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1 Introduction

Laser is an acronym standing for Light Amplification by Stimulated Emission of
Radiation. In other words, a laser is simply something that amplifies light, that
is the light’s intensity is increased, through the process which is called stimu-
lated emission. Stimulated emission is a quantum mechanical phenomenon in
which an incoming photon (light) interacts with an excited atom causing it to
emit itself a photon. The emitted amplified light not only can be adjusted to
extremely high intensities, but also to be coherent. Coherence of the emitted
light allows for very high precision when applying the laser making it a suitable
tool for studying incredibly small systems, such as quantum mechanical ones.
Ever since the laser’s invention in 1960, the laser has become more and more
valuable in the experimental study of atomic systems such as molecules. This
is mainly due to the advancements in laser technology. Lasers are becoming
more and more intense, enabling, among many other things, the acceleration
of electrons to relativistic speeds, making yet another way to study relativistic
effects in quantum systems possible.
As such, this thesis is concerned with studying relativistic effects in quantum
systems when an external laser has been applied. The simplest (physical) quan-
tum mechanical system is the hydrogen atom. The hydrogen atom consists of
its nucleus, the proton, and an electron. When studying the hydrogen atom,
the dipole approximation, a much used approximation in theoretical physics,
has been used in this work, though some discussions are given on how one may
study beyond dipole effects in regard to what has been considered in this thesis.
Put shortly, the dipole approximation assumes that the dimensions of the stud-
ied system (hydrogen) are much smaller than the wave length of the applied
field (due to the laser), as well as that the intensity is assumed low enough so
that the magnetic field component can be neglected. This implies then that
the spatial dependence of the field generated by the laser can be ignored. The
validity of the dipole approximation has been shown to break down at large
laser frequencies and/or intense lasers [1],[2],[3],[4].Therefore, the laser frequen-
cies/intensities considered in this thesis have been assumed to be small enough
to stay in the regime of the dipole approximation’s validity, unless otherwise
stated.

The purpose of this thesis has been to find a suitable Pauli equation that can
describe relativistic effects, including spin effects, appearing in the study of an
electron (bound to a hydrogen nucleus) in the presence of an applied laser, whilst
still being not too demanding when doing numerical computations. The reason
is that using the exact model (Dirac equation) quickly becomes a formidable
task numerically as there appear numerical technicalities. An example would
be that one has to be careful with the choice of basis as one otherwise might
get spurious states [5].

The developed model has been tested numerically by looking at the cross section
for photon ionization which is then compared to the solution obtained from the
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Dirac equation up to photon energies around 2500 atomic units (a.u.).
All programs have been written in Python in order to calculate the interaction
matrices and in order to plot the cross sections of interest.
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2 Quantum mechanics

2.1 Single-Particle States

The state of any particle is assumed to be described by a wave function Ψ(r̄, t),
where r̄ is the position vector and t is time. This means that if one knows
a particle’s wave function Ψ, one can in principle calculate all its observables.
The wave function Ψ has in and of itself no physical interpretation, however its
absolute value squared is to be interpreted as a probability density (probability
per unit volume). In order for such an interpretation to be possible, Ψ is always
assumed to be normalised to unity, that is, any wave function Ψ corresponding
to a physical particle has to be such that∫

R3

d3r |Ψ(r̄, t)|2 = 1. (1)

2.2 Operators

Any observable quantity O has a corresponding operator Ô. For instance, the
momentum p̄ of a particle has a corresponding momentum operator ˆ̄p. Each
such operator can act on a given wave function Ψ in a linear fashion. The
only measurable values corresponding to an observable are the eigenvalues of

the associated operator. As an example, measuring the kinetic energy p̄2

2m of
a particle of mass m, one could only possibly obtain measurements equalling

(assuming no measuring error) the eigenvalues of the associated operator
¯̂p2

2m .
In order for this to hold, the eigenvalues of every such operator need to be real.
This is ensured by demanding that any operator corresponding to an observable
is to be hermitian, i.e.

Ô† = Ô. (2)

Next, the expectation value of a given operator Ô with respect to some wave
function Ψ is defined as

< Ô >:=

∫
R3

d3x Ψ∗(x̄, t)ÔΨ(x̄, t). (3)

The expectation value of an operator is to be interpreted as the mean value of
an infinite number of repeated measurements on the given system.

The two fundamental operators ˆ̄r and ˆ̄p that correspond to position and mo-
mentum, respectively, are defined as

ˆ̄rΨ(r̄, t) = r̄Ψ(r̄, t)

ˆ̄pΨ(r̄, t) = −ih̄∇Ψ(r̄, t).
(4)
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2.3 Non-relativistic equation of motion

In order to obtain the wave function Ψ of a physical system, one proceeds by
solving the equation of motion. In the non-relativistic case, the equation of
motion is given by the time dependent Schödinger equation (TDSE) [6]

ih̄∂tΨ(r̄, t) = (
¯̂p2

2m
+ V̂ (r̄, t))Ψ(r̄, t), (5)

where Ĥ =
¯̂p2

2m + V̂ (r̄, t) is the Hamilton operator of the system with V̂ (r̄, t)
being the potential energy operator and m being the mass of the particle under
consideration. The Hamiltonian is in most cases the energy operator of the sys-
tem. In fact, throughout this thesis, the Hamiltonian will always be the energy
operator.

Often one may only be interested in a system’s energy spectrum, that is the set
of all possible energy values that the particle can acquire. Then, the problem of
solving the Schrödinger equation reduces to diagonalising the given Hamiltonian
operator in order to find its eigenvalues (the energy spectrum).

2.3.1 Spin for non-relativistic particles

It is a known fact that the spin of particles plays, even in the non-relativistic
regime, a major role when studying quantum systems due to the Pauli exclu-
sion principle. The prime example is typically given by the study of the Helium
atom where the Pauli exclusion principle explains the existence of Para- and
Ortho helium [7]. As the Schrödinger equation (5) does not contain any spin
operators, one has to resort to a different equation of motion when talking about
spin. The non-relativistic equation used when considering spin effects is usu-
ally the Pauli equation. The major difference between the Pauli equation and
the corresponding Schrödinger equation is that the Pauli equation contains the
spin operator S̄ coupled to the external magnetic field B̄. In this thesis how-
ever, the dipole approximation (see chapter 4.2) is invoked, implying an absent
magnetic field, thus making the term containing the spin operator in the Pauli
equation vanish. The resulting Pauli equation is then effectively given by two
(identical) Schrödinger equations, one for each spin state. Further, in this thesis
only one particle systems (ignoring the photon) are considered, thus making the
non-relativistic Pauli equation obsolete when studying spin effects in the dipole
approximation, as the symmetry constraints on the wave function in order to
respect the Pauli exclusion principle are trivially satisfied.
Instead, one has to take into account higher order relativistic effects when want-
ing to study spin effects in the dipole approximation. This is exactly what will
be done in chapter 6.
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2.4 Relativistic equation of motion

The equation of motion that describes the dynamics of a relativistic electron is
given by the Dirac equation [8]. The free Dirac equation reads

ih̄Ψ(r̄, t) = (cᾱ · ¯̂p+mc2β)Ψ(r̄, t), (6)

where now the Hamiltonian is given by H = cᾱ · ¯̂p + mc2β with m being the
mass of the particle, c being the speed of light and ᾱ and β being operators.
The wave function Ψ is now a four component object instead of one, as it was
the case in the Schrödinger equation. This has to do with the fact that in
a relativistic treatment of the electron, one has to take into account the spin
degrees of freedom (2), as well as its antiparticle, the positron (2). The necessity
of having to solve for the wave function of the positron is explained by the fact
that electron-positron pairs may be spontaneously created and annihilated in
the vacuum, implying that one cannot talk about an electron without talking
about its antiparticle, the positron.
The operators ᾱ and β in (6) may be written as 2× 2 block diagonal matrices
given by

β =

(
1 0
0 −1

)
,

αj =

(
0 σj
σj 0

)
j = 1, 2, 3,

(7)

where σj are the Pauli matrices. These matrices may look different depending
on which representation is being used.
An often used representation is the Weyl-representation, also known as the chi-
ral representation [9]. In the Weyl-representation the αj and β matrices will still
be block diagonal, however this representation is not used in this thesis because
then the 2 component objects χ and ξ in the wave function Ψ = (χ, ξ) would not
directly correspond to the electron and the positron anymore. Instead, these
would correspond to different chiralities and would therefore each be linear com-
binations of an electron wave function and a positron wave function.
In chapter (6), we wish to derive an approximate Hamiltonian, starting with
the relativistic Hamiltonian in the Dirac theory, that in the end may be cast
into an approximate block diagonal form, such that the positron wave function
will be (approximately) decoupled from the electron wave function, enabling
the isolated study of the electron. Therefore, throughout this thesis, we will
make use of the above representation (7), usually referred to as the Pauli-Dirac
representation.
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3 Hydrogenic atoms

A hydrogenic atom is usually referred to as any atomic nucleus/ion that has a
net charge of −e (e < 0) and can thus bind exactly one electron. The atomic
nucleus/ion is to a first approximation assumed to be point like with infinite
mass. Then, an electron interacting with such a system interacts only through
the Couloumb force. Therefore, the Hamilton operator of an electron in a
hydrogenic system with nuclear charge −Ze is given by

ĤZ =
ˆ̄p2

2m
− Ze2

r
, (8)

where r is the distance from the nucleus to the electron and m is the electron’s
mass.
The outline of the following derivation of the solutions to the above equation
follows closely what is presented in [7].

To solve (8), one starts by inserting the Hamiltonian ĤZ into the TDSE (5).
As ĤZ is time independent, one may make the Ansatz Ψ(r̄, t) = T (t)ψ(r̄). In-

serting this into the TDSE, one gets that T (t) = e−
iEn
h̄ t, where En is such

that
ĤZψn(r̄) = Enψn(r̄). (9)

{ψn} are then the spatial eigenstates of the Hamiltonian HZ .
This equation is referred to as the time independent Schrödinger equation
(TISE). Since the Coulomb potential is spherically symmetric, spherical co-
ordinates will be used. This enables one to write the Hamiltonian as

ĤZ = − h̄2

2m

1

r2
∂r(r

2∂r)−
Ze

r
+
L̂2(φ, θ)

2mh̄2r2
, (10)

where ˆ̄L := ˆ̄r × ˆ̄p is the angular momentum operator.
It is evident that if we were to insert the above expression into the TISE, we
would get the sum of a purely radially dependent operator and a purely angular
dependent operator. In analogy to the previous Ansatz, one may proceed by
assuming that the eigenstates of ĤZ are of the form ψ(r̄) = Rnl(r)Ylm(φ, θ).
Upon inserting this Ansatz into (9) using (10), one gets the two uncoupled
differential equations

ˆ̄L2Ylm(φ, θ) = h̄2l(l + 1)Ylm(φ, θ)

(− h̄2

2mr2
∂r(r

2∂r)−
Ze

r
)Rnl(r) = EnlRnl(r).

(11)

One observes that the first equation is seperable in φ and θ. We can thus make

the Ansatz Ylm(φ, θ) = Φm(φ)Θlm(θ). It is noted that the ˆ̄L2 opertor commutes
with any of the three L̂j , j = x, y, z operators. It thus follows that one can find
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a simultaneous set of eigenstates of both ˆ̄L2 and L̂z. That is, we may find
Yml = Φm(φ)Θm

l (θ) by solving the differential equations

ˆ̄L2Yml = h̄2l(l + 1)Yml
L̂zΦ

m(φ) = h̄mΦm(φ).
(12)

It can be shown that the constant l and m are limited to l = 0, 1, ..., n− 1 and
m = 0 − l,−l + 1, ..., l. The solutions of (12) are referred to as spherical har-
monics and are known functions which are typically given in terms of associated
Legendre polynomials Pml as

Yml (θ) = (−1)m

√
(2l + 1)(l −m)!

