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Abstract

In this thesis we will look at a numerical method for solving PDEs called the

Adaptive Mesh Refinement method. This method is based on the idea that the

grid should adapt to the problem during the computations, and increase or reduce

the mesh spacing between the numerical points depending on the error of the

approximated solution. We want to analyze the mesh refinement used in the

method, and how this refinement affects the numerical solution. We study different

ways to do this refinement and introduce a new approach in addition to the two

presented in the articles [BO84] and [BC89] by Marsha Berger, Joseph Oliger and

Phillip Colella. Later, simulations with the advection equation and the Euler

equations are done, where we discover that in either case, refining the grid leads

to a decreasing accuracy and convergence rate. Another experiment with a radial

explosion, shows that when locating the boundary of the fine grid somewhere in

the domain where the solution only has small changes, the error improves. We

also work with another grid structure called a Staircase boundary, where we try

to approximate a sloping boundary with a uniform Cartesian grid. This leads to

a staircase formed numerical boundary approximating the sloping edge. Such an

approximation have a similar outcome as the refinement, it reduces the convergence

rate to 1.
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Chapter 1

Introduction

Fluid dynamics is the study of the mathematics and physics of fluid motion. A

fluid is a substance that deforms when subjected to shear stress, and the term fluid

is used for gasses and liquids [Kun15]. Fluid dynamics covers a lot of different re-

search fields such as aerodynamics and ocean simulations to mention some. The

Navier-Stokes equations model all fluid motion. They are derived from the conser-

vation laws of mass, momentum and energy. Additionally the equations contains

a viscous term, which is a property that every fluid has to some degree. The Euler

equations are also much applied for this purpose. They describe inviscid flow, as

they lack the viscous term from the Navier-Stokes equations, and are often used

when the viscosity of the fluid is small enough to be neglected. This makes the

flow easier to model. Still, one has to be careful when neglecting viscosity, as even

the smallest amount might have a great impact on the fluid in some cases, for

example in boundary layers [Ach91]. There exists no proof of well-posedness for

the Navier-Stokes and Euler equations, meaning that there is no official proof of

the existence of a unique solution or stability for the equations. When wanting

to solve one of these equations, we have to approximate it numerically by using

Computational Fluid Dynamics (CFD).

Computational fluid dynamics is the study of numerical approximation meth-

ods for Fluid dynamic problems. When in need of simulating the motion of a

fluid, these numerical methods are used to compute an approximated solution of

the PDEs describing the fluid motion. Even though the field is still limited by
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CHAPTER 1. INTRODUCTION 6

the complexity of the problems, it is constantly growing, and through simulations

one can achieve accurate approximations to a degree that has not been achieved

earlier [Whi11].

There are many ways to discretize and approximate a PDE. Depending on the

type of PDE and the purpose of the calculations, the methods all have their ad-

vantages. For hyperbolic PDEs the finite difference and the finite volume methods

are popular choices. The hyperbolic PDEs does not change globally all over the

domain during a time step, but the change happens within a local set of points.

The finite difference and finite volume methods are similar when used on uniform

Cartesian grids, which we will look at in this thesis. The two methods differs in

that the finite volume method is based on calculating the flow through the control

volumes around the grid points, while the finite difference method approximates

each point from the surrounding points. The Euler equations are hyperbolic, and

so is two of the three Navier-Stokes equations.

These problems become complicated quite fast. The simulations of such prob-

lems are therefore compromised, and there are always a need to prioritize the

different parts of the simulation. In many cases, the accuracy is the most im-

portant, and the most accurate method is used. However, time is also an issue,

and for some simulations, one can be satisfied with less precision if it means that

time and costs are reduced. The Adaptive Mesh Refinement method which we will

be studying in this thesis, revolves around this problem. Trying to enforce both

accuracy and time, it refines only the parts of the grid that are in need of more

precision, avoiding time consuming refinement everywhere on the computational

domain. As an example, when simulating boundary layers and turbulence, the pre-

cision is crucial. For such computations, a high amount of accuracy is necessary,

and would be supplied by a fine grid. The Adaptive Mesh Refinement method was

introduced by Marsha Berger and Joseph Oliger in [BO84], and later by Marsha

Berger and Phillip Colella [BC89]. The method is used in different fields such as

engineering, physics, data science and computational mathematics.
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1.1 Thesis outline

In the next chapters we will go through some theory. Chapter 2 contains prelimi-

naries with PDE theory and numerical analysis, Chapter 3 contains some theory

from fluid dynamics including a presentation of advection equation and the Euler

equations, and in Chapter 4 we present the AMR method. In this chapter we go

into details about how the method is recreated in the simulations, and we will

also introduce an alternative way of refining meshes which is constructed in or-

der to achieve stability in calculations. In the end of this chapter we present the

numerical experiments from the mesh refinement theory, and discuss the results.

In Chapter 5 we look into Staircase Boundaries, which is a way to approximate

a sloping edge of a domain with a Cartesian grid. At the end of this chapter the

results of some simulations with the Euler equations are presented and discussed.

Chapter 6 concludes the work done in the thesis.



Chapter 2

Preliminaries

We start by going through some PDE theory and numerical analysis.

There are certain properties we look for in PDEs and in numerical schemes.

When these are satisfied, we know more about what to expect when doing nu-

merical approximations of fluid dynamic problems. Three of these properties are

Well-posedness, stability and consistency, which we will explain here. The theory

is mostly explained with finite difference schemes. We will be using finite volumes

schemes, but for the cases in this thesis the schemes can be proven equal, and so

the finite difference theory can be applied. The explanations and definitions in this

chapter are obtained from Chapter 2 in [Gus07], along with some of the notation.

2.1 Well-posedness

Consider the following initial-boundary value problem:

ut = Pu+ F, 0 ≤ t

Bu = g

u = f, t = 0

(2.1)

where P is a differential operator, B is a boundary operator and F is a forcing

function.

Definition 2.1.1 (Well-posedness). The problem (2.1) is well-posed if there exists
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a unique solution, and the following estimate can be achieved:

||u||I ≤ K(||f ||II + ||g||III + ||F ||IV )

where || · ||I , || · ||II , || · ||III , || · ||IV are chosen norms, often decided to be the

L2-norm, and K is independent of g, f and F .

The estimate makes sure that small changes to the applied data only leads to

small changes in the solution. This can be observed by considering a small change

in the input data δf , δg and δF and inserting this into the problem in Equation

(2.1), so that it becomes:

∂tv = Pv + F + δF

Bv = g + δg

v = f + δf, t = 0

Subtracting this from (2.1), we get the following problem:

∂tw = Pw + δF

Bw = δg

w = δf, t = 0

where w = u−v, because Pu−Pv = P (u−v) = Pw and Bu−Bv = B(u−v) =

Bw for linear operators P and B. Thus from the definition of well-posedness, if

the PDE is stable, we get the estimate:

||w||I ≤ K(||δf ||II + ||δg||III + ||δF ||IV )

Which means that the changes in the solution is bounded by the small changes

in the initial data times a constant K.

2.2 Stability

When solving a PDE numerically, we need to discretize the domain so that it is

divided into finitely many points on which we can calculate the solution. There
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are several ways to do this. Different coordinate systems can be used, such as

Cartesian, polar or cylindrical, or the domain can be divided into triangles, or

other geometrical shapes. For a cartesian grid in one dimension, we partition the

domain into m points x0, x1, ..., xm. Let hi = xi+1 − xi be the distance between

the points. If hi = h for all i, the grid is uniform. We call h the mesh spacing. In

two dimensions we discretize in both x- and y-direction to get a two-dimensional

grid. Discretization in time works similarly to the discretization of one dimensional

space, we divide the time interval into n points: tn = kn.

When approximating a solution of a PDE-problem with a difference operator,

we need to know that the discrete problem is stable. This means, as with the

continuous case, that the system will converge to the solution even when there

are small disturbances in the input data. The stability definition for the discrete

problem is similar to the continuous case.

Consider the semi-discrete problem:

∂tui = Qui + Fi

Bu = g(t)

u = fi

i = 1, 2, ...,m

(2.2)

where Q is a finite volumes operator or difference operator, and B is a boundary

operator. From [Gus07] we have the following definition:

Definition 2.2.1 (Stability). The problem (2.2) is strongly stable if there exists

a unique solution satisfying

||u(t)||2h ≤ Keαt
(
||f ||2h +

∫ t

0

||F (·, τ)||2h + |g|2dt
)

(2.3)

where K and α are independent of g,f and F .

Here ||u||2h =
∑m

i=0 u
2h is the discrete norm.
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2.3 Consistency

When using a numerical scheme to approximate a PDE, the scheme needs to satisfy

one more property in order to converge, and that is consistency. To inspect the

consistency of the scheme, we must look at the truncation error. We will continue

to write in one dimension, and the extension to two dimensions is similar. Consider

the initial-boundary value problem in Equation (2.1) and the semi-discrete problem

in Equation (2.2). Inserting the exact solution from Equation (2.1) into the scheme

in Equation (2.2), we get the following:

u(xi, tn+1) = Qu(xi) + kT (xi, tn)

u(xi, 0) = fi + φi

u(0, tn) = gn + ψn

(2.4)

where T (xi, tn) is the truncation error, and φi and ψn are the errors in the

initial and boundary data. The truncation error is found by Taylor-expanding the

scheme around the point (xi, tn). By doing this we get the equation u(xi, tn+1) =

Qu(xi, tn) + kT (xi, tn), where the truncation error is multiplied by the factor k.

In order for the scheme to converge towards the solution u(xi, tn), we must make

sure that the error T (xi, tn) goes to zero as h, k → 0. For this to happen, the error

must depend on h and k:

Definition 2.3.1 (Order of accuracy). Let T (xi, tn) be the truncation error of the

scheme in Equation (2.2), and let

|T (xi, tn)| ≤ K(hp + kq) (2.5)

where K is independent of h and k. Then (p, q) is the order of accuracy.

Definition 2.3.2 (Consistency). The scheme in (2.2) is consistent if in Equation

(2.5), p ≥ 0 and q ≥ 0.

Together with stability, consistency gives a convergent scheme, which is stated

in the following theorem from [RM67]:

Theorem 2.3.1 (Lax’s equivalence theorem). If the PDE problem in Equation

(2.1) is well-posed and the scheme in Equation (2.3) is consistent, then the numer-

ical approximation converges to the PDE problem if and only if it is stable.
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2.4 The Finite volume method

In this thesis we will be looking at hyperbolic PDEs, and the functions we will

use are conservative. The Finite Volume method is designed to have this property,

and so it is a suitable choice. We start with the following conservation law:

ut + fx(u) + gy(u) = 0 (2.6)

Consider a uniformly discretized, two-dimensional Cartesian domain with the

discretization xi = ih, yj = jh. To begin with, the domain is divided into control

volumes, and the solution is calculated inside each of these volumes before they

are summed up. There are two ways to do this. In the first case, the volumes

are located around the nodes of the grid, and the solution is calculated at these

nodes in the center of the volume. This is illustrated in Figure 2.1. In this case,

the volumes and the grid lines are not coinciding. The second way is to calculate

the solution inside the cells on the grid, making the center of the volume a point

in the middle of the grid-cell, instead of at the node. Here, the control volumes

coincides with the grid lines. This is shown in figure 2.2. It is slightly more difficult

to calculate the boundary values in this case, as the boundary points and the cell

centers does not overlap. The last nodes at the edges of the grids are shifted from

the boundary of the grid a distance of h
2
. In this explanation we will use the first

approach, the one illustrated in Figure 2.1, but the two versions of the FVM are

similar, and gives the same results. We are following the explanation from Chapter

12.4 in [Gus07].



CHAPTER 2. PRELIMINARIES 13

Figure 2.1: Illustration of node-centered fi-

nite volumes. The cells are drawn around

the nodes of the grid.

Figure 2.2: Illustration of cell-centered fi-

nite volumes. The volumes are the grid-

cells, and nodes are drawn inside the vol-

umes to mark the center of the cell.

