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From observed laterality to latent hemispheric
differences: Revisiting the inference problem
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aCenter for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology,
University of Oslo, Oslo, Norway; bDepartment of Biological and Medical Psychology,
University of Bergen, Bergen, Norway

ABSTRACT
Researchers interested in hemispheric dominance frequently aim to infer latent
functional differences between the hemispheres from observed lateral
behavioural or brain-activation differences. To be valid, these inferences may
not only rely on the observed laterality measures but also need to account for
the antecedent probabilities of the studied latent classes. This fact is
frequently ignored in the literature, leading to misclassifications especially
when considering low probability classes as, for example, “atypical” right
hemispheric language dominance. In the present paper, we revisit this
inference problem (a) by outlining a general Bayesian framework for the
inferential process and (b) by exemplarily applying this framework on the
inference of hemispheric dominance for speech processing from dichotic-
listening laterality scores. Utilizing large-scale empirical data sets as well as
simulation studies, we show that valid inferences also regarding low probable
latent classes can be drawn applying the present framework, although within
certain boundaries. We further illustrate that repeated laterality measures of
the same person may be used to improve the classification outcome. The
article additionally provides R package and Shiny app implementations of the
suggested Bayesian framework, which allow to explore the boundaries of
valid inference for the present and other examples.

ARTICLE HISTORY Received 29 February 2020; Accepted 28 April 2020
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Introduction

Functional differences between the cerebral hemispheres represent a funda-
mental organizational principle of the human brain but differences in which
hemisphere is dominant for a specific function exist (Ocklenburg & Güntür-
kün, 2018). For example, while in by far most individuals the left hemisphere
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is dominant for productive language abilities, “atypical” right hemispheric
dominance can be found in a significant proportion of the population
(Carey & Johnstone, 2014). Research on hemispheric differences thus often
aims to determine which hemisphere is dominant for a given task, and
measures of lateral difference in performance (e.g., in task measuring percep-
tual laterality) or in brain activation (e.g., in a task-based functional MRI task)
are used to infer latent (unobserved) hemispheric differences.

Unfortunately, as first pointed out by Satz (1977), this inferential step from
laterality measure to underlying hemispheric differences is far from straight-
forward. In particular when the antecedent probabilities of an individual
being left- or right-dominant differ substantially, as for example is the case
for language processing (Carey & Johnstone, 2014), the validity for inferring
membership of the less likely class is severely threatened. Satz (1977) illus-
trated his point by applying Bayes’ theorem on this inference problem
using verbal dichotic listening as indicator of language dominance. Studies
had established that individuals which are left-dominant for speech and
language processing when tested with the sodium-amytal (Wada-) test,
more likely show a right-ear advantage for verbal material in dichotic listening
(i.e., reporting more stimuli from the right than the left ear), while right-domi-
nant individuals usually show a left-ear advantage (e.g., Kimura, 1961). Based
on this observation, Satz (1977) went on to determine the likelihood (con-
ditional probability) that an individual is left or right dominant given an
empirical right- or left-ear advantage, while considering the antecedent prob-
abilities of being left/right dominant and having a left/right ear advantage,
respectively. Satz (1977) referring to the then available data from Wada-exam-
inations (Branch, Milner, & Rasmussen, 1964), that the antecedent probability
of a right-handed individual being left vs. right dominant for language proces-
sing is .95 vs .05. Furthermore, based on own data, he estimated the pro-
portion of individuals showing a right-ear advantage in dichotic-listening
task to be .70. Applying Bayes’ theorem using these prior probabilities, he
showed that getting a right-ear advantage in dichotic listening slightly
increased the likelihood of being left dominant from .95 to .97. However,
getting a left-ear advantage does not increase the probability of being “atypi-
cal” right dominant to more than .10. Thus, even when showing a left-ear
advantage, an individual is still far more likely left (.90) than right dominant
for language. Faced with these sobering figures, Satz (1977) formulated his
article as a warning to fellow laterality researchers to refrain from such infer-
ences and concluded that any attempt of inductive inference based on later-
ality measures to be “both unwarranted and reckless” (p. 208).

In the present article, we revisit the inference problem (a) by offering a stat-
istical framework for inferences from laterality measures to latent differences,
and (b) by exploring the boundaries within which valid inferences can be
drawn using dichotic listening as an example laterality paradigm. To this
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end, we extend Satz’s Bayesian approach in the following two points. Firstly,
Satz (1977) based his classification into left- and right-dominant on a binary
classification of laterality into left and right preferences based on the sign
of the obtained laterality index, while ignoring the actual value or magnitude
of the laterality index. We here argue that the magnitude of the laterality
index provides additional information about the confidence of the classifi-
cation. Following the classical test theory, we assume that each individual
tested has a true perceptual laterality index and that the sign of this true later-
ality index correctly indicates the hemisphere dominant for the tested func-
tion. As the paradigms assessing laterality are naturally not perfectly reliable
(see Voyer, 1998 for behavioural paradigms), any empirical measure also con-
tains measurement error resulting in a deviation of the empirical laterality
index from the true laterality index. This error can only lead to an inductive
misclassification when the observed laterality index deviates by sign from
the true value. However, as the measurement error can be expected to be
more or less normally distributed around the true laterality index, it can be
argued that a sign deviation gets increasingly less likely the more the
observed laterality is in magnitude from zero. Thus, we here extend Bayes’
theorem to additionally consider the magnitude of the laterality index
when calculating the conditional probabilities. Secondly, Satz calculated the
probability considering a single empirical laterality measure. Contrasting
this, we here extend the approach to utilize repeated assessments of empirical
laterality indices in the same person. That is, the suggested procedure calcu-
lates the posterior probabilities of being left- or right-dominant, respectively,
for a given series of empirical laterality indices, while considering the reliability
of repeated measurements.