4π(l +m)!
Pml (cos(θ))eimφ. (13)

The specific form of the Legendre polynomials may be found in sources such as
[10].
The second equation of (11) is referred to as the radial equation. For conve-
nience, one may rewrite this equation by introducing the reduced radial function
unl(r) := rRnl(r). In doing so, one obtains the reduced radial equation which
reads

(− h̄2

2m

d2

dr2
− Ze

r
+
h̄2l(l + 1)

2mr2
)unl(r) = Enunl(r). (14)

The radial equation can then be solved analytically. Its solutions are usually
given in terms of associated Laguerre polynomials L2l+1

n+l as

Rnl(r) = −

√
(
2mZ

n
)3

(n− l − 1)!

2n[(n+ l)!]3
e−

mZr
n (

2mZr

n
)lL2l+1

n+l (
2mZr

n
), (15)

where different sign conventions for Rnl may be found in different sources.
An explicit form of the associated Laguerre polynomials may be found in [10].
The energy eigenvalues are then seen to yield

En = −mc
2α2

2

Z2

n2
, n = 1, 2, .., (16)

where α is the fine structure constant. In atomic units this reduces neatly to

En = − 1
2
Z2

n2 .
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4 Electromagnetism and lasers

When studying an electron (bound to some nucleus) in an applied laser field,
the interactions will be electromagnetic. Therefore, a brief summary of electro-
magnetism relevant for this thesis will be given in the following.

Classically, any charged object described by the charge distribution ρ and the
current density vector j̄ in space will cause an electric field Ē and a magnetic
field B̄. These are to obey Maxwell’s equations [11] which are neatly summarised
in the following four equations:

∇ · B̄ = 0

∇× Ē +
1

c
∂tB̄ = 0

∇ · Ē = 4πρ

∇× B̄ − 1

c
∂tĒ =

4π

c
j̄.

(17)

Maxwell’s equations imply that for reasonably well behaved (that is, physically
realizable) charge distributions, the electric and magnetic fields can be expressed
in terms of the scalar potential φ and the vector potential Ā as

Ē = −∇φ− ∂tĀ
B̄ = ∇× Ā.

(18)

The potentials are non-physical in the sense that they cannot be measured.
This is the case as there is no pair of potentials that uniquely describes a given
electric and magnetic field. That is to say that one can find two distinct sets of
potentials φ and Ā that yield the excact same electric and magnetic field. This
is easily seen by performing the following set of transformations:

φ→ φ− ∂tχ
Ā→ Ā+∇χ.

(19)

The set of transformations (19) is usually referred to as a gauge transformation
and electromagnetism is in that regard a gauge invariant theory, meaning that
a gauge transformation does not alter the physical consequences of the theory.
As it is often advantageous to work with the potentials φ and Ā instead of the
fields Ē and B̄, one may derive a set of two equations for the potentials from
Maxwell’s equation via inserting the definitions (18) to yield (in CGS units)

∇2φ+ ∂t(∇ · Ā) = 4πρ

(
1

c2
∂2
t −∇2)Ā+∇(∇ · Ā+

1

c2
∂tφ) = 4πj̄.

(20)

In this thesis, the Coulomb gauge is used implicitly throughout all the calcula-
tions and derivations presented.
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To motivate the Coulomb gauge, we start with the Lorentz gauge (really a class
of gauges), which is defined as choosing gauges that satisfy the Lorentz condition

∇ · Ā+
1

c
∂tφ = 0. (21)

In this thesis, the potential φ will be purely space dependent due to the Coulomb
potential. Therefore, φ will be time independent, implying ∂tφ = 0. Thus,
within this thesis, the Lorentz condition will be equivalent to saying that

∇ · Ā = 0. (22)

The gauge condition (22) defines the Coulomb gauge. Inserting the condition
(22) for the Coulomb gauge into (20), one obtains the Maxwell equations in
terms of the potentials in the Coulomb gauge as given by

∇2φ = 4πρ

(
1

c2
∂2
t −∇2)Ā = 4πj̄.

(23)

One readily observes that the former equation in (23) is the Poisson equation,
while the latter one is the inhomogeneous wave equation equation.

As a final note before moving on to the specifics of how to mathematically
describe lasers, it is noted that in the literature one often finds, in a quantum
mechanical context, claims stating that a gauge transformation is a unitary
transformation. That is to say that, given a Hamiltonian operator H that de-
scribes a given quantum mechanical system, applying a gauge transformation
(19) results in a final Hamiltonian with a set of wave functions {Ψ} that equiv-
alently may be obtained through the set of transformations [12]

Ψ→ eiSΨ

H → eiS(H − Ṡ)eS ,
(24)

where S is (not to be confused with the spin operator) a hermitian operator.
However, caution is to be taken when making use of this ”equivalence”, as will
be eluded to in chapter 7.
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4.1 Mathematical description of lasers

The scope of the mathematical description of lasers presented here is intended
to cover the minimum needed to be able to follow the content of this thesis.
Therefore, it is noted that the following is in no sense meant to represent an
exhaustive description of the broad field of laser physics. For a more extensive
covering one may refer to sources such as [13].

A laser is to be understood as radiation, that is one should be able to de-
scribe a laser by its electric and magnetic field. This on the other hand can
be reduced to saying that a laser can be described by a set of potentials φ and
Ā according to (18). It can be shown [14] that (in the Coulomb gauge) for
monochromatic radiation propagating in the positive x-direction, the electric
and magnetic fields depend on t and x as E = E(ωt−kx) and B = B(ωt−kx),
thus implying that the vector potential is of the form Ā = Ā(ωt− kx), where k
is the wave vector’s magnitude, ω is the laser’s angular frequency and t is time.
By choosing a gauge in which φ = 0, we conclude that a monochromatic laser
with positive z-polarization propagating in the positive x-direction is described
by a vector potential of the form Ā = ẑA0(ωt− kx), where A0 is the amplitude
of the vector potential.

4.2 Dipole approximation

In general, studying a problem with an exact vector potential Ā that fully
describes a given laser is often an extremely difficult and demanding task. More
often than not, one is forced to approximate the vector potential in order to
make studying the problem at hand more tangible. In our case, we may expand
Ā(ωt− kx) in powers of kx. That is, we write

Ā(ωt− kx) = Ā(ωt) + Ē(ωt)kx+ .... (25)

In many cases, only retaining the first term in the expansion above is sufficient.
This approximation is usually referred to as the dipole approximation and it is
heavily used in the field of atomic physics as well as in many other areas of theo-
retical physics. In the dipole approximation, the vector potential is purely time
dependent, resulting in a vanishing magnetic field. In order to approximately
describe a non-vanishing magnetic field one therefore has to at least go to first
order in the above expansion. The explicit form of the vector potential used in
this thesis to describe our applied laser is given by

Ā(t) = A0sin(ωt)ẑ, (26)

where ω is the angular frequency of the laser and A0 is the magnitude of the
vector potential.
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5 Hydrogenic atoms in an applied laser

As a final preliminary step, this chapter outlines roughly how the interaction of
an electron in a hydrogenic atom with an external electromagnetic field (laser)
is modeled. This will be done for the non-relativistic and the relativistic case,
respectively. Finally, the resulting Hamiltonian will be presented in the two
most typically known gauges, the velocity gauge and the length gauge.
It is noted here that the definition of velocity and/or length gauge may vary
depending on the source one is referring to (see [15] and references therein).
Therefore, the definitions of the velocity and length gauge used in this chapter
are stated explicitly to avoid confusion.

5.1 Non-relativistic hydrogenic atom in a laser

We start with the Hamiltonian for a free electron. For a free electron, the
Hamiltonian is simply the kinetic energy, which reads

Hfree =
p2

2m
. (27)

In analogy to classical mechanics, the correct interaction with an electromag-
netic field is obtained through the minimal coupling rule. The minimal coupling
rule states that the correct interaction is obtained by the following replacement
in the free Hamiltonian (27)

H → H − eφ
p̄→ p̄− eĀ,

(28)

where φ is the scalar potential and Ā is the vector potential describing the net
electromagnetic field acting on the electron. In our case, the net electromagnetic
field is generated by the scalar potential φ = Ze

r due to the nucleus and the
vector potential Ā describing our laser. Therefore, the Hamiltonian for a non-
relativistic electron in an applied laser (ignoring spin) is given by

H =
(p̄− eĀ)2

2m
− Ze2

r
. (29)
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5.1.1 Velocity gauge

Applying the dipole approximation, we may write the above Hamiltonian more
explicitly as

Hdip =
p̄2

2m
− Ze2

r
− e

m
Ā · p̄+

e2

2m
Ā2. (30)

Now, we note that the term quadratic in Ā is now purely time dependent. We

can get rid of that term via a gauge transformation (19) with χ = e2

2m

∫ t
dτ Ā2(τ).

The resulting Hamiltonian is then given by

Hvel =
p̄2

2m
− Ze2

r
− e

m
Ā · p̄ (31)

The choice of gauge for the above Hamiltonian is usually referred to as the
velocity gauge [16].

5.1.2 Length gauge

An alternative gauge that may be used is the so called length gauge [16]. The
length gauge has more of an analytical appeal, as the Hamiltonian in general
becomes much more neat, as a lot of terms simply drop out. This is much more
apparent in the relativistic treatment, as will be seen later while not as much
in the non-relativistic case here.

In order to obtain the length gauge, one starts with the velocity gauge Hamilto-
nian (31) and performs yet another gauge transformation (19) with χ = −Ā · r̄.
One then obtains the length gauge Hamiltonian given by [16]

Hlen =
p̄2

2m
− Ze2

r
− eĒL · r̄, (32)

where ĒL = −∂tĀ is the electric field due to the laser.
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5.2 Relativistic hydrogenic atom in a laser

In order to obtain the relativistic analog of (29) we start again by considering
the free (now relativistic) Hamiltonian (6). As in the non-relativistic case, we
proceed by applying the minimal coupling rule, resulting in the Hamiltonian
describing the relativistic electron in a hydrogenic atom in an applied laser
field, given by

H = cᾱ · (p̄− eĀ) + eφ+mc2β. (33)

This Hamiltonian will be referred to as the minimal coupling Dirac Hamilto-
nian.
Recall that the relativistic Hamiltonian may be thought of as a 2×2 block matrix
due to the fact that we now have in addition to the electron its antiparticle, the
positron. Further, we are considering spin, too, which additionally yields two
degrees of freedom per particle. Recall that while β is diagonal, αj , j = 1, 2, 3 is
not as may be seen explicitly in (7). This means that when trying to solve for
the wave function Ψ, we cannot merely solve for a single particle. As the differ-
ential equations will be coupled, we are forced to solve for both the electron’s
and the positron’s wave function.

