
P
o
S
(
T
W
E
P
P
2
0
1
9
)
0
8
3

Implementation of a CAN bus interface for the
Detector Control System in the ALICE ITS Upgrade

S.V. Nesbo∗a, J. Almeb, M. Bonorae, M. Rentsch Ersdalb, P. Giubilatoc, H. Helstrupa,
M. Lupie, G. Aglieri Rinellae, D. Röhrichb, J. Schambachd , A. Veluree and S. Yuanb

aWestern Norway University of Applied Sciences, Norway
bUniversity of Bergen, Norway
cUniversità e INFN, Italy
dThe University of Texas at Austin, United States of America
eEuropean Organization for Nuclear Research (CERN), Switzerland
E-mail: svn@hvl.no, johan.alme@uib.no, matthias.bonora@cern.ch,
magnus.ersdal@uib.no, Piero.Giubilato@cern.ch,
Havard.Helstrup@hvl.no, matteo.lupi@cern.ch,
Gianluca.Aglieri.Rinella@cern.ch, Dieter.Rohrich@uib.no,
jschamba@physics.utexas.edu, arild.velure@cern.ch,
shiming.yuan@uib.no

For the Upgrade of the ALICE Experiment in Long Shutdown 2, a new Inner Tracking System
(ITS) is being commissioned, based on the ALPIDE Monolitihic Active Pixel Sensor (MAPS)
chip.
Data readout from the ALPIDE chips is performed by 192 Readout Units (RU), which are also
responsible for trigger distribution, detector monitoring and configuration, and control of the
sensor chips. The monitoring and control of the experiment is performed by the Detector Control
System (DCS), which communicates to each RU through the same optical GBT-Versatile link
used for slow-control operations. A Controller Area Network (CAN bus) interface is provided as
a supplementary control path, and this paper will discuss the implementation of this interface.

Topical Workshop on Electronics for Particle Physics TWEPP2019
2-6 September 2019
Santiago de Compostela - Spain

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:svn@hvl.no
mailto:johan.alme@uib.no
mailto:matthias.bonora@cern.ch
mailto:magnus.ersdal@uib.no
mailto:Piero.Giubilato@cern.ch
mailto:Havard.Helstrup@hvl.no
mailto:matteo.lupi@cern.ch
mailto:Gianluca.Aglieri.Rinella@cern.ch
mailto:Dieter.Rohrich@uib.no
mailto:jschamba@physics.utexas.edu
mailto:arild.velure@cern.ch
mailto:shiming.yuan@uib.no


P
o
S
(
T
W
E
P
P
2
0
1
9
)
0
8
3

CAN bus interface for DCS in ITS Upgrade S.V. Nesbo

1. Introduction

Figure 1: Upgraded ITS detector [2].

The upgraded ITS employs 24120 ALPIDE [1]
pixel sensor chips arranged in seven cylindrical bar-
rels, as shown in figure 1, and 192 Readout Unit (RU)
boards responsible for:

• Configuration, monitoring, and control of the sensor
chips

• Timing and trigger distribution
• Readout and formatting of sensor data
• Power distribution system control

The RU boards communicate on optical links with the Common Readout Unit (CRU) boards
hosted in the First Level Processor (FLP) computers. The data travel from the ALPIDE chips to
the RUs, and continue to the CRUs in the FLPs.

1.1 Detector Control System (DCS)

Figure 2: Block diagram illustrating
the DCS communication paths via GBT
and CAN.

DCS is a large scale SCADA control system, im-
plemented with WinCC OA [3]. Figure 2 shows the
communication with the Front End Electronics (FEE),
which is designed as a client/server architecture. The
FEE client (ALF) subcribes to the server (FRED) using
the Distributed Information Management (DIM) proto-
col.

During normal operation, the main communica-
tion path between DCS and the main FPGA in the RU
is via the FLP using the GBT-Versatile links. A custom
protocol allow for direct access to internal registers in
the FPGA design, which enables configuration, con-
trol, and monitoring of the RU, ALPIDE sensor chips,
and external Power Boards. For redundancy, the RUs
can be accessed via Controller Area Network (CAN
bus) as well. A dedicated ALF client for CAN bus
will be implemented, allowing for seamless transition
between GBT and CAN, and making DCS completely
agnostic as to which communication path is used.