Following Satz, we illustrate the above for the example of using percep-
tual laterality assessed in a verbal dichotic-listening paradigm to infer
underlying hemispheric dominance in speech and language processing.
This choice was made mainly for practical reasons, as here the relevant
probabilities are best documented in the literature. However, we would
like to stretch that the same inference problem applies whenever research-
ers follow the aim to infer underlying hemispheric differences from
observed measures of laterality, including laterality indices obtained from
behavioural tasks, electrophysiological data, or any form of functional neu-
roimaging on an individual level. Also, Satz (1977) based his calculations on
the then available antecedent probabilities. More than 40 years later, we
have the opportunity to update probabilities of language dominance refer-
ring to meta-analytic evidence from both Wada test and functional imaging
studies (Carey & Johnstone, 2014) promising a more reliable data basis.
Finally, the article provides the classification algorithms in form of an R
package (R Core Team, 2019) and a Shiny application (Chang, Cheng,
Allaire, Xie, & McPherson, 2018) to allow for an easy implementation and
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adjustment of the here developed Bayesian framework for inference in
laterality research.

A modified Bayesian model for the relation of observed
laterality and latent hemispheric dominance

The goal of the following derivation is to provide a formula that allows esti-
mating the probability that an individual has left or non-left hemispheric dom-
inance in a cognitive function (e.g., speech and language processing) given
one or more measurements of laterality in a given task (e.g., dichotic
listening).

To this end, let the parameter a [ {− 1, 1} denote underlying hemispheric
dominance (brain asymmetry) as dichotomous class, where a = −1 indicates
dominance of one hemisphere and a = 1 indicates dominance of the contral-
ateral hemisphere. For simplicity of discussion, we hereafter will use “left dom-
inance” vs. “non-left dominance” to refer to these two classes. For derivation
of formulas for a trichotomous case (i.e., including a left, bilateral, and right
dominant group) please refer to Appendix 2. We here focus on the dichoto-
mous case as for the below outlined example relevant parameters were
missing to utilize a three class model.

Regarding the observed laterality, we assume (for a given individual) that
we have n observations of a continuous measure of laterality
xi [ [a, b] (i = 1, , n), e.g., as expressed by laterality index (cf. Bryden &
Sprott, 1981; Marshall, Caplan, & Holmes, 1975; Seghier, 2008). We assume a
= −100 and b = 100 as range for this measurement. A value of xi close to a
strongly suggests left preference, while xi close to b strongly suggests non-
left preference. Let x = (x1, . . . , xn)

′ denote a vector of laterality measure-
ments for an individual, obtained with a given experimental paradigm. An
extension to multiple paradigms is outlined in Appendix 3. We are interested
in the probability that this individual has hemispheric dominance α, given the
laterality measures x. Using Bayes’ theorem this can be written as

p(a | x) = p(x |a)p(a)
p(x)

, (1)

where p(a | x) is the probability of hemispheric dominance a for an individual
in the population with laterality measures x, p(x |a) is the probability of
obtaining laterality measures x for an individual in the population with hemi-
spheric dominance a, p(a) is the prevalence of hemispheric dominance a in
the population, and p(x) is the marginal probability of having laterality
measures x for an individual in the population.

The term p(x) in Equation (1) is not a function of a. It thus only contributes
to the normalizing constant of this distribution. This means we can neglect it,
and obtain the unnormalized posterior (Gelman, Carlin, Stern, & Rubin, 2004,
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Sec. 1.3)

p(a | x)/ p(x |a)p(a), (2)

where ∝ means “is proportional to.” Normalization ensures that the sum over
all probabilities equals one, and requires dividing the term on the right-hand
side of Equation (2) by the sum over all possible values of a, obtaining the nor-
malized posterior

p(a | x) = p(x |a)p(a)
p(x |a = −1)p(a = −1)+ p(x |a = 1)p(a = 1)

= kp(x |a)p(a),

where

k = 1
p(x |a = −1)p(a = −1)+ p(x |a = 1)p(a = 1))

is the normalizing constant. However, we here follow convention and work
with unnormalized distributions, assuming proper normalization is performed
in the computational implementation.

Hemispheric dominance a is our target, and by defining the distributions
p(x |a) and p(a), we can use (2) to obtain the posterior probability distribution
of α. If we, based on prior knowledge, are able to create models for the prob-
ability p(x |a) of obtaining laterality measures x given hemispheric domi-
nance, and the probability p(a) of having a given hemispheric dominance,
Equation (2) gives us a way of estimating hemispheric dominance a con-
ditional on x.