In this thesis, however, the electron in the non-relativistic limit is studied.
Therefore, we are not interested in finding the wave function for the positron.
In order to decouple the electron’s wave function from the positron’s wave func-
tion, the non-relativistic limit is invoked. A complication arises however in
the fact that, as mentioned, the Hamiltonian above couples the particle’s wave
functions. Thus, before invoking the non-relativistic limit, one has to obtain a
Hamiltonian that has off diagonal block matrices of negligible order. For us,
this will mean that we want to write the Hamiltonian (33) of the form

H =

(
He− O( 1

m4 )
O( 1

m4 ) He+

)
, (34)

where m is the mass of the electron and He− is the 2 × 2 relativistic Hamil-
tonian of the electron up to order O( 1

m3 ) while He+ is the 2 × 2 dimensional
Hamiltonian corresponding to the positron. Going to the non-relativistic limit,
then, is done by merely considering the Hamiltonian for the electron He. up to
order O( 1

m3 ), while ignoring the positron’s Hamiltonian.

The method used to perform the above mentioned process is referred to as
the Foldy-Wouthuysen transformation [17], which will be outlined in the follow-
ing chapter.
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6 Theoretical model

In this section we will outline and motivate the choice of the theoretical model
used in this thesis.

The main Hamiltonian in this thesis on which most is based on will be first
derived via the Foldy-Wouthuysen transformation [17]. Then, the obtained
Hamiltonian will be presented in three different gauges. The first gauge, the
so called propagation gauge [18], will be given to illustrate how the derived
model may be applied to phenomena where the dipole approximation is not
valid. Then, the dipole approximation will be invoked and the resulting Hamil-
tonian will be given in two different gauges. These gauges are generalizations of
the velocity gauge (31) and the length gauge (32) that were given in the non-
relativistic treatment in chapter 5. The generalized length and velocity gauges
are what have been considered when applying the model later on in chapter 7.

6.1 Foldy Wouthuysen transformation

The approximate block diagonalization of the minimal coupling Dirac Hamil-
tonian (33) via a unitary transformation of the 4 component wave function Ψ
is usually referred to as the Foldy-Wouthuysen transformation (FWT) [17]. In
the following we will illustrate how to obtain (33) in a block diagonal form that
includes terms of order O( 1

m3 ) by applying the FWT. The derivation outlined
here follows closely the one used in [19].

Before applying the FWT however, we first define two types of operators and
name their most important properties with regard to the FWT.

An operator E is called even if it is of the block diagonal form

E =

(
X 0
0 Y

)
, (35)

while an operator O is called odd if it is of the block diagonal form

O =

(
0 A
B 0

)
. (36)

Put differently, even operators do not couple large and small components, while
odd operators do. It is easy to show that for any even operator E we have

Eβ = βE, (37)

while for any odd operator O we have

Oβ = −βO. (38)
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When applying the FWT our goal is to choose a unitary transformation such
that our new Hamiltonian only contains odd operators of order 1

m4 or less.

We now start applying the FWT to our Hamiltonian (33). As stated above,
we start by performing a unitary transformation eiS to our 4 component wave
function Ψ, that is

Ψ→ eiSΨ. (39)

Accordingly, our Hamiltonian will transform into the new Hamiltonian given by

H ′ = eiS(H − i∂t)e−iS . (40)

We will choose our unitary transformation to be small, that is we choose S :
S = O( 1

m ). Further, as we want to ”transform away” the odd operators in (33),
we demand further that S be an odd operator. As we are interested in (40) only
to a finite order in 1

m , we will rewrite (40) using the Baker-Hausdorff formula

eABe−A = Σ∞n=0

in

n!
Ωn(A,B), (41)

where Ωn(A,B) = [A,Ωn−1(A,B)] and Ω0(A,B) := B. Using this relation, we
may write

−eiSi∂te−iS = −Σ∞n=0

in+1

n!
Ωn(S, ∂t). (42)

Note that [S, ∂t] = -(∂tS), such that we get

H ′ =
i0

0!
Ω0(S,H) + Σ∞n=1

in

n!
(Ωn(S,H) + iΩn−1(S, ∂tS)). (43)

By definition, we have that Ω0(S,H) = H. We can rename the summation
index in the equation above as

H ′ = H + Σ∞n=0

in+1

(n+ 1)!
(Ωn+1(S,H) + iΩn(S, ∂tS)). (44)

We use the fact that [S,Ωn(S,H)] + Ωn(S, i∂tS) = Ωn(S, [S,H] + i∂tS), which
one can verify via mathematical induction. Equation (44) then takes the form

H ′ = H − Σ∞n=0

in

(n+ 1)
Ωn(S, i[H,S] + ∂tS). (45)

We now make use of the Heisenberg equation of motion for S which states that

Ṡ = i[H,S] + ∂tS, (46)

where Ṡ := dS
dt . As will be shown later, S will be such that it commutes with

all terms in H, except for eφ. To shorten notation, we define

T = cᾱ · (p̄− eĀ),

V = eφ.
(47)
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Then we have that
H = T + V +mc2β. (48)

Equation (45) then takes the form

H ′ = T + V +mc2β − iΣ∞n=0

in

(n+ 1)!
Ωn(S, [T +mc2β, S]). (49)

Using the fact that

Ωn(S, [T +mc2β, S]) = −Ωn(S, [S, T +mc2β]) = −Ωn+1(S, T +mc2β), (50)

we obtain that

H ′ = V +mc2β + T + Σ∞n=0

in+1

(n+ 1)!
Ωn+1(S, T +mc2β)

− Σ∞n=0

in

(n+ 1)!
Ωn(S, Ṡ).

(51)

Finally, we remark that T + mc2β = Ω−1+1(S, T + mc2β), such that we may
rewrite the above equation (51) as

H ′ = V + Σ∞n=0Ωn(S, T +mc2β − 1

n+ 1
Ṡ). (52)

If we were now to expand S in a power series in 1
m , we would obtain an expression

for our Hamiltonian in powers of 1
m . However, since we in addition are interested

in (approximately) block diagonalizing our Hamiltonian, we further proceed in
trying to rewrite our Hamiltonian as a sum of even and odd operators. We do
this by noting the following:
Since S is an odd operator, we know that Sβ = −βS. This, together with the
fact that β2 = 1, may be used to show that

Ωn(S, β) = β(−2S)n, (53)

for n = 0, 1, ... . We can then write our Hamiltonian (52) as

H ′ = V +mc2βΣ∞n=0

(−2iS)n

n!
+ Σ∞n=0

in

n!
Ωn(S, T − 1

n+ 1
Ṡ). (54)

Since S is odd, we have that Sn is odd (even) if n is odd (even). Further, since
T and S are odd, we have that Ωn(S, T − 1

n+1 Ṡ) is even (odd) if n is odd (even).
Therefore, we obtain the expression

H ′ = V +mc2βΣ∞n=0,2,...

(−2iS)n

n!
+ Σn=1,3,...

in

n!
Ωn(S, T − 1

n+ 1
Ṡ)

+mc2βΣ∞n=1,3,...

(−2iS)n

n!
+ Σn=0,2,...

in

n!
Ωn(S, T − 1

n+ 1
Ṡ).

(55)
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Equation (55) thus yields an expression for our Hamiltonian (33) as a sum of
even and odd operators only.
Finally, we write

S = m−1S1 +m−2S2 +m−3S3 + ... (56)

and plugg this into the equation (55) above, which will yield an expression of
the form

H ′ = H(0)
even +H

(0)
odd + Σ∞n=1H

(n)
evenm

−n +H
(n)
oddm

−n. (57)

When calculating (57) up to order O( 1
m3 ), we want only to retain terms pro-

portional to 1
m3 and below. Therefore, we need to find S1, S2, S3 such that H ′

is block diagonal up to order O( 1
m3 ). We do so by choosing S1, S2 and S3 such

that H
(0)
odd = H

(1)
odd = H

(2)
odd = 0. This yields a system of equations, linear in

S1, S2 and S3, which may be solved readily. Upon doing so, one obtains the
following expressions

S1 = − i

2c2
βT

S2 =
1

(2c2)2
Ṫ

S3 =
i

(2c2)3
(
4

3
T 3 + T̈ ).

(58)

Finally, these expressions may be used to calculate H
(n)
even for n = 0, 1, 2, 3. Upon

doing so, one obtains a block diagonal Hamiltonian, accurate to order O( 1
m3 ):

H ′ = mc2β + V +
1

2mc2
βT 2 − i

8m2c4
{T, Ṫ} − 1

8m3c6
βT 4

− 1

16m3c6
{T, T̈}+O(

1

m4
).

(59)

As we have written our Hamiltonian in a block diagonal form, we may now pro-
ceed to the non-relativistic limit, i.e. we may now neglect the small component
of the 4 component spinor to obtain an equation for the 2 component spinor
describing an electron in an external electromagnetic field, as we now have (ap-
proximately) uncoupled the large component from the small component. Before
considering the non-relativistic limit, though, we note that
T 2 = c2(α · (p̄− eĀ))2 = c2(p̄− eĀ)2 by using the fact that we assume Coulomb
gauge and 1

2 (αiαj + αjαi) = δij . Further, we have that [αi, αj ] = Σkiεijkαk :=
Σk, where Σk is the four dimensional spin operator. The non-relativistic limit
is then obtained by simply taking the Hamiltonian in (59) and replacing β → 1
and Σ̄→ S̄, where S̄ is the 2 dimensional spin operator vector. Upon doing so,
we obtain the final non-relativistic expression for our Hamiltonian describing an
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electron in an external electromagnetic field:

HFWT = mc2 + eφ+
(p̄− eĀ)2

2m
− (p̄− eĀ)4

8m3c2

− e

16m3c4
([p̄− eĀ], ∂tĒ)

− e

2m
σ̄ · (B̄ +

i

8m2c4
(∂tĒ × (p̄− eĀ) + (p̄− eĀ)× ∂tĒ))

+
e

8m3c2
([p̄− eĀ]2, σ̄ · B̄)− e2

8m3c2
B̄2 − e

8m2c2
∇ · Ē

− e

8m2c2
σ̄ · (Ē × [p̄− eĀ]− [p̄− eĀ]× Ē) +O(

1

m4
),

(60)

where we have set Ē = −∇φ− ∂tĀ and B̄ = ∇× Ā. This is the non-relativistic
Hamiltonian that is to describe the electron containing relativistic corrections
up to order O( 1

m3 ).
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6.2 The Theoretical Model in different Gauges

We now start by considering the Hamiltonian (60) that was obtained through
the FWT in different gauges. For each gauge, we will explain in which situations
the presented gauge may be useful/not so useful.

6.2.1 Propagation gauge

We start by considered the propagation gauge [18]. The propagation gauge
may be obtained from the exact Dirac Hamiltonian (33) by applying a gauge
transformation (19) with

χ = − e2

2mω

∫ η

−∞
dη′A2(η′), (61)

where η = ωt − k̄ · r̄. ω is the applied laser’s frequency, k̄ = k̂ ωc is the wave

vector, pointing in the propagation direction k̂ of the applied laser, and c is the
speed of light. Applying the gauge transformation (61) to the minimal coupling
Dirac Hamiltonian (33), we obtain the propagation gauge Hamiltonian in the
fully relativistic Dirac theory, given by

Hprop = cᾱ · d̄+mc2β + (V − e2

2m
A2), (62)

where V = eφ with φ being the scalar potential and d̄ = p̄ − eĀ + e2

2mc Ā
2k̂.

In order to obtain an approximate Hamiltonian to (62), we apply the FWT
formula (59) and get

HFWT
prop = mc2β + V ′ +

βT 2

2mc2
− i

8m2c4
[T, Ṫ ]

− βT 4

8m3c6
− β

16m3c6
{T, T}+ ...,

(63)

where T = cᾱ · (p̄− eĀ+ e2

2mcA
2k̂) and V ′ = V − e2

2mA
2.