Since the grid is uniform, the area of the control volumes is |Vi,j| = h2. For each

point (xi, yj) on the grid, the control volume Vi,j is defined by the two intervals

Ii = [xi− 1
2
, xi+ 1

2
] and Ij = [yj− 1

2
, yj+ 1

2
]. We calculate the average of the solution u

in each volume by evaluating the flux that flows in and out of the volume. Thus

we are approximating Equation (2.6) on integral form inside the control volume

Vi,j: ∫∫
Vi,j

ut dx dy =

∫∫
Vi,j

(fx + gy) dx dy

by Green’s Theorem
∫∫

Vi,j
(fx + gy) dx =

∫
Ij
f dy −

∫
Ii
g dx, and the equation

becomes: ∫
Vi,j

ut dx dy =

∫
Ij

f dy −
∫
Ii

g dx (2.7)

We approximate the integral of ut over Vi,j by multiplying with the area of

the volume: |Vi,j|ut. As for the right hand side, the flux through the volume in

x-direction is given by:

(fi+ 1
2
− fi− 1

2
) h (2.8)

where fi+ 1
2

= f(u(xi+ 1
2
)) is the flux over the edge at xi+ 1

2
and fi− 1

2
= f(u(xi− 1

2
))

is the flux over the edge at xi− 1
2
, and both are multiplied by the length of the edge

they are crossing. The y-direction is similar:
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(gj+ 1
2
− gj− 1

2
) h

Since the numerical solution is not known at point xi+ 1
2
, we approximate the

solution by using the values from the nodes on each side of xi+ 1
2
, that is, in xi+1

and xi−1. This is done by using the following average:

fi+ 1
2

=
fi+1 + fi

2

Inserting this into (2.8), we get:(fi+1 + fi
2

− fi + fi−1

2

)
h =

(fi+1 − fi−1

2

)
h

And the same for the g-flux. With this we get the following approximation of

Equation (2.7):

|Vi,j| ut =
(fi+1 − fi−1

2

)
h+

(gj+1 − gj−1

2

)
h

Dividing by the area of the control volume, we arrive at the final scheme:

ut =
fi+1 − fi−1

2h
+
gj+1 − gj−1

2h
(2.9)

2.5 Artificial diffusion

In some cases when the instabilities of the approximation becomes too big, it might

help to modify the problem by adding artificial diffusion. In this section we will

look at how this is done and what effect it gives to the solution. The following is

obtained from Chapter 11 of [Gus07].

Consider the conservation law:

ut + fx(u) = 0 (2.10)

When working with conservative PDEs, shocks (see Section 3.2.1) often occur.

In such cases the approximation will fail, because the solution becomes discontin-

uous. One way to avoid this is to modify (2.10) by adding a small diffusion term
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λuxx to the left side of the equation, so that the equation becomes:

ut + fx(u) = λuxx

With this term, the conservation law is no longer conservative because the diffu-

sion term creates a loss of energy. The conservation law is however approximated

by letting λ → 0. When choosing a sufficiently small diffusion coefficient, the

approximation achieves some smoothing but not enough to change the solution

entirely.

The diffusion term can be approximated numerically. To do this we write the

flux in the following way:

fi+ 1
2

=
fi+1 + fi

2
− λui+1 − ui

2
(2.11)

When λ is constant, the scheme at a point xi becomes

fi+ 1
2
− fi− 1

2
=
(fi+1 + fi

2
− λui+1 − ui

2

)
−
(fi + fi−1

2
− λui − ui−1

2

)
=
fi+1 + fi

2
− fi + fi−1

2

−
(
λ
ui+1 − ui

2
− λui − ui−1

2

)
=
fi+1 − fi−1

2
− λui+1 − 2ui + ui−1

2

(2.12)

Here we can see that the term −λui+1−2ui+ui−1

2
approximates the second deriva-

tive −λuxx. This diffusion term is called artificial diffusion (or artificial viscosity).

Sometimes when faced with an unstable numerical method, artificial viscosity

can be added to achieve the same smoothing effect as for the shock and this can

lead to stability for the method. We will return to this later in the thesis.
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2.6 Runge-Kutta

The theory in this section is obtained from [KW93] and Chapter 5.2 in [Gus07]. In

this thesis we have used 4th order Runge-Kutta to discretize in time. Runge-Kutta

is an ODE-solver, and the general method is expressed the following way:

u(t+ k) = L(kQ)u(t) + kG

u(0) = f
(2.13)

where L(kQ) =
∑q

j=0 αj
(kQ)j

j!
. If we write out the method in Equation (2.13) with

q = 4, we get the fourth order Runge-Kutta which is the following:

k1 = F (tn, u
n)

k2 = F (tn +
1

2
k, un +

1

2
kk1)

k3 = F (tn +
1

2
k, un +

1

2
kk2)

k4 = F (tn + k, un + kk3)

un+1 = un + k(
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4)

We will mostly analyze semi-discrete schemes in this thesis, but we will now show

that when using 4th order Runge-Kutta in time, the stability will follow when the

semi-discrete scheme is stable.

First, some definitions and assumptions will be presented from [KW93]. We

consider the method applied to the scalar ODE yt = λy:

u(t+ k) = L(kλ)u(t)

Definition 2.6.1 (Stability domain). We define the stability domain, Ω, for the

Runge-Kutta method as

Ω := {µ = kλ ∈ C | |L(µ)| ≤ 1} (2.14)

Definition 2.6.2 (Locally Stable). A method is locally stable if there exists a

radius R ∈ C such that

{µ ∈ C | L(µ) ≤ R} ⊂ Ω (2.15)



CHAPTER 2. PRELIMINARIES 17

Now, from [KS92] we state Theorem 4.1 about the local stability of 4th order

Runge-Kutta:

Theorem 2.6.1. If q = m, then the Runge-Kutta method is unstable for m = 1,2

and stable for m = 3,4.

for the method expressed in Equation (2.13). Thus, we arrive at the following

theorem from [KW93]:

Theorem 2.6.2. Let the following points be satisfied:

• The method is locally stable

• Let µ ∈ C, Re(µ) = 0, |α| ≤ R be a simple root of the equation L(µ) = eiα.

Then there exists no other number β such that |µ| ≤ R µ = iβ.

• The semi-discretization is stable in a generalized sense

Then the fully discrete appriximation is stable in the genealized sense if

||kQ||h ≤ R1 < R (2.16)

Since we know that the Runge-Kutta 4 is locally stable, we need only to consider

the two other points in the theorem. Recall that L(µ) = 1 + µ+ µ2

2
+ µ3

6
+ µ4

24
for

the 4th order method. For the equation

1 + µ+
µ2

2
+
µ3

6
+
µ4

24
= eiα

where eiα = cosα+ i sinα, µ = 0 is a unique simple root [Gus07]. Thus, whenever

we present a semi-discrete approximation which is stable in a generalized sense, we

know that when using Runge-Kutta 4 to discretize in time, it follows that the fully

discrete approximation is also stable in the same manner for ||kQ||h ≤ R1 < R.



Chapter 3

Advection equation and Euler

equations

In [BO84] Marsha Berger and Joseph Oliger writes about the Adaptive Mesh re-

finement for hyperbolic PDEs. In this thesis, we will use hyperbolic PDEs, and

more specifically they will be conservative. In this chapter we will present the

PDEs which we will use and refer to later in the thesis. All the numerical experi-

ments are done in two dimensions, and we will therefore present the equations in

2D-form. If possible, we will show well-posedness.

3.1 The advection equation

The two-dimensional advection equation with constant coefficients is presented in

the following equation:

ut + aux + buy = 0

u ∈ Ω
(3.1)

the advection equation is also called the transport equation, and it describes

the transportation of a substance in a fluid flow. It is one of the simplest conser-

vative PDEs.

18
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3.1.1 Well posedness for Advection equation

We want to show that the initial boundary value problem

ut + ux + uy = 0, 0 ≤ x, y ≤ 1, 0 ≤ t

u([x, 0], t) = g1(x, t)

u([0, y], t) = g2(y, t)

u([x, y], 0) = f(x, y)

(3.2)

is well posed. For simplicity we are showing this for Equation (3.1) with a =

b = 1, and this is the equation we have used in the numerical experiments as well.

First of all we define the L2-norm:

||u||2 =

(∫∫
Ω

u2 dx

)1/2

(3.3)

We use the Energy method to show stability. Starting with the equation

ut + ux + uy = 0

we multiply the equation with the solution u and integrate over the domain:∫∫
Ω

utu dx dy +

∫∫
Ω

uxu dx dy +

∫∫
Ω

uyu dx dy = 0

Noticing that ∂t(u)u = ∂t(
u2

2
), we get:∫∫

Ω

(
u2

2
)t dx dy +

∫∫
Ω

(
u2

2
)x dx dy +

∫∫
Ω

(
u2

2
)y dx dy = 0

Integrating the last two terms, this becomes:

1

2
(||u||22)t +

∫ y=1

y=0

1

2
(u2(1, y, t)− u2(0, y, t)) dy

+

∫ x=1

x=0

1

2
(u2(x, 1, t)− u2(x, 0, t)) dx = 0

And we can insert the boundary functions:
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1

2
(||u||22)t +

∫ y=1

y=0

1

2
(u2(1, y, t)− g2

2(y, t)) dy

+

∫ x=1

x=0

1

2
(u2(x, 1, t)− g2

1(x, t)) dx = 0

Arriving at the equation:

1

2
(||u||22)t =− 1

2

∫ y=1

y=0

u2(1, y, t) dy +
1

2

∫ y=1

y=0

g2
2(y, t) dy

− 1

2

∫ x=1

x=0

u2(x, 1, t) dx+
1

2

∫ x=1

x=0

g2
1(x, t) dx

Since −1
2

∫ y=1

y=0
u2(1, y, t) dy ≤ 0 and −1

2

∫ x=1

x=0
u2(x, 1, t) dx ≤ 0 we get the inequal-

ity:

(||u||22)t ≤
∫ y=1

y=0

g2
2(y, t) dy +

∫ x=1

x=0

g2
1(x, t) dx

Integrating in time:

∫ t

0

(||u||22)t dt ≤
∫ t

0

(∫ y=1

y=0

g2
2(y, t) dy +

∫ x=1

x=0

g2
1(x, t) dx

)
dt

||u([x, y], t)||22 − ||u([x, y], 0)||22 ≤
∫ t

0

(∫ y=1

y=0

g2
2(y, t) dy +

∫ x=1

x=0

g2
1(x, t) dx

)
dt

||u([x, y], t)||22 ≤ ||f(x, y)||22 +

∫ t

0

(∫ y=1

y=0

g2
2(y, t) dy +

∫ x=1

x=0

g2
1(x, t) dx

)
dt

From Definition (2.3) of well-posedness we conclude that the 2D advection

equation is well-posed.
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3.2 The Euler equations

Next, we will look at the two-dimensional Euler equations:

∂ρ

∂t
+∇(ρ~v) = 0

∂~v

∂t
+ ρ~v · ∇~v +∇p = 0

∂E

∂t
+∇((E + p)~v) = 0

(3.4)

where ρ is the density, ~v = [v1, v2]T are the two velocity components, and E is

the energy. We want to derive the first equation which is called the continuity

equation, and the following derivation is obtained from [And03]. The continuity

equation is derived from the mass conservation law, which states that the time

rate of change of mass inside a control volume is equal to the net flow of mass

into the control volume. Let V be a control volume with surface S. Let dS be a

elemental surface area on S, and let d~S = ~ndS where ~n is the normal vector on

dS pointing out of the control volume. The mass flow through the elemental area

dS is given by:

ρ~v · d~S

and the mass flow into the control volume is given by the integral over the surface:

−
∫∫

S

ρ~v · d~S

which is negative because it flows in opposite direction of ~v. Let dV be an elemental

volume inside the control volume. The mass inside this volume is given by:

ρ dV

The time rate of change of the entire control volume is then given by the time rate

of change of the integral over V :

∂

∂t

∫∫∫
V
ρ dV

Thus the mass conservation law gives us the following continuity equation:

∂

∂t

∫∫∫
V
ρ dV = −

∫∫
S

ρ~v · d~S (3.5)
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written on conservation form. Written on the same form as in equation (3.4), we

use the divergence theorem and get:

∂

∂t

∫∫∫
V
ρ dV = −

∫∫∫
V
∇(ρ~v)dV

Since this equation holds for all coltrol volumes in the fluid, it holds for the entire

fluid. Integrating over a unit area, we get the equation:

∂ρ

∂t
+∇(ρ~v) = 0

The other two equations, conservation of momentum and conservation of energy,

are derived similarly and a detailed derivation can be found in [And03].

3.2.1 Shock and rarefaction waves

When observing certain PDEs, we can sometimes encounter solutions that are

discontinuous. The discontinuity implies that there is an instant change in some

material quantity, for example density, and this is called a shock wave. As an

example from Chapter 3 in [Ach91], for a sound wave with finite amplitude the

velocity is not constant along the wave, resulting in some parts of the wave catching

up with the other, creating a discontinuity. Physically, each side of this shock is

separated by a thin layer of molecules, in which there is a rapid change in density

and velocity, and it is therefore described as discontinuous. This layer exists due to

the viscosity in the fluid, which is keeping the wave from breaking down. The two

sides of the shock, state 1 and 2, are related by the Rankine-Hugoniot relations

from Chapter 15.4 in []:

ρ1u1 = ρ2u2

p1 − p2 = ρ1u
2
1 + ρ2u

2
2

h1 +
1

2
u2

1 = h2 +
1

2
u2

2

where the four variables density ρ, velocity u, pressure p and enthalpy h are given

on both side of the shock, in state 1 and 2.
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Consider the same sound wave as mentioned above. While in a shock wave,

the change in density is positive, ∆ρ > 0, a rarefaction wave is when the den-

sity is suddenly reduced, that is ∆ρ < 0 (from [And03]). A rarefaction wave can

sometimes occur after a shock wave, as we will see later in one of the numerical

experiments, Section 4.5.3.