Models for observed laterality and hemispheric dominance

Given that a single laterality measurement is a number in [a, b], we model it
with a truncated normal distribution with parameters depending on hemi-
spheric dominance. For a vector x of n observations of a given individual,
we hence use the model

p(x |a; m−1, m1, S, a, b) = Nn(m−1, S, a, b) if a = −1
Nn(m1, S, a, b) if a = 1,

{
(3)

where Nn(mi , S, a, b) denotes an n-dimensional multivariate normal distri-
bution with mean mi in all n dimensions and covariance matrix Σ, truncated
at lower limit a, and upper limit b. The parameters of this model are the
mean observed laterality for subjects with left hemispheric dominance
(m−1) and right hemispheric dominance (m1), which are assumed equal
across repeated measurements on the same individual, and the covariance
matrix Σ. In the single measurement case (n = 1), Σ is a single number s2,
equal to the variance between single measurements on subjects with a
given hemispheric dominance. In the multiple measurements case, assuming
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that repeated measurements on the same individual have correlation coeffi-
cient r, we have

S = s2

1 r · · · r

r 1 r ..
.

..

.
r . .

.
r

r · · · r 1

⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠. (4)

The probability of hemispheric dominance is modelled with a binomial
distribution with probability p−1 of left hemispheric dominance and
p1 = 1− p−1 of non-left hemispheric dominance, p(a) = pa.

Numerical illustrations for laterality measures obtained with
dichotic listening

Parameter estimates

As derived above, the inference from observed laterality to latent hemispheric
dominance requires information about the distribution of observed laterality
in the hemispheric dominance groups. We here refer to the article by Van der
Haegen, Westerhausen, Hugdahl, and Brysbaert (2013) which provides dicho-
tic listening laterality measures and standard deviations for participants which
were grouped as left and right dominant based on measured brain activation
in an fMRI picture-naming task. For the group of right-handed individuals with
left-hemispheric dominance, the reported estimate of mean observed lateral-
ity was m−1 = 12. As the study does not include a group of right-handed indi-
viduals with right dominance, we here use m1 = −24 which was reported for
right dominant left-handed participants as approximation of the mean. In
both cases we used the standard deviation was s = 17 which was reported
for left hemispheric dominant right-handers.1

The correlation r used in the covariance matrix in Equation (4) for the mul-
tiple measurements setting can be estimated for any given dataset by com-
puting the within-subject standard deviation sw and then let
r = s2/(s2

w + s2), where σ is the standard deviation between single measure-
ments on individuals with a given hemispheric dominance, defined in the pre-
vious paragraph. We also require the antecedent probabilities of being left
and non-left dominant. Regarding left dominance, these were taken from a
recent meta-analysis of studies using the Sodium Amytal (Wada) procedure
to classify hemispheric dominance (Carey & Johnstone, 2014). Based on

1Of note, we here use observed laterality (in brain activation) as “ground truth” for the classification
although the same inference problem would apply if the classification was based on fMRI data.
However, the study only included participants with strong activation asymmetry, which should lead
to valid classifications. In any case, for the present example, the reported data provides the best available
estimate of the here required distribution.

LATERALITY: ASYMMETRIES OF BRAIN, BEHAVIOUR, AND COGNITION 565



their findings, for right-handed individuals we here estimate the probability to
be p−1 = .87. Correspondingly, the probability of not being left dominant was
assumed to be p1 = 1− p−1 = .13.

Probability of left or non-left dominance as a function of single
measure of perceptual laterality

Figure 1 shows the probability of being left or non-left hemispheric dominant
for language as a function of the magnitude of a single measure of perceptual
laterality for right-handers. The horisontal gray line shows an 80% confidence
threshold which can be used for classification. Given the parameter estimates
assumed here, the following statistical statements can be read out of the
numbers underlying Figure 1:

. The probability of being left dominant exceeds 80% if laterality index is
above −10.

. The probability of being non-left dominant exceeds 80% if the laterality
index is below −33.

These thresholds illustrate again that inferences about the underlying hemi-
spheric dominance depend strongly on the antecedent probabilities of being
left or non-left dominant. Remarkably, a laterality index of larger than −10 is
sufficient for a classification as left dominant. That is, even yielding a small
left-ear advantage does result in a classification as left dominant, as the left
dominance has a high antecedent probability. Of note, the above thresholds
deviate from “0,” suggesting that even when it is the aim to confirm left hemi-
spheric dominance (e.g., as inclusion criterion for participants in a study), using
only the direction (sign) of the ear preference is associated with some uncer-
tainty for laterality scores below these thresholds. That also means, in basing

−33 −10

0.00

0.25

0.50

0.75

1.00

−100 −50 0 50 100
Perceptual laterality measure

P
ro

ba
bi

lit
y

Left dominant

Non−left dominant

Figure 1. Probability of being left or non-left hemispheric dominant given a single
measurement of perceptual laterality. [To view this figure in color, please see the
online version of this journal.]
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his calculations on binary classification into left- and right-ear advantage groups
at 0, Satz’s sobering probability estimates were actually too lenient.

