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SUMMARY 

Adenoid hypertrophy (AH) is one of the most common causes of nasal obstruction in 

children and adolescents. This may lead to breathing-related symptoms such as mouth 

breathing, snoring, asthma, speech problems, and obstructive sleep apnea (OSA). An 

association between AH and craniofacial abnormalities implies that the initial 

identification of AH should be an integral part of orthodontic treatment. Moreover, 

rapid maxillary expansion (RME) has been considered a beneficial tool for reducing 

nasal obstruction. However, there is currently no consensus on the imaging part of AH 

diagnosis and how geometrical obstruction due to AH is associated with breathing 

characteristics. Evidence of both morphological and aerodynamical characteristics of 

upper airway (UA) is warranted for verifying the effect of RME on UA. 

In this thesis, we applied a novel technique, computational fluid dynamic (CFD), 

to simulate airflow characteristics in orthodontic patients. CFD simulation is a well-

established method that uses numerical analysis and data structures to precisely 

evaluate aerodynamic characteristics of the fluid and their interactions with the 

surrounding surfaces, as defined by boundary conditions. CFD is widely applied to 

solve engineering problems, such as in aerospace analysis, weather simulation, and 

industrial system design, but sparsely used in UA research. 

This thesis aimed to validate lateral cephalogram in UA examination using Cone 

Beam Computed Tomography (CBCT) and CFD simulations. Furthermore, the effect 

of RME on UA was investigated by CBCT and CFD. 

The adenoidal nasopharyngeal (AN) ratios measured on the lateral cephalograms 

were applied to express the nasopharyngeal airway’s adenoidal size and patency. We 

found a notable correlation (r = -0.78) between the AN ratios and the nasopharynx 

volumes, indicating the higher AN ratio and smaller nasal space in patients 15 years or 

younger. The CFD simulation demonstrated that the maximal airflow velocity at both 

inspiration and expiration significantly increased, nearly 30%, once AN ratios were 
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more than 0.6. With respect to the effect of RME on UA, neither the morphological nor 

aerodynamic characteristics were significantly changed after RME.  

Based on the four studies, we conclude that AN ratios measured on lateral 

cephalograms could be a feasible method to initially estimate the nasopharynx’s 

patency in children. An AN ratio of more than 0.6 may induce potential alteration in 

airflow’s characters. The utilisation of AN ratios would assist dentists better 

recognising patients who are at risk of AH. The morphological and aerodynamic 

changes obtained from CBCT assessment and CFD simulation could not verify the 

positive effect of RME on UA. 
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1. INTRODUCTION 

1.1 The Adenoid  

1.1.1 Anatomy and physiology 

In 1661, Schneider [1] first described that adenoid originated from the mucus lining 

the nose, not the pituitary and brain. In current medicine, adenoid is defined as a 

mucosa-associated lymphoid tissue, also known as the pharyngeal tonsil or 

nasopharyngeal tonsil. The adenoid originates from the pharyngeal endoderm in the 

posterior midline of the nasopharynx, which is a pyramidal-shaped structure attached 

to the roof of the pharynx with the apex towards the nasal septum and the base on the 

posterior wall of the nasopharynx. The specific arrangement of the lymphoid tissue in 

the pharynx was first described by Waldeyer in 1884 [2]. Adenoid constitutes the 

Waldeyer’s ring in conjunction with the tubal tonsil, palatine tonsil, and lingual tonsil. 

The paired tubal tonsils are situated at the pharyngeal openings of the eustachian tubes; 

the paired palatine tonsils are located in the oropharynx; and the lingual tonsils are on 

the posterior of the tongue [3] (Figure 1). As the superior-most lymphoid tissue of the 

Waldeyer ring, adenoid is the first immune system’s line of defense against foreign 

pathogens through the respiratory tract [4, 5]. In childhood, the adenoid size coincides 

with the immunologic response for constructing the integral immune system [6, 7]. 

The physical development of adenoid starts from the fetal period and is usually 

visible in infants aged six months [8]. It grows rapidly up to age two years, almost 

occupies the half-space of the nasopharynx, and follows with a growing peak at age 

four years, then progressively shrinks until 15 years. By adulthood, the adenoid almost 

completely atrophies [9]. 
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Figure 1. Illustration of Waldeyer ring. Adapted from [3]. 

 

1.1.2 Adenoid hypertrophy 

The prevalence of adenoid hypertrophy (AH) was markedly variable with respect to 

age and country [10-15]. The prevalence of 34% has been reported in a randomised 

representative sample recruited from primary school [16]. It is well accepted that the 

adenoid has its growth spurt from birth to four years, and then sharply diminished after 

12 years [9]. However, the adolescents aged 11 to 14 years old only had a slightly lower 

prevalence of AH, 19.9% compared with 27.0% in those aged 5–7 years, and it was 

almost equal to those aged 8–10 years (19.5%) [17]. As such, AH occurring in 

adolescents should not be ignored in clinics. 

During the childhood and adolescence period, both infectious and non-infectious 

etiologies can lead to AH. The bacteria and viruses enter through the respiratory tract 

and can cause respiratory infections [18, 19]. The adenoid and palatine tonsils are the 

most responsive lymphoid tissues on the pharynx and start the immune process [20]. 

The palatine tonsils are more often mentioned than adenoid in the process of respiratory 

infection by parents and clinicians because the palatine tonsils are easily investigated 

through the mouth, whereas the adenoid is invisible. Besides, palatine tonsils are 

situated on both sides of the back of the throat, and enlarged palatine tonsils may result 
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in a sore throat which is often a cause for complaint, but the obstructive symptoms 

caused by an enlarged adenoid such as a stuffed-nose and mouth breathing are often 

ignored. 

Palatine tonsils and adenoids usually return to normal size once the infection is 

gone. However, recurrent or chronic infections may result in pathological diseases. 

Apart from infectious reasons, severely allergic diseases such as asthma, allergic 

rhinitis, and atopic dermatitis occurring in children may be other potentially impacted 

factors [21]. Allergic rhinitis has been reported as one of the most common allergic 

conditions that simultaneously occurs with AH [22]. Also, the living environment is an 

important factor for AH’s presence as well. The house dust mite has been considered 

as the most common allergens in patients with AH; in addition, parental smoking 

within the household was another risk for AH occurrence [22].  

For adults, AH may be a more serious indication of human immunodeficiency 

virus (HIV) infection [3], lymphoma, or sino-nasal malignancy, although the 

occurrence of AH was much lower in adults than children and adolescents. 

1.1.3 Clinical symptoms related to adenoid hypertrophy 

AH may cause various symptoms such as otitis media with effusion (OME), obstructive 

nasal breathing, hypo nasal voice [23], and specific facial morphology. The symptoms 

are highly dependent on the degree and duration of the AH; mild and moderate 

obstruction may thus not be a cause for complaint by children nor observed by parents 

or caregivers, and this may, in turn, result in chronic pathological diseases such as 

obstructive sleeping. 

AH is a common cause for OME in childhood [24], as the opening of the 

eustachian tube on the nasopharyngeal wall is in proximity to the adenoid. The enlarged 

adenoid may extend towards the opening of the eustachian tube and block it, leading 

to eustachian tube dysfunction, abnormal ventilation of the middle ear, and hearing loss 

in children [25]. Except for the physical obstruction caused by AH, a regional 

inflammatory reaction in the eustachian tube and middle ear may also be caused by the 

release of inflammatory mediators i.e., adenoid mast cells [26].  
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One of the most severe symptoms associated with AH is obstructive sleep 

disordered breathing (SDB), which is defined as a syndrome of upper airway (UA) 

dysfunction caused by partial or complete UA obstructions during sleep. The clinical 

symptoms range from mild snoring to severe obstructive sleep apnoea (OSA). For 

adults, OSA contributes to an increased risk of coronary artery disease, congestive 

heart failure, myocardial infarction, hypertension, stroke, cardiac arrhythmia, and 

sudden cardiac death [27-29]. Compared to adults, there is less morbidity and mortality 

related to children [30]. There are specific symptoms reported by parents or caregivers, 

such as snoring or spontaneous arousals during sleep, and by teachers including 

daytime sleeping, reduced cognitive function, and academic performance [30, 31].  

The little known effect of AH is that it may adversely force nose breathing into 

mouth breathing. In comparison with nose breathing, mouth breathing results in a lower 

tongue position, lower mandibular position, and extended head posture [32]. Leaving 

the symptoms unrecognised and AH undiagnosed, the abnormal breathing mode may 

affect the maxillofacial growth. The children and adolescents who have enlarged 

adenoids may show specific facial characters, such as a high and narrow upper dental 

arch, increased anterior face, and retrognathic mandible known as the adenoid face [33-

36] (Figure 2). The specific craniofacial morphologies may in turn increase children’s 

risk for having OSA [37]. Therefore, it was recommended by the American Association 

of Orthodontists in 2019 that the evaluation for OSA in every child should be a part of 

an orthodontist’s comprehensive clinical assessment [38]. 
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Figure 2. Patients with adenoid facies before and after operation, from Dr. Meyer’s publication of 

Novermber 4, 1868. adapted from [39]. 

 

 

1.1.4 Assessment of adenoid hypertrophy 

Since the medical community recognised and adopted Meyer’s discovery [36], 

numerous improvements in AH diagnosis have been developed worldwide [39]. The 

adenoid is invisible on direct inspection, and several modalities have been applied to 

investigate adenoids in otolaryngology clinics, such as rhinomanometry [40], acoustic 

rhinometry [41, 42], and endoscopy [43] (Figure 3). Among these examinations, nasal 

endoscopy is the only technique to make the adenoid visible, and it is accepted by ear, 

nose, and throat (ENT) experts as the standard reference for diagnosing AH [44]. 

However, as an invasive examination, endoscopy is challenging to perform on non-

cooperative children. Imaging examinations are thus widely accepted for observing the 

adenoid; the lateral cephalogram has been commonly performed on children suspected 

of having AH.  



 20 

     

       a         b      c 

Figure 3. Clinical examination. (a) rhinomanometry, adapted from [45]; (b) acoustic rhinometry, 

adapted from www.aibolita.com/surgical-treatment/54104-theory-of-acoustic-rhinometry.html; (c) endoscopy, adapted 

from www.saintlukeskc.org/health-library/understanding-endoscopic-endonasal-surgery. 

Generally, a lateral cephalogram combined with a clinical assessment is relatively 

sufficient to assess adenoid hypertrophy. Multi-slice computed tomography (MSCT) 

and Magnetic resonance imaging (MRI) are only used in selected patients due to the 

higher radiation doses (MSCT) and cost (MSCT/MRI) compared to lateral 

cephalograms. A few retrospective studies investigated the adenoid on MSCT and MRI 

images [46-49], reporting that three-dimensional (3D) imaging provided much more 

anatomic details and demonstrated the relationship between the adenoid and the 

surrounding tissues. Furthermore, based on 3D imaging, functional characteristics 

related to adenoid could be demonstrated by applying specific diffusion-weighted 

imaging or dynamic simulation [50, 51]. In short, 3D imaging modalities may lead to 

a start towards the functional evaluation on patients with AH. 

1.1.5 Treatment of adenoid hypertrophy 

Non-surgical treatment 

For children with mild or moderate symptoms without specific syndromes, watchful 

waiting with supportive care has been the main approach considered by both parents 

and clinicians [52]. The non-surgical treatments for AH were highly dependent on the 

multiple etiologies. Antibiotic therapy [53], intranasal corticosteroid [54], and Chinese 

herbal medicine [55] have been used for AH’s treatment.  
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Surgical treatment 

In 1868 the Danish physician Meyer [36] first described the AH related nasal 

obstruction which may lead to mouth breathing, snoring, abnormal facial development, 

otitis, and speaking problem. Meanwhile, he suggested removing the adenoids 

surgically to treat the clinical symptoms. Adenoidectomy with or without tonsillectomy 

currently remains the most frequently performed surgical procedure in children. A 

considerable variation was reported between countries regarding the incidence of 

adenoidectomy in children in the past twenty years. In the United States, the incidence 

of adenoidectomy was 1.76/1000 children in 2006 [56]. The number was up to 

13.3/1000, 4.4/1000 in Finland and Norway in 2005, respectively [57], and 7.4 /1000 

in another Northern European country, Sweden, during 2004–2013 [58].  