Mathematically this gives some trouble when modelling the problem with non-

viscous theory. When approximating a shock numerically, the numerical solution

will break down. In such cases a small amount of artificial diffusion is added

to the equation, as explained in Section 2.5, in order to avoid that the solution

becomes discontinuous. The mathematical theory of shocks and rarefaction waves

solutions of PDEs is complicated and further explanations of how to deal with this

mathematically can be found in Chapter 3.4 of [Eva10].



Chapter 4

Adaptive mesh refinement

In this chapter we present the Adaptive Mesh Refinement (AMR) method intro-

duced in [BO84], [BC89] and [Ber86]. The idea behind the AMR method is to

create a dynamic computational domain which adapts to the PDE-problem and

adds precision to the parts of the domain that needs it. This is done by refining

the mesh of these particular parts during the computations. This way the res-

olution is kept without covering the entire domain with the refined grids, which

saves computational time. We will go into more detail about how AMR works and

how it has been used in this thesis. We start by introducing mesh refinement, and

different ways to do this. Later, we continue to the Adaptiveness, and we will end

up with a general description of the AMR method.

4.1 Mesh refinement with finite volumes

The Adaptive Mesh refinement method was first introduced in [BO84], where the

finite difference scheme was used. Another approach was presented in [BC89] with

the finite volume scheme. In this section we will explain how we have recreated the

method based on the explanations from the original article [BO84], but we have

used a coupled finite volumes scheme instead of the finite difference scheme. We

will call this Method A. We have tried to recreate the method as closely as possible

to the way it was written in [BO84]. This has resulted in a method using the node

centered finite volume scheme explained in Section 2.4. Later, two alternative

24
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mesh refinements are presented, one of which is created with the modifications

from [BC89]. We will now go into detail about the different computations and

implementations that have been done.

4.1.1 Grid structure

The notation in this section is inherited from [BO84]. We start by discretizing the

domain. In this thesis all grids will be uniform Cartesian grids. Uniform means

that all the points on the grid are separated by the same distance h, in both x-

and y-direction. The method can be generalized to non-uniform meshes. Thus in

two dimensions with mx points in x-direction and my points in y-direction we get:

xi = h i, i = 0, 1, ...,mx

yj = h j, j = 0, 1, ...,my

Let G0 denote the set of grids at the initial level with mesh spacing h0. A grid level

indicates the level of refinement. At level 0, the grids have the initial mesh spacing.

An initial grid may be covered by one or more patches of refined grids at any subset

in need of it. These patches of refined grids might not give enough accuracy, and

new refinments of these can be created in the same way. This results in a grid

structure of one or more initial grids with patches of refined grids covering parts

of the initial grids, which in turn has its own patches of subgrids. A refinement

of one of the initial grids in G0 will belong to the next level of grids, in the set

G1. At this level the mesh spacing is given by h1 = h0
r

, where r is the refinement

ratio. This continues, and for each grid in Gi a refinement will belong in Gi+1

at level i + 1, with mesh spacing hi+1 = hi
ri

. The different grids in each level are

denoted Gi,j where j indicates the specific grid in question, so that Gi,j ∈ Gi. To

keep track of this grid hierarchy in the simulations, we do as in [BO84] and [Ber86]

and use linked lists. Inherited from the terminology of linked lists, a parent grid

of a grid Gi,j, is the coarse grid which Gi,j is a refinement of. A child of a grid

Gi,j is then the refinement. Each grid is a node in the list, and contains a link to

the underlying coarse grid which it is a refinement of, a link to its children, and

a link to any potential siblings which are other grids at the same level. The node
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Figure 4.1: Mesh with refinement of ratio r = 2 to the right of i.

also contains information about the location of the grid in the domain, the mesh

spacing hi, the time step ki, the time t to which the grid was last updated, number

of points in the grid and the solution vector for the grid. The structure is a clever

way to keep track of the grids and to make the method recursive.

4.1.2 Interpolation of boundary points

According to [BO84], the boundaries of the refined grids are calculated by inter-

polation on the underlying coarse grid points. For simplicity we will assume for

the rest of this chapter that we only have one initial grid, and denote it G0. Let

G0 have a refined subgrid with refinement r. With the node centered finite vol-

ume scheme introduced earlier, the boundary of the refined grid contains the same

points as the underlying coarse grid, but with r − 1 additional points in between

two coarse points as shown in Figure 4.1.

Using linear interpolation, the boundary values gfine of the refined grid along

the interface i = k are calculated the following way:

gfinek,j = ucoarsek,j

gfine
k,j+ 1

2

=
ucoarsek,j+1 + ucoarsek,j

2

And so at the boundary of the refined subgrid, the scheme looks like the following:
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uk,j =
f(uk+1,j)− f(gfinek,j )

h

uk,j+ 1
2

=
f(uk+1,j)− f(gfine

k,j+ 1
2

)

h

(4.1)

where u is the solution and h is the mesh spacing at the fine grid. When doing

so, we end up with a coupled finite volume scheme where each grid has its own

scheme, and the schemes are connected through the computations at the bound-

aries of the refinements.

In the simulations done in this thesis the initial data is known and since there

is no adaption, no additional refined grid will appear during the computations.

Thus, the fine grids are created from the start and are initialized by the same

data as the coarse initial grid. However, if adaption is implemented, the refined

grids could need initializing at an arbitrary time and there might not be an exact

solution to use for this. In such cases interpolation is again used to fill in the

solution vector of the refined grid, and this is done in a similar way as for the

boundary conditions.

4.2 Stable mesh refinement

When working with methods such as AMR, where one changes the structure of a

uniform mesh, it is natural to question whether the method is stable. It is not easy

to show stability for this mesh refinement because of the interpolation. However,

in [Ber85] Marsha Berger has been able to show stability for the mesh refinement

method by adding artificial diffusion.

The question of stability for the mesh refinement gives motivation to make

some small adjustments to the method in order to make it provably stable. This

can be done by refining the grid in a different manner. The idea behind this

approach is to create proper control volumes around the points at the interfaces to

enable the use of a finite volume scheme. Then, by using values from both the fine

and coarse grids, we can calculate the flux through the volumes instead of using
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interpolation.

i = k

Figure 4.2: Mesh with volumes (dashed lines) and refinement of ratio r = 2 to the right of i=k.

Using the finite volumes scheme in Equation (2.7) on the uniform grids as

before, we need to make some modifications at the interface from the way it is

calculated in Method A. In the following, we will refine by a factor of two, so

r = 2. Consider a 2D grid with a refinement at i = k as shown in Figure 4.2 with

the volumes drawn around the nodes. Let h be the mesh spacing at the fine grid.

For volumes from the coarse grid, the mesh spacing then becomes 2h. For Method

A the interface is calculated as shown in Equation (4.1). We must modify the

scheme at the interface, along i = k, and at the points to the left of the interface,

along i = k−1, to connect the flux through the volumes at the coarse and fine grid.

The changes are explained using Figure 4.2 which has refinement in x-direction

so that only the f -flux is affected. For refinement in the y-direction the same

changes are done to the g-flux. There are three cases in which the scheme needs

to be changed. The first one is for all points at the coarse side of the interface, at

position i = k − 1. The semi-discretization of these points should be given by:

(uk,j)t +
(1

2
fk− 1

2
,j + 1

4
fk− 1

2
,j+ 1

2
+ 1

4
fk− 1

2
,j− 1

2
)− fk− 3

2
,j

2h

+
gk−1,j+ 1

2
− gk−1,j− 1

2

2h
= 0

(4.2)

The flux going into the refinement is really going into three different volumes

as shown in Figure 4.2. Thus all three volumes from the fine grid needs to be
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taken into the computations.

The second change to the scheme is for the points located at the interface i = k

and overlapping a coarse grid point. This volume abuts a coarse volume to the left

and a fine volume to the right. Thus the fluxes are the same as for the uniform

parts of the grid, but the change in mesh size makes the volume a 3
2
h×h rectangle,

and the mesh size in the scheme must be changed to:

(ui,j)t +
(fk+ 1

2
,j − fk− 1

2
,j)

3
2
h

+
(gk,j+ 1

2
− gk,j− 1

2
)

h
= 0 (4.3)

Finally, for the points at i = k lying in between the coarse grid points, at the

refinement, the left edge of the volume borders to two different volumes from the

coarse grid and the scheme changes to:

(uk,j)t +
fk,j − 1

2
(fk,j+ 1

2
+ fk,j− 1

2
)

h
+
gk,j+ 1

2
− gk,j− 1

2

h
= 0 (4.4)

With these modifications, there is no need for interpolation, as the ”boundary

points” are calculated through the fluxes instead, and we get a slightly different

mesh refinement method. We call this Method B. The method does loose some of

its simplicity as the subgrids needs a different integration method than the initial

grids. Still, since these computations are only done at the boundaries of the fine

grid, they do not require a lot of extra time compared to Method A.
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4.2.1 Stability of Method A for advection equation

The modifications done to the mesh refinement method was made in order to

achieve stability through calculations. Shown in this section is the stability proof

of the discrete problem by the energy method.

The stability is only shown for the grid in Figure 4.2 where half of the grid is

refined, and the interface is only along the y-direction, at i = k. The calculations

for all other edges of the fine grid is similar. We have not included any boundaries

in the calculations, but used infinite sums and assumed that it tends to zero. This

is to make the computations as simple as possible, and to make the interface the

main focus. Stability at the boundaries can be achieved as well, and in the exper-

iments presented later we specify the particular boundary data used.

We start by summing over the domain. In y-direction there is no changes, but

in x-direction the scheme is different for the four parts i < k − 1, i = k − 1, i = k

and i > k. They can be seen in Equations (4.5)-(4.8), and we consider these four

parts of the domain separately:

• (4.5): the sum over all points for which i < k − 1

• (4.6): the sum of all points along the line i = k − 1

• (4.7): the sum of all points along the line i = k

• (4.8): the sum of all points for which i > k − 1
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∞∑
i=−∞

∞∑
j=−∞

∂t(
u2

2
)|Vi,j|

+
k−2∑
i=−∞

∞∑
j=−∞

(
a(ui+1,j − ui−1,j)

h

2
+ b(ui,j+1 − ui,j−1)

h

2

)
ui,j (4.5)

+
∞∑

j=−∞

(
a(

1

2
uk,j +

1

4
uk,j+ 1

2
+

1

4
uk,j− 1

2
− uk−2,j)

h

2
(4.6)

+ b(uk−1,j+1 − uk−1,j−1)
h

2

)
uk−1,j

+
∞∑

j=−∞

((
a(uk+1,j − uk−1,j)

h

4
+ b(uk,j+ 1

2
− uk,j− 1

2
)
3

4

h

2

)
uk,j (4.7)

(
a
(
uk+1,j+ 1

2
− 1

2
(uk−1,j + uk−1,j+1)

)h
4

+ b(uk,j+1 − uk,j)
3

4

h

2

)
uk,j+ 1

2

)
+

∞∑
i=k+1

∞∑
j=−∞

((
a(ui+1,j − ui−1,j)

h

4
+ b(ui,j+ 1

2
− ui,j− 1

2
)
h

4

)
ui,j (4.8)

(
a(ui+1,j+ 1

2
− ui−1,j+ 1

2
)
h

4
+ b(ui,j+1 − ui,j)

h

4

)
ui,j+ 1

2

)
= 0

First, for Equation (4.5) all points where i < k−1, all terms in y-direction will

be cancelled, and the same for all terms in x-direction, except for the ones along

i = k − 2:

k−2∑
i=−∞

∞∑
j=−∞

(
a (ui+1,j − ui−1,j)

h

2
+ b (ui,j+1 − ui,j−1)

h

2

)
ui,j

=
k−2∑
i=−∞

∞∑
j=−∞

(
a
h

2
ui+1,j ui,j − a

h

2
ui−1,j ui,j + b

h

2
ui,j+1 ui,j − b

h

2
ui,j−1 ui,j

)
=

∞∑
j=−∞

a
h

2
uk−1,j uk−2,j

(4.9)

The same happens to the sum over the fine grid in Equation (4.8). All points

for which i > k disappears except for the terms along the line i = k + 1 next to

the interface:
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∞∑
i=k+1

∞∑
j=−∞

((
a(ui+1,j − ui−1,j)

h

4
+ b(ui,j+ 1

2
− ui,j− 1

2
)
h

4

)
ui,j

(
a(ui+1,j+ 1

2
− ui−1,j+ 1

2
)
h

4
+ b(ui,j+1 − ui,j)

h

4

)
ui,j+ 1

2

)
=

∞∑
j=−∞

(
− ah

4
uk,j uk+1,j − a

h

4
uk,j+ 1

2
uk+1,j+ 1

2

) (4.10)

Now for the remaining two sums along i = k − 1 and i = k in Equations (4.6)

and (4.7), we get the following:

∞∑
j=−∞

(
a(

1

2
uk,j +

1

4
uk,j+ 1

2
+

1

4
uk,j− 1

2
− uk−2,j)

h

2
+

b(uk−1,j+1 − uk−1,j−1)
h

2

)
uk−1,j

+
∞∑

j=−∞

((
a(uk+1,j − uk−1,j)

h

4
+ b(uk,j+ 1

2
− uk,j− 1

2
)
3

4

h

2

)
uk,j

(
a
(
uk+1,j+ 1

2
− 1

2
(uk−1,j + uk−1,j+1)