2. ITS Readout Unit

The main component of the RU (figure 3) is an SRAM-based Xilinx UltraScale FPGA, which
is responsible for most of the RU board’s functionalities. Figure 4a illustrates a simplified struc-
ture of the FPGA design for the main FPGA, highlighting the main functional blocks and their
connections to the internal Wishbone (WB) bus. The bus uses 15-bit addressing and has a data

1



P
o
S
(
T
W
E
P
P
2
0
1
9
)
0
8
3

CAN bus interface for DCS in ITS Upgrade S.V. Nesbo

width of 16 bits. There are currently three WB masters and a round-robin arbiter (not illustrated)
that allows the masters to share access to the bus. The WB masters have two FIFO interfaces,

Main FPGA:
Xilinx UltraScale

GBT-SCA ASIC

GBTx ASIC

DIP switches

Optical transceivers

CAN connector
(below mezzanine)

ALPIDE mezzanine

Aux FPGA:
Microsemi ProASIC3

Flash memory

VME connector

Figure 3: The ITS Readout Unit version 2.1.

one for WB transaction requests, and one for
WB transaction results. The requests would
be to either read or write a register, and the
results would be the register data that was
read, or indication of write success in the
case of a write. The FIFO interfaces allows
for queuing and asynchronous sequencing of
WB transactions. The three WB masters
connect to external interfaces (via some pro-
tocol logic): GBT, CAN bus, and USB (the
USB is a debug feature and will be disabled
for use in the cavern during the data taking).
This makes it possible to initiate WB trans-
actions and control the RU via these inter-
faces.

(a) Simplified block diagram of the FPGA design for the main FPGA
in the RU, with emphasis on connections to the internal Wishbone Bus.

(b) FPGA implementation
of CAN bus and HLP pro-
tocol.

Figure 4: Block diagrams of top-level FPGA design and HLP implementation for the main FPGA.

3. CAN bus interface to the Readout Units

The GBT links that the DCS normally relies on may not be available under some circum-
stances, such as during maintenance periods or due to technical problems in the control chain to-
ward a specific RU. To address this, the specification for the DCS calls for an additional CAN bus

2



P
o
S
(
T
W
E
P
P
2
0
1
9
)
0
8
3

CAN bus interface for DCS in ITS Upgrade S.V. Nesbo

interface to the RU. That provides the DCS with the redundancy to ensure that critical parameters,
such as temperatures and voltages for the sensor chips, are monitored under all conditions.

Figure 5: Simplified illustration of CAN bus connectivity for DCS.

3.1 High Level Protocol (HLP)

A custom High Level Protocol (HLP) for DCS is implemented on top of the CAN frames, and
is based on a protocol developed for the TOF detector in the STAR experiment [4]. The protocol
was chosen for its simplicity, although there are standard protocols such as CANopen. Table 1
shows the implementation of our HLP protocol. In this protocol the DCS acts as a master on the
bus and the RUs are slaves, as indicated in figure 5. The DCS initiates all requests, and the RUs are
only allowed to respond. Our implementation provides access to the WB bus in the RUs, and uses
standard CAN frames with 11-bit ID. Eight of those bits are used for node ID, and the remaining
three bits are used to indicate the type of command. Register address and data are sent as payload
in the CAN frames.

4. Implementation of CAN bus and HLP in Readout Unit

The current implementation of CAN bus and HLP in the RU FPGA design is illustrated in
figure 4b. It is based on an open source CAN controller from the OpenCores website [5], and the
necessary logic for the aforementioned HLP protocol is implemented in the can_hlp block in the
figure. In addition, a layer of glue logic is implemented to interface between the protocol logic and
the CAN controller. The CAN controller has a WB interface to which the glue logic interfaces with
directly and that is not connected to the main WB interface in the FPGA design.