Common indications of early adenoidectomy are recurrent UA infections and 

otitis media [57]. Following the recent recognition of AH related pediatric OSA, the 

adenoidectomy is more frequently performed for decreasing the degree of obstruction 

[59, 60]. However, besides the operative risk and postoperative complications [61], the 

removal of adenoid tissue may have a negative impact on immune function. The long-

term risk of respiratory, allergic, and infectious diseases after adenoidectomy has been 

under consideration [62]. Hence, the necessity of surgery has been questioned for 

children with mild or moderate AH [52, 63].  

1.2 Role of dentists in the management of adenoid hypertrophy: 

assessment and treatment 

1.2.1 Assessment 

Generally, the AH diagnosis is determined by ENT specialists. However, it is important 

to note that orthodontists should also be involved, as the specific morphological 

abnormalities during early growth are closely associated with obstructive nasal 

breathing [34, 64, 65]. On the other hand, ignoring such interactions between breathing 

conditions and maxillofacial morphology, by solely focusing on correcting the visually 

recognisable maxillofacial abnormality, may result in inadequate and limited 
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orthodontic treatment [66]. Due to the complex causes for AH and various symptoms 

induced by AH, a multidisciplinary team of specialists, including otolaryngologists, 

pediatricians, and orthodontists has been suggested for managing children with 

suspected adenoidal obstruction to define the most appropriate diagnostic and 

therapeutic options for individuals [38, 67]. 

For orthodontists, it is thus important to identify the patients with AH further in 

order to recognise the maxillofacial morphology related to obstructive breathing. A 

further ENT assessment may be recommended to prevent the development of serious 

maxillofacial abnormality or the later OSA. For this purpose, an easily acceptable and 

highly valid screening method is warranted for AH estimation on available imaging 

data for both orthodontics and oral radiologists. 

1.2.2 Orthodontic treatment 

Rapid maxillary expansion (RME) has been widely used to increase the transverse 

dimensions of the maxillary arch in patients with narrow maxilla (Figure 4). Some 

orthodontists suggested RME may increase the nasal space and then improve the nasal 

obstruction after opening the midsagittal suture, separating the two maxillas, and 

expanding the maxillary width [66, 68]. RME mainly increases the maxilla width in 

the transverse direction, and the skeletal boundary of the nasal cavity was directly 

extended following the expanded maxilla. However, the influence of RME on the 

pharynx is disputed since it locates posteriorly to the maxilla and is surrounded by 

multiple soft tissues.  

Also, physical growth plays a role in the choice of appropriate treatment, as the 

nasopharyngeal skeleton and nasopharyngeal lymphoid tissue have their age-

dependent development [69]. Cohen et al. [49] revealed that the narrowest airway 

occurred in the age group of 5.1–8 years when the growing speed of adenoid was faster 

than bony nasopharynx. After eight years, the adenoid atrophies while the bony 

nasopharynx continues to grow, resulting in the broader airway and reductive 

obstruction. 
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The natural development of the nasopharynx may indicate an age-dependent 

treatment, that is, an adenoidectomy may be recommended for children younger than 

eight years. For children older than 8 years having narrow maxilla, the increased 

nasopharyngeal space resulted from RME may also improve nasal breathing. So far, 

no consensus has been achieved, and more evidence is warranted for affirming the 

positive effect of RME on obstructive UA caused by AH. 

 

Figure 4. RME procedure. A fixed Hyrax expander is banded to the maxillary first premolars and 

first molars. The patient, or their guardian, rotate the expansion screw twice a day at home and a 

clinical check-up is performed by orthodontists once a week. The expansion is terminated when the 

occlusal aspect of the maxillary lingual cusps of the upper first molars contacted the occlusal aspect 

of the vestibular cusp of the mandibular first molars. 

 

1.3 Image-based assessment of upper airway in dentistry  

1.3.1 2D imaging – lateral cephalogram 

Lateral cephalogram, a profile X-ray of the head and neck, is the most commonly used 

radiographic method for assessing AH in ENT clinics. On the other hand, lateral 

cephalogram is a widely applied radiographic method performed on children prior to 

orthodontic treatment for assessing the characteristic malocclusion, tracing the 

anatomic landmarks, and overviewing the skeletal structure. As such, the imaging 

material is usually already available for investigating adenoids for orthodontic patients.  
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Although the accuracy of lateral cephalograms for investigating AH has been 

verified by rhinometry or operational examination [70, 71], the low specificity and low 

correlations with endoscopic evaluation have also been reported [72-77]. The various 

measuring protocols on lateral cephalograms may lead to inconsistent conclusions 

regarding the applicability of lateral cephalograms for diagnosing AH. Several 

parameters have been used for assessing the adenoid and nasopharynx on lateral 

cephalograms such as the distance, area, and ratio of the adenoid and nasopharynx [71, 

78-80]. As the obstructive degree is dependent on both the adenoid size and the 

nasopharyngeal width, the sole assessment of the adenoid or nasopharynx can not 

efficiently express the obstructive upper airway.  

The relationship of the adenoid to the nasopharyngeal airway could be 

represented by the adenoid nasopharyngeal (AN) ratio measured on lateral 

cephalogram, first described by Fujioka et al. [9] (Figure 5). The AN ratio was 

calculated by two linear measurements presenting the size of the adenoid and 

nasopharynx, respectively. Over the years, many studies applied the original Fujioka’s 

method or a modified method for measuring the AN ratio [81-84]. The AN ratio 

exhibited a significant correlation with the volume of adenoid removed at operation 

[85] and with nasal endoscopic examination findings [83, 86]. Soldatova et al. [87] 

concluded that AN ratio of 0.65 could be used for estimating a moderate 

nasopharyngeal obstruction based on the observation during intraoperative mirror 

examination. An adenoidectomy has been recommended by clinicians at a threshold 

AN ratio of 0.73 [84]. However, the AN ratio has not been well known by dentists, and 

it may be a simply feasible approach to identify orthodontic patients who are at risk of 

AH.  
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1.3.2 3D imaging – CBCT 

Justification and optimization of x-ray examinations  

X-ray is widely applied in medical diagnoses and treatment. Due to the potential 

radiation risk associated with x-ray exposure, justification and optimization of x-ray 

examination are particularly important, especially for children, because of their greater 

radiation risk. The ALARA principle [88], as low as reasonably achievable, has been 

adapted upon over time by specifying the importance of the dose exposure being as 

low as diagnostically acceptable (ALADA) [89]. Therefore, when a new radiological 

modality emerges, its diagnostic benefit and radiation risk shall be evaluated and 

compared with conventional methods. 

3D imaging provides more extensive and detailed information for demonstrating 

the UA morphology in multiplanes as well as volumetric rendering model, but at the 

expense of higher radiation doses than traditional two-dimensional (2D) imaging. 3D 

x-ray examination of UA needs to be justified by considering whether the obtained 

information is crucial for diagnosis and the follow-up treatment choice. 

 

 

Figure 5. AN ratio measurements: A – indicates adenoid thickness; N – indicates the nasopharyngeal 

width. adapted from [86].  
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CBCT 

CBCT was introduced in dentistry by Mozzo et al. in 1998 [90], specifically designed 

for dental maxillofacial imaging. CBCT has gained growing popularity among dentists 

due to the ease of acquisition and impressive 3D reconstruction with high spatial 

resolution. CBCT entails a lower radiation dose than MSCT [91] but increased 

radiation risk compared to conventional radiographs, such as lateral cephalogram. So 

far, CBCT has become an easily accessible radiological modality for dentists and is 

widely applied in various diagnostic task, such as for bone assessment prior to implant 

treatment. Compared to MSCT, CBCT images provide higher spatial resolution due to 

their small isotropic voxels but lower contrast resolution, and thus unsuitable for soft 

tissue diagnostics. Despite CBCT being inferior to MSCT in discriminating between 

different soft-tissue structures, the high anatomical contrast between soft tissues and 

air makes it possible to define the boundary of UA. CBCT is thus now considered to 

be an effective and accurate alternative to MSCT for investigating UA [92-95]. 

On CBCT images, the UA may be divided into four regions. The start region is 

the nasal cavity, followed by the nasopharynx, where the adenoid situates. The next 

part is the oropharynx including the soft palate and tonsils, and the last region is the 

hypopharynx or laryngopharynx. The area or volume of each region could be 

automatically obtained while the boundary is defined by applying software (Figure 6). 

There has been a number of reports on the clinical application of CBCT on 

patients who underwent mandible setback surgery, mandible advancement treatment, 

or rapid maxillary expansion [96-99]. The changes of UA morphology caused by these 

treatments may be detected on images as these specific patients already had the CBCT 

images available since 3D information is required for diagnostic indication.  
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When applying CBCT images for an investigation of the adenoid size, high sensitivity 

of 88% and specificity of 93% for diagnosing AH has been reported by Major et al. 

[100]. It is of interest to note that even on the 3D images, they used a 2D parameter to 

grade the AH related nasal obstruction by calculating the percentage of adenoid 

occupied the nasopharynx. Other researchers have also tried to seek a 2D parameter on 

a lateral cephalogram representing the 3D morphology of the UA [101, 102], in which 

the most efficient 2D parameter was the nasopharyngeal area measured on lateral 

cephalograms. The larger area indicated the larger nasopharyngeal volume; however, 

defining the area on lateral cephalograms was time-consuming. So far, an efficient 2D 

parameter for estimating 3D UA morphology has not been achieved. AN ratio has not 

been associated with 3D morphology in previous studies.  

One question is notable, namely, does the morphological characters demonstrated 

on CBCT images reflect the functional features of UA? The limited availability of 

functional tools makes respiratory assessment impossible for dentists. As mentioned 

earlier, the changes of UA morphology related to orthognathic surgery or orthodontic 

treatments have been investigated employing CBCT images, and very few studies 

associated the morphological changes to the respiratory function in terms of oxygen 

saturation [103], apnoea hypopnea index (AHI) [104], and clinical symptoms. 

 

Figure 6. UA segmentation on CBCT images. 
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Assessment of UA morphology in relation to respiratory function is essential in 

targeting patients having potential UA obstruction, and may further be applicable for 

predicting the outcome of treatment. Although there is a critical requirement for 

understanding the image based geometry-property related to the UA function, 

unfortunately, the current state of information obtained from imaging can not provide 

the answer. 

In summary, two main questions need to be addressed with respect to 

investigating adenoid on images. Can a 2D parameter measured on lateral cephalogram 

be used for estimating the 3D morphology of UA? Secondly, does the morphology of 

UA demonstrated on images associate with the functional features of UA?  

1.3.3 3D image-based CFD simulation 

What is CFD? 

Computational fluid dynamics (CFD) is a well-established technique for simulating 

fluid motion using numerical algorithms, which has been widely used in mechanical 

engineering for years. After designing a virtual model, the aerodynamic characteristics 

such as the pressure, velocity, and flow patterns can be simulated and calculated 

without the high costs associated with experimental analyses. Consequently, CFD 

plays an ever-growing role in the field of medicine, by applying CFD approach the 

human’s anatomic structure can be investigated as a biomechanical model e.g., blood 

vessels. 

Application in medicine  

The CFD has been utilised for the demonstration and assessment of biomedical 

procedures in medicine. The most notable application was in cardiovascular systems. 

Based on medical 3D images, the advent of CFD made the complex transport 

phenomena feasible i.e. blood flow in vessels or airflow in airways. As the 

biomechanics between anatomical structure and the functional feature can be 

investigated using CFD simulation, many challenging and clinically relevant problems 

could be explained by aerodynamic characteristics. One of the aerodynamic parameters 
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wall shear stress was found to be closely associated with aneurysm geometry, which 

pointed out the relationship between wall shear stress and aneurysm rapture (Figure 

7). The higher wall shear stress may indicate a thinner aneurysm wall [105], and the 

higher wall shear stress may also predict the location of the aneurysm rupture [106]. 

 

 

Figure 7. CFD analysis of aneurysm data. adapted from [107] 

Regarding the field of dentistry, most CFD studies focus on nasal respiratory function 

after orthognathic surgery, orthodontic treatment, and OSA therapy. Kita et al. [108] 

reported that bimaxillary orthognathic surgery could increase the cross-sectional area 

of nasal cavity, where the pressure tended to decrease accordingly. Iwasaki et al. also 

[109] found an improvement in nasal ventilation after RME by CFD simulation. The 

outcome of the mandibular advancement device, as well as the distraction osteogenesis 

maxillary expansion for treating OSA, has been confirmed by CFD simulation, 

demonstrating a reduction in airflow obstruction in terms of velocity and pressure [110-

112]. Through CFD simulation, these previous studies showed that UA’s anatomical 

geometry was associated with airflow properties. Zhao et al. [113] stated that the 

geometric changes alone did not correlate well with treatment response, and they 

supported CFD as a potential tool for the prediction of treatment outcome in OSA 

patients. However, when to apply CFD simulation and how to construct a CFD model 

are still under debate as the CFD simulation is a complex procedure and very skill-

dependent. In the meantime, there are still some challenges in CFD clinical application, 
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for instance, the definition of boundary conditions, the choice of a representative 

parameter, and the setting of respiratory phases.  