Empirical data example

Finally, to evaluate the practicality of the above threshold, we classified a
sample of N = 2, 855 right-handed individuals based on the above thresholds.
The sample contains dichotic-listening data collected with the same paradigm
as used by Van der Haegen et al. (2013) and included data either acquired in
laboratory conditions or using the iDichotic iPhone app (Bless et al., 2015;
Hugdahl et al., 2009). Of the total sample, 2,517 (88.2%) individuals were
classified as left dominant using the Bayesian thresholds, 105 (3.7%) were
classified as non-left dominant, when requiring 80% or higher probability for
classification. The remaining 233 (8.2%) individuals could not be conclusively
classified. Thus, the percentage classified as left dominant matched the 87%
expected from the Wada test (e.g., Carey & Johnstone, 2014). In this respect,
the present approach promises better classification results than just using “0”
as cut-off, which only would suggest 72.7% left dominant individuals in the
sample. Table 1 compares the classifications based on a Bayesian model with
80% confidence threshold to those based on a cut-off at zero. Of note, all sub-
jects either classified as left dominant or unclassified by the classical model, are
classified as left dominant by the Bayesian model. We also emphasize that an
80% classification threshold implies that among classified individuals, the prob-
ability of belonging to the given class varies between 80% and 100%. The
average probability of left dominance among individual classified as left domi-
nant was 97.4%, implying an expected proportion of classification errors equal
to (100− 97.4)% = 2.6%. For right dominance the average probability was
93.1%, with an expected proportion of classification errors equal to
(100− 93.1)% = 6.9%. Figure 2 shows boxplots of the distribution of dichotic
listening scores among subjects classified to each group.

Effect of multiple measurements

In this section, we aim to demonstrate the effect of utilizing multiple laterality
measurements obtained with the same paradigm for classification in three

Table 1. Comparison between classifical classification with a cut-off at zero and
classification based on the Bayesian model developed in this paper.

Classical classification

Bayesian classification Left Unclassified Right

Left 2,075 196 246
Unclassified 0 0 233
Right 0 0 105
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steps. Firstly, we illustrate the impact of multiple testing on the classification
for a single individual. Secondly, we apply the classification to available mul-
tiple-testing datasets. Finally, we conduct a simulation experiment to evaluate
how many measures of laterality are required for an optimal classification
outcome given the present parameters.

The impact of multiple laterality measures
Figure 3 illustrates the impact of a second measurement on the probability
curve shown in Figure 1. That is, we assume after the first laterality
measure, a second measurement has been obtained, with value −60, −20,
0, 20, or 60, given by the colour legend. The coloured curves show the final
probabilities of left dominance as a function of this second measurement,
while the dashed black line shows the corresponding curve in the case of a
single measurement (between −100 and 100; i.e., it is equivalent to the
curve in Figure 1). The graph illustrates that a second measurements shifts
the original probability along the y-axis. A positive value in the second
measurement increases the probability of left hemispheric dominance (blue
and purple curves). Similarly, a negative value in the second measurement
decreases the probability of left hemispheric dominance (red and yellow
curves). That also means that if the values of the two obtained measurements
are close, this typically leads to higher statistical confidence compared to a
single measurement. For example, if the first measurement of a right-
handed subject is 10, and the second measurement is 20, the probability of
left dominance is closer to 1.0 than if only a single measurement of value
10 had been obtained, as can be seen by the blue curve being above the
dashed black curve.
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50
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Left Unclassified Right
Bayesian classification

D
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g 
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Figure 2. The boxplots show the distribution of dichotic listening scores for left domi-
nant, unclassified, and right dominant subjects, according to the Bayesian classification,
for the example in Section “Empirical data example”. [To view this figure in color, please
see the online version of this journal.]
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To further illustrate the beneficial effect, Table 2 illustrates the impact of
obtaining multiple times the same laterality measurement. In the table, the
probability of left dominance after obtaining one, two, three, or four measure-
ments of identical magnitude is shown. For laterality indices well below zero, a
repetition of the same value decreases the probability of being left dominant.
For positive laterality indices, the repetition increases the probability of being
left dominant. For repeated measurements close to zero, the probability of left
brain dominance will increase, as seen by the repeated measures at −5
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Figure 3. If a first measurement with value given by the x-axis has been obtained for a
right-handed subject, the curves show the value of the final probability of left hemi-
spheric dominance after a second measurement has been obtained with value given
by the colour legend. The dashed black line shows the same probabilities in the case
where only a single measurement has been obtained. [To view this figure in color,
please see the online version of this journal.]

Table 2. The table shows the probability of left brain asymmetry after obtaining one,
two, three, or four measurements of the same magnitude for a right-handed subject.

Measurements

Perceptual laterality measure 1 2 3 4

−40.00 0.09 0.00 0.00 0.00
−30.00 0.25 0.02 0.00 0.00
−20.00 0.54 0.17 0.03 0.01
−10.00 0.80 0.71 0.60 0.48
−5.00 0.88 0.90 0.91 0.92
0.00 0.93 0.97 0.98 0.99
5.00 0.96 0.99 1.00 1.00
10.00 0.98 1.00 1.00 1.00
20.00 0.99 1.00 1.00 1.00
30.00 1.00 1.00 1.00 1.00
40.00 1.00 1.00 1.00 1.00
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yielding a slowly increasing probability of left dominance. This is due to the
mean dichotic listening score assumed to be 12 for participants with left dom-
inance being closer to−5 than the corresponding mean value−24 for partici-
pants with non-left hemispheric dominance Together with Figure 3, this
shows how obtaining multiple measurements that tend in the same direction
increases the confidence level of classification. Conversely, when multiple
measurements tend in opposite directions, the probability of left hemispheric
tends toward .5.

Empirical data example
To illustrate the effect of multiple testing on empirical data, we reanalysed
data from two longitudinal studies. The Karlsson, Johnstone, and Carey
(2019) dataset consisted of 871 participants (485 right-handed, 386 left-
handed) for which three perceptual laterality measures were available per par-
ticipant. The Bless et al. (2013) dataset included data from 33 right-handed
participants, but with four measurements available per person. In both
studies, the data was collected using the very same consonant-vowel dicho-
tic-listening paradigm as in the above examples so that the used parameters
should also apply here.

