advanced their breeding phenology least and in species whose 

annual productivity was most reduced by asynchrony with general insect and plant phenology.47 

However, support for the MMH was weak and not reflected by declines in breeding success of those 

species. 

 

Literature survey 

We conducted a broad survey (n=109) of published work on the match-mismatch hypothesis (MMH) 

across terrestrial, marine and freshwater systems with the aim of: (i) examining the evidence for 

temperature-mediated trophic asynchrony and its impacts and (ii) identifying gaps in the evidence 

base, thereby allowing us to (iii) make recommendations for priority areas for future work. To this 

end, we extracted data from published, peer-reviewed original research in which a trophic 

interaction was studied in relation to any of the five criteria we proposed as vital to the MMH (Table 

1). Only original studies, where the specific interaction between consumer and resource could 



clearly be identified were included (see Supplementary Information for methodological details, and 

Supplementary Table 1 for the papers identified as relevant by the data extractors). 

 

 

Fig. 1. Locations of studies on phenological asynchrony identified by our analysis, subdivided by biome (light 

blue = freshwater, dark blue = marine, orange = terrestrial) and consumer trophic level (triangles = primary, 

squares = secondary, circles = >secondary). There is a clear geographical bias of studies, with a considerable 

overrepresentation of Europe and North America. 



Taxonomic and geographical bias in the data 

The search identified 772 papers, of which the full text was found for 760. Of these, 571 were not 

relevant (e.g., no trophic interactions were reported, or none of the five criteria were extractable), 

and 80 had no extractable data, resulting in a total of 109 papers that had relevant data on 129 

consumer taxa (Extended Data Fig. 2). All but six of the 109 trophic interaction studies were in 

Europe or North America (Fig. 1). The majority of trophic interactions were terrestrial (81.5% of the 

data), with marine (14%) and freshwater interactions (4.5%) being scarcer. For most interactions the 

consumer was a secondary consumer (58%), with studies of primary (36.5%) or higher than 

secondary (5.5%) consumers less common. Birds made up the majority of the consumer taxa 

studied (53%), while 29.5% of taxa were insects, 8% were fish, 5% were mammals and 4% were 

crustaceans. 

 

 

Fig. 2. Individual criteria tested across taxa (a,b), and the total number of criteria tested per taxon (c,d). The 

most tested criteria (a,b) were 1 “ephemeral resource” and 2 “phenological change over the years”. The total 

number of criteria tested (c,d) was two out of five for most taxa, and all five criteria were tested for only two 

out of 129 taxa (c,d). The left panels (a, c) are divided by trophic level, and the right panels by biome (b, d). 



 

Testing the five criteria 

The most tested criterion was criterion 1 (97% of interactions, n=125/129) - relating to dependence 

on a seasonally pulsed resource (Fig. 2, top panels). However, rather than conducting direct tests 

on the seasonal distribution of resources, 74% (n=92/125) of these included only a statement based 

on a priori knowledge of the natural history of the system that the resource was both ephemeral and 

important to the consumer.  

 Of the study systems that were tested for dependence on a seasonally pulsed resource (i.e., 

where the resource was ephemeral and the consumer was a specialist), 42% (n=15/36) showed 

such dependence. Excluding the cases where criterion 1 was not explicitly tested, criterion 2 was 

the most frequently tested (68% of interactions, n=88/129), relating to whether phenological 

asynchrony was increasing over time (Fig. 2, top panels). The remaining criteria were all tested 

substantially less frequently, with criterion 5 (population consequences) being tested least often (8% 

of interactions, n=10/129). Surprisingly few studies report data for criterion 3 (Fig. 2, top panels), 

which relates temperature to asynchrony (29% of interactions, n=37/129), and this was almost 

never reported for marine and freshwater taxa. The distributions of criteria tested were broadly 

similar across consumer levels and biomes, with the exception of primary consumers for which 

criteria 3 and 4 appear slightly more common. 

Our analysis could identify only two out of 129 consumer taxa for which all five of our criteria 

have been tested at least once: both of these are forest-breeding passerine birds studied in Europe 

- the great tit and the pied flycatcher. In a further 13 taxa, four out of five criteria were assessed. In 

the remaining 114 taxa, three or fewer criteria were studied, with the majority (58%, n=75/129) of 

consumer taxa having only two of the five criteria known (Fig. 2, bottom panels). Breaking this same 

analysis down to the per study level, no single study explicitly tested all five criteria (Extended Data 

Fig. 3). This is generally due to a tendency for studies to focus on either phenology slopes (criteria 2 

& 3), or the consequences of asynchrony (criteria 4 & 5). Only a handful of studies detail temporal 

slopes, temperature slopes, and consequences of asynchrony in one study61–63. 