)h
4

+ b(uk,j+1 − uk,j)
3

4

h

2

)
uk,j+ 1

2

)
=

∞∑
j=−∞

(
a

1

2
uk,juk−1,j

h

2
+ a

1

4
uk,j+ 1

2
uk−1,j

h

2
+ a

1

4
uk,j− 1

2
uk−1,j

h

2

− a uk−2,juk−1,j
h

2
+ b uk−1,j+1uk−1,j

h

2
− b uk−1,j−1uk−1,j

h

2

)
+

∞∑
j=−∞

((
a uk+1,juk,j

h

4
− a uk−1,juk,j

h

4
+ b uk,j+ 1

2
uk,j

3

4

h

2
− b uk,j− 1

2
uk,j

3

4

h

2

)
+
(
a uk+1,j+ 1

2
uk,j+ 1

2

h

4
− a 1

2
uk−1,juk,j+ 1

2

h

4
− a 1

2
uk−1,j+1uk,j+ 1

2

h

4

+ b uk,j+1uk,j+ 1
2

3

4

h

2
− b uk,juk,j+ 1

2

3

4

h

2

))
The b-terms are from the g-flux in y-direction, and they cancel when summing

over the j component as we do here. This leads to:
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∞∑
j=−∞

(
a
h

4
uk,j uk−1,j + a

h

8
uk,j+ 1

2
uk−1,j + a

h

8
uk,j− 1

2
uk−1,j

− a h
2
uk−2,j uk−1,j

)
+

∞∑
j=−∞

(
a
h

4
uk+1,j uk,j − a

h

4
uk−1,j uk,j + a

h

4
uk+1,j+ 1

2
uk,j+ 1

2

− a h
8
uk−1,j uk,j+ 1

2
− a h

8
uk−1,j+1 uk,j+ 1

2

)
=

∞∑
j=−∞

(
a
h

8
uk,j− 1

2
uk−1,j − a

h

2
uk−2,j uk−1,j

)
+

∞∑
j=−∞

(
a
h

4
uk+1,j uk,j + a

h

4
uk+1,j+ 1

2
uk,j+ 1

2
− a h

8
uk−1,j+1 uk,j+ 1

2

)
The first and last term, a h

8
u(k,j− 1

2
) u(k−1,j) and −a h

8
u(k−1,j+1) u(k,j+ 1

2
), will can-

cel as we sum along j, and we are left with:

∞∑
j=−∞

(
− a h

2
uk−2,j uk−1,j

)
+

∞∑
j=−∞

(
a
h

4
uk+1,j uk,j + a

h

4
uk+1,j+ 1

2
uk,j+ 1

2

) (4.11)

Collecting the resulting sums (4.9), (4.10) and (4.11) we observe that:

∞∑
j=−∞

a
h

2
uk−1,j uk−2,j

+
∞∑

j=−∞

(
− a h

2
uk−2,j uk−1,j

)
+

∞∑
j=−∞

(
a
h

4
uk+1,j uk,j + a

h

4
uk+1,j+ 1

2
uk,j+ 1

2

)

+
∞∑

j=−∞

(
− ah

4
uk,j uk+1,j − a

h

4
uk,j+ 1

2
uk+1,j+ 1

2

)
= 0

(4.12)
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In conclusion, when replacing Equations (4.5)-(4.8) with (4.12) we get:

∞∑
i=−∞

∞∑
j=−∞

∂t

(u2

2

)
|Vi,j| = ∂t

1

2
||u||2 = 0

which means that the energy is bounded and by Definition 2.2.1 the method is

stable.

i = k

C A

B

D

Figure 4.3: Grid with refinement to the right of i = k and corner point.

4.2.2 Truncation error on interface at mesh refinement

We analyze the stable mesh refinement method further, and calculate the trun-

cation error at the interface between the coarse and fine grid. There are four

different points at the interface which we want to calculate, and these are marked

as point A, B, C and D in Figure 4.3. It is important to notice while calculating

the truncation error at the interface, that the mesh spacing changes on each side

of the point. Starting with point A for example, the scheme looks like this:
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(ui,j)t + a
ui+1,j − ui−1,j

3h
+ b

ui,j+1 − ui,j−1

2h
= 0 (4.13)

and the points xi+1 and xi are separated by a length of h, while the points xi

and xi−1 by a length of 2h as seen in Figure 4.3. Taylor expanding the numerical

solution around (xi, yj) for point A we get:

(ui,j)t

+
a

3h

((
u+ ux(xi+1 − xi) +

1

2
uxx(xi+1 − xi)2 +

1

6
uxxx(ζ1, η1)(xi+1 − xi)3

)
−
(
u+ ux(xi−1 − xi) +

1

2
uxx(xi−1 − xi)2 +

1

6
uxxx(ζ2, η2)(xi−1 − xi)3

))
+

b

2h

((
u+ uy(yj+1 − yj) +

1

2
uyy(yj+1 − yj)2 +

1

6
uyyy(θ1, ξ1)(yj+1 − yj)3

)
−
(
u+ uy(yj−1 − yj) +

1

2
uyy(yj−1 − yj)2 +

1

6
uyyy(θ2, ξ2)(yj−1 − yj)3

))
= 0

(4.14)

Next, since (xi+1 − xi) = h and (xi−1 − xi) = −2h, and (yj+1 − yj) = h =

−(yj−1 − yj) in y-direction, the equation becomes:

(uji )t +
a

3h

(
u+ ux h+

1

2
uxx h

2 − u+ 2ux h−
4

2
uxx h

2 +O(h3)
))

+
b

2h

(
u+ uy h+

1

2
uyy h

2 − u+ uy h−
1

2
uyy h

2 +O(h3)
))

= 0

(uji )t +
a

3h

(
3ux h−

3

2
uxx h

2 +O(h3)

)
+

b

2h

(
2uy h+O(h3)

)
= 0

(uji )t + a ux + b uy −
a

2
uxx h+O(h2) = 0
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The computations shows that the truncation error is τ(xi, yj) = −a
2
uxx h +

O(h2) and that |τ(xi, yj)| ≤ K(h) for a constant K, which means that the order

of accuracy for point A is 1.

The volume around point A is easier to deal with then for the other points,

as it only borders to one volume in each direction. The volume around the fine

grid-point B however, borders to two different coarse volumes, as seen in Figure

4.3. Thus we must take into account that two different volumes contributes to the

flux over the left edge. Writing out the scheme at point B we get:

(ui, j)t + a
ui+1, j − 1

2
(ui−1, j+1 + ui−1, j−1)

3h
+ b

ui, j+1 − ui, j−1

2h
= 0 (4.15)

For the g-flux in y-direction the scheme is the same as for point A, and the

truncation error would be the same for B since it is not affected by the flux in

x-direction. We will leave this part out of the calculations, and Taylor expand

only in x-direction. This gives:

a

3h

((
u+ ux(xi+1 − xi) +

1

2
uxx(xi+1 − xi)2 +

1

6
uxxx(ζ1, η1)(xi+1 − xi)3

)
−1

2

(
u+ux(xi−1 − xi) + uy(yj+1 − yj)

+
1

2
(uxx(xi−1 − xi)2 + 2uxy(xi−1 − xi)(yj+1 − yj) + uyy(yj+1 − yj)2)

+
1

6
(uxxx(ζ2, η2)(xi−1 − xi)3 + 3uxxy(ζ2, η2)(xi−1 − xi)2(yj+1 − yj)

+ 3uxyy(ζ2, η2)(xi−1 − xi)(yj+1 − yj)2 + uyyy(ζ2, η2)(yj+1 − yj)3)

+u+ux(xi−1 − xi) + uy(yj−1 − yj)

+
1

2
(uxx(xi−1 − xi)2 + 2uxy(xi−1 − xi)(yj−1 − yj) + uyy(yj−1 − yj)2)

+
1

6
(uxxx(ζ3, η3)(xi−1 − xi)3 + 3uxxy(ζ3, η3)(xi−1 − xi)2(yj−1 − yj)

+ 3uxyy(ζ3, η3)(xi−1 − xi)(yj−1 − yj)2 + uyyy(ζ3, η3)(yj−1 − yj)3)
))

(4.16)
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As before, the refinement causes a change in the mesh spacing to the left and

right of the point so that (xi+1− xi) = h, (xi−1− xi) = −2h and (yi+1− yi) = h =

−(yi−1 − yi), and we get:

a

3h

((
u+ uxh+

1

2
uxxh

2 +O(h3)
)

−1

2

(
u− ux2h+ uyh+

1

2
(uxx4h

2 − 2uxy2h
2 + uyyh

2) +O(h3)

+u− ux2h− uyh+
1

2
(uxx4h

2 + 2uxy2h
2 + uyyh

2) +O(h3)
)) (4.17)

Which in turn becomes:

a

3h

(
u+ uxh+

1

2
uxxh

2 +O(h3)

− u+ ux2h−
4

2
uxxh

2 + uyyh
2 +O(h3)

)
=

a

3h

(
3uxh−

3

2
uxxh

2 + uyyh
2 +O(h3)

)
= aux −

a

2
uxxh+

a

3
uyyh+O(h2)

(4.18)

So we end up with the complete estimate:

(uji )t + aux + b uy −
a

2
uxxh+ uyyh+O(h2) = 0

We observe that the truncation error is τ(xi, yj) = −a
2
uxxh+ a

2
uxxxh

2 +uyyh−
a
3
uxyyh

2 + b
6
uyyy h

2 + O(h3), which means that the order of accuracy is 1 for this

point as well.

Next we will look at point C. This point belong to the coarse grid, and the

volume borders to one coarse volume to the left and three fine volumes to the

right. The scheme is shown in the following equation:

(ui,j)t + a
(1

2
ui+1, j + 1

4
ui+1, j+ 1

2
+ 1

4
ui+1, j− 1

2
)− ui−1, j

2h
+ b

ui, j+1 − ui, j−1

2h
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This point has the same distance to all its surrounding points, and we denote

it by 2h as it is twice the size of h, the mesh spacing of the fine grid. For the

g-flux, we get the same result as before. For the f-flux we get:

a

2(2h)

(
1

2

(
u+ux(xi+1 − xi) +

1

2
uxx(xi+1 − xi)2 +

1

6
uxxx(ζ1, η1)(xi+1 − xi)3

)
+

1

4

(
u+ux(xi+1 − xi) + uy(yj+ 1

2
− yj)

+
1

2
(uxx(xi+1 − xi)2 + 2uxy(xi+1 − xi)(yj+ 1

2
− yj) + uyy(yj+ 1

2
− yj)2)

+
1

6
(uxxx(ζ2, η2)(xi+1 − xi)3 + 3uxxy(ζ2, η2)(xi+1 − xi)2(yj+ 1

2
− yj)

+ 3uxyy(ζ2, η2)(xi+1 − xi)(yj+ 1
2
− yj)2 + uyyy(ζ2, η2)(yj+ 1

2
− yj)3)

)
+

1

4

(
u+ux(xi+1 − xi) + uy(yj− 1

2
− yj)

+
1

2
(uxx(xi+1 − xi)2 + 2uxy(xi+1 − xi)(yj− 1

2
− yj) + uyy(yj− 1

2
− yj)2)

+
1

6
(uxxx(ζ3, η3)(xi+1 − xi)3 + 3uxxy(ζ3, η3)(xi+1 − xi)2(yj− 1

2
− yj)

+ 3uxyy(ζ3, η3)(xi+1 − xi)(yj− 1
2
− yj)2 + uyyy(ζ3, η3)(yj− 1

2
− yj)3)

)
−
(
u+ux(xi−1 − xi) +

1

2
uxx(xi−1 − xi)2 +

1

6
uxxx(ζ4, η4)(xi−1 − xi)3

))
Since (xi+1−xi) = 2h, (xi−1−xi) = −2h, (yj+ 1

2
−yj) = h and (yj− 1

2
−yj) = −h,

we proceed as before and arrive at:

a

4h

((
u+ 2uxh+ (uyh− uyh) + 2uxxh

2 +
1

8
(4uxyh

2 − 4uxyh
2)

+
1

8
(uyyh

2 + uyyh
2) +O(h3)

)
−
(
u− 2uxh+ 2uxxh

2 +O(h3)
))

=
a

4h

(
4uxh+

1

4
uyyh

2 +O(h3)
)

= aux +
a

16
uyyh+O(h2)

For this point, the truncation error is τ(xi, yj) = aux+ a
16
uyyh+O(h2) ≤ K(h),
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which means that for this point too, the order of accuracy is 1.

Thus, we now know that the scheme presented for Method B is stable, but

these computations shows that the order of accuracy is 1 for the scheme at the

interfaces between the fine and coarse grids. Thus the, accuracy is reduced when

using Method B for as a mesh refinement method.