Regarding the Karlsson et al. (2019) sample, for the classification of the
right-handed subsample, we used the same parameters as outlined in
Section “Parameter estimates” and a within-subject standard deviation of
14.0 for the retest data (estimated from the empirical data), yielding
r = 172/(142 + 172) = 0.60. Table 3, left side, provides an overview of the
classification results as function of the number of measurements. The follow-
ing trends get obvious. Firstly, using the first laterality measure only the per-
centages classified into left or non-left dominance are comparable to the
example discussed above (Section “Empirical data example”). That is, 88.9%
were classified as left dominant and 3.5% as non-left dominant. Secondly,
using three as opposed to one laterality measure reduces the undecided
cases by about 50%, increasing both the percentage classified as left and
non-left dominant, respectively.

For classification of the left-handed individuals the model parameters had
to be adjusted and we used the corresponding estimates reported by Van der
Haegen et al. (2013). That is, m1 = 10 for left hemispheric dominance and

Table 3. The table shows how the number of classification with 80% probability or
higher depends on the number of measurements for left-handers and right-handers.

Right-handers Left-handers

n Left Non-left Undecided Left Non-left Undecided

1 431 (88.9%) 17 (3.5%) 37 (7.6%) 267 (69.2%) 15 (3.9%) 104 (26.9%)
2 440 (90.7%) 21 (4.3%) 24 (4.9%) 287 (74.4%) 19 (4.9%) 80 (20.7%)
3 443 (91.3%) 23 (4.7%) 19 (3.9%) 287 (74.4%) 20 (5.2%) 79 (20.5%)

570 Ø. SØRENSEN AND R. WESTERHAUSEN



m−1 = 24 for right hemispheric dominance. Standard deviations for left and
non-left dominant left-handed were 22.8 (25 samples) and 28.0 (16
samples), respectively. Hence we use the pooled variance 24.9 as common
standard deviation. The antecedent probability of being left-dominant as
left handed was set to p−1 = .65 following Carey and Johnstone (2014).
The within-subject standard deviation was estimated to 13.8, yielding
r = 24.92/(13.82 + 24.92) = 0.76. Table 3, right side, provides an overview
of the classification results as for the left-handed sample from Karlsson
et al. (2019). Again, we see that the number of individuals that cannot be
classified conclusively, decreases with the number of measurements, drop-
ping from 26.9% after the first to 20.5% after the third measure. As a result,
both the number of individuals classified as left and non-left dominant
increases up to 74.4% and 5.2%, respectively.

To illustrate the effect of using four measures, we classified the data from
Bless et al. (2013). As all participants were right-handed, we here used the
model parameters outlined in Section “Parameter estimates”. Within-subject
standard deviation was 20.3, yielding r = 0.41. As can be seen in Table 4 the
percentage of left dominant classified individual varies between 84.8% for
one laterality index, 90.9% for two laterality indices, 87.9% for three laterality
indices, and back to 84.8% for four laterality indices. The number of subjects
classified as right dominant, on the other hand, increases from 3% after a
single measure to 9.1% after four measures. At the same time the number
that cannot be classified is reduced from 12.1% to 6.1%. The step-wise pro-
gress of the classification is illustrated in Figure 4.

Simulation experiment
In order to more quantitatively examine the benefit of additional measure-
ments, a simulation experiment was conducted in which we simulated the
measurement process. For each combination of hemispheric dominance
(left/non-left) and handedness (left/right), a sample with 10 repeated
measurements of 2,000 subjects was simulated. First, one “true laterality”
for each simulated subject was sampled around the mean obtained from
Van der Haegen et al. (2013). The true laterality values were truncated such
that subjects with left hemispheric dominance had values in [0, 100] and sub-
jects with right hemispheric dominance had values in [− 100, 0]. This

Table 4. The table shows how the number of classification with 95% probability or
higher depends on the number of measurements for the Bless App data.
n Left Non-left Undecided

1 28 (84.8%) 1 (3%) 4 (12.1%)
2 30 (90.9%) 1 (3%) 2 (6.1%)
3 29 (87.9%) 2 (6.1%) 2 (6.1%)
4 28 (84.8%) 3 (9.1%) 2 (6.1%)
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restriction is in line with Kimura’s structural model of dichotic listening
(Kimura, 1967), or other accepted models explaining the relationship
between perceptual preference in dichotic listening and hemispheric domi-
nance (for review see Hiscock & Kinsbourne, 2011). Next, the actual measure-
ments for each subject were randomly sampled around the subject’s true
laterality values. In the data from Bless et al. (2013) used in Section “Empirical
data example” the within-subject standard deviation was 20.3, and using this
as a guideline, we set the standard deviation of the repeated measurements
of each individual to 20.

Each subject in each sample was classified 10 times according to the
methods developed in this paper, first time using only one measurement,
the second time using two measurements, until the 10th time in which all
measurements were used. For each combination of hemispheric dominance
and handedness, the correlation r used in the covariance matrix in Equation
(4) was estimated from the sampled data.