For brevity, we introduce the following definitions:

T0 = cᾱ · (p̄− eĀ)

τ = cᾱ · k̂ e2

2mc
A2

ν = − e2

2m
A2,

(64)

which allow us to write T = T0 + τ and V ′ = V + ν. Making use of these
definitions, we may write (63) more neatly as

HFWT = H0 + ν +
β

2mc2
({T0, τ}+ τ2) +O(

1

c3
), (65)
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where H0 simply is the Hamiltonian (60) derived previously.
In order to simplify (65) we use the two identities

(ᾱ · M̄)(ᾱ · N̄) = M̄ · N̄ + iΣ̄ · (M̄ × N̄)

(k̂ · ᾱ)2 = 1,
(66)

where Σ̄ =diag(σ̄, σ̄), with σ̄ = (σ1, σ2, σ3) being the pauli matrix vector. Ap-
plying the identities (66) we get that

{T0, τ} =
e2c

2m
k̂ · ({p̄− eĀ, A2}+ iΣ̄× [p̄, A2]).

τ2 = (
e2A2

2m
)2.

(67)

Inserting (67) into (65), one obtains the 4 × 4 propagation gauge Hamiltonian
(62) up to order O( 1

c2 ). As we are only interested in the part of the Hamiltonian
describing the electron, we apply the substution rules Σ̄→ σ̄ and β → 1. This
then yields the propagation gauge Hamiltonian (62) up to order O( 1

c2 ) that
describes the electron in an applied laser, given by

Hprop = mc2 + V +
(p̄− eĀ)2

2m
− e2

2m
A2 − (p̄− eĀ)4

8m3c2
+

e4

8m3c2
A4

− e

2m
σ̄ · B̄ +

e2

4m2c
k̂ · {p̄− eĀ,A2}

+
e

8m3c2
{(p̄− eĀ)2, σ̄ · B̄} − (

e

2m
)2 B̄2

2mc2
− e

8m2c2
∇ · Ē

− e

8m2c2
σ̄ · (Ē × (p̄− eĀ)− (p̄− eĀ)× Ē) +O(

1

c3
),

(68)

where B̄ = ∇ × Ā and Ē = −∂tAk̂. The bold faced terms are the terms that
appear due to being in propagation gauge. As one can see, the first two terms
simply cancel the purely A dependent terms that one gets from the kinetic terms
of the form (p− eA)2 and (p− eA)4. This ensures that one avoids the problem
of catastrophic cancellation [3]. In essence, catastrophic cancellation refers to
the case where the sum of two terms contributes little, while the effect of each
individual one is very large. This in turn, causes difficulties when doing numer-
ical computations.
The third bold faced term in (68) is a mere artefact of being in propagation
gauge. When considering beyond dipole effects, that is when one is not as-
sumimg the dipole approximation (see chapter 4.2), this term will be of much
importance.
The propagation gauge Hamiltonian (68) is most suitable when studying be-
yond dipole effects [20]. One reason would be that, as mentioned previously,
one avoids the numerical problem of catastrophic cancellation due to the exact
cancellation of the terms proportional to A2 and A4 appearing in (68). Another
advantage with using the propagation gauge when studying beyond dipole ef-
fects is that, in contrast to the dipole approximation, one does not have to make
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any assumptions about the importance of the magnetic field [20] while still be-
ing able to apply the approximation Ā = Ā(t). Yet another advantage with

using the propagation gauge is that, instead of the term eÅ2
2m A2, one has to deal

with the propagation gauge operator e2

4mc k̂ · {p̄− eĀ, Ā
2}. This is an advantage,

as the operator e2

2m Ā
2 is much more difficult to handle when doing numerical

computations than the term e2

4mc k̂ · {p̄− eĀ, Ā
2}.

To illustrate how one would go about when studying beyond dipole effects
with the presented propagation gauge Hamiltonian (68), we consider here a
monochromatic laser generating radiation propagating in the positive x-direction
while being linearly polarised in the positive z-direction. We then know from
(24) that we can write our vector potential Ā = A0ẑ as

Ā(ωt− kx) = ẑA0(ωt) + ẑE0(ωt)kx+O((kx)2), (69)

where E0(t) = dA0(t)
dt is the electric field amplitude due to the applied laser.

Then, inserting (69) into the propagation gauge Hamiltonian (68) while only
retaining terms linear in kx, we obtain (in atomic units)

H1
prop = c2 +

p2

2
− Z

r
− p4

8c2
+

1

2c2r3
L̄ · S̄ +

π

2c2
δ(r̄)

− E0(t)

2c
σy + (A0(t)− A0(t)3

2c2
)pz +

1

4c2
px −

A0(t)2

2c2
p2
z

− A0(t)2

4c2
p2 − A0(t)

2c2
pzp

2 +
E0(t)

c
xpz

+
E0(t)

4c2
ẑ · (σ̄ × p̄)− ZA0(t)

4c2r3
ẑ · (σ̄ × r̄).

(70)

The Hamiltonian (70) then yields a model accurate to order O( 1
c2 ), that may

be used when studying beyond dipole effects of an electron in an applied laser
field. A quick glance at (70) reveals that a study of beyond dipole effects is
a fairly demanding task, as there are many matrix elements that one needs to
numerically calculate.

In this thesis, the study of the electron in an applied laser is done in the dipole
approximation. Therefore, the propagation gauge Hamiltonian (68) has not
been considered further and has been added here for completeness, as well as
to illustrate how the Hamiltonian (60) derived through the FWT could be used
to study beyond dipole effects.
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6.2.2 Velocity gauge

We now proceed by invoking the dipole approximation. This means that our
laser can be modeled by a vector potential Ā = Ā(t) that is only time dependent.
Inserting this assumption into the Hamiltonian (60) obtained through the FWT,
valid to order O( 1

c2 ), one obtains the following expression

Hdip = mc2 + eφ+
(p̄− eĀ)2

2m

− (p̄− eĀ)4

8m3c2
− e

8mc2
∇ · Ē +

πZe2

2m2c2
δ(r̄) +

e2

2m2c2r3
S̄ · L̄

− e

2mc2
S̄ · (∂tĀ× p̄) +

Ze2

2mc2
1

r3
S̄ · (r̄ × Ā).

(71)

In order to obtain the Hamiltonian (71) in the velocity gauge, we proceed in
analogy to what has been done for the non-relativistic velocity gauge (71) by
applying a gauge transformation (19) with

χ =

∫ t

dτ(
e2

2m
Ā2(τ)− e4

8m3c2
Ā4(τ)), (72)

in order to get rid of all the purely time dependent terms in (71). Upon doing
so, one obtains the Hamiltonian Hvel given by

Hvel = mc2 + eφ+
(p̄− eĀ)2

2m
− e2

2m
Ā2

− (p̄− eĀ)4

8m3c2
+

e4

8m3c2
Ā4 − e

8mc2
∇ · Ē +

πe2

2m2c2
δ(r̄) +

e2

2m2c2r3
S̄ · L̄

− e

2mc2
S̄ · (ĒL × p̄) +

Ze2

2mc2
1

r3
S̄ · (r̄ × Ā),

(73)
where ĒL = −∂tĀ denotes the electric field due to the applied laser.
The Hamiltonian (73) is the generalization of the non-relativistic velocity gauge
Hamiltonian (31). The main difference is that now, relativistic effects up to
order O( 1

c2 ) are included.

The velocity gauge is usually a good choice for performing numerical computa-
tions, in that it has good convergence properties [21]. The possible downside
is that one has to compute a respectable amount of terms, making it a less
preferable candidate for doing analytical computations.
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6.2.3 Length gauge

In analogy to the non-relativistic case, one may perform yet another gauge trans-
formation to (73) in order to obtain a Hamiltonian with fewer terms in total.
This will be the generalization of the non-relativistic length gauge Hamiltonian
(32).
To obtain the length gauge Hamiltonian, we apply a gauge transformation (19)
with

χ = −Ā(t) · r̄ (74)

to the velocity gauge Hamiltonian (73). This essentially results in the following
replacement rules

Ā→ 0

∂tĀ→ 0

φ→ φ− ĒL · r̄
e2

2m2c2r3
S̄ · L̄→ e2

2m2c2r3
S̄ · L̄− e

2mc2
S̄ · (ĒL × p̄),

(75)

that are to be applied to the velocity gauge Hamiltonian (73). Upon applying
the replacement rules (75), one obtains the Hamiltonian Hlen given by

Hlen = mc2 + eφ+
p̄2

2m

− p̄4

8m3c2
+

e2

2m2c2r3
S̄ · L̄+

πe2

2m2c2
δ(r̄)

− e

2m2c2
S̄ · (ĒL × p̄)− eĒL · r̄.

(76)

Comparing the length gauge Hamiltonian (76) to the velocity gauge Hamiltonian
(73), one immediately sees that the length gauge Hamiltonian has much fewer
terms. Hence, the length gauge would be the preferred choice for analytical
analysis and computation. However, when using the length gauge for numerical
computations, one is quickly faced with the problem of slow convergence [21].
This is usually reflected in the need of a comparatively large basis in order to
obtain sufficient precision, though this usually only becomes a problem when
considering eigenstates of the Hamiltonian (76) with higher angular momentum
quantum numbers.
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7 Results

Having developed a framework (71) to describe our hydrogenic electron in an
applied laser field, we may now proceed to use this model to study its domain
of applicability, as well as its limitations. To this end, we will in this section
start by looking at photon ionization.
Before applying the model, though, we have the freedom of choosing any of the
gauges presented, that is we may choose between the propagation gauge (68),
the velocity gauge (73) and the length gauge (76). As already mentioned in the
previous chapter, we are only interested in applying the model in domains where
the dipole approximation is valid. Therefore, the choice of gauges reduces to
choosing between the velocity gauge (73) and the length gauge (76). Previously
we commented on the fact that the length gauge Hamiltonian (76) has notably
fewer terms than the velocity gauge Hamiltonian (73). In addition, we are going
to apply the model to photon ionization processes, hence when doing numerical
computations we only need to consider states with small angular momentum
quantum numbers, thus making the length gauge Hamiltonian (76) a suitable
choice. Therefore, for the following calculations the length gauge Hamiltonian
has been used, which in atomic units looks like

Hlen =
p̄2

2
− φ− p̄4

8c2
+

1

2c2r3
S̄ · L̄+

π

2c2
δ(r̄)

+
1

2c2
S̄ · (ĒL × p̄) + ĒL · r̄.

(77)

Note that the rest mass energy c2 has been neglected, as this simply yields a
constant shift in the energies which will not be of importance for us.
In order to be able to judge how important the relativistic effects appearing in
(77) are, we need to have a non-relativistic model to compare (77) to. To this
end, we will use the non-relativistic length gauge Hamiltonian (32) given by (in
atomic units)

Hnonrel =
p2

2
− Z

r
+ ĒL · r̄. (78)

Now that we have chosen a suitable gauge in which to express our model (77)
which will be compared to (78), we will give a brief overview over the theory of
photon ionization.
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7.1 Photon ionization

Photon ionization is the process in which an incoming photon collides and in-
teracts with an electron, bound to a nucleus, which causes the electron to gain
enough momentum to escape the attractive force of the nucleus. More suc-
cinctly, photon ionization may be written as Atom + γ → Atom+ + e−, where
Atom+ denotes the initial atom minus one electron, γ is the initial photon and
e− is the final electron.
An observable that is typically measured in this regard is the cross section.
Here we will look at the cross section for photon ionization in a hydrogen-like
atom to which a laser field has been applied. Before doing so, however, we will
explain how to calculate the cross section for photo ionization with the use of
our Hamiltonian (77) and the non-relativistic analogue (78) thereof.