Considerations for CFD aiding UA assessment  

Due to the utilisation of CFD in the assessment of UA in the literature, CFD may be 

used as a bridge for linking the adenoid-related UA obstruction and airflow functional 

characteristics. To our knowledge, only one published study detected the relationship 

between AH and the airflow features, in which the maximum negative pressure was 

found correlated with the minimum cross-sectional area (CSA) obtained on CT images 

[114]. However, the 2D parameter on lateral cephalograms has not been quantitatively 

associated with airflow dynamic characteristics by means of CFD. As lateral 

cephalogram is more readily available for orthodontic patients with considerably lower 

radiation risk than CT or CBCT; thus it is essential to validate whether lateral 

cephalogram can be applied to estimate the 3D morphology and the function of UA 

focusing on adenoid. 
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2. AIMS 

The overall aim of this thesis was two-fold: first to validate lateral cephalogram in AH 

diagnostics using CBCT and CFD simulation. Secondly, the effect of RME on UA was 

investigated by CBCT and CFD. 

Specific aims were: 

• To evaluate whether the AN ratio on lateral cephalograms could be used to estimate 

the airway volume, using CBCT as the validation method (Study I). 

• To investigate the aerodynamic characteristics within UA on orthodontic patients 

employing CFD simulation. Furthermore, airflow features were compared between 

normal and patients suspected of having AH (Study II). 

• To evaluate the effect of RME on the morphology of the UA in patients with and 

without AH (Study III). 

• To evaluate the outcome of RME on the UA function in terms of aerodynamic 

characteristics by applying a CFD simulation (Study IV). 
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3. MATERIAL AND METHODS 

3.1 Study design 

 

Study Applied methods Calculated parameters 

I  

 

 

 

• AN ratio  

• Areas  

• Volumes 

Lateral cephalogram CBCT 

II  

 

 

 

• AN ratio 

• Pressure drop (△P) 

• Maximum midsagittal 

velocity (Vms) 

• Maximum wall shear 

stress (Pws) 

• Minimum wall static 

pressure (Pw) 

 Lateral cephalogram CFD 

III  

 

 

 

 

 

 

• AN ratio 

• Areas 

• Volumes 

 

CBCT 

IV  

 

• Pressure drop (△P) 

• Maximum midsagittal 

velocity (Vms) 

• Maximum wall shear 

stress (Pws) 

 

RME CFD 

 

 



 33 

All four included studies were retrospective studies aiming to evaluate the UA 

condition in terms of morphology and aerodynamics using the available imaging 

materials of the orthodontic patients. Study I and Study II were retrospective 

observational studies for investigating whether the 2D parameter obtained from the 

lateral cephalogram i.e. AN ratio, could be used to estimate the UA morphology and 

aerodynamics of UA. Study III and Study IV were retrospective cohort studies to 

evaluate the effect of RME on UA by means of CBCT images and CFD simulation. 

3.2 Ethics 

The studies I–IV were approved by the ethics committee of China as well as 

the ethics committee of Norway: Study I (DLKQLL201302, Dalian 

Stomatological Hospital, China) and Studies II, III, IV (DLKQLL201604, 

Dalian Stomatological Hospital, China; 2018/1547 REK Vest, University of 

Bergen, Norway). The samples were collected following informed consent of 

the patients. 

3.3 Sample collection 

All the data were retrospectively collected at the Department of Orthodontics, 

Stomatological Hospital, Dalian, China between 2010 and 2016. The database was 

searched systematically. 

The inclusion criteria were cases with one lateral cephalogram and one CBCT 

scan examined within one week. All the radiographs were taken prior to the start of the 

treatment due to various orthodontic reasons. For CBCT scans, the field of view should 

cover the whole upper airway including the nasal cavity, nasopharynx, and oropharynx. 

The exclusion criteria were severe abnormalities of maxillofacial tissue, previous 

surgery on skeletal and soft tissue related to respiration, and previous orthodontic or 

orthopaedic treatment. All the scans were previewed, and images with motion artifacts 

and suboptimal patient positing were excluded. 
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The inclusion criteria in Study II included cases aged 9 to 15 years. Specific 

inclusion criteria in Study III and Study IV were cases younger than or equal to 15 

years and CBCT scans had been performed pre- and post-RME (Figure 8). The pre-

RME CBCT scans were made in the seven days before cementation of the expander 

(T0), and the post-RME CBCT scans were taken at the end of the retention phase (T1). 

 

Figure 8. Flowchart of patient selection in Study III and Study IV. 

3.4 Imaging 

3.4.1 Lateral cephalogram  

A Digital Pan/Ceph System (ORTHPOPHOS XG 5, Sirona, Germany) was used at 73 

kVp, 15 mA with an exposure time 9.4 seconds. The magnification factor is 1.1 with a 

16 bit pixel depth for all the images.  

3.4.2 CBCT  

One CBCT device (3D eXam; KaVo, Biberach an der Riss, Germany) was applied at 

120 kV and 5 mA, with a scanning time of 14.7 seconds for the patients according to 

the manufacturer's guidelines. The voxel size was 0.2 mm, with 14-bit pixel depth for 

all the images, and the field of view varied depending on the purpose of the 



 35 

examination. CBCT scans followed standardised clinical routines, that is, with the 

Frankfort horizontal plane parallel to the floor, the teeth in maximum intercuspation, 

and the patient breathing calmly with no swallowing.  

3.5 CFD Simulation 

The CBCT images were imported to MIMICS software (23.0 MIMICS, Materialise, 

Belgium) in the digital imaging and communications in medicine (DICOM) format for 

later analysis. 3D renderings of the CBCT scans were oriented with axial planes 

paralleling the Frankfurt horizontal plane; the midsagittal planes intersected the nasion 

and anterior nasal spine; and the coronal plane was adjusted to the level of the porions. 

For each case, a mask was reconstructed, making sure the integrity of UA was 

displayed correctly. CFD simulation was then conducted on the 3D model within the 

mask region. The superior boundary of the studied UA was defined as a vertical plane, 

in the nasal cavity, passing through the most posterior point of the middle turbinate, 

whereas the inferior boundary was a horizontal plane, in the pharynx, in line with the 

most anterior-inferior point of cervical vertebra 4. Each end of the boundary was 

extended by 20mm to avoid flow reversing during the simulating process. The inlet and 

outlet of UA were set at the extended planes. A surface model was then created 

according to the extended 3D model for mesh generation by ANSYS ICEM (ANSYS, 

Inc., Canonsburg, Pennsylvania). The inlet and outlet at the surface of UA were 

defined. Each UA mesh was with five boundary layers and an average of 2 million 

elements in a size of 0.6. ANSYS Fluent (ANSYS, Inc., Canonsburg, Pennsylvania) 

was applied to calculate the aerodynamics characteristics during the respiratory circle. 

The boundary condition of UA was set. In the inspiratory phase, the inlet of UA was 

set with pressure 0 Pa and the outlet of UA with a flow rate of -200 mL/s. The 

corresponding values were -200 mL/s and 0 Pa at inlet and outlet for the expiratory 

phase.  
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3.6 Radiographic and aerodynamic analysis 

3.6.1 Association between AN ratio and morphological parameters 

To detect the association between AN ratio and the UA morphology in terms of areas 

and volumes of the nasopharynx and total upper airway, 55 participants were classified 

into two groups according to age: group A (≤15 years) and group B (> 15 years).  

AN ratio measurement 

The AN ratio as the ratio of the thickness of the adenoid to the width of the nasopharynx 

was measured on the lateral cephalograms [115]. A denotes the perpendicular distance 

between the points of maximal convexity of the adenoid shadow and the anterior 

margin of the basiocciput, while N denotes the distance between the posterosuperior 

edge of the hard palate and the anteroinferior edge of the spheno-occipital 

synchondrosis (Figure 9).  

 

 

Figure 9. Calculating the adenoidal nasopharyngeal (AN) ratio. A – Perpendicular distance between 

maximum convexity of the adenoid shadow and the anterior margin of the basiocciput; N – Distance 

between the posterosuperior edge of the hard palate and the anteroinferior edge of the spheno-

occipital synchondrosis. 
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The morphological assessment 

The areas and volumes of UA were calculated by applying 3D airway reconstruction. 

The CBCT images were imported as DICOM data to imaging software (Dolphin 

Imaging & Management Solutions, Chatsworth, Calif). Once the image was properly 

oriented, the software created a 2D simulated lateral cephalometric image at the 

midsagittal plane. From this view, the nasopharyngeal UA was defined with the 

superior border at a line connecting the midpoint of sella turcica and the posterior nasal 

spine, and with the inferior border at a line connecting the point most posteroinferior 

on the clivus with the posterior nasal spine. For the total UA, the superior border was 

the same as the nasopharynx, and the lower border of the airway was defined at a 

horizontal level with the tip of the epiglottis against the wall of the posterior airway. 

Data of area and volume in the midsagittal view could be calculated and presented 

automatically once the boundary of the airway was defined (Figure 10). 

  

a b 

Figure 10. The area and volume was calculated and presented after the boundaries were 

defined from the sagittal view: a – nasopharynx; b – total upper airway 
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3.6.2 Comparison of aerodynamic parameters according to AN ratios  

The AN ratios were calculated on lateral cephalograms applying the same measuring 

protocol in Study I [115]. An AN ratio of 0.6 was applied for dividing the cases into 

two subgroups: group 1: AN ratio < 0.6 and group 2: AN ratio ≥ 0.6. The aerodynamic 

differences were compared between the subgroups in terms of the maximum velocity, 

the pressure drop, the maximum wall shear stress, and the minimum wall static pressure 

(Figure 11).  

 

Figure 11. The procedure of CFD modeling and simulation. (a) CBCT segmentation; (b) Mesh 

generation and detailed zoom; (c) CFD simulation results: airflow pressure contour, velocity 

streamline, and wall shear stress contour. 

Table 1 demonstrates the aerodynamic parameters in terms of the maximum velocity, 

the pressure drop, the maximum wall shear stress, and the minimum wall static pressure 

which were obtained from CFD simulation. Pressure drop refers to the pressure 

difference between a vertical plane through the most posterior point of the middle 

turbinate and a horizontal plane through the tip of the epiglottis. 
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Table 1．Description of the aerodynamic parameters evaluated applying the CFD 

simulation 
 

3.6.3 Comparison of the morphological and aerodynamic changes after 

RME  

The seventeen subjects were divided into two groups based on the AN ratio at baseline 

(T0): group 1 comprised individuals with an AN ratio < 0.6 and group 2 with an AN 

ratio ≥ 0.6. 

Morphological assessment (Study III) 

The UA was divided into the nasopharyngeal, retropalatal, and retroglossal airways by 

the reference planes in order to investigate the morphology of each region. After 

defining the axial planes at three inferior cross-sections – between the three airways 

and the UA – we were able to calculate the cross-sectional areas of the nasopharyngeal, 

retropalatal, and retroglossal spaces. The volumes of these spaces were automatically 

calculated after we had manually defined the boundaries. Morphological assessments 

including cross-sectional areas and volumes of each defined UA region are 

demonstrated in Figure 12.  

Name Unit Definition 

Maximum Vms m/s The maximum velocity on the midsagittal plane 

△P Pa The pressure loss of airflow between the defined two planes 

Maximum Pws Pa The maximum lateral pressure of airflow acting on the UA wall 

Minimum Pw Pa The minimum vertical pressure of airflow acting on the UA wall 
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                   b 

   

a                    c 

Figure 12. Morphological assessments of UA on CBCT images (a)The nasopharyngeal, 

retropalatal, and retroglossal upper airway was defined by four planes: the SP plane connects the 

midpoint of sella turcica and the posterior nasal spine, the nasopharyngeal, retropalatal, and 

retroglossal plane parallel to the horizontal plane passing through the point of posterior nasal, the 

tip of uvula, and the tip of the epiglottis respectively,(b) the cross-sectional areas, and (c) volumes 

were calculated for each region. 