 

Phenology slopes over time and temperature 

Consumer and resource responses appear to be positively correlated across studies, with 

consumers showing a slight tendency to advance their phenology by less than their resource (Fig. 

3). In 61% (n=58/95) of the cases, the phenology slope over time was greater for the resource than 

for the consumer (Fig 3a). For the phenological response to temperature, the consumer slope was 

greater than the resource slope in 59% (n=13/22) of cases (Fig 3b). The degree to which these 



patterns differ across biomes and trophic levels could not be tested with this dataset, since the 

number of slope estimates is too low for non-terrestrial and non-secondary consumers. Based on 

visual inspection, it appears that especially terrestrial secondary consumers tend to be slower- 

 

 

 

 

 

advancing than their resource. However, more data on underrepresented groups would be required 

to reach robust conclusions about these patterns. 

 

Fitness and demographic consequences 

Fitness consequences in relation to trophic asynchrony (criterion 4) are studied in 36% (47/129) of 

the consumers (Fig. 2, top panels). Consequences of asynchrony for offspring (n=44) are studied 

over three times as often as consequences for adults (n=14, Fig. 4), though it is possible that this 

reflects a research bias to study fitness components that are more sensitive to asynchrony. In 28% 

of consumer taxa (n=13/47), no negative effect of asynchrony on fitness was reported (Fig. 4). The 

Fig. 3. Consumer versus resource slopes in 
relation to year and temperature. Symbol shapes 
represent consumer trophic level (triangles = 
primary, squares = secondary, circles = 
>secondary), colour represents biome (light blue 
= freshwater, dark blue = marine, orange = 
terrestrial) and larger symbols are from longer 
time series (average 21 years, range 6 to 119 
years). The solid diagonal line represents an 
equal rate of change by consumer and resource. 
Where the resource slope < 0, points above the 
line represent systems where resource 
phenology is advancing by more than that of the 
consumer, whereas points below the line 
represent systems where consumer phenology 
is advancing more rapidly than resource 
phenology. Where resource slope > 0, points 
below the line represent systems where 
resource phenology is delaying by more than 
that of the consumer, whereas points above the 
line represent systems where consumer 
phenology is delaying more rapidly than 
resource phenology. 

 



least studied consequence of trophic asynchrony is its effects on population demography (criterion 

5, Fig. 2, 4). In half of these interactions (n=5/10), no effect of asynchrony was reported. 

 

 

 

Discussion 

Our literature survey on the ecological impacts of temperature-mediated trophic asynchrony reveals 

that the full causal chain from temperature change, to temperature-driven shifts in seasonal timing, 

consumer-resource synchrony, and individual-to-population level impact has rarely been studied. 

Only two out of 129 taxa were studied for all criteria, and for the majority of study systems, only one 

or two out of five criteria were met. The available studies were strongly biased toward terrestrial 

secondary consumers (especially birds) in the Northern Hemisphere (largely Europe and North 

America). Notably, the effects of climate warming on trophic asynchrony in aquatic systems and in 

the Southern Hemisphere are understudied64, although this could be reflective of the small amount 

of temperate land mass in the Southern hemisphere. Tropical studies are also under-represented, 

but this may partly indicate a reduced importance of temperature as a phenological cue in tropical 

ecosystems8. Crucially, demographic consequences of trophic asynchrony are the least studied of 

the five criteria, despite this knowledge being the most important to conservation.  

 

Bias in the Match-Mismatch Hypothesis evidence base across biomes 

Terrestrial systems were by far the most represented of the three environments that we considered, 

presumably by virtue of the comparative ease of collecting data on both phenology and fitness in 

these systems. This ease of data collection is evident in the great contribution that citizen science 

data collectors have made to the study of terrestrial phenology47,65–68, which is rare for aquatic 

systems. Monitoring phenology of many aquatic organisms is hampered by their wide ranges and 

underwater habitats69, and compounded by the logistic and financial challenges encountered during 

Fig. 4. Number of taxa in which 
consequences of trophic 
asynchrony were studied, divided 
into those where the effect reported 
was negative or neutral 
(statistically non-significant, no 
positive effect of trophic 
asynchrony was ever reported for 
this taxon). Results are clearly 
biased toward juvenile rather than 
adult life stages. 