Figure 5 shows the number of correctly and incorrectly classified subjects
at an 80% threshold, as well as the number of undecided subjects, as a func-
tion of the number of measurements. For left dominant right-handed partici-
pants, the proportion of correctly classified subjects gets very close to 100% as
the number of measurements increases. For left dominant left-handers, the
proportion of correctly classified subjects increases quickly from 71% after a
single measurement to 87% after 4 measurements and 90% after 8 measure-
ments. The number of not classified individuals accordingly decreases.
However, the adding of additional laterality measures revealed diminishing
returns. That is, the gain in correct classifications and reduction of unclassified

Figure 4. How an individual subject’s probability of being left dominant (black lines)
changes by successively entering 1, 2, 3, and 4 laterality measures into the prediction.
[To view this figure in color, please see the online version of this journal.]
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individuals that is achieved by an additional measurement is largest when the
number of measurements is low.

Figure 5, bottom, also illustrates once more that correctly classifying sub-
jects with non-left hemispheric dominance is a much harder task. For non-
left dominant right-handers, the proportion of correctly classified subjects
starts at 42% after a single measurement and reaches 67% after 10
measurements, while for left-handed individuals, the number starts at
32% after a single measurement, and increases to 48% after 10 measure-
ments. The number of non-left dominant subjects that are incorrectly
classified, however, does decrease rapidly with the number of measure-
ments: for right-handers it is still 12% after 10 measurements, while for
left-handers the proportion gets down to 1.8%. Hence, while the majority
of subjects with non-left hemispheric dominance end up as correctly
classified, a large proportion are still undecided after obtaining 10
measurements.

The chosen probability threshold for classification, which was set to 80%
here, determines the minimum classification probability according to the
Bayesian model for which subjects are given a classification. Using the simu-
lation results, we can investigate how the classification depends on the

Figure 5. Results of the simulation experiment described in Section “Simulation exper-
iment.” The figures show the proportion of subjects classified correctly, incorrectly, or
undecided at an 80% threshold. Shaded regions represent 95% confidence bands. [To
view this figure in color, please see the online version of this journal.]
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chosen threshold. Figure 6 shows this for right-handers, after 1, 2, or 4
measurements. For example, for left dominant right-handers using one
measurement, setting the threshold to 60% leads to 3.2% incorrectly classified
and 93.6% correctly classified subjects, setting it to 80% leads to 1.4% incor-
rectly classified and 89.4% correctly classified, while setting it to 95% leads to
0.2% incorrectly classified and 76.1% correctly classified. These numbers illus-
trate the trade-off between ensuring a sufficiently large sample with a given
hemispheric dominance (low threshold) and having a sufficiently small pro-
portion of incorrectly classified subjects (high threshold).

For non-left dominant right-handers the corresponding numbers are 36.2%
incorrectly classified and 53.6% correctly classified subjects when using a 60%
threshold, 26.2% incorrectly classified and 41.5% correctly classified subjects
when using an 80% threshold, and 12.2% incorrectly classified and 23.8% cor-
rectly classified when using a 95% threshold.

Figure 6. Proportion correctly classified, incorrectly classified and undecided subjects as
a function of the chosen probability threshold for classification. [To view this figure in
color, please see the online version of this journal.]
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Discussion

Satz (1977) demonstrated that using the sign of observed laterality scores to
infer underlying hemispheric dominance leads to invalid conclusions in con-
ditions in which the antecedent probabilities of hemispheric dominance are
strongly skewed to one side. In particular, his example shows that a classifi-
cation of an individual into the low probability atypical right hemisphere dom-
inance group is not valid. In the present work, we revisited this inference
problem by theoretically extending Satz’ Bayesian approach in two ways:
we incorporated (a) the magnitude of the observed laterality index and (b)
the possibility of multiple measures of laterality in the classification model.
Applying our extended Bayesian classification on the case of using dichotic
listening data, we made a couple of observations, which might be considered
useful for future studies that attempt to draw conclusions about latent hemi-
spheric differences.

Firstly, Satz neglected that the magnitude of the laterality index provides
additional information about the security of the statistical inference. As out-
lined in the introduction, a larger as compared to smaller (absolute) laterality
score, makes it less likely that the direction (sign) of the laterality score is due
to measurement error. Incorporating the magnitude of the laterality index, we
were able to determine statistical boundaries in which confident inferences
about latent hemispheric differences may be drawn. Importantly, in the
present examples these boundary values deviate from zero, suggesting that
the common praxis of using a laterality index of zero as cut-off to split
samples into hemispheric dominance subgroups or to exclude individuals
of unwanted lateralization is questionable. For example, as the boundary
laterality above which an individual can be classified as left dominant for
speech processing is actually below zero (see Figure 1), using zero as
threshold would lead to a heterogeneous “below-zero group” which includes
both left and non-left dominant individuals. At the same time, the “above-
zero” group will be homogenous for speech dominance but exclude a sub-
stantial proportion of the sample. Given the latter observation, it appears
little surprising that dichotic-listening studies using zero as threshold, typically
underestimate the percentage of individuals with left hemispheric speech
processing dominance by about 15 to 20% compared to direct measures of
lateralization (cf. Bryden, 1988; Westerhausen & Kompus, 2018). Using the
here determined Bayesian laterality boundaries for classification this gap dis-
appears, at least when using an 80% confidence threshold. That is, for the two
large data sets of right-handed individuals examined here we yield estimates
between 88.2% and 88.9% of left hemispheric dominance (using one laterality
measure) which are comparable with estimates obtain from Wada test or
other more direct measures of hemispheric dominance (Carey & Johnstone,
2014). Likewise, in the left-handed sample, the percentage of left dominance
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was estimated to be 69.2% so that it was slightly elevated compared to the
expected 65%. However, it has to be noted that these percentage estimates
depend on the confidence threshold applied and a more conservative
threshold (i.e., using 95% instead of 80%) will obviously lead to reduction in
participants classified as left dominant (or classified at all; see Figure 6). Never-
theless, whenever the aim is to confirm or secure that a given participant is
left-dominant for language processing, the here suggested Bayesian laterality
boundaries might be seen as an improvement compared to the use of zero as
a cut-off value. At the same time, rather than classifying individuals based on a
cut-off value, the present model might also be used to determine the likeli-
hood of being left or non-left dominant on an individual level. These estimates
may well be used as weights in analyses comparing groups.