Table 1: High Level Protocol (HLP) commands and payload.

Command Byte 0 Byte 1 Byte 2 Byte 3
Write Request (0x2) Addr[14:8] Addr[7:0] Data[15:8] Data[7:0]
Write Response (0x3) Addr[14:8] Addr[7:0] Data[15:8] Data[7:0]
Read Request (0x4) Addr[14:8] Addr[7:0] N/A N/A
Read Response (0x5) Addr[14:8] Addr[7:0] Data[15:8] Data[7:0]

5. Results and outlook

The current version of the system was tested using one RU in a setup as shown in figure 6,
with the exact type of cable that will be used in the experiment, 118 meters in length. The cable

3



P
o
S
(
T
W
E
P
P
2
0
1
9
)
0
8
3

CAN bus interface for DCS in ITS Upgrade S.V. Nesbo

has 0.5 mm2 twisted pairs with 120 Ω impedance. In this setup the system performed reliably with
a data rate of 250 kbps. Although the recommended cable length limit for 500 kbps is 100 meters
[6], such a high bitrate with 118 meter cables may be achievable by adjusting the bit timing values
in the CAN controller.

Figure 6: Test setup for CAN bus HLP.

Random data was written and read back from a test register in the RU, and counter registers
read back and verified. The test script that performed the transactions ran for 18 hours without
errors, performing around 17 million HLP read transactions and 6 million HLP write transactions.

The average turnaround was of 83 HLP transactions per second, which corresponds to around
3 ms per transaction on average. Tests with two RUs have also been run to verify that nodes can
be individually addressed and that broadcasting of HLP commands works as intended. This test
was not performed with the long cable. Tests of a full setup with up to 10 RUs per cable will be
performed in the near future.

The current version of CAN bus and HLP in the RU is not protected against radiation effects.
In particular, the CAN controller that was used proved difficult to protect using the techniques em-
ployed in the FPGA design for the RU [7]. A new CAN controller is currently being designed,
which along with the HLP logic should be relatively easy to protect using Triple Modular Redun-
dancy (TMR) with the aforementioned techniques. The protocol logic will also be able to interface
with the new CAN controller directly, which removes the need for the glue logic in the current
design, and should give the design a smaller footprint in terms of resource utilization on the FPGA.

References

[1] G. Aglieri Rinella, The ALPIDE pixel sensor chip for the upgrade of the ALICE Inner Tracking System,
Nucl. Instrum. Meth. A845 (2017) 583.

[2] The ALICE Collaboration, Technical Design Report for the Upgrade of the ALICE Inner Tracking
System, Journal of Physics G: Nuclear and Particle Physics 41 (2014) .

[3] The ALICE Collaboration, Technical Design Report for the Upgrade of the Online-Offline Computing
System, Tech. Rep. CERN-LHCC-2015-006. ALICE-TDR-019, Apr, 2015.

[4] J. Schambach, L. Bridges, W. Burton, G. Eppley, K. Kajimoto and T. Nussbaum, CANbus protocol and
applications for STAR TOF control, Journal of Physics: Conference Series 331 (2011) 022038.

[5] I. Mohor, “CAN Protocol Controller.” https://opencores.org/projects/can, 2003.

[6] S. Corrigan, “Controller Area Network Physical Layer Requirements, Application Report.”
http://www.ti.com/lit/an/slla270/slla270.pdf, 2008.

[7] K. M. Sielewicz, G. A. Rinella, M. Bonora, P. Giubilato, M. Lupi, M. J. Rossewij et al., Experimental
Methods and Results for the Evaluation of Triple Modular Redundancy SEU Mitigation Techniques
with the Xilinx Kintex-7 FPGA, in 2017 IEEE Radiation Effects Data Workshop (REDW), pp. 1–7, July,
2017, DOI.

4

https://doi.org/10.1016/j.nima.2016.05.016
https://doi.org/10.1088/0954-3899/41/8/087002
https://doi.org/10.1088/1742-6596/331/2/022038
https://doi.org/10.1109/NSREC.2017.8115451