offshore research. As a result, relatively few multi-decadal phenological time series have been 

collected at sufficient resolution to capture seasonal changes70,71. Moreover, separate sampling 

programmes are often needed for consumer and resource (e.g., piscivorous birds and their prey)72, 

and even if resources can be quantified, many aquatic organisms are generalist feeders, further 

adding to the difficulties in quantifying the MMH. Citizen scientists can, however, collect valuable 

data on the terrestrial stages of aquatic organisms (e.g., dragonflies), or aquatic seasonal events 

that can be observed from shore (e.g., amphibian spawning, floating algal blooms). Furthermore, 

with ongoing technological innovation in data collection methodologies, it may become possible to 

widen the aquatic evidence base for some taxa. For example, radar can be used to quantify 

aquatic-terrestrial subsidies based on insect emergence, providing detailed measures of the timing 

and size of resource pulses73, and satellite-based observation tools are providing a wide-scale 

perspective on phytoplankton phenology changes74. It would therefore be valuable to consider how 

diverse data sources, and lines of evidence, can be fruitfully combined to advance our knowledge of 

the importance of the MMH in aquatic systems. 

Despite their overrepresentation in MMH research, even in terrestrial systems there are 

biases and gaps in the evidence-base that extend beyond the aforementioned geographic biases 

(Fig 1). Of the terrestrial studies, temperate forest taxa and birds in particular predominate, which is 

likely due to the fact that seasonality increases with latitude. Temperate forests experience a 

pronounced seasonal temperature-mediated pulse in resources46, and they present particularly 

suitable study systems to study individual fitness in the wild (e.g., cavity nesting birds). In aquatic 

systems, individual marking of philopatric seabirds and pinnipeds permits some components of 

fitness to be monitored75, but this is much harder for underwater organisms76. Likewise, for many 

widely-distributed groups such as fish, invertebrates, and plankton, individuals cannot be sampled 

repeatedly, and populations can rarely be sampled to the extent that demographic implications of 

asynchrony can be assessed. On the other hand, invertebrates are more amenable to experimental 

study32, and numerous national surveys of population sizes exist77,78 that could be used to infer 

demographic consequences of trophic asynchrony. Another key research gap in aquatic systems 

involves the specific role of cross system consumer-resource interactions in mediating trophic 

asynchrony. For example, some freshwater consumers feed upon terrestrial resources, which 

represents a substantial source of nutrients79. The delivery of at least some of this material is 

strongly seasonal. Leaf fall, for example, is triggered by photoperiod in conjunction with drought and 

temperature80. Aquatic phenology research would greatly benefit from increased consideration of 

the synchrony between freshwater consumers and terrestrial resources. 

 

Further challenges in studying the MMH 



We recognise that studying these five criteria and improving the evidence base regarding the risks 

posed by the MMH will not be straightforward and we have already discussed how aquatic 

environments present particular challenges, but other complexities remain. While criteria 2 and 3 

are perhaps the easiest to satisfy, even here challenges exist in attributing a change in 

phenology/asynchrony to temperature, as sensitivity estimates can be obscured by non-climate 

drivers or compensatory mechanisms62,81. For example, changing nutrient availability and light 

conditions can influence the seasonal timing of phytoplankton blooms82,83, but would not be 

expected to affect consumer organisms in the same way. In this article we have simplified the 

interaction between resource and consumer to a single metric, the asynchrony between the peak 

demand of consumer and availability of the resource. However, as the MMH predicts that consumer 

fitness relates to resource availability during a particular window9, consumers might in addition to 

asynchrony be sensitive to the height and width of the resource11,37, either of which could be 

sensitive to temperature and exacerbate or ameliorate effects on fitness. Although the potential for 

resource abundance to influence fitness is widely acknowledged, it is unusual for studies on the 

MMH in relation to fitness (criterion 4) or population size (criterion 5) to include its effect56,57. We 

realize that especially criterion 4 may be hard to satisfy for study systems where individuals cannot 

be studied, which should not discourage people from working on such systems. Whilst fulfilling all 

the other criteria would allow one to infer whether the mismatch is causing population declines, 

there are clear advantages of studying individuals within populations. Apart from the fact that such 

data helps demonstrate causative effects of asynchrony on fitness, it can tell us whether seasonal 

timing will be under directional selection. 