7.1.1 Cross sections

We consider here an electron that is initially bound to a hydrogen like atom,
which then interacts with a (or possibly multiple) photon(s), and is therefore
accelerated and ends up in a different final state. Let us denote by α the initial
state of the electron and by β its final state. Similarly, we denote by Eβ and Eα
the energy of the final and initial state of the electron, respectively. As energy
will be conserved, we can express the energy of the photon(s) as ωβα = Eβ−Eα.
Denoting by I(ω) the intensity of a coherent laser beam with energy ω per
photon, we define the cross section for the process considered here (in atomic
units) as

σβα =
ωβαWβα

I(ωβα)
, (79)

where Wβα gives the number of transitions occurring per unit time. In order to
find Wβα, we invoke Fermi’s Golden rule. This mean that we will be working
in the perturbative limit, which presupposes that we are considering only weak
interactions. As the interactions here considered are due to the applied laser
field, we need to assume that the vector potential’s amplitude A0 is sufficiently
small for the perturbative limit to be valid. In addition, we need to write our
Hamiltonian (77) as a sum of two terms, where one of those terms will be
the small time-dependent perturbation considered. To this end, we write our
Hamiltonian (77) as

Hlen = H0 +HI , where

H0 =
p̄2

2
− φ− p̄4

8c2
+

1

2c2r3
S̄ · L̄+

π

2c2
δ(r̄) and

HI =
1

2c2
S̄ · (ĒL × p̄) + ĒL · r̄.

(80)
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Similarly for the non-relativistic Hamiltonian (78) we write

Hnonrel = H0 +HI , where

H0 =
p̄2

2
− φ and

HI = ĒL · r̄.

(81)

Now, keeping in mind that our interaction Hamiltonians HI in (80) and (81)
are time dependent, we need to use a form of Fermi’s Golden rule which takes
this time dependence into account. As the dipole approximation is assumed, we
may more explicitly write our interaction Hamiltonian (77) (and (78) for that
matter) as HI = Acos(ωt) +Bsin(ωt). Alternatively, this can be written as

HI = V +eiωt + V −e−iωt with

V ± =
1

2
E0(−z +

1

2c2
ẑ · (S̄ × p̄) for (77) and,

V ± = −1

2
E0z for (78),

(82)

where E0 is the amplitude of the electric field due to the applied laser and ω is
the laser’s angular frequency.
Having written our interaction Hamiltonians in the form (82) above, it can be
shown [22] that Fermi’s Golden rule now takes the form (in atomic units)

Wβα = 2π|V −βα|
2δ(ωβα − ω) + 2π(|V +

βα|
2δ(ωβα + ω), (83)

The delta functions in (83) ensure energy conservation and one may therefore
readily see that the prefactor of e±iωt in (82) may be identified with emis-
sion/absorption of a single photon. As we are only interested in photon ioniza-
tion where photon emission cannot take place, we only need to consider here
photon absorption. Thus, applying Fermi’s Golden rule (83) to our formula
(79) for the cross section as well as inserting I(ω) = 2πcE2

0 , we obtain the final
expressions (in atomic units)

σβα =
4π2

E2
0c
ωβα|V −βα|

2ρ(Eβ) with

V −βα =
1

2
E0(−z +

1

2c2
ẑ · (S̄ × p̄)) for (77) and

V −βα = −1

2
E0z for (78),

(84)

where ρ denotes the density of states per unit energy.
Thus, we see that to calculate the cross section for photon ionization we simply
need to compute the energy spectrum {En}n of the system, the matrix elements
V −βα and the density of states function ρ.

Having found an expression (84) for calculating the cross section, we now pro-
ceed by considering specific transitions. In the following, the initial and final

32



states of the electron are eigenstates of the unperturbed Hamiltonian H0 (80).
These eigenstates are fully characterised by the set of quantum numbers given
by {n, j, l, s,mj}, where n is the energy quantum number, analogous to the en-
ergy quantum number in non-relativistic hydrogen (16). The quantum number
l is the angular momentum quantum number which is the same as the one ap-
pearing in non-relativistic hydrogen (12), as well. The spin quantum number
s is equal to 1

2 as we are considering the electron. As s remains a constant
throughout all calculations, it will be implicitly assumed and therefore omitted.
Further, the quantum number j can be though of as a generalised quantum
number that takes into account both angular momentum and spin and here it
can take the values j = l± 1

2 . The states need to be characterised by the quan-
tum number j since the operator proportional to S̄ · L̄ in (80) does not commute
with the operators L̄2, Lz, S̄

2 and Sz, though it commutes with the operator
J̄2 = (L̄+ S̄)2, having eigenvalues j(j + 1). Finally, for a fixed j, the quantum
number mj can take the values −j,−j + 1, ..., j.

7.1.2 j = 1
2 →j= 1

2/
3
2

We now consider the specific transitions where the initial electron is in the
ground state. The ground state will be described by the set of quantum numbers
(n = 1, l = 0, j = 1

2 ,mj = 1
2 ). Though the ground state could also have the

quantum number mj = − 1
2 , it does not alter any of the calculations done in this

chapter, neither does it affect the outcome thereof. Therefore, the case where
mj = − 1

2 has not been considered.
As shown in (83), photon absorption in the perturbative limit allows only for
the absorption of one photon. Therefore, the final state will have the angular
quantum number l = 1. This allows for the possible quantum numbers j = 1

2
and j = 3

2 , of which both will be considered. For bound states (energy less than
zero ), n will denote the quantum number that can be any integer larger than
1. For the case where the final state is in the continuum (energy larger than
0), n denotes the energy of that state and may thus be any real number larger
than 0. At last, the quantum number mj will remain unchanged due to the
selection rule stating that the change in mj in the dipole approximation must
be zero. Therefore, the final state may be summarised by any of the sets of
numbers (n, l = 1, j = 1± 1

2 ,mj = 1
2 ). In summary, we are considering the two

transitions

(n = 1, l = 0, j =
1

2
,mj =

1

2
)→ (n, l = 1, j =

3

2
,mj =

1

2
),

(n = 1, l = 0, j =
1

2
,mj =

1

2
)→ (n, l = 1, j =

1

2
,mj =

1

2
).

(85)

These transitions will be abbreviated by j = 1
2 → j = 3

2 and j = 1
2 → j = 1

2 , or
simply 1

2 →
3
2 and 1

2 →
1
2 , respectively. To calculate the cross sections for the

transitions (85) then, we may use equation (84). In order to do so, we start by
finding the density of states function ρ.
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When doing the calculations numerically, a finite (large) box will be used and
accordingly all the calculated quantities will be box normalized. Box normal-
ization simply means that quantities have been normalized in a box dependent
way, that is the normalization constants depend in some fashion on the size of
the box. In theory one supposes all of space instead of a finite box. Hence, when
computing the cross section (an observable) all box dependent terms ought to
cancel in the end. In order for this to happen, we need to choose the density of
states function accordingly. In order to get a cross section that is independent
of the chosen size of the box, the density of state function will be chosen to be

ρ(En) =
2

En+1 − En−1
. (86)

More information about the specifics of how the numerical computations in this
thesis have been performed is given in the appendix.
The remaining step involves calculating the matrix elements of the interaction
Hamiltonians (80) and (81). This means that we need to calculate the integrals
I±n and In

±
nonrel given by

In
±
rel =

E0

2

∫
R3

d3x̄ Ψ±∗
n1 1

2

(−z +
1

2c2
ẑ · (S̄ × p̄))Ψ+

10 1
2

for (80) and

In
±
nonrel = −E0

2

∫
R3

d3x̄ Ψ±∗
n1 1

2

zΨ+
10 1

2

for (81),

(87)

where Ψ±nlmj denotes the wave function describing the state characterised by the

numbers (n, j = l± 1
2 , l,mj) as mentioned in (85). The ± superscript represents

the final state’s j quantum number given by j = 1± 1
2 . The specifics of how to

calculate the above integrals are given in the appendix.
Inserting (87) into (84), we obtain the final expressions for calculating the cross
sections for the processes (85) described by the Hamiltonians (77), reading

σn
±
rel =

2π2

c

E±n − E+
1

E±n+1 − E
±
n−1

|
∫
R3

d3x̄ Ψ±∗
n1 1

2

(−z +
1

2c2
ẑ · (S̄ × p̄))Ψ+

10 1
2

|2 (88)

as well as for the Hamiltonian (78), stating

σn
±
nonrel =

2π2

c

En − E1

En+1 − En−1
|
∫
R3

d3x̄ Ψ±∗
n1 1

2

zΨ+
10 1

2

|2. (89)

We are now able to compute the cross sections for the processes (85) for both the
relativistic model (77) and the non-relativistic model (78). These cross sections
will be calculated and compared to each other, as well as to the cross section
that one would get from the exact minimal coupling Dirac Hamiltonian (33).
The data for the Dirac cross section has been obtained from [23].
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Figure 1

Cross section for process j = 1
2 → j = 3

2 plotted against emitted photon
energy for the non-relativistic, relativistic and the Dirac minimal coupling

Hamiltonian.

In figure 1 the cross sections are plotted against the energy of the absorbed
photon. The unit chosen to express the cross sections is megabarn (Mb) which
is defined by 1 Mb= 10−18 cm2. The photon energy axis is expressed in atomic
units.
In figure 1, the plotted cross sections describe the transitions (85). The first
three lines at the top represent the cross sections for the process 1

2 →
3
2 . The

uppermost lying curve in black has been obtained through the formula (89).
Below the black curve one can see the blue dotted curve, representing the cross
section obtained by using our model (88). Next, the dotted orange line in figure
1 represents the Dirac cross section based on the exact minimal coupling Dirac
Hamiltonian (33). The remaining three curves in figure 1 are the cross sections
for the process 1

2 →
1
2 . The largest curve out of those three is the one in blue,

yielding the cross section (89) for the non-relativistic model (78). Below the blue
curve, one can see the dotted green line representing the cross section obtained
through the minimal coupling Dirac Hamiltonian (33). At last, the curve in
magenta lying on top of the Dirac curve represents the cross section (88) based
on our model (77).
To analyze figure 1, we start by considering the three upper most curves that
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yield the cross sections for the process 1
2 →

3
2 . As can be seen by inspecting

figure 1, the non-relativistic cross section is above the Dirac cross section, while
the relativistic cross section obtained through our model is in between the Dirac
cross section and the non-relativistic one. Therefore, we conclude that taking
into account relativistic effects for this transition results in a smaller cross sec-
tion. This can be understood by the fact that the most dominating relativistic

correction appearing in (77) at high energies is the operator − p4

8c2 , which is neg-
ative, causing the non-relativistic cross section (black) in figure 1 to be shifted
down.
Though one can see from figure 1 that relativistic effects in the 1

2 →
3
2 transition

contribute, their effect seems to be small. However, the relativistic approxima-
tion (dotted blue) yields a better approximation to the Dirac curve (dotted
orange) than the non-relativistic one (black).
Continuing the analysis of figure 1, we consider now the three lowest lying curves
that represent the cross sections for the process 1

2 →
1
2 . Similarly to the j = 3

2
case, the non-relativistic cross section (blue) lies above the Dirac curve (dotted
green) and above the relativistic cross section (magenta). Here, the same expla-
nation as given for the j = 3

2 is valid. In contrast to the j = 3
2 case, however,

we can now see from figure 1 that the non-relativistic cross section (blue) is far
longer apart from the Dirac cross section (dotted green) than the relativistic
cross section (magenta) is, implying that relativistic effects are more important
for the j = 1

2 case than for the j = 3
2 case. This can be explained through the

following argument:
In (77), the Darwin term only affects the ground state which is the same in

both cases. Also, the term − p4

8c2 is roughly of equal importance in both cases.
The remaining two relativistic operators are the operator proportional to S̄ · L̄
and the operator proportional to S̄× p̄. Starting with the LS operator, one can
show that

S̄ · L̄Ψnjlmj =
l

2
Ψnjlmj if j = l +

1

2
,

S̄ · L̄Ψnjlmj = − l + 1

2
Ψnjlmj if j = l − 1

2
.