The scheme changes when adding artificial diffusion, as explained in 2.5. We

will go through the same points A, B and C, and compute the truncation error

of the diffusion. The diffusion is added to the scheme at the given point, and so

the truncation error for the entire scheme is given when adding the two trunca-

tion errors together. Starting with point A, the artificial diffusion looks like the

following:

− λ
(ui+1,j − 2ui,j + ui−1,j

3h

)
− λ
(ui,j+1 − 2ui,j + ui,j−1

2h

)
The Taylor expansion of the artificial diffusion at this point is:

− λ

3h

(
u+ ux(xi+1 − xi) +

1

2
uxx(xi+1 − xi)2 +

1

6
uxxx(ζ1, η1)(xi+1 − xi)3

−2u

+u+ ux(xi−1 − xi) +
1

2
uxx(xi−1 − xi)2 +

1

6
uxxx(ζ2, η2)(xi−1 − xi)3

)
− λ

2h

(
u+ uy(yj+1 − yj) +

1

2
uyy(yj+1 − yj)2 +

1

6
uyyy(θ1, ξ1)(yj+1 − yj)3

−2u

+u+ uy(yj−1 − yj) +
1

2
uyy(yj−1 − yj)2 +

1

6
uyyy(θ2, ξ2)(yj−1 − yj)3

)
Substituting (xi+1 − xi) = h = −(xi−1 − xi), and the same for y-direction, we get:

− λ

3h

(
u+ uxh+

1

2
uxxh

2 − 2u+ u− ux2h+
1

2
uxx4h

2 +O(h3)
)

− λ

2h

(
u+ uyh+

1

2
uyyh

2 − 2u+ u− uyh+
1

2
uyyh

2 +O(h3)
)

= − λ

3h

(
− uxh+

5

2
uxxh

2 +O(h3)
)
− λ

2h

(
uyyh

2 +O(h3)
)

= −λ
3
ux −

5λ

6
uxxh−

λ

2
uyyh+O(h2)
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We observe that the truncation error has a term of order 0. From Section 2.3

we know that the scheme is inconsistent at this point. This means, by Theorem

2.3.1, that we are not guaranteed convergence. Still, since it only applies to some

of the points on the grid, the method might still converge as we will see in the

next section.

The next point we will observe is point B. The artificial diffusion at this point

is given by:

− λ
(ui+1,j − 2ui,j + 1

2
(ui−1,j+1 + ui−1,j−1)

3h

)
− λ
(ui,j+1 − 2ui,j + ui,j−1

2h

)
and the Taylor expansion for the x-direction is:

− λ

3h

(
u+ ux(xi+1 − xi) +

1

2
uxx(xi+1 − xi)2 +

1

6
uxxx(ζ1, η1)(xi+1 − xi)3

−2u

+
1

2

(
u+ ux(xi−1 − xi) + uy(yj+1 − yj)

+
1

2
(uxx(xi−1 − xi)2 + 2uxy(xi−1 − xi)(yj+1 − yj)) + uyy(yj+1 − yj)2

+
1

6
(uxxx(ζ2, η2)(xi−1 − xi)3 + 3uxxy(ζ2, η2)(xi−1 − xi)2(yj+1 − yj)

+ 3uxyy(ζ2, η2)(xi−1 − xi)(yj+1 − yj)2 + uyyy(ζ2, η2)(yj+1 − yj)3)
)

+
1

2

(
u+ ux(xi−1 − xi) + uy(yj−1 − yj)

+
1

2
(uxx(xi−1 − xi)2 + 2uxy(xi−1 − xi)(yj−1 − yj) + uyy(yj−1 − yj)2)

+
1

6
(uxxx(ζ3, η3)(xi−1 − xi)3 + 3uxxy(ζ3, η3)(xi−1 − xi)2(yj−1 − yj)

+ 3uxyy(ζ3, η3)(xi−1 − xi)(yj−1 − yj)2 + uyyy(ζ3, η3)(yj−1 − yj)3)
))
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As before we substitute with h:

− λ

3h

(
u+ uxh+

1

2
uxxh

2 +O(h3)− 2u+
1

2

(
u− ux2h+ uyh

+
1

2
(uxx4h

2 − 2uxy2h
2 + uyyh

2) +O(h3)
)

+
1

2

(
u− ux2h− uyh

+
1

2
(uxx4h

2 + 2uxy2h
2 + uyyh

2) +O(h3)
)

=
λ

3
ux −

5λ

6
uxxh−

8λ

12
uyyh+O(h2)

For point B, we also have an inconsistent scheme due to the order 0 term λ
3
ux.

Thus, the scheme is inconsistent for all points along the line i = k.

Finally, we look at point C. At this point in x-direction, we have the scheme:

− λ
( 1

2
ui+1,j + 1

4
ui+1,j+ 1

2
+ 1

4
ui+1,j− 1

2
− 2ui,j + ui−1,j

2h

)
and the Taylor expansion is:

− λ

2h

(1

2

(
u+ ux(xi+1 − xi) +

1

2
uxx(xi+1 − xi)2 +

1

6
uxxx(ζ1, η1)(xi+1 − xi)3

)
+

1

4

(
u+ ux(xi+1 − xi) + uy(yj+ 1

2
− yj)

+
1

2
(uxx(xi+1 − xi)2 + 2uxy(xi+1 − xi)(yj+ 1

2
− yj)) + uyy(yj+ 1

2
− yj)2)

+
1

6
(uxxx(ζ2, η2)(xi+1 − xi)3 + 3uxxy(ζ2, η2)(xi+1 − xi)2(yj+ 1

2
− yj)

+ 3uxyy(ζ2, η2)(xi+1 − xi)(yj+ 1
2
− yj)2 + uyyy(ζ2, η2)(yj+ 1

2
− yj)3)

)
+

1

4

(
u+ ux(xi+1 − xi) + uy(yj− 1

2
− yj)

+
1

2
(uxx(xi+1 − xi)2 + 2uxy(xi+1 − xi)(yj− 1

2
− yj)) + uyy(yj− 1

2
− yj)2)

+
1

2
(uxxx(ζ3, η3)(xi+1 − xi)3 + 3uxxy(ζ3, η3)(xi+1 − xi)2(yj− 1

2
− yj)

+ 3uxyy(ζ3, η3)(xi+1 − xi)(yj− 1
2
− yj)2 + uyyy(ζ3, η3)(yj− 1

2
− yj)3)

)
−2u

+u+ ux(xi+1 − xi) +
1

2
uxx(xi+1 − xi)2 +O(h3)

)
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As before we substitute with h:

− λ

2h

(1

2
(u+ uxh+

1

2
uxxh

2 +O(h3))

+
1

4

(
u− uxh+ uy

h

2
+

1

2
(uxxh

2 − 2uxy
h2

2
+ uyy

h2

4
) +O(h3)

)
+

1

4

(
u+ uxh− uy

h

2
+

1

2
(uxxh

2 + 2uxy
h2

2
+ uyy

h2

4
) +O(h3)

)
−2u

+u− uxh+
1

2
uxxh

2 +O(h3)
)

= − λ

2h

(
u+ uxh+

1

2
uxxh

2 +
1

2
uyy

h2

4
+O(h3))

−2u

+u− uxh+
1

2
uxxh

2 +O(h3)
)

= −λ
2
uxxh−

λ

16
uyyh+O(h3)

For this point, the scheme is consistent, and we get a truncation error with an

order of 1. From this we observe that the change in mesh refinement is the prob-

lem for the artificial diffusion term of the scheme, and is what makes it inconsistent.

For point D, the corner of the fine grid, the truncation error is very similar

as the truncation error along i = k. In both x- and y- direction there will be an

inconsistent term: λ
3
ux and λ

3
uy.

4.2.3 Error estimate of mesh refinement method

It is possible to determine an error bound representing the worst case error for the

method based on the truncation error. Let D be the finite volumes operator such

that

Du = −aui+1,j − ui−1,j

2h
− bui,j+1 − ui,j−1

2h

for the initial-boundary value problem in Equation (2.1). This is the same as

the central difference operator. Consider the following semi-discretization of the
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advection equation:

(ui,j)t = Dui,j

ui,j(0) = fi,j

u0,j = gj(t)

ui,0 = gi(t)

ui,j is the numerical approximation at point (xi, yj), and u(xi, yj) is the exact

solution of (3.1) at the same point. If T is the truncation error then we have that:

ut(xi, yj, t) = Dui,j + T (xi, yj, t)

u(xi, yj, 0) = fi,j + φi,j

u(0, yj, t) = gj(t) + ψy

u(xi, 0, t) = gi(t) + ψx

Where φi,j is the error in the initial data, and ψ is the error in the boundary

data. We subtract these two functions ei,j = ui,j − u(xi, yj), and obtain the error

equation:

et = T (xi, yj)

ei,j(0) = φi,j

e0,j(t) = ψy

e0,j(t) = ψx

Applying the energy method on this error equation we get:∑
i,j

ete =
∑
i,j

T (xi, yj)e

||e2||
2

=
∑
i,j

T (xi, yj)e

Using the equality ||e2||
2

= ||e||||e||t for the left side and the Cauchy-Schwartz

inequality on the right hand side, we get:

||e||||e||t ≤ ||T (xi, yj)||||e||

||e||t ≤ ||T (xi, yj)||
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Proposition (3.4) from [Nor08], tells us that the error ||e|| is bounded by the

truncation error:

||e|| ≤ ||T (xi, yj)|| (4.19)

Say we have one initial grid G0 with a subgrid G1 located somewhere in the

middle of the initial grid. From the computations of truncation errors above, we

know that the coarse points outside the boundary of G1 have a truncation error of

O(h), and the points at the interface have a truncation error of O(1). This means

that the amount of points with error O(1) and O(h) is bounded by 4m. This leads

to the following estimate:

||T (xi, yj)|| =

√√√√ m∑
i=0

m∑
j=0

h2T 2
i,j

≤
√
h2m2h4 + h24mO(h)2 + h24mO(1)2

≤
√
h4 + 4hO(h)2 + 4hO(1)2

≤ h2 + 2h
3
2 + 2h

1
2 ≤ K(h

1
2 )

(4.20)

Thus, the error is bounded below by K(h
1
2 ) which means that the worst order of

convergence the method can achieve is 0.5.
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Figure 4.4: Grid with cell-centered nodes and refinement of 2.

4.3 Another approach at the Mesh Refinement

method with finite volumes

In [BC89] Marsha Berger and Joseph Colella present a different approach to the

Adaptive Mesh Refinement method than in [BO84]. They describe how to ap-

proach the method when using a cell-centered finite volume scheme. The changes

done to the method in [BC89] will be explained in this section and result in a third

method, which we will refer to as Method C.

The cell-centered mesh refinement approach differs from Method A at a few

points, one of which is the way we formulate the finite volume scheme. The

approximated point is inside each cell on the computational domain rather than

at the grid intersections, as explained in Section 2.4. This can be seen in Figure

4.4. For this method, a refinement will look slightly different than for the previous

ones. In the figure, we observe that a cell-centered method will lead to a refinement

of the cells. The cell centers however, are no longer aligned on the coarse and fine

grids. In the previous methods, the refined grid contained the same points as the

coarse grid with new points in between. For the cell-centered method, none of

the points on the refinement are aligned with the points on the coarse grid, as

we can see in Figure 4.4. This does not effect the inner points of the refinement,

which have the same structure and mesh spacing as in the other two methods.

The solution at these points is calculated the same way as before, separated from
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(x1,y1)

(x1,y2) (x2,y2)

(x2,y1)

(xi,yj)

Figure 4.5: Interface between coarse and refined grid for UMR where the solution at point (xi, yj)

is to be interpolated by the four coarse points surrounding it

the coarse grid points. The boundary points however, needs to be calculated in a

different manner.

4.3.1 Boundary values for refinements with cell-centered

finite volume scheme

As before, we are using interpolation to approximate the boundary points of the

refined subgrid. Earlier we used linear interpolation for this, but since the bound-

ary points for the fine grid are not aligned with the coarse grid points in either x-

or y-direction, we will use bilinear interpolation, as in [BC89].

Let (xi, yj) be a refined boundary point to be interpolated. The coarse grid

points around (xi, yj) are given by (x1, y1), (x1, y2), (x2, y1) and (x2, y2), illustrated

in Figure 4.5. The bilinear interpolation is done the following way (from [Pre92]):
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u(xi, y1) ≈ x2 − xi
x2 − x1

u(x1, y1) +
xi − x1

x2 − x1

u(x2, y1)

u(xi, y2) ≈ x2 − xi
x2 − x1

u(x1, y2) +
xi − x1

x2 − x1

u(x2, y2)

u(xi, yj) ≈
y2 − yj
y2 − y1

u(xi, y1) +
yj − y1

y2 − y1

u(xi, y2)

For a boundary at a refined grid with refinement 2, we have that (x2 − x1) =

(y2− y1) = h, (x2− xi) = (yj − y1) = 3
4
h and (xi− x1) = (y2− yj) = 1

4
h. Thus the

interpolation becomes:

u(xi, y1) ≈ 3

4
u(x1, y1) +

1

4
u(x2, y1)

u(xi, y2) ≈ 3

4
u(x1, y2) +

1

4
u(x2, y2)

u(xi, yj) ≈
1

4
u(xi, y1) +

3

4
u(xi, y2)

This is how the solution at the boundary of the refined grid is calculated. The

next question is how to transfer the updated values from the fine subgrid back to

the coarse grid.