Where the resource is in fact a guild (caterpillars, phytoplankton) rather than a species, 

temperature-mediated shifts in the aggregate phenology may arise from a variety of processes, from 

similar plastic responses of different species, to changes in the relative abundance of early- and 

late-blooming constituent species, even when these species independently might show no or weak 

phenological shifts84. While the effect of asynchrony on the consumer may not be sensitive to these 

two scenarios, if we want to project phenological changes into the future we need to understand the 

processes that underpin community phenological responses. An obvious solution to this problem is 

to improve the species level resolution of sampling85, but this can be costly and impractical in the 

short term, and might require new sampling approaches such as eDNA86. 

 

Is trophic asynchrony of conservation concern? 

This review reveals a lack of robust evidence for the MMH, and even the two best studied taxa in 

terrestrial systems present a mixed message. In great tits, matching with the caterpillar peak has 

fitness impacts at both the individual and population level30,31, but trophic asynchrony currently 



poses no threat to their population persistence31,45. Pied flycatchers also perform worse when poorly 

matched with the caterpillar peak22,87, but, in contrast to great tits, declines in asynchronous 

flycatcher populations have been recorded in the Netherlands36. Nevertheless, those pied flycatcher 

populations have been increasing again since 200288. Interestingly, pied flycatchers breed about 

two weeks later than tits89, the average nest is rarely matched with the caterpillar peak90, and a 

long-term study in the Netherlands found no correlation between annual mean asynchrony with the 

caterpillar peak and the strength of the seasonal decline in the number of recruits91. Moreover, pied 

flycatchers are more generalist than tits in the nestling diet92, so it remains uncertain to what extent 

these flycatcher populations will be negatively affected by trophic asynchrony compared to 

specialists. 

It would nevertheless be premature to conclude from this that a relative shortage of evidence 

for demographic consequences of trophic asynchrony constitutes evidence of absence of an effect. 

Even in species for which negative population consequences are not yet apparent, such as great 

tits, it is possible that continued increases in temperature will be problematic. Application of an 

integral projection model to a UK population of great tits suggested that under a high emission 

scenario, more rapid responses of the prey species (the winter moth caterpillar) coupled with limits 

to plasticity in great tit hatch date being reached, lead to an acceleration in directional selection. An 

increase in evolution of hatch date timing was to an insufficient degree to prevent negative 

consequences of trophic asynchrony, and the population in that scenario is projected to have an 

increased risk of extinction93. Such demographic approaches should be greatly expanded upon, and 

provide a unique way to understand which life stages will likely matter from the perspective of 

pathways leading to shifts in population growth rate and density58.  

 

Research Priorities 

Based on our five criteria and our review of the literature we identify six priorities for future work to 

properly test the match-mismatch hypothesis and its impacts. 

1. From cause to effect - focusing on population consequences: There is an urgent need 

for studies that consider the full causal chain, from climate driver to seasonal timing, 

synchrony, and individual-to-population level impact. In particular, we need many more tests 

of the impact of asynchrony on population change (criterion 5), across taxa and habitat 

types. This most important criterion from the perspective of conservation and policy13,37 and 

yet has received the least attention. Furthermore, given that the population impacts of 

trophic asynchrony at one location may be buffered by matching at another location90, we 

strongly advocate expanding the spatial scale of current research to include multi-population 



studies. This will allow the consequences of phenological shifts to be interpreted in the 

context of other universal climate warming responses such as range shifts. 

2. Balancing the evidence - data collection and synthesis for aquatic systems: Despite 

the marine origin of the MMH, current monitoring and research has so far led to a limited 

understanding of the MMH in marine and freshwater systems, compared to terrestrial 

habitats. It is imperative for funders to continue to support time series, since with each 

passing year the statistical power of these to reveal patterns improves. We further 

recommend for underused historic records, including museum collections and naturalist 

observations, to be coupled with new work on these systems to create well documented long 

time series within a matter of years. However, we must also ask how additional monitoring 

approaches (e.g., eDNA, radar) might be usefully combined with “traditional” monitoring 

approaches, to expand the species representation, monitoring of individual states and fitness 

consequences, and spatial coverage of aquatic ecosystem studies, and support a broader 

understanding of changes in phenological asynchrony (criterion 2) and the role of 

temperature as a driver (criterion 3) in these systems. 