Aerodynamic assessment (Study IV) 

Aerodynamic characteristics in terms of the maximum Vms, △P, and maximum Pws pre- 

and post-RME were simulated following the same process as Study II. To investigate 

the pressure drop of each region of UA, 4 planes were defined on the CFD model 

(Figure 13).  
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Figure 13. Description of the pressure of 4 planes defined on the CFD model. Definition of the four 

planes in the sagittal view: the superior plane, paralleled the inlet plane through the posterior point 

of middle turbinate; the following planes, paralleled the outlet plane through the inferior point of 

plane 1; the tip of the soft palate; the tip of the epiglottis respectively. The right graph shows the 

distribution of the pressure of each plane in the posterior view. 

 

3.7 Statistical analyses 

The statistical analyses were performed using IBM-SPSS version 25.0 (IBM, New 

York, NY, USA). Significance was set at p-values less than 0.05. Statistical tests for 

normality were conducted for all variables. Descriptive data for each group in Study 

III and Study IV were presented by applying Graph Pad Prism v 8.0 (GraphPad, USA).  

Reliability 

The Intraclass Correlation Coefficient (ICC) was applied for testing the intra- and inter-

observer reliability (Study I–IV). 

Association  

The Association between the AN ratio and UA morphological parameters in terms of 

areas and volumes of nasopharyngeal and total upper airway were studied by scatter 

plots (Study I).  
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Comparison  

The aerodynamic characteristics including △P, maximum Vmx, maximum Pws, and 

minimum Pw in two groups divided by the AN ratio 0.6 were compared by independent 

samples t-test or Mann-Whitney U test (Study II). The paired samples t-test or 

Wilcoxon test was applied to compare the cross-sectional areas and volumes of 

nasopharyngeal, retropalatal, and retroglossal UA pre- and post-RME (Study III). The 

aerodynamic characteristics including △P, maximum Vmx, and maximum Pws pre- and 

post-RME were compared by applying paired samples t-test or Wilcoxon test (Study 

IV). 

Description 

The morphological and aerodynamical differences between the two groups divided by 

AN ratios pre- and post-RME were expressed graphically in terms of mean and 

standard deviations (SD) (Study III and Study IV). 
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4. RESULTS 

4.1 AN ratio Vs morphological characteristics (Study I) 

Among the 55 cases, 32 were included in group A with a mean age and standard 

deviation of 11.8 ± 1.6; 23 were in group B with 21.1 ± 5.7. The correlation coefficients 

between the AN ratio and nasopharyngeal volume were -0.78 and -0.57 for groups A 

(age ≤ 15 years) and B (age > 15 years), respectively (Figure 14). For repeated 

measurements of the AN ratio and nasopharyngeal volumes, ICC values ranged from 

0.89 to 0.99, within and between the two observers. 

4.2 The aerodynamic characteristics according to AN ratios 

(Study II) 

Study II involved thirty-five cases aged 12.0 ± 1.4 (13 females, 22 males). AN ratios 

ranged from 0.33 to 0.80 with a mean and standard deviation of 0.54 ± 0.15. The 

maximum Vms in Group 2 (AN ratio ≥ 0.6) exhibits a statistically significant increase 

of nearly 30% (p < 0.05) at both inspiration and expiration in contrast to Group 1 (AN 

ratio < 0.6). For the other aerodynamic parameters such as △P, maximum Pws, and 

  

            a             b 

Figure 14. Scatter plots of the correlations between the AN ratio and nasopharyngeal volume: a - 

group A; b - group B 
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minimum Pw, no significant difference was found between the two groups. The intra- 

and inter-observer reliability ranged between 0.872 and 0.997 for all measurements. 

Figure 15 illustrates the airflow features in terms of velocity, wall static pressure, wall 

shear stress in two typical cases with an AN ratio of 0.40 and 0.73, respectively. The 

velocity streamlines in Figure 15a mainly composite mainly the lower velocity 

expressed by blue and green streamlines compared with the higher velocity expressed 

by green and yellow streamlines in Figure 15b. 

 

                              a 

 

                              b 

Figure 15. Illustration of the airflow feature in two typical cases with an AN ratio of 0.40 (a) 

and 0.73 (b), during inspiration (the up images) and expiration (the down images), respectively. 
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4.3 UA morphological and aerodynamic changes after RME 

(Study III, Study IV) 

Seventeen cases with a mean age of 12.2 ± 1.3 years (6 females, 11 males) were eligible 

for inclusion in the study. The expansion was considered completed when the occlusal 

aspect of the maxillary lingual cusps of the upper first molars contacted the occlusal 

aspect of the vestibular cusp of the mandibular first molars. After achieving the desired 

expansion, the expander remained in place for 5.2 ± 1.7 months to stabilise the 

expansion. All the cases were divided into two groups at baseline (T0) with respect to 

AN ratios. Group 1 was comprised of 10 individuals (mean age 11.9 ± 1.3 years) with 

an AN ratio < 0.6 and group 2 encompassing 7 individuals (mean age 12.6 ± 1.3 years) 

with an AN ratio ≥ 0.6. Due to the limited number of cases, group 1 and group 2 were 

merged when performing the statistical analysis on the effect of RME. 

The UA morphology in terms of the nasopharyngeal, retropalatal, and retroglossal 

areas and volumes tended to increase after RME. The increasing percentage of the 

nasopharyngeal volume was most pronounced by 18.66%, but without statistical 

significance (Table 2). The morphological changes of each part of the airway were 

compared in terms of areas and volumes between the two groups at T0 and T1 (Figure 

16). 
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Table 2. Airway area and volume measurements on cone beam computed 

tomography images before (T0) and after (T1) rapid maxillary expansion, 

and the change [(T1-T0)/T0%] in area and volume parameters during the 

treatment period (n = 17) 

 T0  T1  Change (%) 
p-value 

  Mean SD  Mean SD  Mean SD 

Area (mm2)          

 Nasopharyngeal 320.16 113.10  319.31 115.78  2.82 34.93 0.965 

 Retropalatal 193.54 82.91  209.55 89.96  13.25 33.62 0.246 

 Retroglossal 237.96 95.74  241.25 107.32  3.18 27.20 0.776 

Volume (mm3)          

 Nasopharyngeal  3383.24 1648.17  3769.95 1670.48  18.66 43.83 0.246 

 Retropalatal  5450.11 1534.19  5781.52 2188.29  4.92 23.29 0.283 

 Retroglossal  4497.22 2488.35  4590.56 2161.19  8.22 30.35 0.619 
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Figure 16. Morphological comparisons of nasopharyngeal, retropalatal and retroglossal 

airway in terms of areas and volumes (mean ± SD) between the two groups at T0 and T1. 

Regarding the aerodynamic changes after RME, except for △P at inspiration, 

all the other aerodynamic parameters decrease after RME treatment (Table 3). 

However, none of the changes was statistically significant. Nevertheless, Vms 

(m/s) drop (2.79 to 2.28) at expiration being close to significance (p = 0.057).   

Figure 17 illustrates the distributions of the aerodynamic variables for the two 

groups at T0 and T1 graphically. It demonstrates that group 2 has a higher mean 

△P and mean Vms than group 1 at both inspiration and expiration regardless of 

T0 or T1, whereas the maximum Pws shows the opposite trend being lower for 

group 2. 
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Table 3. Comparison of pressure drop (△P), maximum midsagittal velocity (Vms), 

and maximum wall shear stress (Pws) at inspiration and expiration before (T0) 

and after (T1) rapid maxillary expansion (n = 17). 

 

 

 

 

 

 

 

 

 

Figure 17. Expression of the aerodynamic characteristics in terms of mean, SD for the two 

groups at T0 and T1. 

 T0 T1 T0 Vs T1 

 Mean SD Mean SD p-value 

Inspiration 

△P (Pa) -4.00 1.87 -4.36 2.45 0.549 

Maximum Vms (m/s) 2.48 0.70 2.43 0.92 0.906 

Maximum Pws (Pa) 1.29 1.24 1.03 1.32 0.163 

Expiration 

△P (Pa) 2.96 2.56 2.81 2.43 0.943 

Maximum Vms (m/s) 2.79 1.09 2.28 0.82 0.057 

Maximum Pws (Pa) 1.63 1.85 0.93 0.71 0.381 
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5. DISCUSSION 

5.1 Methodology consideration  

Due to the close association between adenoid size and maxillofacial development 

/obstructive breathing, orthodontists have suggested assessing the adenoid size prior to 

the start of treatment [34] [38]. Hence, an appropriate radiological modality for 

investigating adenoids is essential in the clinic. Lateral cephalogram is one of the most 

widely used images as an adjunct to clinical investigations of adenoid size. Although 

some studies have questioned its usefulness for AH diagnosis, without a doubt, it is the 

first choice of radiologic modalities for assessing adenoids with consideration of 

efficacy and rationality in the field of dentistry. 

In the four retrospective studies, the lateral cephalograms and CBCT scans were 

already available according to various indications before orthodontic treatment. We 

utilised the readily available CBCT images and applied CFD simulation to detect the 

airflow characteristics. This keeps in line with the statement from the American 

Association of Orthodontists, which states that “The airway and surrounding structures, 

specifically the adenoids in children, should be evaluated, if radiographic records are 

taken for orthodontic purposes” [38]. Both approaches were considered as accurate and 

reliable methods for investigating UA, but neither CBCT nor CFD is a routine 

examination for orthodontic patients. Moreover, we must keep in mind that the CBCT 

scans have higher radiation doses than lateral cephalograms [116]. As CBCT scans 

only can be applied with a justified orthodontic indication, the investigation of UA by 

means of CBCT images and CFD simulation must remain a secondary assessment 

when the image was acquired for orthodontic diagnosis. 
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5.2 Interpretation of major findings 

5.2.1 Lateral cephalogram Vs CBCT 

2D Radiographs of the nasopharynx are sometimes misinterpreted because of the 

suboptimal imaging quality or the superimposition of the anatomic structures. It is well 

accepted that 3D imaging presents the UA’s anatomic characters more effectively and 

accurately compared with 2D imaging. However, the CBCT scans are not the 

radiologic examination routinely performed on most orthodontic patients; meanwhile, 

the lateral cephalograms are more available during orthodontic process. Lateral 

cephalograms are most commonly applied in children and adolescents to depict and 

trace the skeletal structures and occlusion during the orthodontic treatment process. 

However, linear measurement showed lower method error compared with area and 

volume measurements [93], implying that a straightforward linear measurement may 

avoid bias from different software programs and the UA segmentation process. 

Some researchers have searched for the parameters on 2D images to predict the 

UA morphology, such as the narrowest palate airway, the anterior airway width, the 

anatomic boundaries of the nasopharynx, and the AN ratio, which has been tested and 

correlated to nasopharyngeal volume. However, there is no consensus concerning an 

appropriate 2D parameter on the lateral cephalogram that could be used to estimate the 

3D characteristics of the UA.  

In Study I, the AN ratios measured on the lateral cephalograms were associated 

with volumes of nasopharynx and total UA in orthodontic patients. AN ratio was 

calculated by two linear measurements presenting the two main features of both the 

adenoid and nasopharynx. Therefore, the AN ratio seemed to be more rational for 

demonstrating the patency of the UA by assessing the relationship between adenoid 

and nasopharynx compare with the sole adenoidal or nasopharyngeal size. 

During the measuring process of AN ratio, the most difficult part was to identify 

the fixed point of sphenobasioccipital synchondrosis for measuring N. Soldatova et al. 

[87] modified the AN ratio by using a perpendicular distance instead of 
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sphenobasioccipital synchondrosis. Fujioka et al. suggested that when 

sphenobasioccipital synchondrosis was not clearly visualised, it could be replaced by 

the site of crossing posteroinferior margin of lateral pterygoid plates and floor of bony 

nasopharynx [9]. Nevertheless, our results verified the classical AN ratio [9] to be a 

feasible measurement with high repeatability between and within examiners (0.89-

0.96). 

For patients 15 years or younger, the mean AN ratio was 0.49 and 0.54 in Study 

I and Study II, respectively, while the mean value was 0.30 in patients older than 15 

years. The age-dependent distribution of AN ratio in our studies is coincident with the 

adenoidal physical development. The AN ratio gradually decreases from 0.52 at around 

12 years and then sharply diminishes to 0.38 at around 15 years. After that, the adenoid 

size usually remains stable over the lifespan [9]. This may indicate that adenoidal size 

is a key factor for nasal obstruction in younger patients, but the effect may be weakened 

as the adenoids atrophy after 15 years. Furthermore, it may imply the different 

anatomic predisposing factors of SDB between children and adults. It has been well 

demonstrated that enlarged adenoid and/or palatal tonsils may lead to reduced patency 

in UA, which is the most common cause of developing SDB in children [117-119]. 