(90)

Therefore, setting l = 1, we see that for the j = 1
2 case the LS term contributes

twice as much than it does for the j = 3
2 case. As for the remaining operator

in (77) which is given by 1
2c2 S̄ · (ĒL × p̄), we can again show that this operator

contributes twice as much in the j = 1
2 case than in the j = 3

2 case by making
use of the formula (121) which has been derived in the appendix. In our case it
tells us that∫

R3

d3x̄ Ψ+∗
n1 1

2

1

2c2
ẑ · (S̄ × p̄)Ψ+

10 1
2

= − 1

4c2
Q for j =

3

2∫
R3

d3x̄ Ψ−∗
n1 1

2

1

2c2
ẑ · (S̄ × p̄)Ψ+

10 1
2

= −2
1

4c2
Q for j =

1

2
,

(91)

where Q is some integral that is not important here. (90) then shows that we
get twice the contribution in the j = 1

2 case than we get in the 3
2 case.
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In summary, the spin dependent operators 1
2c2r3 S̄ · L̄ and 1

2c2 S̄ · (ĒL × p̄) ap-
pearing in our model (77) cause the relativistic effects to be more important in
the transition 1

2 →
1
2 than in the transition 1

2 →
3
2 as shown in (90) and (91).

7.1.3 Spin Effects

After having shown that the presented model (77) is a good relativistic approx-
imation to the minimal coupling Dirac Hamiltonian (33), we now wish to study
spin effects that our model (77) predicts. To this end, we wish to isolate the
spin dependent terms appearing in (77) as much as possible.
The spin dependent terms in (77) are given by

LS term =
1

2c2r3
S̄ · L̄,

S1 =
1

2c2
S̄ · (ĒL × p̄).

(92)

It is well known that the LS term is of great importance when studying rel-
ativistic phenomena, especially when considering states with higher angular
momentum quantum numbers l. We therefore wish to use a model based on
(77) where, if possible, we can neglect the LS term, while still getting sensible
results, in order to study the relevance of the spin term S1. To this end, one
might be tempted to simply discard the LS term appearing in (77), retaining
only the other spin term S1. This, however, would be non-sensible as the fol-
lowing argument will show:
Though observables are gauge invariant, this only holds when considering the
full physical Hamiltonian, which in our case is either (73) or (76). As we are
interested in discarding some of the terms such as the LS term, gauge invariance
will be broken and we will no longer be left with a physical Hamiltonian, strictly
speaking. Therefore, when discarding terms, we will have to decide which of
the two gauges (73) and (76) we consider to be the ”physical gauge”. We will
consider the velocity gauge Hamiltonian (73) to be the ”physical gauge” from
here on, as it most closely resembles the Hamiltonian (71) obtained from the
physical minimal coupling Dirac Hamiltonian (33) which is known to yield ex-
tremely precise results when studying relativistic phenomena. Thus, starting off
with the velocity gauge Hamiltonian (73) when trying to isolate the spin terms,
we now have three spin terms which are given by

LS term =
1

2c2r3
S̄ · L̄

S1 =
1

2c2
S̄ · (ĒL × p̄)

S2 =
Z

2c2r3
S̄ · (r̄ × Ā).

(93)

By comparing (92) with (93), we see that the velocity gauge Hamiltonian con-
tains in addition to the spin terms present in the length gauge yet another spin
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term S2. This goes very much against intuition and has been a source for error
[25] when studying relativistic effects perturbatively. To illustrate that gauge
invariance between the velocity gauge (73) and the length gauge (76) implies
such an asymmetry in spin terms, the cross sections for photon ionization have
been calculated based on both gauges, as well as based on the Hamiltonian

H = H0 + S1 + S2 + ĒL · r̄, (94)

where H0 is the same as the one given in (80), which represents the case in
which the length gauge Hamiltonian would have the same amount of spin terms
as the velocity gauge Hamiltonian (73). The cross sections are illustrated in
figure 2.

Figure 2

Cross section in velocity gauge and length gauge (with two and three spin
terms) for process j = 1

2 → j = 3
2 plotted against emitted photon energy.

In figure 2 there are six curves. The three uppermost lying curves represent the
cross sections for the process 1

2 →
3
2 , while the remaining three curves yield the

cross sections for the process 1
2 →

1
2 . Starting with the three curves at the top,

the the black line is the cross section that has been obtained from the velocity
gauge Hamiltonian (73), while the dotted blue line has been obtained from the
length gauge Hamiltonian (76) with two spin terms (92). The orange dotted
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line has been obtained from the length gauge Hamiltonian (94) with three spin
terms. The curves for the velocity gauge and length gauge (black and dotted
blue) are virtually identical, while the length gauge (94) with the additional spin
term S2 is slightly off, illustrating that gauge invariance between the velocity
and length gauge for the j = 3

2 case only holds if there is an asymmetry in spin
terms. Of the remaining three curves, the solid magenta line yields the cross
section that has been obtained in the velocity gauge (73), while the dotted green
line has been obtained in the length gauge (76). The dotted red line has been
obtained in the length gauge (94) with three spin terms. Here again one cannot
tell any visual difference between the magenta and the dotted green curves,
while the dotted red line is off, verifying that gauge invariance for the j = 1

2
case only holds if there is an asymmetry in spin terms. As the spin terms S1

and S2 contribute non-trivially to the cross sections, this shows that one indeed
needs to have 3 spin terms in the velocity gauge, while only 2 in the length
gauge.
When now trying to discard the LS term in the length gauge, we are faced with
the problem that the length gauge without the LS term is no longer connected
to the velocity gauge (our physical gauge) by a gauge transformation. This
is due to the fact that when going from the velocity gauge (73) to the length
gauge (76), the LS term contributed non-trivially as can be seen from (75). In
fact, the LS term contributes through yielding the spin term S1 which is what
we wish to study. Therefore, if we were to discard the LS term in the length
gauge, we would also have to discard the spin term S1 in order to preserve gauge
invariance, i.e. in order for the length Hamiltonian to be physically equivalent
to our (physical) velocity gauge Hamiltonian.
In summary, discarding the LS term in the length gauge Hamiltonian (76) forces
us to discard the spin term S1, which is what we wish to study. Therefore, we
either have to retain the LS term, which makes the importance of the spin term
S1 less apparent as the LS term is known to be of much importance, or we have
to choose the velocity gauge. As we want to be able to discard the LS term, we
start by choosing the velocity gauge Hamiltonian (without the rest mass energy
c2), which in atomic units reads

Hvel =
p̄

2
− φ+ Ā · p̄

− (p̄+ Ā)4

8c2
+

1

8c2
Ā4 +

π

2c2
δ(r̄) +

1

2c2r3
S̄ · L̄

+
1

2c2
S̄ · (ĒL × p̄) +

Z

2c2
1

r3
S̄ · (r̄ × Ā).

(95)
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As mentioned above, we now discard the LS term in order to isolate the effect
of the remaining two spin terms S1 and S2, yielding the Hamiltonian

Hvel =
p̄

2
− φ+ Ā · p̄

− (p̄+ Ā)4

8c2
+

1

8c2
Ā4 +

π

2c2
δ(r̄)

+
1

2c2
S̄ · (ĒL × p̄) +

Z

2c2
1

r3
S̄ · (r̄ × Ā).

(96)

Besides the two spin terms S1 and S2 in the above Hamiltonian (96), the re-
maining relativistic terms are given by the Darwin term, proportional to the
Dirac delta function, and the relativistic kinetic energy correction proportional
to (p+A)4.
The Darwin term contributes marginally. In fact, when computing the cross
sections presented in figure 1, the same graphs have been obtained even when
neglecting the Darwin term completely, which is why we are going to discard
the Darwin term in (96), leaving us with the Hamiltonian

Hvel =
p̄

2
− φ+ Ā · p̄

− (p̄+ Ā)4

8c2
+

1

8c2
Ā4

+
1

2c2
S̄ · (ĒL × p̄) +

Z

2c2
1

r3
S̄ · (r̄ × Ā).

(97)

The above Hamiltonian (97) now only contains, besides the two spin terms
S1 and S2, the relativistic correction to the kinetic energy, which is given by

− (p+A)4

8c2 . As we are interested in studying spin effects only, we will assume a case
where the relativistic correction to the kinetic energy is not important, enabling

us to discard the − (p+A)4

8c2 operator. An example for such a case would be given
by Rydberg atoms [24] that can have extremely small kinetic energies. Upon
discarding the kinetic energy correction, we are left with the final Hamiltonian
that will be used to study the effects of the spin terms S1 and S2, given by

Hvel =
p̄

2
− φ+ Ā · p̄+

1

2c2
S̄ · (ĒL × p̄) +

Z

2c2
1

r3
S̄ · (r̄ × Ā). (98)

The results obtained from this Hamiltonian (98) will then be compared to the
non-relativistic Hamiltonian in the velocity gauge (31), given by (in atomic
units)

Hnonrel =
p2

2
− φ+ Ā · p̄. (99)

Then, both the Hamiltonian (99) without the spin terms and the Hamiltonian
(98) with the spin terms have been used to calculate the cross sections for photon
ionization for the transitions (85). The results are plotted in figure 3.
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Figure 3

Cross section for process j = 1
2 → j = 3

2 with and without spin plotted against
emitted photon energy.