4.3.2 Updating a coarse grid

The challenge with non-aligned grid points reappears when it is time to update

the coarse grid with the values from its subgrids. This process is similar to the

boundary calculations, but reversed. In this case one takes the average of the

refined volumes inside the coarse volume as in Figure 4.6. Say once again that we

have a refinement of 2. When updating the solution ucoarse at (xcoarse, ycoarse), the

following calculations are done:

ucoarse =
1

r2

2∑
i=1

2∑
j=1

u(xi, yj)

This is done for all the coarse volumes covered by fine volumes from a subgrid.
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(x1,y1) (x2,y1)

(x2,y2)(x1,y2)

(xcoarse,ycoarse)

Figure 4.6: Coarse grid cell refined by a factor of r = 2
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G0 G0

G1,1

G0

Figure 4.7: (From the left) Image 1: Initial grid G0. Image 2: Grid G0 with flagged points where

the error is too big. Image 3: Grid G0 with refinement G1,1 where all flagged points are interior

to the new refined grid.

4.4 Adaptive Method

Having explained what mesh refinement is and how it is done, we return to the

rest of the Adaptive Mesh Refinement method. As mentioned in the introduction,

the AMR method uses mesh refinement as a tool to improve the accuracy of the

simulation.

The method begins with a Cartesian grid G0 covering the computational do-

main. The solution u is first calculated at grid G0. When using the AMR method,

one wants to calculate an approximation with a given accuracy. To determine

when or where the grid is in need of refinement, an error estimate is calculated.

The error estimate is examined, and all grid points where the estimated solution

is not accurate enough are flagged. Next, a new finer grid G1,1 is created, covering

the flagged points. This is illustrated in Figure 4.7. Now the grid consists of the

initial grid G0, and a refined grid G1,1 at the next grid level with the mesh spacing

h1 = h0
r

. This continues, and grids are recursively created or destroyed depending

on whether or not they are needed. An example of this grid structure is illustrated

in Figure 4.8. The recursive process of grid creation is explained in more detail in

the next section.

Each grid is kept independently of the others, and the solution is calculated at

each of the grids and saved in their own solution vector. This leads to unnecessary

storage consumption, but keeping the grids separate makes the programming of
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G0

G2,1

G1,1

G1,2

Figure 4.8: Grid G0 with two refinements G1,1 and G1,2, where G1,2 is refined again with the

grid G2,1

the solution easier, and saves a lot of time.

If a grid is in need of refinement, a clustering algorithm is used to determine

how the new grids should be created. It is not trivial how to best cover a set

of flagged points on a domain by different fine grids. Fewest possible grids must

be created in order to avoid unnecessary computations, but at the same time one

wishes to cover as little as possible of the underlying domain to avoid more preci-

sion where it is not needed. Further details of the algorithm is described in [BO84].

4.4.1 Recursive grid computation

The approximation of the numerical solution is done recursively on all the grids,

level by level. The AMR method can refine in time as well as in space by the

same ratio. This makes it easier to always satisfy the CFL-condition, as the ratio

between the space step and the time step is preserved.

The algorithm starts by updating the initial grid G0 to time t0 + k. Next, the
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error algorithm is run to check if the grid is in need of refinement anywhere. If

so, it flags the points, and creates one or more new, refined girds as explained in

the previous subsection. The same procedure is performed on these subgrids, and

so on. After updating all grids in Gi, the error algorithm is applied to add new

subgrids or delete existing ones if this is necessary. All grids at level i are updated

before the algorithm moves on to the next grid level. If there exists a level i + 1,

the procedure is repeated for these grids. They are updated, and the error algo-

rithm is applied. The solution on a coarse parent-grid must be saved before the

grid is updated, so that the solution is available when the boundary values on the

subgrid are calculated. When all subgrids Gi,j at level i are calculated, and there

are no further refinements of these grids, the algorithm goes back to the coarser

level i− 1, and the values of the parent grids are updated with the values from its

refined subgrids. This is explained in the next paragraph. In the end all grids are

at time tn+1, and all parent grids are updated with values from its subgrids. Then

the algorithm moves on to the next time step. If the algorithm refines in time too,

a subgrid has smaller timesteps than its parent grid and is updated several times

before it reaches tn. A pseudocode is shown in Algorithm 1.

Algorithm 1: Recursive grid computation

computeSol(Gi)

while Gi not at time tn+1 do

for grid Gi,j in Gi do

update Gi,j to ti + k
ri+1 run error algorithm for Gi,j

end

if level i+ 1 exists then
computeSol(Gi+1)

update Gi,j with values from Gi+1,j

end

After a grid and its subgrid is updated to the same time tn+1, the coarse grid

needs to be updated with the values from its refinement. This is done by simply

injecting the values from the fine grid onto the coarse grid. If the coarse grid points

are not contained in the fine grid, an average is calculated from the fine grid instead.
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The AMR method is complex, and each of the introduced parts are carefully

developed. The error estimation and clustering algorithm forms the adaptive part

of the method. This is the part of the algorithm that automatically finds out

where to create new grids and places them where they belong. We have decided

to focus on the mesh refinement in the method. The method can be expanded

to be adaptive, but in this thesis we have left this part out, and will not go into

more detail about it. Instead we focus on studying the convergence, stability and

accuracy of the mesh refinements that are used in the AMR-method.

This concludes the Adaptive mesh refinement method. We will now proceed

with the results from different numerical experiments and compare the different

mesh refinements methods that we have introduced.

4.5 Numerical results

We have done two different simulations comparing the three mesh refinement meth-

ods. First we approximate a 2-dimensional sine wave using the advection equation.

Later we approximate a vortex with the Euler equations, and at the end of the

chapter we have simulated a radial explosion with the Euler equations.

4.5.1 Simulations of 2-dimensional sine wave with the ad-

vection equation

We have approximated the following PDE problem:

ut + ux + uy = 0, x, y ∈ [0, 1]2, 0 ≤ t ≤ 1

u(x, 0, t) = sin(x− t) + sin(t)

u(0, y, t) = sin(t) + sin(y − t)

u(x, y, 0) = sin(x) + sin(y)

(4.21)
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The PDE is approximated on the domain [0, 1]× [0, 1] which is discretized by

an initial grid G0. This grid has a refined subgrid G1 located at [0.3, 0.7]2 with a

refinement of r = 2. Thus, if the mesh spacing of G0 is given by h0, then the mesh

spacing of G1 becomes h1 = h0
2

. When presenting a result we will always refer

to the gridpoints of the initial grid G0 when specifying the amount of gridpoints

m×m. There is no refinement in time, and the CFL condition is CFL = ∆t
∆x

= 2r,

where r is the ratio of refinement. The simulations are run from t = 0 to t = 1. In

Figure 4.9 and 4.10, the initial function of the problem is plotted on a 10×10 grid

with refinement. For this grid, the 10×10 grid is the initial grid with mesh spacing

h0 = 1
9
, which means that the subgrid G1 has mesh spacing h0 = 1

18
. Figure 4.9

shows the grid refinement for mesh refinement Method A and B, and 4.10 shows

the cell-centered mesh refinement method, Method C. In the plots we can see that

the refined grid on the cell-centered Method C has no coinciding points with the

coarse grid, whereas the original mesh refinement, Method A and B, does.

Figure 4.9: Initial function for a sine wave

with mesh refinement (Method A and B) on

a 10× 10 grid.

Figure 4.10: Initial function for a sine

wave with cell-centered mesh refinement

(Method C) on a 10× 10 grid.

The first thing to notice about the results is that Method A is not stable for

this simulation. The interface between the coarse and the fine grid seems to be

the reason. When imposing exact boundary conditions onto the interface instead

of interpolating the coarse grid values, the method achieves a convergence rate of

2. This implies two things: First of all the interpolation of the coarse grid points

at the boundary of the fine grid is indeed the cause of the instabilities. Second,

it gives a stronger assurance that there are no programming errors in the code

causing the instabilities. To test this further, we interpolated the exact solution at
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the fine boundary, rather than the points from the coarse grid. This also resulted

in a convergence rate of 2. Since the finite volume scheme is stable, small distur-

bances to the boundary conditions should not result in instability of the method.

This supports the conclusion that the method is unstable, as it shows that the

interpolation is done correctly.

In order to make Method A stable, it is necessary to add artificial diffusion.

This is what was done by Marsha Berger when proving stability for the AMR

method in [Ber85]. When this is done, the scheme looks like in Equation (2.12).

Trying to make the results as accurate as possible, the lowest diffusion constant

we can choose is λ = 0.1. Mesh refinement Method B confirms the stability calcu-

lations from earlier, and is not in need of any artificial diffusion. Mesh refinement

Method C with the cell-centered finite volumes scheme was also implemented. This

method is stable, which means that the bilinear interpolation done at the interface

between coarse and fine grid does not lead to an instability as the interpolation in

Method A does.

The convergence of the three different methods are shown in Table 4.1, together

with the method without mesh refinement. Keep in mind that the simulations with

mesh refinement Method A are the only ones where artificial diffusion has been

added. The results shows that one cannot expect the same convergence when the

mesh is refined. It is clear that the method looses some of its accuracy when re-

finement is added. In light of the truncation errors calculated for mesh refinement

Method B in Section 4.2.2, it makes sense that a refinement creates more error in

the calculations as the increased error on the refinement does affect the conver-

gence rate.

When comparing mesh refinement Method A to Method B, we see that the

extra calculations done to Method B was necessary in order to get stability. Still,

mesh refinement Method C is very similar to the stable method, both in error

and convergence. It is also interesting to notice that the most accurate method is

mesh refinement Method A, even though we have added artificial diffusion to this

method. The solution of the PDE is smooth, and thus a good example of where
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Error

m Method A Method B Method C no mr.

50 2.278 ×10−3 3.180 ×10−3 3.177 ×10−3 1.091 ×10−4

100 1.104 ×10−3 1.505 ×10−3 1.557 ×10−3 2.648 ×10−5

200 5.563 ×10−4 7.509 ×10−4 7.756 ×10−4 6.526 ×10−6

400 2.788 ×10−4 3.750 ×10−4 3.859 ×10−4 1.621 ×10−6

800 1.396 ×10−4 1.874 ×10−4 1.925 ×10−4 4.039 ×10−7

Convergence

m Method A Method B Method C no mr.

50 - - - -

100 1.087 1.139 1.029 2.043

200 1.000 1.025 1.006 2.021

400 0.996 1.009 1.007 2.010

800 0.998 1.004 1.003 2.005

Table 4.1: Error and convergence for mesh refinement Method A, B, C and no mesh refinement

for advection equation

an interface would be placed when running the adaptive mesh refinement.

4.5.2 Simulation of an inviscid vortex with the Euler equa-

tions

Next, we proceed to the Euler equations presented in Chapter 3 and expressed in

Equation 3.4. We have simulated an inviscid vortex, given by the following data

obtained from [Svä21]:

Variables in the equations:
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Freestream pressure: ρ∞ = 1

Freestream temperature: T∞ = 273.15

Vortex radius: Rv = 0.1

Vortex strength: β = 1

Center of vortex: (xc, yc) = (0.5, 0.5)

Angle of vortex: α = 0

Mach number: Ma = 0.01

These variables gives us the following constants:

Ideal gas constant: Rg = 287.15

Adiabatic exponent: γ = 1.4

Speed of sound: c = 331

Vortex functions:

f(x, y) =
(x− xc)2 + (y − yc)2

Rv
2

du1(x, y) = −β y − yc
Rv

e
−f(x,y)

2

du2(x, y) = −β x− xc
Rv

e
−f(x,y)

2

dT (x, y) =
1

2
β2 e

−f(x,y)

cp

Field variables:

ρ = ρ∞

(
T∞ − dT (x, y)

T∞

) 1
γ−1

ρu1 = ρ
(
u∞ cos(α) + du1(x, y)

)
ρu2 = ρ

(
u∞ sin(α) + du2(x, y)

)
E =

(
Rgρ(T∞ − dT (x, y))

γ − 1
+

1

2

(ρu1)2 + (ρu2)2

ρ

)
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Figure 4.11: Initial density for vortex plotted on 100x100 grid with a refinement of r = 2 on

[0.35, 0.65]2 seen from below.

The solution is calculated in the time interval [0, 0.15]. The CFL-condition is

given by ∆x
∆t

= (c + max(
√
u2

1 + u2
2))r. The refinement is located at the square

[0.35, 0.65]2. Initially, the vortex is located in the middle of the domain, inside the

refinement. This can be seen in Figure 4.11 of the initial density, where all the

points from the coarse and the fine grid is plotted. The figure shows the density

from below, and the fine grid can be seen around the middle of the vortex where

the mesh spacing is smaller than elsewhere. The vortex moves in the positive

x-direction towards the boundary at x = 1. Thus, the vortex moves across the

interface between the refined and coarse grid. The simulations are done with all

three mesh refinement methods presented earlier. We have also run the simula-

tions without mesh refinement and will compare this to the other methods. Figures

4.12, 4.13, 4.14 and 4.15 show the contour plots of the density for the three mesh

refinement methods and for the method without mesh refinement, with 4002 points

at time t = 0.07. The convergence of all the methods can be seen in Tables 4.2 - 4.5.