3. Environmental drivers of phenology - beyond temperature: Here, we have 

addressed phenological asynchrony in relation to temperature (criterion 3), the best-studied 

driver. However, the environmental drivers of phenology vary geographically. For instance, 

at lower latitudes seasonally pulsed precipitation is a more important driver of phenology8, 

and at higher latitudes the timing of snow melt is a key mechanism94–99.  In order to gain a 

global perspective on the risks posed by climate-mediated phenological asynchrony poses 

there is an urgent need to apply our framework to alternative environmental drivers of 

phenology. 

4. Assessing the risks - global predictions and species traits: We need more studies on 

trophic asynchrony and its drivers at different latitudes and many more to be conducted 

outside of Europe and North America (see Fig. 1). As data on the MMH accumulate, a fruitful 

approach would be to conduct comparative analyses to identify the taxonomic groups, 

trophic levels, environments and regions where fitness or population impacts of phenological 

asynchrony (criterion 4 and 5) are most likely. Based on first principles we may expect 

temperature-mediated asynchrony to be more frequent and deleterious when the consumers 

are endotherms rather than ectotherms8, income rather than capital breeders24,37, and at 

higher latitude regions experiencing the most seasonal climates and the most rapid climate 

change8. However, empirical validation of these predictions is lacking. 

5. Observing interactions - enhancing the role of citizen science: Mass participation citizen 

science has resulted in millions of phenological records that underpin many of the studies 

quantifying phenological shifts7,17,65,100 and can even be used to project weather records into 

the past101. A strength of these schemes is their spatial as well as temporal coverage. In 



some instances it is possible to identify the phenology of consumer species and their 

resources from existing datasets102, but this requires the assumption that co-occurring 

species are actually interacting. While using data amassed over larger spatial scales (e.g., 

via citizen science or remote sensing) is attractive as a means to examining geographic 

variation in temporal trends in asynchrony (criterion 2) and temperature sensitivity (criterion 

3) or fitness consequences (criteria 4&5), care is required in matching data at a resolution 

that is pertinent to the trophic interaction103,104. Moreover, we are not aware of any study 

combining citizen science-derived datasets to study the impacts of asynchrony of specific 

trophic interactions on population change (criterion 5). Therefore an opportunity exists for 

development or extensions of citizen science schemes to collect data on the phenology of 

species interactions across trophic levels and on the fitness and/or population sizes of the 

consumer. 

6. Clarifying the concept - “asynchrony” or “mismatch”: There exists a degree of 

terminological inconsistency in relation to the MMH, which may confuse attempts at 

achieving a common understanding of the potential importance of this phenomenon. Many 

studies that claim to address “mismatch” identify the conditions that could lead to greater 

asynchrony, but stop short of explicitly testing whether asynchrony leads to any negative 

consequences for the consumer. Where no evidence for negative repercussions is 

presented we encourage authors to use the term “asynchrony”, rather than “mismatch”, 

which implies a negative consequence. 

 

Concluding remarks 

Temperature-mediated trophic asynchrony and its consequences are widely discussed in global 

change research and have been intensively studied over the past two decades. In this study we 

have presented five criteria that together provide a causal chain to explicitly demonstrate the risk 

that temperature-mediated asynchrony poses to populations, which we hope will strengthen future 

work.  In an extensive review of the literature we found that no single study and only two study 

systems have tested all five criteria, with a clear deficit of studies considering the impact of 

asynchrony on population size, which is the most important criterion from a conservation 

perspective37. This means that at present we cannot state from the literature that temperature-

mediated trophic asynchrony will have a widespread negative impact on consumer population size 

or growth. We identify six research priorities, which need to be tackled to get a comprehensive 

understanding of the frequency and magnitude of trophic asynchrony and its impacts on consumers. 

A more consistent approach to the study of the match-mismatch hypothesis and its population 

consequences at the global scale will allow us to better target conservation efforts and provide 



much needed evidence for possible consequences of one of the most intriguing impacts of climate 

change on global biota: phenological change. 

 

Data and Code availability 

All data and code files related to this review are available at the Open Science Framework: 

https://osf.io/c8xzd/. 
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Extended data Fig. 1. Total publications by year and sum of times cited for the studies captured by 

our search terms. 

 

 

Extended Data Fig. 2. PRISMA Flow chart of the number of papers screened, and those included and 

excluded using three filters. This process resulted in 109 relevant papers, which provided information on 132 

taxa. 



 

 

Extended Data Fig. 3. Overview of all the study-by-taxon combinations identified (200 in 109 papers), showing 

which (and how many) criteria were studied in individual papers. 