However, more complicated factors related to obstructed UA size results in SDB in 

adults, such as the abnormality of the cranial base, face height, maxilla, and mandible, 

or the increased size of the tongue and soft palate [120].  

The AN ratio in group A (≤ 15 years) showed a higher correlation r = -0.78 with 

nasopharyngeal volume compared to r = -0.57 in group B (> 15 years). The correlation 

between AN ratio and nasopharyngeal volume is higher than the other linear 

measurements on lateral cephalograms. Sears et al. [101] reported that the distance 

through the midpoint of the nasopharynx showed the correlation r = 0.43 with 

nasopharyngeal volume. The nasopharyngeal area measured on lateral cephalogram 

has been reported to have a correlation of 0.45 with the nasopharygeal volume [121]. 

A correlation of 0.75 has been found between the nasopharyngeal area and volume in 

the group of patients with a mean age of 14 years [102]. Compared to complicated area 

measurements of lateral cephalograms, we recommend the AN ratio for estimating the 
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nasopharyngeal volume. With respect to the total UA volume, the AN ratio also showed 

a correlation of r = -0.48 in younger patients. These results may contribute to the fact 

that for patients ≤ 15 years, a high AN ratio demonstrates a small nasopharyngeal and 

total UA volume.  

The AN ratio measured on lateral cephalograms may be applied as a feasible 2D 

parameter by dentists for screening the nasopharyngeal morphology. However, in 

Study I, we solely provide morphological evidence without further functional 

evaluation i.e. airflow characteristics. Since a volumetric change in UA does not 

necessarily induce functional alteration, AN ratios should be associated with airflow 

features. 

5.2.2 Lateral cephalogram Vs CFD simulation 

To our knowledge, the AN ratio is first associated with UA’s aerodynamic 

characteristics in this dissertation. Based on our results, the aerodynamic characteristics 

of the maximum Vms significantly increased at both inspiration and expiration for 

patients with an AN ratio of more than 0.6. The finding demonstrated that an AN ratio 

of more than 0.6 induced airflow changes in terms of increased maximum Vms. The 

velocity seemed to be one of the most sensitive aerodynamic parameters for 

representing the airflow alteration caused by UA morphological changes [51, 122]. Hu 

et al. [51] reported that a smaller coronal-sectional area indicated higher velocity on 

OSA patients without the other notable changes in aerodynamic characteristics. The 

relationship between UA morphology and airflow features can be explained by the 

Bernoulli’s effect (Figure 18). Within a varying diameters tube, the narrower region 

forces fluid to gain a higher velocity and lower pressure [123]. 
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Figure 18. Bernoulli’s principle. 

The UA is a more complex structure in contrast to a smooth tube. The movements of 

surrounding soft tissue during respiration or the positional changes may influence the 

geometry of UA. In comparison with a soft palate and tongue, the adenoid located on 

the posterior part of the nasopharynx is less affected by the muscle tone, tongue 

position and neck flexion [124]. Mahboubi et al. [79] compared AN ratios measured 

on supine and erect positional lateral cephalograms and showed nearly the same AN 

ratios. As the adenoid is the most notable soft tissue located on the nasopharynx, the 

morphology of the nasopharynx is much more stable compared to the oropharynx [125] 

[126]. For patients ≤ 15 years, the AN ratio is a relatively stable parameter for 

estimating the nasopharyngeal volume and moreover, for predicting the UA 

aerodynamic features. 

The AN ratio measured on the lateral cephalogram successfully represented the 

narrowing region leading to airflow aerodynamic alteration. It is possible, as a dentist, 

to target patients at risk of AH by AN ratios combined with clinical symptoms and 

possible complaints from patients or parents. Few studies addressed the threshold for 

identifying AH, and no standard was achieved. The AN ratio of 0.65 has been 

suggested for diagnosing a moderate nasopharyngeal obstruction [87]; an AN ratio of 
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0.73 [84] and the cross-sectional area ≤ 50 mm² measured on CT images [114] may 

imply an adenoidectomy. In our study, an AN ratio of more than 0.6 indicated a 

significant increase in the maximum Vms, which revealed the aerodynamic changes 

caused by AH. 

Previous CFD simulations were mostly conducted only at one respiratory phase, 

mostly the inspiration [51, 122, 127]. Since various aerodynamic parameters had been 

reported to be sensitive for expressing the airflow’s feature at inspiration and expiration 

[128-130], in our CFD simulations, two respiratory phases were simulated, and the 

variation of aerodynamic characteristics at different respiratory phases revealed that 

both inspiration and expiration should be simulated. 

The AN ratio exhibited high consistency with 3D morphology of UA in terms of 

nasopharyngeal volume; moreover, an AN ratio of more than 0.6 may imply the altered 

aerodynamic characteristics i.e. the maximum Vms. The AN ratio can be used as a 

feasible tool for estimating AH by providing both morphological and aerodynamic 

evidence. 

5.2.3 CBCT Vs CFD simulation 

CBCT images make the complex anatomic structure within UA visible. The 

morphological parameters such as area and volume could be obtained from UA’s 

segmentation on CBCT images. In the present study, CFD simulations were 

constructed based on CBCT images aiming to determine the association between 

morphology and aerodynamics.  

With growing interest in the possible effect of RME on increasing UA space, 

many studies tried to assess the UA morphological changes after RME using CBCT 

images, but still without consistency [131-135]. The effect of RME on aerodynamics 

has been investigated sparsely. More evidence is warranted for determining the 

potential benefit for UA after RME.  

In the engineering field, the pressure drop is defined as the pressure difference 

between two points of a fluid carrying network, which occurs when frictional forces, 
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caused by the resistance to flow, interact with fluid as it flows through the tube. 

Applying this concept to airflow passing through the UA, the pressure drops when 

facing physical force caused by morphological changes. Furthermore, the maximum 

Vms may be altered following UA morphological changes. Faramarzi et al. evaluated 

the aerodynamics of the nasal cavity in a patient with septal perforation and found 

higher velocity at areas with higher pressure drop [136]. Regarding wall shear stress, 

it expresses the force per unit area exerted by the wall on the fluid in a direction on the 

local tangent plane [137]. The maximum Pws locates primarily at the most constricted 

area [138]. A successful expansion of maxilla suture would hypothetically increase the 

UA’s area and volume, resulting in declines in △P, maximum Vms, and maximum Pws. 

In Study III and Study IV, the same group of patients who underwent RME 

treatment was assessed by means of the CBCT and CFD approaches, respectively. 

There was an overall tendency of enlarged UA’s space, and most of the aerodynamic 

characteristics decreased accordingly after RME. However, neither morphological nor 

aerodynamic changes were statistically significant. In contrast to the present study, 

Iwasaki et al. found significant changes in aerodynamic characteristics in the nasal 

cavity after RME [139]. This may imply that the RME mainly increases the maxilla 

width in the transverse direction and the skeletal boundary of the nasal cavity was 

directly extended following the expanded maxilla [109]. 

Zhao et al. [113] reported that the morphological changes did not significantly 

correlate with the clinical response of mandibular advancement splints; in contrast, the 

aerodynamic changes were highly correlated with treatment outcome, suggesting that 

CFD simulation might be a more sensitive approach than 3D imaging in treatment 

outcome evaluation. However, we could not verify the superiority of aerodynamic 

changes over morphological changes in assessing the effect of RME treatment. 

When the 17 cases were classified into two groups according to AN ratios, group 

2 exhibited a more obvious decrease in nasopharyngeal volume compared with group 

1 after RME. Regarding the aerodynamic changes, an opposite trend in maximum Pws 

was observed between the two groups after RME. We speculate that the alteration of 

maximum Pws may be caused by a weakened “adenoid jet” after RME. However, due 
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to limited cases and the diverse airflow characteristics in group 2, the random effect 

can not be excluded. Due to the small sample size, we did not perform statistical 

analysis on the effect of RME for the subgroup. Therefore, further study with more 

cases with severely enlarged adenoids is needed to confirm our assumption and target 

patients who may benefit from the RME. 

CFD simulation provided aerodynamic data to better understand the UA’s ventilation. 

At present, the simulation procedure is not entirely automatic and thus time-consuming. 

Part of the 3D segmentation and mesh generation needs to be performed manually due 

to the irregular anatomic structure of the UA. This may be the cause for the limited 

number of samples in the available CFD studies [111, 140, 141].  

5.3 Clinical implication 

As the AH may lead to maxillofacial dysmorphisms, pediatric OSA, behavioural and 

psychiatric problems, early detection of AH may help proper management and avoid 

further complications. Since children or their guardians may ignore the related 

obstructive symptoms, dentists are at the front line for targeting the patients at risk of 

AH among orthodontic patients.  

Introducing a simple measure for dentists to estimate the UA and determining 

whether to refer the patients to ENT assessment is the most important purpose of this 

dissertation. Study I and Study II provide the morphological and aerodynamic evidence 

supporting the conclusion that an AN ratio could be applied as an efficient measuring 

parameter. The higher AN ratio, the higher risk of nasal congestion. Children who 

suffer from nasal congestion tend to alter their breathing habits to mouth breathing in 

order to overcome the nasal obstruction. Moreover, abnormal dental maxillofacial 

morphology related to obstructive breathing may be recognised by orthodontists. 

Consequently, an individual treatment plan including skeletal modification, muscle 

practice, and breathing training may be necessary.  
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AH is a common cause of nasal obstruction in children and adolescents. 

Knowledge of UA condition in this group of patients would help understand disease 

mechanism, assist diagnostics and evaluate treatment outcomes. The effect of RME on 

UA in terms of morphological and aerodynamic change could not be significantly 

verified in Study III and Study IV, indicating that the RME treatment could not reduce 

nasal obstruction caused by AH. The limited number of cases in Study III and Study 

IV might have also contributed to the absent effect of RME on UA.  
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6. CONCLUSIONS 

1. The AN ratio is a simple 2D measuring parameter for estimating nasopharyngeal 

volumes of patients ≤ 15 years. 

2. An AN ratio of more than 0.6 may predict the noticeably increased maximum 

Vms, which could help orthodontists assess the UA’s ventilation. 

3. The maximum Vms obtained from CFD simulation is the most sensitive 

parameter for representing aerodynamic characteristics of UA.  

4. The effect of RME on UA in terms of morphology and aerodynamics are not 

significantly demonstrated by means of CBCT assessment and CFD simulation, 

respectively. 

5. The aerodynamic characteristics in patients with AN ratio ≥ 0.6 may indicate a 

complicated airflow’s alteration after RME treatment. 
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7. FUTURE PERSPECTIVES 

Lateral cephalogram is the most commonly performed radiographic examination 

among orthodontic patients. Except for depicting and tracing occlusion, skeletal and 

soft structures during the orthodontic treatment process, the perspective of other 

pathological signs may reveal the risk associated with individual health, such as the 

patency of UA. Measurements of AN ratios shall, therefore, be implemented in the 

routine radiographic report. Further clinical studies are warranted to investigate the 

association between UA morphology, respiratory function, and clinical symptoms to 

better manage children with AH. 

CFD simulation seems to be a promising method for assessing treatment effect in 

terms of aerodynamic characteristics, which has been confirmed by a number of studies 

on UA’s ventilation after orthodontic, orthognathic and OSA-related oral appliance 

treatment [108, 122, 142]. This dissertation may further pave the way for applying this 

innovative approach to dental clinics in the future. By CFD simulation, we could 

discover the difference in aerodynamic characteristics in the UA when evaluating 

various treatments between responders and non-responders and help predict and 

improve the treatment outcome.  