Even though we proved stability for mesh refinement Method B with the ad-
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Figure 4.12: Contour plot of density in vortex moving in x-direction with mesh refinement

Method A, 4002 points at time t = 0.07 with artificial diffusion coefficient λ = 6.5

Figure 4.13: Contour plot of density in vortex moving in x-direction with stable mesh refinement,

4002 points at time t = 0.07 with artificial diffusion coefficient λ = 1.5
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Figure 4.14: Contour plot of density in vortex moving in x-direction with cell-centered mesh

refinement method, 4002 points at time t = 0.07 with artificial diffusion coefficient λ = 0.5

Figure 4.15: Contour plot of density votex moving in x-direction with no mesh refinement, 4002

points at time t = 0.07 no artificial diffusion
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Mesh refinement Method A

Error

m ρ v1 v2 E

100 2.377 ×10−6 2.692 ×10−2 4.827 ×10−2 6.785 ×10−1

150 1.713 ×10−6 2.103 ×10−2 3.696 ×10−2 4.893 ×10−1

200 1.345 ×10−6 1.715 ×10−2 2.981 ×10−2 3.844 ×10−1

250 1.099 ×10−6 1.451 ×10−2 2.484 ×10−2 3.144 ×10−1

300 9.274 ×10−7 1.257 ×10−2 2.133 ×10−2 2.655 ×10−1

350 7.977 ×10−7 1.112 ×10−2 1.864 ×10−2 2.286 ×10−1

400 7.002 ×10−7 9.943 ×10−3 1.657 ×10−2 2.009 ×10−1

Convergence

m ρ v1 v2 E

100 - - - -

150 0.808 0.609 0.658 0.806

200 0.840 0.709 0.747 0.839

250 0.904 0.748 0.818 0.901

300 0.932 0.791 0.836 0.927

350 0.978 0.791 0.875 0.970

400 0.976 0.839 0.882 0.970

Table 4.2: Convergence and error for simulations of vortex moving in positive x-direction with

mesh refinement Method A

vection equation, the method is not stable for the Euler vortex. In fact, it is not

stable for any of the three mesh refinement methods. Thus we must add artificial

diffusion for these methods as well, and we get the scheme in Equation (2.12). Here

we also notice an important difference between the mesh refinement Method A and

B. Method B needs significantly less diffusion than Method A. While Method A

needs about λ = 6.5 the stable method needs only λ = 1.5. The latter is clearly

more stable which makes sense since we have been able to prove stability for the

case in Section 4.2, and we have also seen it earlier when simulating the advection

equation. This causes Method A to lose accuracy as we can see in the errors in
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Mesh refinement Method B

Error

m ρ v1 v2 E

100 7.700 ×10−7 1.122 ×10−2 1.658 ×10−2 2.289 ×10−1

150 5.376 ×10−7 7.115 ×10−3 1.107 ×10−2 1.568 ×10−1

200 4.091 ×10−7 5.277 ×10−3 8.362 ×10−3 1.184 ×10−1

250 3.253 ×10−7 4.158 ×10−3 6.666 ×10−3 9.383 ×10−2

300 2.716 ×10−7 3.460 ×10−3 5.566 ×10−3 7.811 ×10−2

350 2.324 ×10−7 2.940 ×10−3 4.748 ×10−3 6.666 ×10−2

400 2.030 ×10−7 2.575 ×10−3 4.159 ×10−3 5.815 ×10−2

Mesh refinement Method B

Convergence

m ρ v1 v2 E

100 - - - -

150 0.886 1.123 0.996 0.934

200 0.949 1.039 0.976 0.976

250 1.027 1.068 1.016 1.043

300 0.991 1.007 0.989 1.006

350 1.010 1.057 1.032 1.028

400 1.014 0.993 0.992 1.023

Table 4.3: Convergence and error for simulations of vortex moving in positive x-direction with

Mesh refinement Method B

Table 4.2. Mesh refinement Method C however, proves to be more stable than the

other two. For this method we have λ = 0.5. This is interesting because the only

difference between this method and Method A is the way the finite volume scheme

is implemented, and the interpolation method.

The simulations of the Euler vortex also show that the results are better when

we do not apply the mesh refinement. These simulations achieve a higher accuracy
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Mesh refinement Method C

Error

m ρ v1 v2 E

100 2.654 ×10−7 0.00783 0.00805 0.08898

150 2.548 ×10−7 0.00469 0.00508 0.07683

200 1.394 ×10−7 0.00327 0.00372 0.04433

250 1.171 ×10−7 0.00249 0.00292 0.03632

300 9.824 ×10−8 0.00200 0.00241 0.03012

350 8.155 ×10−8 0.00168 0.00203 0.02497

400 7.12589 ×10−8 0.00144 0.00177 0.02167

Convergence

m ρ v1 v2 E

100 - - - -

150 0.101 1.262 1.136 0.362

200 2.096 1.259 1.079 1.912

250 0.783 1.217 1.088 0.893

300 0.962 1.204 1.056 1.027

350 1.208 1.139 1.116 1.216

400 1.010 1.129 1.041 1.061

Table 4.4: Convergence and error for simulations of vortex moving in positive x-direction with

Mesh refinement Method C

and we get a convergence of 2, as seen in Table 4.5. The artificial diffusion we

added in the mesh refinement methods to make them stable is one of the reasons

for the loss of accuracy.

Observing the error for the three mesh refinement methods in Tables 4.2 to 4.4

we see that the cell-centered mesh refinement Method C gives the most accurate

results. In Figures 4.16, 4.17, 4.18 and 4.19, we have plotted the error of the

density for each of the four methods at t = 0.07. In each of the mesh refinement



CHAPTER 4. ADAPTIVE MESH REFINEMENT 63

No mesh refinement

Error

m ρ v1 v2 E

100 2.33560 ×10−7 0.00167 0.00391 0.06432

150 1.32997 ×10−7 7.34094 ×10−4 0.00168 0.03635

200 6.76252 ×10−8 4.10647 ×10−4 9.25629 ×10−4 0.01849

250 4.19191 ×10−8 2.61893 ×10−4 5.86291 ×10−4 0.01149

300 2.85056 ×10−8 1.81437 ×10−4 4.04379 ×10−4 0.00789

350 2.04871 ×10−8 1.33078 ×10−4 2.95661 ×10−4 0.00562

400 1.54883 ×10−8 1.01761 ×10−4 2.25550 ×10−4 0.00425

Convergence

m ρ v1 v2 E

100 - - - -

150 1.389 2.032 2.089 1.408

200 2.351 2.019 2.061 2.350

250 2.143 2.016 2.046 2.133

300 2.115 2.013 2.037 2.109

350 2.143 2.011 2.031 2.139

400 2.094 2.009 2.027 2.092

Table 4.5: Convergence and error for simulations of vortex moving in positive x-direction with

no mesh refinement

methods we can clearly see the contour of the fine-grid interface in the middle of

the plot. The sides and the corners of the refined square are prominent. This

demonstrates how the refinement creates error. When comparing to Figure 4.19,

the error for the method without mesh refinement, we see that the error is spread

more evenly throughout the domain, and is generally smaller than in the other

plots. There is no diffusion for this simulation which is why the error looks less

smooth than for the other plots. Remembering the truncation error that we de-

rived in Section 4.2.2 the computations at the edges and corners are supported by
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Figure 4.16: Error plot of density in vortex moving in x-direction for 4002 points at time t =

0.07 with artificial diffusion constant λ = 6.5, simulated with mesh refinement Method A

these error plots. In the calculations the interface has indeed proven to have less

accuracy, and for some points at the edges and the corners, the scheme is even

inconsistent.

When it comes to the convergence rates of the three methods we observe that

mesh refinement Method B and C is closer to 1 at all times, while the convergence

of mesh refinement Method A is strictly less than 1, but climbs slowly up towards 1

as the number of points increases. Thus Method A has the lowest convergence rate

of the three and is the least accurate mesh refinement method. We may assume

that the stable method has its advantages from the stability which we have shown

for the advection equation. Even though the scheme is not consistent in the diffu-

sion at the interface it still converges. The convergence rates of mesh refinement

Method B and C both approaches 1, but for the latter one it is even slightly above

1 for the speed components v1 and v2. Mesh refinement Method C is altogether

the most accurate of the three. However, none of the methods works without dif-

fusion, and the convergence of the non refined method is 2, which means that no
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Figure 4.17: Error plot of density in vortex moving in x-direction for 4002 points at time t =

0.07 with artificial diffusion constant λ = 1.5, simulated with mesh refinement Method B.

Figure 4.18: Error plot of density in vortex moving in x-direction with 4002 points at time t =

0.07 with artificial diffusion constant λ = 0.5, simulated with mesh refinement Method C.
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Figure 4.19: Error plot of density in votex moving in x-direction with no mesh refinement, 4002

points at time t = 0.07 without artificial diffusion.

refinement still is the better option for these simulations when only considering

the accuracy.

Still there might be many reasons to use mesh refinement. The computations

done in this section are quite simple, concentrating on smaller problems, and

there are no discontinuities. When more complex problems are calculated, the

computations can take a lot of time, and it might be crucial to reduce this time.

By using refinement in time, which we have not tested here, the computational

overhead can be much reduced. Then mesh refinement might be a good option.

Especially when there are shocks involved, in which case artificial diffusion must

be applied anyway and a part of the accuracy is already lost.
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4.5.3 Simulation of a radial explosion with the Euler equa-

tions

In this section we take the simulations one step further and compute a radial ex-

plosion with the Euler equations. In the previous section, we placed the refinement

closely around the vortex, and the vortex traveled over the grid interface. This

was a way to test the stability of the intersection between the coarse and fine

grid. However, the fine meshes are often supplied such that the grid points with

more error are interior to the fine grid. This means that the edges are located

at smoother areas of the solution, which is not the case for the simulation with

the Euler vortex. In this experiment we will try to simulate an explosion, and to

test the refinement of the AMR method in a more justified case, the explosion will

be located well inside the fine subgrid. With time the explosion is spreading out

towards its edges, but stops before the boundaries of the fine grid are reached. We

are using wall boundary conditions at the boundaries for these simulations, which

seems to be stable for these simulations. A formal proof of stability can be found

in [SN08]

Starting with the domain [0, 1] × [0, 1], the centre of the domain is (xc, yc) =

(0.5, 0.5). Given a radius of Rv = 0.2, the density within Rv of the center (xc, yc)

is given by ρin = 1 and outside this radius the density is ρout = 0.125. Similarly

the pressure inside is pin = 1 and outside it is pout = 0.1, so that the energy

inside is E = pin
gamma−1

, and outside E = pout
gamma−1

. The velocity components are

zero. The method is run from time t0 = 0 to time tn = 0.065, and the refinement

is located at the square [0.15, 0.85] × [0.15, 0.85]. Since the explosion is a shock,

and the initial conditions are discontinuous, we have added artificial diffusion with

diffusion coefficient λ = 0.5. We test the three mesh refinement methods A, B

and C, and one simulation is without mesh refinement. All simulations have a

300 × 300 initial grid. The three mesh refinement methods A, B and C have a

refined subgrid in the middle of the domain, as explained above, with refinement

ratio 2. The simulations are compared with a 1197 × 1197 grid, which works as

an approximated exact solution. The errors of the simulations are shown in table

4.6, and Figure 4.20 shows the explosion at time t = 0.065.
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Error

variable Method A Method B Method C no mr.

ρ 6.150 ×10−2 6.150 ×10−2 6.325 ×10−2 1.386 ×10−1

v1 5.122 ×10−2 5.122 ×10−2 5.293 ×10−2 1.072 ×10−1

v2 5.122 ×10−2 5.122 ×10−2 5.293 ×10−2 1.072 ×10−1

E 1.836 ×10−1 1.836 ×10−1 1.895 ×10−1 3.962 ×10−1

Table 4.6: Error for mesh refinement Method A, B, C and no mesh refinement for radial explosion

Figure 4.20: Contour of density in a radial explosion on a 3002 grid at time t = 0.065.

We observe that for this experiment, the mesh refinement method works quite

well. The challenge we faced earlier with the grid interface between the fine and

coarse grid seems to be solved by locating the shock entirely inside the subgrid.

While there is a great deal of change inside this patch of subgrid, there is no change

outside the explosion before the shock has reached a given point. Thus the flux

at this part of the grid, at the interface where the shock has not reached yet, is
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small or zero. The error of Method A and Method B is the same and the error for

method C is similar, which is a result of the location of the fine grid.