We also show that the suggested laterality thresholds for non-right hemi-
spheric dominance yield conservative proportion estimates and prevent a
conclusive classification of a significant amount of individuals. At the same
time, this outcome already represents a substantial improvement compared
to the analysis by Satz (1977), as his implicit conclusion was that atypical dom-
inance cannot be inferred from individual laterality measures. According to
Satz, having a left-ear advantage did not increase the likelihood of being
right dominant above 10%. Here, we can classify between 5% and 9% of
the right-handed and ≈5% in left-handed individuals as non-left dominant
with a confidence of at least 80%. Nevertheless, these estimates are well
below the assumed 12% and 25%, respectively (Carey & Johnstone, 2014),
and the classified individuals, showing comparatively strong laterality
indices, likely represent and extreme group of the population. Thus, the
findings illustrate again that inferring membership of the less likely class is
statistically more challenging, when the antecedent probabilities are strongly
skewed.

The second theoretical extension to Satz’s approach was the inclusion of
multiple laterality measures in the Bayesian classification. As expected, the
inclusion of multiple measures step-wise decreases the amount of individuals
that could not be conclusively classified by the empirical data. However, as
can be seen already after three measures in Table 3, adding additional
measurements appears to yield diminishing returns for the classification
rate. That is, the classification rate increase from the second to the third later-
ality measure is smaller than the increase from the first to the secondmeasure.
This observation was confirmed in the simulation experiment indicating that
the major improvement in classification rates is attained within the first three
laterality measures. Beyond four or five measures, the increase in classification
rates appear negligible. However, the simulation also indicates that the
classification of the low likelihood class (i.e., non-left dominance) benefits
most from including additional measures, as the initial increase appears
steeper than in the high-likelihood class. The proportion of correct
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classifications as right-dominant reaches an asymptote at around .70 and .50
for right- and left-handed simulation sample, respectively, again illustrating
the difficulty of classifying the groups of low antecedent probability. Never-
theless, at least considering the present data, using two or three laterality
measures for the classification appears to improve the classification rates
compared to using a single laterality measure.

In summary, one might criticise that the here introduced framework for
Bayesian inference does not solve the inference problem. While this is certainly
true, we here argue that the present approach substantially improves the
classification outcome compared with the standards currently applied in litera-
ture. Importantly, however, it is not only the statistical model but also the
inserted parameters that determine the quality of the classification outcome.
In the present case—inferring latent speech dominance from dichotic-listening
laterality measures—the assumed distributions of laterality measures were
characterized by comparatively large standard deviations, resulting in a sub-
stantial overlap of the distribution of left and non-left dominant individuals.
This might well reflect true interindividual difference in the population, but sub-
stantial intra-individual difference in the repeated-measure examples suggest
that at least some of the variance can be attributed to low reliability of the
used dichotic-listening paradigm (for discussion see also Westerhausen,
2019). Thus, one way of further improving the classification certainly is to
improve the available paradigms and obtain a better data basis. If we, as later-
ality researchers, are interested in drawing valid conclusions about latent hemi-
spheric dominance from observed laterality differences, it is crucial to establish
a good knowledge about the relationship of these variables. This applies for
behavioural measures of laterality as much as electrophysiological, near-infra-
red spectroscopy, functional MRI or any other laterality measures.

Finally, while we defined perceptual laterality as a continuous variable, we
followed Satz (1977) approach of classifying the underlying hemispheric dom-
inance into two groups by following the distinction of left or non-left domi-
nant individuals used by Carey and Johnstone (2014). This might be seen at
odds with a series of Wada test studies which classify hemispheric dominance
into three classes by also allowing for a “bilateral” group (Benbadis, Dinner,
Chelune, Piedmonte, & Lüders, 1995; Carey & Johnstone, 2014), i.e., individuals
which show speech arrest neither after left nor right hemisphere amytal per-
fusion, or who showed some residual speech production after both left and
right amytal perfusion. We here decided to keep Satz’s binary classification
because reliable antecedent probabilities for the bilateral group are missing.
Snyder, Novelly, and Julius (1990) in their review found large variability in
the prevalence of the bilateral group which ranged from 0% to 60% and
was attributed to disagreement in the defining criteria and in the assessment
procedures during testing. As consequence, also the relationship between
bilateral speech processing and performance in laterality tests is not clear,
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and necessary antecedent probabilities are missing. However, should this data
be available in the future, Appendix 2 provides formulas for trichotomous
classification, which are also implemented in the accompanying R package
and Shiny app.