3D volumetric data and CFD simulation open the possibility of virtual therapeutic 

planning, such as virtual adenoidectomy. The desirable treatment outcome in 

anatomical and aerodynamic characteristics could be simulated on an individual-based 

3D model at the treatment planning stage. We do believe, with the help of artificial 

intelligence, the CFD simulation procedure could be simplified and less time-

consuming in the near future. 
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Comparative analysis of upper airway volume
with lateral cephalograms and cone-beam
computed tomography

Xin Feng,a Gang Li,b Zhenyu Qu,c Lin Liu,d Karin N€asstr€om,e and Xie-Qi Shif

Dalian and Beijing, China, and Huddinge, Sweden

Introduction: In this study, we aimed to evaluate the adenoidal nasopharyngeal ratio (ANR) on lateral cephalo-
grams by assessing upper airway volumes using cone-beam computed tomography (CBCT) images as the
validation method. Methods: Fifty-five patients were included in the study, and it was essential that the lateral
cephalograms and CBCT images taken at their examinations were not more than 1 week apart. There were 32
subjects in group A (age#15 years) and 23 subjects in group B (age.15 years). The ANRwasmeasured on the
lateral cephalograms. The area and volumetric measurements of the nasopharynx and the total upper airway
were obtained from CBCT images. Repeated measurements of the ANR and airway volume were performed
on 10 subjects by 2 observers. Results: Group A had a higher correlation (r 5 �0.78) between the ANR and
the nasopharynx volume than did group B (r 5 �0.57). The ANR had a weak correlation with the total upper
airway volume (group A, r 5 �0.48; group B, r 5 �0.32). Both measurements made on lateral cephalograms
and CBCT were highly reproducible in terms of intraobserver and interobserver agreement. Conclusions:
Based on our results, the measurement of the ANR on lateral cephalograms can be used as an initial screening
method to estimate the nasopharynx volumes of younger patients (age #15 years). (Am J Orthod Dentofacial
Orthop 2015;147:197-204)

Obstruction of the airway often alters normal
breathing, which has a significant impact on the
development of craniofacial structures,1,2 such

as incompetent lips, lower or anterior tongue position,
narrow maxillary arch, long face height, crossbites, and
posteroinferior rotation of themandible.3 Themost com-
mon reason for obstruction of the airway is adenoid hy-
pertrophy. Adenoids are a collection of lymphoid tissues
in the posterior nasopharyngeal wall; they are small at

birth but progressively enlarge as a result of increased
immunologic activity.4 Repeated adenoidal infection
and inflammation or genetic factors may lead to pharyn-
geal obstruction, causing mouth breathing, which can in
turn result in altered craniofacial development.5

Before planning orthodontic treatment, orthodon-
tists should view and analyze the airway region on a
lateral cephalogram. If an obstruction is observed, the
patient might be referred to an otolaryngologist for
further treatment. A diagnostic method that can accu-
rately provide data on the severity of nasopharyngeal
obstruction is important for both dentists and medical
specialists. Several methods may be used for evaluating
the size of adenoidal tissues, including conventional
lateral cephalogram, nasal endoscopy, acoustic rhinom-
etry, rhinomanometry, computed tomography, andmag-
netic resonance imaging. Among these methods, the
conventional lateral cephalogram was reported to be
the most cost effective, reproducible, and easy to inter-
pret in assessing the size of adenoidal tissues.6-8 A
lateral cephalogram is useful for analyzing adenoidal
tissues and the nasopharyngeal airway; however, it is a
2-dimensional imaging modality that has limitations to
represent 3-dimensional (3D) structures. Several studies
have reported that computed tomography and magnetic
resonance imaging may provide more clinically useful
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data to supplement the information from the 2-dimen-
sional images.9,10 Recently, with the introduction of
cone-beam computed tomography (CBCT), 3D images
of patients became more available in dentistry, with
reduced radiation doses compared with multidetector
computed tomography and lower costs than magnetic
resonance imaging.11-13 A study by Ludlow and
Walker14 reported that the effective dose of radiation
of CBCT for a cephalometric scan with low-dose settings
may be reduced to the level of a panoramic examination
at the expense of lower image quality expressed in the
signal:noise ratio. However, the image quality of low-
dose protocols in relation to diagnostic tasks needs to
be further studied before CBCT can be recommended
as a routine radiographic method for orthodontic pa-
tients.

Interest in using CBCT to measure airway volume on
craniofacial growth and airway changes after orthog-
nathic surgery and rapid maxillary expansion is
growing.15-19 However, during the orthodontic
treatment period, more lateral cephalograms are readily
available than CBCT images. Previous studies have tried
to find correlations between measurements performed
on lateral cephalograms and CBCT images. Sears et al20

measured the nasopharynx (NP), oropharynx, and hypo-
pharynx airways, using both cephalograms and CBCT,
but the correlations between linear measurements and
volumes were weak. In another study, a moderately
high correlation was found between the NP area on
lateral cephalograms and the NP volume on CBCT im-
ages.21 There is no consensus concerning whether the
measurements on lateral cephalograms can estimate
the airway volume calculated on CBCT images.

It has been generally accepted that despite many lim-
itations, lateral cephalograms serve as radiographic
standards for airway assessment. When lateral cephalo-
grams are used, the adenoidal nasopharyngeal ratio
(ANR) is a helpful diagnostic parameter for assessing
nasopharyngeal obstruction. The ANR is a classic
method for assessing adenoid size in clinical diagnosis
and treatment. In 1979, Fujilka et al22 obtained the
ANR by simple linear measurements on the lateral radio-
graphs of 1398 infants and children. They concluded
that the ANR reliably expressed adenoidal size and
patency of the nasopharyngeal airway. After that study,
several reports confirmed the positive correlations be-
tween the ANR and surgical findings,23 nasal endoscopic
examinations,24 and clinical symptomatology.25

The size of the adenoids has an important role in the
evaluation of airway volume. The adenoids develop pro-
gressively, with their growth peak reached by 4 to 5 years
of age, followed by another peak between 9 and 10 years;
then the size diminishes progressively until 14 to

15 years.22 Our hypothesis was that instead of linear
measurement of the adenoids, the ANR on lateral ceph-
alograms might be an applicable method to assess
airway volume for younger patients.

The aim of this study was to evaluate whether the
ANR on lateral cephalograms can be used to estimate
the airway volume, using CBCT as the validation
method. Since lateral cephalograms are routinely used
in orthodontic diagnosis and treatment planning, these
results will provide essential information on the value
of lateral cephalograms for the assessment of airway
volume.

MATERIAL AND METHODS

This study was approved by the ethics committee of
the Stomatological Hospital in Dalian, China (protocol
number DLKQLL201302).

This was a retrospective study; we used the image
database available at the Department of Orthodontics,
Stomatological Hospital, Dalian, China. The database
was searched systematically between 2010 and 2012
at the Department of Oral Radiology for patients who
had both lateral cephalograms and CBCT images taken
not more than 1 week apart. The field of view of the
CBCT images should cover the whole upper airway
with the superior border above sella turcica and the

Fig 1. Linear measurements used to calculate the ANR
on lateral cephalograms: A, perpendicular distance be-
tween the point of maximum convexity of the adenoid
shadow to the anterior margin of the basiocciput; N, dis-
tance between the posterosuperior edge of the hard pal-
ate and the anteroinferior edge of the spheno-occipital
synchondrosis.
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inferior border below the tip of the epiglottis. The
included CBCT examinations were performed for
various indications, such as temporomandibular joint
disorders, orthognathic surgery, and problematic
impacted teeth. Fifty-five patients (35 female, 20
male) between 9 and 43 years of age fulfilled the inclu-
sion criteria.

All radiographs were acquired according to standard
clinical exposure protocols. For lateral cephalographs, a
digital pan/ceph system (ORTHOPHOS XG 5; Sirona
Dental Systems, Bensheim, Germany) was used at 73
kVp and 15 mA, with exposure times of 9.7 and 9.4 sec-
onds for adults and children, respectively. The magnifi-
cation factor was 1.1 with a 16-bit pixel depth for all

Fig 2. Airway volume and area were calculated and presented automatically after the boundaries were
defined from the sagittal view (Dolphin 3D software): A, NP volume; B, total upper airway volume.
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images. The patients stood with the Frankfort horizontal
line parallel to the floor with their teeth in maximum in-
tercuspation.

For the CBCT examinations, a machine (3D eXam;
KaVo, Biberach an der Riss, Germany) was used at
120 kV and 5 mA, with a scanning time of 14.7 seconds
for the adults and children according to the manufac-
turer's guidelines. The voxel size was 0.2 mm, with
14-bit pixel depth for all the images, and the field of
view varied depending on the purpose of the examina-
tion. The patients were asked to sit up straight with
the Frankfort horizontal line parallel to the floor with
their teeth in maximum intercuspation.

All images were stored in DICOM format.
Radiographs from the 55 patients were randomly

arranged in 2 sequences: lateral cephalograms and
CBCT images. The ANR was measured on the lateral
cephalograms using the software SIDEXIS XG (Sirona
Dental Systems) according to the method described by
Fujioka et al22 (Fig 1). Figure 1, A denotes the perpen-
dicular distance between the points of maximal convex-
ity of the adenoid shadow and the anterior margin of the
basiocciput. N is the distance between the posterosupe-
rior edge of the hard palate and the anteroinferior edge
of the spheno-occipital synchondrosis.

All measurements were made by 1 examiner (X.F.)
under identical viewing conditions in a room with
dimmed light. The CBCT images were imported as
DICOM data to imaging software (version 11.0; Dol-
phin Imaging & Management Solutions, Chatsworth,
Calif). Once the image was properly oriented, the
software created a 2-dimensional simulated lateral
cephalometric image at the midsagittal plane. From
this view, the airway of interest could be defined us-
ing the airway analysis tool. In our study, the NP was
defined with the superior border at a line connecting
the midpoint of sella turcica and the posterior nasal
spine, and with the inferior border at a line connect-
ing the point most posteroinferior on the clivus with
the posterior nasal spine. For the total airway volume,
the superior border was the same as the NP, and the
lower border of the airway was defined at a horizon-
tal level with the tip of the epiglottis against the wall
of the posterior airway.20,26 Data of airway volume
and area in the midsagittal view could be calculated
and presented automatically once the boundary of
the airway was defined (Fig 2). When the airway
had been demarcated by the software, the volume
of the airway could be further adjusted manually at
different threshold levels to ensure a more accurate
representation of the airway in the head and neck re-
gions. In our study, threshold values of 25, 30, 40,
and 50 were applied for all CBCT images, and the

measurements of airway areas and volumes of the
midsagittal section with different thresholds were
subsequently compared.

To evaluate the reliability of the ANR measurements
on the cephalograms and the NP volumes on the CBCT
images, the above-mentioned measurements were
repeated by 2 observers (X.F., Z.Q.) on 10 randomly cho-
sen subjects.

Statistical analysis

SPSS software (version 17.0; SPSS, Chicago, Ill) was
used for data analysis. The patients were classified
into 2 groups according to age: group A (#15 years)
and group B (.15 years). The mean ages and standard
deviations of the 2 groups were calculated. Analysis of
the CBCT radiographs was performed using the
following 4 parameters: NP area, NP volume, total up-
per airway area, and total upper airway volume. These
measurements were made at the threshold levels of
25, 30, 40, and 50 provided by the software, to
discriminate the airway boundaries and remove any
visible extraneous scatter, artifact, or background.27

The influence of the threshold levels on image analysis
was analyzed using analysis of variance (ANOVA). The
method repeatability of the measurements was tested
in terms of intraobserver and interobserver correlation
coefficients.

Correlations between the ANR values obtained from
cephalograms and the measured data from the CBCT im-
ages, including the area and volume of the NP, as well as
the area and volume of the total upper airway, were
analyzed using scatter plots to calculate the correlation
coefficients for the 2 groups.

RESULTS

Among the 55 patients, 32 were included in group
A and 23 in group B. The mean ages and standard devi-
ations of these groups were 11.8 (1.6) and 21.1 (5.7)
years, respectively. For the image analyses performed

Table I. Calculated mean values for NP and total
airway areas and volumes of each threshold

Threshold
value

NP area
(mm2)

Total area
(mm2)

NP volume
(mm3)

Total volume
(mm3)

25 161.20 720.85 4649.96 18065.35
30 175.07 731.74 4793.05 18580.21
40 180.04 744.45 5012.03 19434.37
50 185.09 762.00 5216.00 21189.35
P value 0.61 0.73 0.45 0.23

ANOVA was used to compare the measurements with different
thresholds.
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on the CBCT radiographs, no statistically significant dif-
ference was found between the measurements with
different thresholds with ANOVA (P .0.05) (Table I).
However, the measurements had a tendency to decline
as the threshold values decreased. Subsequently, a sub-
jective viewing of all reconstructed airway volumes was
conducted, and a threshold level of 30 was selected for
further analyses. The means of NP area, NP volume, total
upper airway area, and total upper airway volume at
threshold 30 for the 2 groups are shown in Table II.
The mean values of the ANR obtained from the cephalo-
grams were 0.49 and 0.3 for groups A and B, respec-
tively. For the repeated measurements of the ANR and
NP volume, high correlation coefficient values were ob-
tained within and between the 2 observers, indicating
that both measurements were reliable (Table III). The
correlation coefficient calculated by scatter plots be-
tween the ANR values from cephalograms and the mea-
surements from CBCT are presented in Table IV. The
correlation coefficients between the ANR and the NP
volumes were �0.78 and �0.57 for groups A and B,
respectively. Figure 3 shows the scatter plots of correla-
tions between measurements on the cephalograms and
CBCT images for the 2 age groups. Both groups ex-
hibited a low correlation between the ANR and total up-
per airway area and total upper airway volume.