In figure 3, the two curves lying at the top are the cross sections for the process
1
2 →

3
2 , where the black curve is the cross section obtained from the non-

relativistic spin-less Hamiltonian (99), while the blue dotted curve is the cross
section that has been calculated using the Hamiltonian (98) that includes the
spin terms S1 and S2. The two curves that lie the lowest are the cross sections
for the process 1

2 →
1
2 , of which the blue curve has been obtained through using

the non-relativistic spin-less Hamiltonian (99). The orange dotted line has been
calculated by using the Hamiltonian (98).
As can be seen in figure 3, the spin terms S1 and S2 contribute positively for
the j = 3

2 case, while contributing negatively for the j = 1
2 case. Similarly to

the results shown in figure 1, here too the spin terms contribute notably more
in the j = 1

2 case than in the 3
2 case. We know from analyzing figure 1 that the

spin term S1 is twice as large in the j = 1
2 case compared to the j = 3

2 case.
The question is then whether a similar statement holds true for the other spin
term S2.
To answer this question, we will here show that the spin term S2 in fact is
equivalent to the spin term S1 when considering photon ionization, that is,
when considering the transitions (85) in the perturbative limit. To this end,
we start by noting that the spatial part of the ground state wave function is
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independent of the angular variables φ and θ, while it only depends on the radial
variable r. This means that

Ψ∗f ip̄Ψgs = Ψ∗f r̂∂rΨgs, (100)

where r̂ is the unit vector pointing in the direction of r̄, Ψgs = Ψ100 is the ground
state wave function and Ψf = Ψ111 is the wave function of the final state.
Both of the wave functions are eigenstates of the non-relativistic hydrogenic
Hamiltonian HZ (29), thus satisfying HZΨ = EΨ, E being the energy.
In addition to (100), we will make use of the identity

[∂r, Hz] =
Z

r2
. (101)

Using (100) and (5) enables us to rewrite the spin term S2 when acting on the
ground state as

Ψ∗fS2Ψgs = −Ψ∗f i(Ef − Ei)
1

2c2
S̄ · (p̄× Ā)Ψgs, (102)

where Ef and Ei are the energies of the final and initial state, respectively. As
a final step we note that the amplitude A0 of the vector potential Ā is related
to the amplitude E0 of the electric field due to the laser through

A0 =
E0

ω
, (103)

where in our case ω is the energy of the absorbed photon. As energy is conserved,
this means that ω = Ef − Ei. Therefore we rewrite (100) as

Ψ∗fS2Ψgs = −isin(ωt)Ψ∗f
E0

2c2
ẑ · (S̄ × p̄)Ψgs. (104)

Rewriting the spin term S1 as

S1 = cos(ωt)
E0

2c2
ẑ · (S̄ × p̄), (105)

we see immediately upon comparing (104) with (105) that the spin term S2,
when considering photon ionization, acts very similarily to the spin term S1, the
only difference being a factor of −i and the time dependent factor. If we were
to calculate cross sections for photon ionization in the perturbative limit, we
would, as we did for the results presented in figure 1, apply Fermi’s Golden rule
(83). This presupposes that our interaction terms, which in this case includes S1

and S2, have been written in the form (82). Then, as mentioned previously, for
photon ionization only the term proportional to e−iωt will contribute. Therefore,
we write both S1 and S2 in a suitable form, yielding

Ψ∗fS1Ψgs =
1

2
e−iωt

E0

2c2
ẑ · (S̄ × p̄) + ...

Ψ∗fS2Ψgs =
1

2
e−iωt

E0

2c2
ẑ · (S̄ × p̄) + ...,

(106)
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where we have used the Euler identity eiωt =cos(ωt)+isin(ωt).
One can then see from (106) that the spin terms S1 and S2 contribute equally
when considering photon ionization. Therefore, the spin term S2 contributes
twice as much to the cross section for the j = 1

2 case than to the j = 3
2 case.

In conclusion, the spin terms S1 and S2 contribute equally when considering
photon ionzation in the perturbative limit. Further, the contribution of the to-
tal spin effect S1 +S2 in the j = 1

2 case is four times that of the contribution in
the j = 3

2 case, albeit being relatively small compared to the case when taking
into account all the other relativistic effects that have been neglected (see figure
1).
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8 Summary and conclusion

The model presented in this thesis is summarised by the Hamiltonian (71) given
by

Hdip = mc2 + eφ+
(p̄− eĀ)2

2m

− (p̄− eĀ)4

8m3c2
− e

8mc2
∇ · Ē +

πZe2

2m2c2
δ(r̄) +

e2

2m2c2r3
S̄ · L̄

− e

2mc2
S̄ · (∂tĀ× p̄) +

Ze2

2mc2
1

r3
S̄ · (r̄ × Ā).

(107)

This Hamiltonian is to describe an electron bound to a hydrogenic nucleus in
an applied laser field. This Hamiltonian has been obtained by starting with the
minimal coupling Dirac Hamiltonian (33)

HD = cᾱ · (p̄− eĀ) + V +mc2β, (108)

which then has been approximately diagonalized (up to order O( 1
m3 )) through

the Foldy-Wouthuysen transformation [17]. The obtained Hamiltonian has then
been presented in different gauges (68), (73) and (76), of which the former one
was given to illustrate how to apply the model (60) to the beyond dipole case,
while the latter two have been used extensively throughout this thesis under the
assumption of the dipole approximation.
In order to study the validity of the derived model (71) in the dipole approxima-
tion, photon ionization has been studied by calculating and plotting their cross
sections which have been compared to the analogous non-relativistic case (78)
and to the exact Dirac theory (33). Based on the graphs plotted in figure 1,
we conclude that our presented model (77) yields a good approximation to the
Dirac theory, especially for the 1

2 →
1
2 transition, when calculating cross sections

for processes concerned with photon ionization where the perturbative limit is
valid. The fact that the relativistic correction in the 1

2 →
3
2 process as depicted

in figure 1 has seemingly only improved the non-relativistic approximation a
little may be thought to be due to the fact that the states involved, i.e. the
ground state and the first excited state with j = 3

2 , are the ”least relativistic”
states of all the available states, thus making the relevance of relativistic effects
minute. On the other hand, for the transition 1

2 →
1
2 where the final state was

different, the model (77) yielded a much better approximation, in fact virtuallly
no visible difference to the Dirac solution is apparent. Overall, the presented
model yielded a good approximation to the Dirac theory.
Additionally, it has been found that there are 3 spin dependent operators present
in the velocity gauge (93), while in the length gauge there are only 2 (92). A
variation of the velocity gauge Hamiltonian (98) has then been used to study
the effect of the present spin terms S1 and S2 by comparing the calculated cross
sections to the non-relativistic velocity gauge Hamiltonian (31). It has been
found and shown that the effect of the spin terms S1 and S2 is four times as
important in the transition to the j = 1

2 state than in the transition to the j = 3
2
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state. Further, the results obtained indicated that while the contribution from
the spin terms S1 and S2 are apparent, they are small compared to the total
relativistic correction obtained previously, where the LS term is the dominant
spin dependent operator.

Everything studied in this chapter has been done in the perturbative limit,
presupposing that the applied laser is weak. The effect of the spin terms S1 and
S2 has been seen to only yield a small contribution to the cross section (figure 3)
when compared to the total relativistic correction (figure 1). We know that the
main relativistic corrections due to spin stem from the LS operator. One might
now wonder if the same is true in the non-perturbative limit, where the laser
now is strong, implying that A0 and E0 are large, as well as larger energies and
thus larger momenta. Considering the spin term S1 for example, we know that
S1 depends on both E0 and p̄, while the LS term only depends on p (L̄ = r̄× p̄).
Therefore, it might be possible that the spin term S1 becomes more relevant
than the LS term, though in the non-perturbative limit more than 1 photon
may be absorbed, resulting in higher angular momentum quantum numbers l,
making the LS term increase in importance. As the answers to such questions
are seemingly not obvious, a suggestion for further studies might include con-
sidering the model (60) while assuming higher laser intensities in order to model
the importance of the spin terms S1 and S2 in that regime. In order to isolate
the importance of the spin terms S1, S2 and the LS term, it is suggested to
study those effects in Rydberg atoms [24]. One of the reasons is that Rydberg
atoms may have very small kinetic energies, thus making the relevance of the

kinetic energy correction term − p4

8c2 less important. At the same time, one can
consider higher angular momentum states where spin-orbit effects are known to
be more important. This can then be used to model the importance of the spin
terms S1 and S2 in comparison to the LS term for different regimes.
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9 Appendix

This chapter is on the specifics on how the numerical computations done for
this thesis have been performed. Among other things, the choice of basis is
motivated and the general procedure is outlined.

The necessity of numerical computations for the work done in this thesis can be
illustrated by formulating the problem that has been dealt with as follows:
At first, a suitable model has been chosen in order to describe the processes
of interest correctly to the desired order of accuracy (76) (or any other of the
presented gauges). The mathematical formulation of the quantum mechanical
model is then given by a Hamiltonian, represented as a matrix, which is to be
inserted into the TDSE (5).
When studying the dynamics of the given system through solving the TDSE,
one is faced with the mathematical problem of solving a system of partial dif-
ferential equations. In theory, the given Hamiltonian in this thesis (76) is to be
infinite dimensional. In practice however, the Hamiltonian will be a large but
finite dimensional matrix. The mathematical problem is then to diagonalize the
given Hamiltonian, that is to find its eigenvalues together with its eigenvectors.
Due to the difficulty of the calculations and the shear amount of matrix elements
that need to be calculated, one naturally opts for a numerical approach. More
about the numerical approach used in this thesis will be given in the following.

9.1 Numerical approach

The numerical approach that has been utilized throughout this thesis may be
summarized as follows:

1. Step: Choosing a suitable basis
In theory a complete (usually infinitely large) set of basis functions is as-

sumed. In the practical case, one has to choose a basis which is large enough
to yield sufficient convergence to the real result, whilst still not being too large
as to take up too much memory, making computations take longer than they
otherwise would. As the basis states will be used to calculate matrix elements,
it is considered an advantage if the chosen basis states also have some nice
properties when being used for (approximate) methods of integration. As the
integration domain has to be made finite when doing numerical computations,
too, basis states that are non-zero only on a finitely large domain would be
preferable. A set of basis states satisfying all these mentioned criteria are the
so called B-spline functions. A brief explanation of B-splines will be given later.

2. Step: First diagonalization
One calculates the matrix elements of the non-reativistic hydrogenic Hamil-

tonian ĤZ = p̂2

2 −
Z
r in the chosen B-spline basis. This means that one has

to solve three-dimensional integrals. The angular integration is done analyti-
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cally while the radial integration is done numerically using the so called Gauss-
Legendre quadrature. A brief explanation of this integration method is given
later. Having calculated the matrix elements of HZ , its eigenvalues and eigen-
states are found through diagonalization.

3. Step: Second diagonalization
Using the obtained eigenstates and eigenvalues, one proceeds in the same

fashion as in step 2 by calculating matrix elements, now however of the rela-

tivistic Hamiltonian Hrel = HZ − p4

8c2 + 1
2c2r3 L̄ · S̄+ π

2c2 δ(r̄). After the computa-
tions have been performed, one again diagonalizes the newly calculated matrix
in order to obtain the relativistic eigenstates and eigenvalues.

4. Step: Computation of the interaction of interest
Taking the length gauge Hamiltonian (76) as an example, one now uses the

newly calculated relativistic eigenstates and eigenvalues to calculate the inter-
action Hamiltonian’s H len

I = ĒL · r̄ + S1 matrix elements. These can then be
used to calculate observable quantities such as cross sections for photon ioniza-
tion processes, as done for the plots presented in chapter 7 on photon ionization.
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9.2 Numerical technicalities

9.2.1 B-Splines

The following will give a very brief explanation of what B-splines are from a
practical perspective in regard to what has been done numerically in this thesis.
For a more elaborate treatment of the subject, one may refer to other sources
such as [26].