This experiment shows that the mesh refinement can work well when applied

in a specific way on the right problems. The radial explosion experiment is a good

way to demonstrate this because we are able to capture the part of the domain

where all of the change happens, while there is nothing happening outside the

explosion. Still, something must be done when the shock from the explosion gets

close to the wall, which is where the adaptive part of the method usually comes

in. This problem is also in need of artificial diffusion due to the shock, and as we

saw earlier, this gives the Mesh refinement methods an advantage.



Chapter 5

Staircase boundary

When dealing with Cartesian, uniform grids, there is another situation in which

we need to reconsider the grid points. When we are dealing with a domain where

the boundary is not aligned with the Cartesian blocks, we must adapt the grid

points to this boundary in some sense. In this chapter we want to look at one

structure used to solve this problem, which is a staircase boundary.

Consider the domain illustrated in Figure 5.1. The figure shows a squared

domain with a sloping boundary in the lower left corner. A discretization of this

domain is straightforward on a Cartesian grid except for the sloping edge. On this

part of the boundary we need to decide how to represent the boundary through the

grid points from the Cartesian grid. This leads a grid boundary that looks like in

Figure 5.2, staircase formed. We want to analyze this approach for approximating

non-uniform domains with Cartesian grids. First, we explain how to decide the

discretization of the boundary.

70
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Figure 5.1: Domain with sloping boundary

in lower left corner

Figure 5.2: Computational domain with

staircase boundary in lower left corner

5.1 Boundary calculations

As explained above, we need to approximate the sloping boundary with a staircase

formed grid boundary. In these calculations we will assume that the boundary cuts

off one corner of the grid as shown in Figure 5.1. To find the numerical boundary

points we simply calculate the length from the boundary to the grid points nearby

and choose the closest ones. Let the boundary be expressed by the equation

y = ax+ b

By starting with the x-value, we have calculated the corresponding y-value above

and below the line and chosen the one closest to the boundary. This results in a

boundary looking like in Figure 5.2. The Figures 5.3 and 5.4 shows the result of

these computations close up. In Figure 5.3 the boundary has a slope of a = −1

and since the grid is uniform Cartesian, the gridpoints at the boundary forms a

uniform staircase where each point is separated by the same distance. In this

particular case the boundary is located in the middle of two grid points, and we

use the grid point lying directly above the boundary. Thus, the computational

boundary becomes slightly misplaced. In Figure 5.4 the slope is 0 ≤ a ≤ −1. In

this case the boundary takes a different staircase form. In this figure we clearly
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see how the grid points closest to the line are chosen to form the boundary.

Figure 5.3: Staircase boundary calculated

from boundary of a grid expressed by the

line y = ax+ b with slope a = −1

Figure 5.4: Staircase boundary calculated

from boundary of a grid expressed by the

line y = ax+ b with slope 0 ≤ a ≤ −1

We present two different ways of calculating the boundary points, and we will

refer to the resulting boundaries as Staircase Boundary A and Staircase Boundary

B. For the first approach we consider each point at the staircase boundary and

decide whether it is a boundary point in x- and y-direction or both, and calculate

the flux accordingly. The boundary condition that is imposed in this case is the

exact solution at the grid point (xi, yj) where the flux is calculated. Let (xi, yj)

be one such point, chosen to represent the boundary. We assume that both the

points (xi−1, yj) and (xi, yj−1) are outside the boundary. In this case we calculate

the solution at boundary point (xi, yj) in the following way:

(ui,j)t = −
f(ui+1,j)− f(usoli,j )

2h
−
g(ui,j+1)− g(usoli,j )

2h

where usoli,j is the exact solution at point (xi, yj). This is how all the boundary

points in Figure 5.3 would be calculated. For the example in Figure 5.4, some

points are only boundary points in the y-direction, and they are calculated in the
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following way:

(ui,j)t = −f(ui+1,j)− f(ui−1,j)

2h
−
g(ui,j+1)− g(usoli,j )

2h

and correspondingly in y-direction. This is Staircase Boundary A.

In the second case we do the same calculations as for the first case, but the

boundary values are different. When approximating a continuous problem, one

usually only has information of the boundary values from the exact location of the

boundary, and not the exact solution in the entire domain, specifically at the grid

boundary points, as in the prevous case. Since we are simulating a boundary with

the staircase boundary, we should use the exact values from the line y = ax + b.

The Staircase Boundary B is calculated this way. The scheme is the same as

for Staircase Boundary A, but instead of usoli,j the exact solution is from the real

boundary: usol(x, y), (x, y) ∈ {(x, y)|y = ax + b}. Thus, the boundary values are

misplaced with an error of order h. This is the case when doing simulations with

the Euler equations where one of the boundaries represents a wall. At the wall,

the velocity component normal to the wall is zero.

We want to see how the staircase formed boundary performs compared to a

boundary aligned with the x− or y−axis, and if this approach works for more

complicated domains than squares and rectangles. It is also interesting to see how

the change in boundary conditions in the two methods affects the solution.

5.2 Numerical results with staircase boundaries

We have used the Euler equations from Section 3.2 to compute an inviscid vortex.

The variables and CFL condition are the same as described there, except for the

angle α, the Mach number and the strength β. In these computations we have

calculated two cases for the vortex. In the first case the vortex starts in the middle

of the domain as before, and moves towards the staircase boundary with a mach

number Ma = −0.01, an angle α = π
4

and strength β = 5. This means that the

vortex moves towards the boundary a distance of 0.5 cos(π
4
) =

√
2

4
and passes the
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boundary with an angle of π radians. The vortex is computed on the domain

0 ≤ x, y ≤ 1

y ≥ −x+ 0.5

The computational domain is m×m squared domain with a staircase bound-

ary calculated as described in the previous section for the two approaches. The

domain described looks like in Figure 5.1 from the previous section. In the second

case the vortex starts at initial position (xc, yc) = (
√

2
4
, 1

2
) and travels with Mach

number Ma = −0.01 on the square domain 0 ≤ x, y ≤ 1, without a staircase

boundary. Hence, the vortex travels the same distance
√

2
4

to the boundary, but

in the first case the boundary is a staircase boundary, and in the second case the

boundary is a normal boundary. This is illustrated in Figures 5.5 and 5.6, where

the initial values of the density is plotted. The simulations run from time t = 0 to

t = 0.12. The error and convergence of the simulations are shown in Table 5.1 for

case A, Table 5.2 for case B and Table 5.3 for the normal boundary.

Figure 5.5: Initial plot of density for domain

with staircase boundary

Figure 5.6: Initial plot of density for domain

with normal boundaries

The results shows that staircase boundary B is less accurate than Staircase

Boundary A and the normal boundary. Figure 5.7 shows a plot of the errors for

Staircase Boundary A and B, and for the normal boundary. We observe that

boundary A is more accurate than boundary B. Initially the error is similar, but

due to the higher convergence, the error of boundary A decreases and reaches the

same level as the normal boundary.
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Figure 5.7: Error of Staircase Boundary A, B and normal boundary

The convergence rate for boundary A is 2. For boundary B the velocity con-

verges with a rate of 1, and for the density and energy it starts out higher but

decays towards 1 as well. As seen in the tables and the error plot, Staircase Bound-

ary A and the normal boundary have similar accuracy and the same convergence

rate of 2. Method B has its faults in that the grid structure does not match the

shape of the domain as indicated in the previous section, and that there is an error

in the boundary data, leading to a loss of accuracy for the method.
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Staircase Boundary A

Error

m ρ v1 v2 E

100 1.562 ×10−6 1.016 ×10−2 1.318 ×10−2 4.246 ×10−1

150 6.447 ×10−7 4.398 ×10−3 5.717 ×10−3 1.755 ×10−1

200 3.734 ×10−7 2.444 ×10−3 3.182 ×10−3 1.009 ×10−1

250 2.386 ×10−7 1.551 ×10−3 2.025 ×10−3 6.405 ×10−2

300 1.679 ×10−7 1.070 ×10−3 1.401 ×10−3 4.521 ×10−2

350 1.251 ×10−7 7.804 ×10−4 1.027 ×10−3 3.356 ×10−2

400 9.454 ×10−8 5.956 ×10−4 7.839 ×10−4 2.546 ×10−2

Convergence

m ρ v1 v2 E

100 - - - -

150 2.183 2.065 2.060 2.179

200 1.898 2.042 2.037 1.926

250 2.007 2.039 2.026 2.034

300 1.929 2.034 2.021 1.911

350 1.906 2.048 2.015 1.932

400 2.100 2.0245 2.0213 2.068

Table 5.1: Error and convergence for simulations of vortex moving towards a staircase boundary

calculated with case A
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Staircase Boundary B

Error

m ρ v1 v2 E

100 1.559 ×10−6 3.247 ×10−2 2.816 ×10−2 4.360 ×10−1

150 1.136 ×10−7 2.211 ×10−2 2.001 ×10−2 2.054 ×10−1

200 4.507 ×10−7 1.651 ×10−2 1.534 ×10−2 1.346 ×10−1

250 3.210 ×10−7 1.335 ×10−2 1.261 ×10−2 9.858 ×10−2

300 2.605 ×10−7 1.105 ×10−2 1.054 ×10−2 7.976 ×10−2

350 2.134 ×10−7 9.557 ×10−3 9.192 ×10−3 6.581 ×10−2

400 1.860 ×10−7 8.299 ×10−3 8.023 ×10−3 5.716 ×10−2

Convergence

m ρ v1 v2 E

100 - - - -

150 1.927 0.948 0.836 1.857

200 1.597 1.015 0.932 1.468

250 1.521 0.953 0.879 1.396

300 1.147 1.040 0.986 1.161

350 1.284 0.939 0.885 1.248

400 1.040 1.057 1.018 1.055

Table 5.2: Error and convergence for simulations of vortex moving towards a staircase boundary

calculated with case B
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Normal boundary

Error

m ρ v1 v2 E

100 1.362 ×10−6 8.260 ×10−3 1.168 ×10−2 3.744 ×10−1

150 6.650 ×10−7 3.616 ×10−3 4.989 ×10−3 1.828 ×10−1

200 3.879 ×10−7 2.017 ×10−3 2.765 ×10−3 1.066 ×10−1

250 2.384 ×10−7 1.285 ×10−3 1.756 ×10−3 6.556 ×10−2

300 1.605 ×10−7 8.900 ×10−4 1.213 ×10−3 4.413 ×10−2

350 1.178 ×10−7 6.524 ×10−4 8.882 ×10−4 3.237 ×10−2

400 9.073 ×10−8 4.986 ×10−4 6.781 ×10−4 2.494 ×10−2

Normal boundary

Convergence

m ρ v1 v2 E

100 - - - -

150 1.768 2.037 2.098 1.769

200 1.874 2.029 2.051 1.873

250 2.181 2.019 2.036 2.180

300 2.170 2.016 2.027 2.171

350 2.009 2.015 2.023 2.010

400 1.953 2.013 2.021 1.954

Table 5.3: Error and convergence for simulations of vortex moving towards a normal boundary

in the negative x-direction
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Conclusion

In this thesis we have looked at the Adaptive Mesh Refinement method and studied

different ways to refine meshes. Three mesh refinement methods has been consid-

ered, two of which were reconstructions of approaches from [BO84] and [BC89],

and the last one was constructed in order to satisfy the stability calculations using

the Finite Volumes scheme.

The three MR methods have given varying results. The first method presented,

Mesh refinement A, was unstable without artificial diffusion in the first two sim-

ulations, but still had equally good accuracy for the advection equation. With

artificial diffusion it achieved a convergence of 1 for both simulations, as did the

other two methods. For the Euler vortex, we saw the biggest difference between

the methods. Mesh Refinement Method C gives the best results for these simu-

lations. It requires the least diffusion of all the methods, and generally had the

most accurate solution. Mesh refinement Method B is the second best, and we

believe some of its success to follow from the stability which was proven in Section

4.2. But even so, neither of the methods are able to achieve the accuracy of the

finite volumes method without mesh refinement. There is a great loss of accuracy

in such an abrupt refinement of the mesh, which causes all the methods to drop

in convergence. All three methods has convergence 1, while the method without

any mesh refinement has a convergence of 2. This means that when looking for

the most accurate method as a main priority, one might not want to use mesh

refinement for this experiment. We have done a second simulation with the Eu-
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ler equations, which turned out to be more in favour of the AMR method. This

was a simulation of a radial explosion, and we have seen that when locating the

grid interfaces well outside the explosion where there is little to no change in the

solution, we achieve considerably better results for the Mesh Refinement method.

Many problems in computational fluid dynamics, such as this one, include shocks

or discontinuities, which means that the accuracy is automatically compromised

when adding artificial diffusion. Thus, there are different reasons to use the AMR

method, depending on the problem.

We have also looked at staircase boundaries as a method for approximating

sloping boundaries of a Cartesian grid. This has worked well when supplied with

an exact solution, so that the boundary values can be correctly located at the

numerical boundary, as done in Staircase Boundary A. However, when approxi-

mating the boundary with slightly shifted boundary values, as is often the case for

many problems in fluid dynamics, the accuracy and convergence rate are reduced.
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