DISCUSSION

Many studies have reported that CBCT is an effec-
tive and accurate method to analyze airway
volume.20,21,26,27 However, during orthodontic
treatment, lateral cephalograms are more readily
available than CBCT images, which are mostly taken
for other diagnostic purposes. The aim of this study
was to investigate whether the ANR measured on
lateral cephalograms might be used to estimate
airway volume.

Previous studies have used linear measurements
across the airway at defined points on lateral cephalo-
grams to evaluate NP volume, in which a weak correla-
tion (r 5 0.43) between the linear measurements on
lateral cephalograms and the NP volume on CBCT im-
ages was found.20 The difference observed between our
results might due to different measuring methods; in
our study, the ANR was a ratio instead of an absolute

distance of the airway. In addition to the measuring
parameter used, the airway volumes made by different
imaging softwares might also to some extent influence
the results because the airway volume assessment de-
pends on the accuracy of segmentation, image quality,
and the threshold interval.28 In our study, the thresh-
olds were selected to discriminate the airway bound-
aries and remove any visible extraneous scatter,
artifact, or background.27 We found that when the
threshold was less than 25 (threshold of 15) or more
than 50 (threshold of 60), the outline of the airway
would then be visually deformed (Fig 4). Thus, thresh-
olds at 25, 30, 40, and 50 were tested for the measure-
ments, and no statistically significant difference among
the measurements was observed. However, when the
comparisons are made before and after orthodontic
treatment on the same patient, the same threshold is
recommended. Aboudara et al21 reported a correlation
coefficient of 0.75 between the NP midsagittal area on
lateral head films and the NP volume using CBCT.
Similar values in group A (r 5 �0.78) and group B
(r 5 �0.57) were found between the ANR and NP vol-
umes in our study.

Based on our study, the ANR might be applied for
analysis of the NP volume for younger patients. How-
ever, the correlations between the ANR and the area
and volume of the total upper airway were dramatically

Table II. Descriptive analysis with means and standard deviations for groups A (age#15 years) and B (age.15 years)
(3D measurements with threshold 30)

Age (y) ANR NP area (mm2) Total area (mm2) NP volume (mm3) Total volume (mm3)
Mean (SD) group A (n 5 32) 11.81 (1.59) 0.49 (0.16) 139.47 (68.91) 673.10 (202.58) 4095.0 (1928.15) 16334.96 (7220.58)
Mean (SD) group B (n 5 23) 21.09 (5.74) 0.30 (0.12) 226.03 (125.32) 813.31 (174.16) 5696.55 (1346.11) 21704.02 (6810.72)

Table III. Observer agreement in terms of intraob-
server and interobserver correlation coefficient values
for repeated measurements of the ANR and NP
volumes

Intraobserver
correlation coefficient

Interobserver
correlation coefficient

ANR 0.91 0.96 0.96 0.89
NP volume 0.96 0.99 0.96 0.97

Table IV. R values for the correlations between the
ANR and 3D measurements of the groups

ANR vs
NP area

ANR vs NP
volume

ANR vs
total
area

ANR vs
total

volume
Age #15 y (n 5 32) �0.77 �0.78 �0.51 �0.48
Age .15 y (n 5 23) �0.18 �0.57 �0.30 �0.32
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reduced. The area and volume of the total upper airway
are affected by many factors, such as length of the
airway, thickness of the soft palate, axial area of the
airway, and the patient's position.29,30 For the NP
part of the airway, the size of the adenoids seems to
be the most important factor; thus, the ANR is a
reliable approach to simply represent the volume of

the NP. It has been reported that after 20 years of
age, the soft palate becomes longer and thicker, the
airway narrows, and the vertical pharyngeal length
increases.31 Furthermore, the size and shape of the
airway are known to vary during the respiratory cycle.
However, in this retrospective study, the patients were
not instructed to hold their breath during the scanning

Fig 3. Scatter plots of the correlations between the ANR and NP volume: A, group A (age#15 years);
B, group B (age .15 years).
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time; this might have affected our measurements of to-
tal airway volume.

Since the size of the adenoids diminishes progres-
sively and tends to be stable at age 14 to 15 years,
we therefore divided the subjects into 2 groups at
15 years of age.22 According to our results, the ANR
value was higher in group A than in group B, and
the values of NP area, NP volume, total upper airway
area, and total upper airway volume were lower in
group A than in group B. In Figure 3, A, the R2 value
of 0.60 indicated that 60% of the NP volume was
directly accounted for by knowing the ANR, and
40% of the variability remains unaccounted for when
using lateral cephalograms to estimate the NP airway
volume. Our results indicated that for younger pa-
tients, the size and morphology of the adenoids mostly
affected the NP volume. For group B (Fig 3, B), the
correlation coefficient value was reduced dramatically,
implying that other dominant factors affect the vol-
ume of the airway other than the ANR values. Howev-
er, this finding does not in any way indicate that the
lateral cephalogram provides satisfactory diagnostic
information for diagnosis of airway obstruction. It
might be used as a screening tool to determine the
need for further otolaryngologic examination. There-
fore, other diagnostic tools should be recommended
when the primary diagnostic task is to evaluate the
airway problem.32,33

CONCLUSIONS

Based on our results, measurement of the ANR on
lateral cephalograms may be used as an initial screening
method to estimate the NP volumes of younger patients

(#15 years) throughout orthodontic treatment when
lateral cephalograms are readily available.
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RESEARCH ARTICLE

The effect of rapid maxillary expansion 
on the upper airway’s aerodynamic 
characteristics
Xin Feng1, Yicheng Chen2, Kristina Hellén‑Halme3, Weihua Cai4 and Xie‑Qi Shi1,3*

Abstract 

Background: The effect of rapid maxillary expansion (RME) on the upper airway (UA) has been studied earlier but 
without a consistent conclusion. This study aims to evaluate the outcome of RME on the UA function in terms of aero‑
dynamic characteristics by applying a computational fluid dynamics (CFD) simulation.

Methods: This retrospective cohort study consists of seventeen cases with two consecutive CBCT scans obtained 
before (T0) and after (T1) RME. Patients were divided into two groups with respect to patency of the nasopharyn‑
geal airway as expressed in the adenoidal nasopharyngeal ratio (AN): group 1 was comprised of patients with an AN 
ratio < 0.6 and group 2 encompassing those with an AN ratio ≥ 0.6. CFD simulation at inspiration and expiration were 
performed based on the three‑dimensional (3D) models of the UA segmented from the CBCT images. The aerody‑
namic characteristics in terms of pressure drop (ΔP), maximum midsagittal velocity  (Vms), and maximum wall shear 
stress  (Pws) were compared by paired t‑test and Wilcoxon test according to the normality test at T0 and T1.

Results: The aerodynamic characteristics in UA revealed no statistically significant difference after RME. The maxi‑
mum  Vms (m/s) decreased from 2.79 to 2.28 at expiration after RME (P = 0.057).

Conclusion: The aerodynamic characteristics were not significantly changed after RME. Further CFD studies with 
more cases are warranted.

Keywords: Computational fluid dynamics, Upper airway, Adenoid hypertrophy, Rapid maxillary expansion
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Background
Adenoid hypertrophy (AH) is a common cause of upper 
airway (UA) obstruction in children and adolescents. 
Considerable variation in AH prevalence, ranging from 
27 to 80%, has been reported between countries and 
ages [1]. AH may cause several health issues including 
mouth breathing, snoring, asthma, speech problems, and 
obstructive sleep apnoea [2, 3]. To diagnose the degree 
of AH, Fujioka proposed calculating an adenoidal naso-
pharyngeal (AN) ratio by measuring adenoid thickness 

and nasopharyngeal width on lateral radiography, a com-
mon procedure in clinics [4, 5]. An AN ratio of more than 
0.6 indicates a suspected nasal obstruction [2]. Otolar-
yngologists usually suggest an adenoidectomy to treat 
severe nasal obstruction, and this has been shown to pos-
itively affect volume expansion in the nasopharynx and 
improve nasal breathing. However, a noticeable recur-
rence of nasal obstruction after adenoidectomy has been 
reported [6]. In order to achieve a stable outcome after an 
adenoidectomy, several adjunctive treatments have been 
suggested for patients with specific symptoms including 
turbinoplasty, adenotonsillectomy, and rapid maxillary 
expansion (RME) [7–9].

AH may cause abnormal craniofacial development 
such as a short cranial base, long face, small and narrow 
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maxilla, and mandibular retrusion [10–12]. Some 
orthodontists suggest that RME may have the potential 
to reduce nasal obstruction by opening the midsagit-
tal suture, widening the maxillary arch, and increasing 
nasal space [9, 13, 14].

RME’s possible effect on nasal obstruction has been 
evaluated by several methods including rhinomanom-
etry, acoustic rhinometry, polysomnography (PSG), 
cephalometric radiographs, cone beam computed 
tomography (CBCT) and computed tomography (CT), 
but with inconsistent conclusions [15, 16]. Laboratory-
based PSG is considered the gold standard for diagnos-
ing obstructive sleep apnoea, as it provides quantitative 
parameters to evaluate respiratory function such as 
the apnoea–hypopnea index [17]. However, it also has 
limited availability and is relatively expensive and time 
consuming, which could be inconvenient for children 
and their families. Therefore, researchers have been 
searching for alternative methods to evaluate the res-
piratory function of UA. For example, De Backer et al. 
[18] introduced computational fluid dynamics (CFD) as 
a diagnostic tool to observe the outcome of mandibu-
lar advancement devices when treating sleep-related 
breathing disorders and found that CFD models pre-
cisely capture UA’s aerodynamic characteristics. More-
over, the CFD results show a higher correlation with 
clinical symptoms than volumetric measurements on 
CT images.

The CFD method is a well-established technique that 
has been widely used in mechanical engineering, yet it is 
quite new to flow analysis in medicine. Based on a three-
dimensional (3D) structure segmented from CBCT, CT, 
or magnetic resonance imaging (MRI), the CFD simu-
lates and calculates the flow of gases or fluids and their 
interactions with the surrounding surfaces as defined by 
boundary conditions. At a given inlet pressure, the shape 
and boundary condition of a pipe-like UA would theoret-
ically determine the aerodynamic characteristics in terms 
of pressure, velocity, and wall shear stress. The applica-
tion of CFD in dentistry is nevertheless sparse. Few pre-
vious studies have shown that CFD could be applied to 
evaluate the outcome of mandible advanced devices 
on respiratory function [18, 19]. Regarding the effect of 
RME on airflow within the UA, Iwasaki et  al. observed 
an improvement in nasal cavity obstruction [20] and a 
decrease in pharyngeal airway pressure after RME [21]. 
More clinical evidence on the changes of UA following 
RME is, however, needed to enhance and benefit individ-
ual treatment planning for patients with a narrow maxilla 
and enlarged adenoid.

In this study, we aim to evaluate the effect of RME on 
airflow within the UA by investigating the aerodynamic 
characteristics that result from applying CFD simulation. 

The null hypothesis is that RME has a positive effect on 
UA ventilation.

Methods
This is a retrospective cohort study. All methods were 
carried out in accordance with the declaration of 
research involving human subjects and the regional ethi-
cal and scientific guidelines in Vestland region, Norway. 
Data for all patients who had undergone RME were ret-
rospectively collected at the Department of Orthodontics 
(Stomatological hospital, Dalian, China) between Janu-
ary 2013 and December 2016. The inclusion criteria were 
patients younger than 15  years old who had both pre- 
and post-CBCT scans due to orthodontic indication. The 
pre-RME CBCTs were taken within seven days prior to 
fixing the expander (T0) and the post-RME CBCTs at the 
removal of expanders (T1). The exclusion criteria were 
severe abnormalities of maxillofacial tissue, previous sur-
gery on skeletal and soft tissue related to respiration, and 
previous orthodontic or orthopaedic treatment. Even-
tually, 17 patients (mean age 12.2 ± 1.3 years, 11 male/6 
female) were eligible for inclusion in the study. An expe-
rienced radiologist viewed all CBCT scans and ensured 
that the images were qualified to construct 3D models of 
the UA.

Maxillary expansion protocol
A fixed Hyrax expander was used for RME, banded to the 
maxillary first premolars and first molars. The patient, or 
their guardian, rotated the expansion screw twice a day 
at home and a clinical check-up was performed by ortho-
dontists once a week. The expansion was terminated 
when the occlusal aspect of the maxillary lingual cusps 
of the upper first molars contacted the occlusal aspect of 
the vestibular cusp of the mandibular first molars. After 
achieving the desired expansion, the expander remained 
in place for 5.2 ± 1.7 months to stabilise the expansion.