B-splines are to be understood as a set functions {Bri (x)}i that is linearly in-
dependent, making it possible to be used as a basis. Each B-spline Bri (x) is a
piecewise polynomial that has assignet to it an order r. B-splines as used in
this thesis are defined in the following way:
One starts by considering a finite line segment, say, [0, 2] on which the B-splines
are to be defined. Then, one divides the line segment into equidistant sub-
segments, for example, [0, 2] = [0, 1)U [1, 2]. The set of all endpoints of the
obtained subsegments is refered to as the knot vector t, which in this example
reads t = (0, 1, 2). The knot vector is by definition always ordered in a non-
decreasing fashion, meaning that in the example given here t′ = (1, 0, 2) would
not be the correct knot vector.
The dimension of the knot vector is referred to as the number of breaking points
Nb, which in our example here is Nb = 3. The B-spline functions are then de-
fined recursively, starting with defining the 0th order B-splines as

B0
i (x) =

{
1 if ti ≤ x < ti+1

0 otherwise
(109)

B-splines of order r = 1 or higher are then defined by

Bri (x) =
x− ti

ti+k−1 − ti
Bk−1
i (x) +

ti+k − x
ti+k − ti+1

Bk−1
i+1 (x). (110)

The two equations above are often referred to as the Cox-de Boor recursion
formula [26]. As can be seen from the above definitions, B-splines are only non-
zero on a finite dimensional subset, making them ideal for numerical integration
methods such as the Gauss-Legendre quadrature, which will be explained below.
In this thesis, for all calculations done for the photon ionization cross sections
presented in chapter 7, B-splines of order 6 have been used. Further, about 1400
breaking points have been used, yielding roughly 1400 B-splines in the first di-
agonalization, of which about 900 have been kept in the second diagonalization.
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9.2.2 Gauss-Legendre Quadrature

All integrals that have been calculated numerically in this thesis have been done
so through applying the so called Gauss-Legendre quadrature [27]. The Gauss-
Legendre quadrature is an integration technique that expresses an integral as a
sum of the integrand evaluated at certain points multiplied by a set of values
which are called the weights. More succinctly, the Gauss-Legendre quadrature
states that for a function f defined on an interval [−1, 1], we may write∫ 1

−1

dx f(x) = Σnk=1wkf(xk) + En, (111)

where {wk}nk=1 are the weights, {xk}nk=1 are the roots of the nth Legendre
polynomial Pn(x) and En is the error, which may be written as

En =
22n+1(n!)4

(2n+ 1)((2n)!)3

d2nf(ρ)

dx2n
, (112)

where ρ is some number in the interval [−1, 1].
Looking at the above formula for the error, one easily sees that if f is a poly-
nomial of order 2n − 1 or lower, then a Gauss-Legendre quadrature of order n
will yield an exact result. This is important to note, as in our case, the function
f will be a product of two basis states, expressed in terms of B-splines (poly-
nomials) times x to some finite power. Therefore, for all calculations in this
thesis the order of B-splines used has been matched such that Gauss-Legendre
quadrature is exact, hence making the only source of computational error the
finiteness of our box.

As a final note on Gauss-Legendre quadrature, the integrals that had to be
solved in this thesis were radial integrals. Therefore the domain of integration
was [0, rmax], where rmax is the size of the box used. Therefore, in order to be
able to apply the Gauss-Legendre quadrature formula (111), the radial integrals
had to be rewritten at first. To this end, the radial integral had been written
as a sum of the form∫ rmax

0

dr f(r) = Σmmaxm=0

∫ x2m

x1m

dx f(x), (113)

where each integral in the sum has an integration domain of length 2.
Through a change of variables, each integral in the sum had been rewritten
such that x1m → −1 and x2m → +1. Then, the remaining task was simply to
invoke the Gauss-Legendre quadrature formula (111) on each of the integrals
appearing in the sum above. For a more extensive treatment of Gauss-Legendre
quadrature, one may consider more elaborate sources such as [27] or [28].
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9.3 Calculation of the Interaction terms

In this section, the formulae that have been implemented numerically to study
the problems presented in this thesis are derived and summarized. The Dirac
notation has been used. The reader is referred to [29] for a comprehensible source
on the Dirac notation. To understand the following, it is sufficient to simply
consider the Dirac notation to be a shorthand for writing integrals, meaning
that

< a|O|b >:=

∫
D
dq Ψ∗a(q)OΨb(q), (114)

where Ψa and Ψb are the wave functions corresponding to the (set of) quantum
numbers a and b, respectively, while D is the domain to be integrated over. As
an example, if we were to calculate the transition amplitude from the ground
state (b = 100) to the first excited state (a = 211) in the hydrogen atom due to
the operator x, we would have that

< 211|x|100 >=

∫
R3

d3r Ψ∗211xΨ100. (115)

9.3.1 Sxpy − Sypx matrix elements

In the velocity gauge (73), for the problems studied in this thesis, there are
effectively two interaction terms. One is of the form SyΛx − SxΛy, where
Λx,y = px, py, while the other is of the form pz. We start by considering the
former interaction. In order to derive the desired expressions for those inter-
action terms, we may start by deriving an expression for the term SyΛx. The
analogous expression for the SxΛy term then follows easily.

We start by calculating the matrix element < njl 12mj |SyΛx|n′j′l′ 12m
′
j >.

From the selection rules that may be derived from the Dirac equation, we know
that the only transitions allowed in the dipole approximation are the ones where
m′j = mj . For simplicity, and since the particular choice of mj is irrelevant for

the problems studied in this thesis, we set mj = 1
2 , as has been done throughout

all computations for this thesis.
Yet another transition rule tells us that the only allowed transitions regarding
the l quantum number are the ones where either l′ = l+ 1 or l′ = l− 1. In this
thesis the arrangement of the matrix that is being calculated has been chosen
such that if the entry (i, j) corresponds to the transition from l to l′ = l + 1,
then the entry (j, i) corresponds to the process from l to l′ = l − 1. Since our
Hamilton matrix has to be hermitian, it is sufficient to calculate only, say, the
matirx elements in the upper half. This implies that we only need to consider,
say, the processes for which l′ = l+ 1. We thus set l′ = l+ 1 and mj = m′j = 1

2
in the following computations.
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To derive an expression for the matrix elements we start by expanding the
coupled basis in the uncoupled one, yielding

< SyΛx > = Σm,m′Σms,m′s < l + 1m′
1

2
m′s|j′

1

2
>< lm

1

2
ms|j

1

2
>

<
1

2
ms|Sy|

1

2
m′s >< nlm|Λx|n′l + 1m′ > .

(116)

The first two factors in the above expression are Clebsch-Gordan coefficients.
To further simplify, we write < 1

2ms|Sy| 12m
′
s >= λ

2i (δms 1
2
δm′s− 1

1
−ρδms− 1

2
δm′s 1

1
),

where λ = ρ = 1 have been inserted to make the calculation of the SxΛy matrix
elements later on easier. We can then perform the sum over ms and m′s. This
leaves us with

< SyΛx > =
λ

2i
Σm,m′ < nlm|Λx|n′l + 1m′ >

(< l + 1m′
1

2
− 1

2
|j′ 1

2
>< lm

1

2

1

2
|j 1

2
>

− ρ < l + 1m′
1

2

1

2
|j′ 1

2
>< lm

1

2
− 1

2
|j 1

2
>).

(117)

We may further simplify the above expression by noting that the Clebsch-
Gordan coefficients vanish unless m + ms = mj . In addition, we may look
up the Clebsch-Gordan coefficients to get that

< SyΛx > =
λ

4i
Σm,m′ < nlm|Λx|n′l + 1m′ >

(ε
√

(1 + ∆)(1−∆′)δm′1δm0

− ρε′
√

(1 + ∆′)(1−∆)δm′0δm1),

(118)

where ε = ±1 depending on j = l ± 1
2 and ∆ = ε

1
2

l+ 1
2

as well as ∆′ = ε′
1
2

l+ 3
2

.

As a final step before setting Λx equal to px, we may derive the analogous
expression for the matrix elements of the operator SxΛy. To do so, we start by
observing that for Sx, we have that λ = i as well as that ρ = −1. Moreover,
we may make use of the fact that Λy = exp−i

π
2 Lz Λx exp+iπ2 Lz , implying that

< SxΛy >= − < SyΛx >. We therefore get that

< SxΛy − SyΛx > =
i

2
Σm,m′ < nlm|Λx|n′l + 1m′ >

(ε
√

(1 + ∆)(1−∆′)δm0δm′1

− ε′
√

(1 + ∆′)(1−∆)δm′0δm1).

(119)

The remaining part of the computation reduces to finding a suitable expression
for the matrix elements of the operator Λx, which in our case will be the px
operator.
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Having set Λx = px, we may make use of the formula [23] stating that

< nlm|∂x|n′l + 1m′ >= (−al+1,m′δm′,m+1 + al+1,−m′δm′,m−1)Glnn′ , (120)

where alm =
√

(l+m)(l+m−1)
4(2l−1)(2l+1) and Glnn′ =

∫∞
0
dr unl(

dun′l+1

dr + (l + 1)
un′l+1

r ).

Inserting this into (119), we obtain the final expression

< Sxpy − Sypx > = −1

2
Glnn′Σm,m′(al+1,−m′ε

′
√

(1 + ∆′)(1−∆)δm′0δm1

+ al+1,m′ε
√

(1 + ∆)(1−∆′)δm′1δm0).
(121)

9.3.2 z matrix elements

Here we will derive an expression for the z matrix elements which appear in
the interaction Hamiltonian in the length gauge (76). To do so, we start by
expanding the coupled basis in the uncoupled one yet again. Upon doing so,
since z does not act on spin degrees of freedom, we get that

< z > = Σm,m′(< l + 1m′
1

2

1

2
|j′ 1

2
>< lm

1

2

1

2
|j 1

2
>

+ < l + 1m′
1

2
− 1

2
|j′ 1

2
>< lm

1

2
− 1

2
|j 1

2
>

< nlm|z|n′l + 1m′ > .

(122)

Again, we will make use of the fact that the Clebsch-Gordan coefficients vanish
unless mj = m+ms. In addition, we look up the expressions for the resulting
Clebsch-Gordan coefficients. Performing the sum over m′, we are left with the
following expression

< z >=
1

2
Σm(δm0εε

′
√

(1 + ∆)(1 + ∆′) < nl0|z|n′l + 10 >

+ δm1

√
(1−∆)(1−∆′) < nl|z|n′l + 11| > .

(123)

As a last step, we make use of the formula

< nlm|z|n′l + 1m′ >= bl′,mδmm′ , (124)

where bl′,m =
√

l2−m2

(2l−1)(2l+1) . Inserting this, we end up with the final expression

given by

< z >=
1

2
< nl|r|n′l + 1 > Σm

(δm0bl+1,0εε
′
√

(1 + ∆)(1 + ∆′)

+ δm1bl+1,1

√
(1−∆)(1−∆′).

(125)
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9.3.3 p̂z matrix elements

Here we will derive an expression for the matrix elements of the operator pz that
appears in the interaction Hamiltonian in the velocity gauge (73). We start again
by expanding the coupled basis in the uncoupled one. Upon doing so, the sum
over the spin quantum numbers ms and m′s are performed. Since pz does not
act on the spin degrees of freedom, this becomes trivial. Further, we again make
use of the fact that the Clebsch-Gordan coefficients vanish unless mj = m+ms.
Inserting the explicit expressions for the Clebsch-Gordan coefficients that we
may look up, we may as a last step make use of the formula [3]

< nlm|pz|n′l + 1m′ >= −ibl+1,m′δm,m′G
l
n′n, (126)

where Gln′n =
∫∞

0
dr unl(

dun′l+1

dr + (l+ 1)
un′l+1

r ). We then end up with our final
expression given by

< pz >=− i

2
Gln′nΣm

(δm0bl+1,0εε
′
√

(1 + ∆)(1 + ∆′)

+ δm1bl+1,1

√
(1−∆)(1−∆′).

(127)
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