In conclusion, we here take a more positive stance than Paul Satz in his orig-
inal publication: inductive inference from laterality measures to underlying
hemispheric dominance is not “unwarranted and reckless” (Satz, 1977,
p. 208). If the antecedent probabilities are considered appropriately, for
example, within the here presented extended Bayesian framework model,
valid inferences are possible also regarding low probable hemispheric domi-
nance classes. The here provided R (R Core Team, 2019) package
(Supplementary Material) and Shiny (Chang et al., 2018) app (Supplementary
Material) implementations of the model, may be used to statistically explore
the boundaries of valid inference.
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Appendices

Appendix 1. Satz’s approach with updated prior probabilities

For reference, we also computed parameters for Satz’s model (Satz, 1977), using
updated prior probabilities defined in Section “Parameter estimates”. Satz computed
probabilities for right-handers only, but given the availability of prior probabilities
for both left- and right-handers, we computed both. The resulting probabilities are
shown in Tables A1 and A2, respectively. Satz’s model assumes a binary classification
of perceptual laterality, using a cut-off at 0. Table A3 shows the classification scheme
derived from this model. Note that only the sign of the speech laterlisation score
impacts the probability of left or right brain asymmetry in this model.

Table A1. Satz’s model for right-handers, using updated prior information.
Left dominance Non-left dominance Total

Left ear adv. 0.21 0.12 0.33
Right ear adv. 0.66 0.01 0.67
Total 0.87 0.13 1.00

Table A2. Satz’s model for left-handers, using updated prior information.
Left dominance Non-left dominance Total

Left ear adv. 0.22 0.29 0.51
Right ear adv. 0.43 0.06 0.49
Total 0.65 0.35 1.00

Table A3. Probabilities of left or right brain dominance in Satz’s model, using updated
prior information.
Handedness Ear advantage P(Left dom.) P(Right dom.)

Left Left 0.22/0.29 = 0.43 0.29/0.22 = 0.57
Left Right 0.43/0.06 = 0.88 0.06/0.43 = 0.12
Right Left 0.21/0.12 = 0.64 0.12/0.21 = 0.36
Right Right 0.66/0.01 = 0.98 0.01/0.66 = 0.02
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Appendix 2. Extension to the trichotomous case

We here present an extension of the model to the trichotomous case, which is also
implemented in the R package and Shiny app referenced above. Firstly, the underlying
hemispheric dominance a now takes on values−1, 0, and 1, indicating left dominance,
no dominance (bilaterality), and right dominance, respectively. Apart from this,
Equations (1) and (2) remain unchanged. Normalization of the posterior distribution
(2) is now obtained by the condition

p(a = −1 | x)p(a = −1)+ p(a = 0 | x)p(a = 0)+ p(a = 1 | x)p(a = 1) = 1.

Next, the model for observed laterality and hemispheric dominance, Equation (3)
becomes

p(x |a; m−1, m0, m1, S, a, b) =
Nn(m−1, S, a, b) if a = −1
Nn(m0, S, a, b) if a = 0
Nn(m1, S, a, b) if a = 1,

⎧⎨
⎩

where m0 represents the mean observed laterality for subjects with no dominance. Fur-
thermore, the probability of belonging to group a now is modeled using a multinomial
distribution with three classes, where p(a) = pa, a [ {− 1, 0, 1}, subject to the con-
straint p−1 + p0 + p1 = 1.

Appendix 3. Extension to multiple experimental paradigms

The model presented can be extended to allow for predictions based on measure-
ments obtained with different experimental paradigms. Consider Equation (3), which
represents the probability distribution of laterality measurements for a given individ-
ual. The parameters m−1, m1, Σ, a, and b describe the means (m−1, m1), covariances
(Σ), and upper and lower limits (a,b) of measurements obtained within the experimen-
tal paradigm. A generalization to G experimental paradigms indexed by g = 1, . . . , G
would require a different set of parameters for each paradigm, which we denote by
mg
−1, m

g
1, S

g,g, ag, and bg, as well as covariance matrices describing how measurements
in paradigm g are correlated with measurements in paradigm g′, for g = g′, which we
denote Sg,g′ .

As a concrete example, consider the case of G = 2 paradigms and a total of n = 4
measurements of each individual. Assume x = (x1, x2, x3, x4)

′ is ordered such that
measurements x1 and x2 were obtained with paradigm 1 and x3 and x4 with paradigm
2. The joint probability distribution of the four measurements is now a truncated multi-
variate normal distribution with means (m1

−1, m
1
−1, m

2
−1, m

2
−1)

′ for left-dominant subject
and (m1

1, m
1
1, m

2
1, m

2
1)
′ for right-dominant subjects, lower limits (a1, a1, a2, a2)′, and

upper limits (b1, b1, b2, b2)′. The full covariance matrix is

S = S1,1 S1,2

S
2,1

S
2,2

( )
,

consisting of submatrices

S1,1 = s2
1

1 r1,1
r1,1 1

( )
, S1,2 = S2,1 = s1s2

r1,2 r1,2
r1,2 r1,2

( )
, S2,2 = s2

2
1 r2,2
r2,2 1

( )
,

in which r1,1 denotes the correlation between measurements obtained using paradigm
1, r2,2 the correlation between measurements obtained using paradigm 2, r1,2 the
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correlation between a measurement obtained using paradigm 1 and another measure-
ment obtained using paradigm 2, s1 the standard deviation of measurements
obtained using paradigm 1, and s2 the standard deviation of measurements obtained
using paradigm 2.
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