CFD simulation
Figure 1 demonstrates the stepwise procedure of the CFD 
modelling and simulation, including 3D segmentation, 
mesh generation, and aerodynamic results.

CBCT imaging
The examination protocol of CBCT scans was as follows: 
field of view (FOV) 16 × 13  cm; tube potential 120 kVp 
and tube current 5 mA; scanning time 14.7 s (3D eXam; 
KaVo, Biberach an der Riss, Germany). The voxel size was 
set at 0.2  mm, and the contrast resolution had a 14-bit 
depth. All CBCT examinations were performed accord-
ing to the standardised clinical routine, i.e. with the 
Frankfort horizontal plane parallel to the floor, teeth in 
maximum intercuspation, and peaceful nasal breathing 
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without swallowing. We divided the 17 patients into two 
groups according to the AN ratio at baseline (T0): group 
1 was comprised of individuals with an AN ratio < 0.6 and 
group 2 encompassing those with an AN ratio ≥ 0.6. The 
measurements of AN ratios were performed aiming to 
present the geometric obstruction status of the UA fol-
lowing Fujioka’s method [4]. A and N indicated the ade-
noid thickness and nasopharyngeal width, respectively 
(Fig.  2). The CBCT images were imported to MIMICS 
software (Materialise Mimics 23.0, Belgium) in the digi-
tal imaging and communications in medicine (DICOM) 
format for later analysis. To segment the 3D UA, one 
author (XF) orientated the CBCT image. An appropri-
ate threshold was set from −  1024 to −  500 to involve 
the UA without defection [22], which was called a “mask”. 
The superior boundary was defined on the mask as per-
pendicular to the horizontal plane through the most 
posterior point of middle turbinate in the sagittal view; 
the inferior boundary was parallel to the horizontal 
plane through the most anterior–inferior point of cervi-
cal vertebra 4. The 3D UA was then calculated from the 

defined mask. The superior and inferior boundaries were 
extended by 20  mm to avoid flow reversing [23]. The 
extended 3D model was used to create a surface model 
for further mesh generation.

Mesh generation
Mesh generation is the practice of creating a mesh by 
computer algorithms. The continuous geometric UA 
space may be subdivided into discrete geometric cells. 
Mesh cell is the fundamental element of the recon-
structed space that contains a local approximation of 
aerodynamic characteristics, which will be used for a 
later calculation. We chose tetrahedral and prismatic 
cells to construct the main body and boundary layer 
of the UA (ANSYS, Inc., Canonsburg, Pennsylvania). 
Each UA mesh had five boundary layers and an average 
of 2 million elements. The inlet and outlet of UA were 
defined at the extended superior and inferior bound-
ary, as earlier described.

Fig. 1 The procedure of CFD modeling and simulation. a CBCT segmentation, b Mesh generation and detailed zoom, c CFD simulation results: 
airflow pressure contour, velocity streamline, and wall shear stress contour
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Aerodynamic analysis
ANSYS Fluent (ANSYS, Inc.) was applied to simulate 
the airflow of UA, and the SST κ-ω model was used to 
calculate the aerodynamic characteristics of UA. The 
wall of UA was defined as no-slip, stationary, and rigid, 
and the temperature and density of air were set as fixed 
[24]. In the inspiratory phase, the inlet was set with 
pressure 0 Pa and the outlet a flow rate of − 200 mL/s 
[20]. The corresponding values were −  200  mL/s and 
0 Pa at inlet and outlet for the expiratory phase. Over 
2000 iterations were performed to ensure the result-
ing residuals were less than  10–6. A radiologist (XF) 
performed all the simulations under the technical 
supervision of a fluid engineer (YCC). The CFD simula-
tions were repeated six months later on ten randomly 
selected cases by the same operator (XF).

Data analyses
We calculated the aerodynamic characteristics at inspira-
tory and expiratory phases, including mean pressure at 
the four planes defined on UA (Fig.  3). The parameters 
included are the pressure drop (ΔP) from plane 1 to plane 
4, the maximum mid-sagittal velocity  (Vms), and maxi-
mum wall shear stress  (Pws) at T0 and T1. Data were pro-
cessed using the IBM-SPSS version 25.0 (IBM, New York, 
NY, USA). Significance was set at p less than 0.05. Statis-
tical tests for normality were conducted for all variables. 
Accordingly, paired t-test or Wilcoxon test was used to 
compare the changes of the aerodynamic characteristics 
between T0 and T1. Intraclass Correlation Coefficient 

(ICC) was applied to test the consistency of the CFD 
simulations.

Results
The comparison of aerodynamic characteristics in terms 
of ΔP, the maximum  Vms and maximum  Pws of the UA 
between before (T0) and after (T1) RME were shown 
in Table 1. The ICC ranged between 0.787 and 1 for all 
measurements indicating the high repeatability of CFD 
method.

Among the 17 patients, ten patients were classified in 
group 1 (mean age 11.9 ± 1.3  years); seven patients in 
group 2 (mean age 12.6 ± 1.3  years). Figure  4 illustrates 
the distributions of the aerodynamic variables for the two 
groups at T0 and T1 graphically. It demonstrates that 
group 2 has higher mean ΔP and mean  Vms than group 
1 at both inspiration and expiration regardless of T0 or 
T1; whereas the maximum  Pws shows the opposite trend 
being lower for group 2.

Due to the limited number of cases, group 1 and group 
2 were merged when performing the statistical analysis 
on the effect of RME. Except for ΔP at inspiration, all the 
other aerodynamic parameters decrease after RME treat-
ment (Table 1). However, none of the changes is statisti-
cally significant, of which the  Vms (m/s) drop (2.79–2.28) 
at expiration is close to being significant (p = 0.057).

Fig. 2 The measurement of AN ratio on CBCT images. a A, perpendicular distance from the maximal convexity of the adenoid identifying by 
scrolling through the sagittal slice that showed maximal convexity of the adenoid (where the intersecting axial view also showed maximal 
convexity) to the anterior margin of the basiocciput. b N, distance between the posterosuperior point of the hard palate and the anteroinferior 
point of the spheno‑occipital synchondrosis on the mid‑sagittal plane
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Discussion
CFD simulation
In the engineering field, the pressure drop is defined as 
the pressure difference between two points of a fluid 
carrying network, which occurs when frictional forces, 
caused by the resistance to flow, interact with fluid as it 
flows through the tube. Applying this concept to airflow 
passing through the UA, the pressure drops when facing 
physical force caused by morphological changes. Fur-
thermore, the maximum  Vms may be altered following 

UA morphological changes. Faramarzi et  al. evaluated 
the aerodynamics of the nasal cavity in a patient with 
septal perforation and found higher velocity at areas 
with higher pressure drop [25]. Regarding wall shear 
stress, it expresses the force per unit area exerted by the 
wall on the fluid in a direction on the local tangent plane 
[26]. The maximum  Pws locates mostly at a constricted 
area [27]. A successful expansion of maxilla suture 
would hypothetically increase the UA space, resulting in 
declines in ΔP, maximum  Vms and maximum  Pws.

Fig. 3 Description of the pressure of 4 planes defined on the CFD model. Definition of the four planes in the sagittal view: plane 1, paralleled 
the inlet plane through the posterior point of middle turbinate; plane 2, paralleled the outlet plane through the inferior point of plane 1; plane 3, 
paralleled the outlet plane through the tip of the soft palate; plane 4, paralleled the outlet plane through the tip of the epiglottis.The right graph 
shows the distribution of the pressure of each plane in the posterior view

Table 1 Comparison of pressure drop (ΔP), maximum midsagittal velocity  (Vms), and maximum wall shear stress  (Pws) at inspiration 
and expiration before (T0) and after (T1) rapid maxillary expansion (n = 17)

T0 T1 T0 versus T1

Mean SD Mean SD p value

Paired t test Wilcoxon test

Inspiration

ΔP (Pa)  − 4.00 1.87  − 4.36 2.45 0.549

Maximum  Vms (m/s) 2.48 0.70 2.43 0.92 0.906

Maximum  Pws (Pa) 1.29 1.24 1.03 1.32 0.163

Expiration

ΔP (Pa) 2.96 2.56 2.81 2.43 0.943

Maximum  Vms (m/s) 2.79 1.09 2.28 0.82 0.057

Maximum  Pws (Pa) 1.63 1.85 0.93 0.71 0.381
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In the present study, CFD simulation was applied to 
elucidate the aerodynamic characteristics of the UA 
before and after RME. The null hypothesis was rejected, 
i.e. RME does not have a positive effect on UA ventila-
tion. We failed to observe any statistically significant 
change in airflow characteristics after RME despite over-
all declines of ΔP, maximum  Vms and maximum  Pws. The 
difference in  Vms after RME (2.79–2.28) at expiration is 
nearly significant (p = 0.057). This finding is in line with 
previous reports where the airflow resistance at expira-
tion was found to be closely related to obstructive sever-
ity [28, 29]. Also, Chen et al. reported that patients with 
obstructive sleeping problem had a higher airflow resist-
ance during the expiratory phase than the healthy sub-
jects applying by CFD simulation [30].

The effect of RME on aerodynamics has been investi-
gated sparsely. In contrast to the present study, Iwasaki 
et  al. found significant changes in aerodynamic char-
acteristics in the nasal cavity after RME [21]. This may 
imply that the RME mainly increases the maxilla width 
in the transverse direction and the skeletal boundary 
of nasal cavity was directly extended following with the 
expanded maxilla [20]. The pharyngeal part of UA is sur-
rounded by multiple soft tissues and located posteriorly 

to the maxilla. Thus the positive effect of RME on UA 
is more notable in the nasal cavity than the lower UA 
region. More cases are needed to detect possible effect 
and to increase the power of the applied statistics.

Enlarged adenoid is a common cause of nasal obstruc-
tion in children. Knowledge of aerodynamics in this 
group of patients would help understand the disease 
mechanism, assist diagnostics and evaluate treatment 
outcomes. Due to the small sample size, we did not per-
form statistical analysis on the effect of RME for each 
individual group. Nevertheless, ΔP and maximum  Vms 
seemed to be lower in group 1 as compared to group 2 
regardless of T0 or T1 (Fig.  4), indicating air resistance 
in UA seemed to be higher in patients with enlarged 
adenoids. However, we are puzzled by the results of the 
maximum  Pws.

It has been reported that one of the most restricted 
areas in UA was located at the velopharynx where the 
maximum  Pws and a pharyngeal jet were observed [31, 
32]. In our case, we speculate that an “adenoid jet” might 
have occurred when airflow passing through the enlarged 
adenoid (group 2). The high-speed adenoid jet might 
have caused strong vortexes and a complex recircula-
tion resulting in a retarded downstream velocity gradient 

Fig. 4 Expression of the aerodynamic characteristics in terms of mean, SD for the two groups T0 and T1
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near UA’s wall and thus a reduced maximum  Pws. Con-
sequently, the maximum  Pws was lower in group 2 than 
group 1 at T0. After RME the adenoid jet may be weak-
ened, resulting in a increased maximum  Pws in group 2. 
However, due to limited cases and the diverse airflow 
characteristics in group 2, random effect can not be 
excluded. Therefore, more cases with severely enlarged 
adenoids are needed to confirm our assumption.

CFD is a valuable tool for investigating the aerody-
namic characteristics of the UA for better understanding 
the complex airflow ventilation related to UA morphol-
ogy. At present, the simulation procedure is not entirely 
automatic and thus very time consuming. Part of the 
3D segmentation and mesh generation needs to be per-
formed manually due to the irregular anatomic structure 
of the UA. This may be the cause for the limited number 
of samples in the available CFD studies [19, 33, 34]. How-
ever, we do believe, with the help of artificial intelligence 
the CFD simulation procedure could be simplified and 
less time consuming in the near future.

Clinical implications
The CFD method makes the aerodynamic characteris-
tics within the UA visible. However, due to the intrinsic 
nature of a retrospective study design, the lack of clini-
cal otolaryngologic examination makes it difficult to con-
clude whether RME would affect the airflow condition. 
Nevertheless, the enlarged adenoid may influence the 
UA’s ventilation. Further perspective study is warranted 
to identify the specific patients who may benefit from the 
RME.

Conclusions
The aerodynamic characteristics were not significantly 
changed after RME. Further CFD studies with more cases 
are warranted.
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