
Modelling of Brainstem Toxicity

Including Variable Relative

Biological Effectiveness in Paediatric

Proton Therapy

Andreas Havsgård Handeland

Master’s Thesis in Medical Physics

Department of Physics and Technology
University of Bergen

June 2021



i

Supervisors

Camilla Hanquist Stokkevåg
Department of Oncology and Medical Physics, Haukeland University Hospital /
Department of Physics and Technology, University of Bergen

Helge Egil Seime Pettersen
Department of Oncology and Medical Physics, Haukeland University Hospital





iii

Acknowledgements

First, I would like to express my deepest gratitude to my supervisors Associate Professor
Camilla Hanquist Stokkevåg and PhD Helge Egil Seime Pettersen. Thank you for contin-
uously inspiring me with new and exciting ideas during this project, for providing superb
feedback and for spending so much time on me and this project. Thank you, Camilla, for
introducing me to the project and for helping me understand all the clinical aspects of
the study, thus allowing me to understand the articles necessitated for this thesis. Thank
you, Helge, for helping me along with all the programming performed for this thesis, for
helping me with statistical and modelling approaches and for looking into every error
message I could not fix by googling.

Further, I would like to thank PhD candidate (although not a candidate for long) Lars
Fredrik Fjæra for performing the simulations necessary for this thesis, for explaining
their implementation to me, and for insightful discussions on subjects related to both
our projects. I also wish to thank MD Daniel J. Indelicato for providing the patient
cohort utilised in this thesis and MD, PhD Yasmin Lassen-Ramshad for delineating the
substructures that were so central for this thesis. Additionally, I wish to thank the ones
mentioned above, and PhD Kristian S. Ytre-Hauge and Professor Ludvig P. Muren, for
constructive feedback on my abstract submitted to NACP symposium 2021.

I would also like to thank all the colleagues I have worked with and the friends I have
made at the department during my five years of study. Even this last year has not been
too bad because of you. Thank you, Emilie Haugland Solheim, for spending so many
of your hours assisting me on this project; I am eternally grateful. Thank you, Odin
Alvestad, for teaching me topics our Master’s projects shared. Thank you, Amalie Øie
Hovland, Minh Chi To and everyone else who I also really wish I could mention by name.

Finally, I wish to thank my family for unconditionally supporting me all these years,
despite me not visiting as often as I might have liked. Thank you to my mum, Mona
Havsgård, my dad, Ståle Grude-Handeland, my siblings and everyone else.

Andreas Havsgård Handeland
Bergen, June 2021





v

Abstract

Brainstem necrosis is a rare but severe side-effect following paediatric proton therapy.
Substructures of the brainstem may be associated with regional differences in radiosen-
sitivity, but these are not accounted for clinically. The relative biological effectiveness
(RBE), the ratio between a test dose and reference dose resulting in the same clinical
endpoint, is also assumed to be constant for proton therapy. This may underestimate the
biological effect of the radiation since the RBE is thought to be variable across the beam
profile. Current dose constraints and normal tissue complication probability (NTCP)
models for adult tissues are further developed than ones based on paediatric patients.
However, paediatric tissue is associated with different radiosensitivity than adult tissues,
and more data is required to quantify this. This study aimed to further explore the asso-
ciation between variable RBE, regional radiosensitivity of the brainstem and brainstem
toxicity of paediatric proton therapy patients.

A cohort of 36 paediatric proton therapy patients that received significant dose to the
brainstem, and were subsequently at risk of brainstem necrosis, were included in a case-
control study. The patients had RBE-weighted dose distributions and dose-averaged linear
energy transfer (LETd) distributions recalculated with the FLUKA Monte Carlo code for
variable RBE models. The brainstem was delineated into substructures. Dose-volume
histograms and dose statistics of the cohort were used to fit Lyman-Kutcher-Burman
(LKB) models to the data for different RBE-weighted dose distributions and substruc-
tures. Dose statistics were also used as a basis for cluster analyses to explore regional
differences across the brainstem.

The results showed higher average variable RBE-weighted dose and LETd observed for
cases compared to controls, while this was not the trend for the constant RBE factor.
This thesis shows the first fitting of LKB models to substructures of the brainstem. For
the full brainstem structure, the tolerance dose (TD50) range was 61.7 − 68.6 Gy(RBE)
using RBE1.1 and 65.4− 70.0 Gy(RBE) based on the variable RBE models. The cluster
analysis separated the data points into a small number of relatively solid clusters but
overall did not show clear trends in sorting out cases from controls.
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Chapter 1

Introduction

Cancer is a collective term for several conditions all attributed to the uncontrolled, ab-
normal growth of cells [1]. 191 children under the age of 17 were diagnosed with cancer
in Norway in 2019 and central nervous system (CNS) tumours were the most common
form of cancer diagnosed [2]. Norwegian paediatric CNS tumours are associated with a
five-year survival rate of over 80%, with paediatric cancer, in general, seeing a five-year
survival rate of 86% [2]. Increasing survival rates are seen in most developed countries
[3]. However, cancer survivors are at high risk of developing health problems later in life,
largely attributed to the therapy they have undergone [4]. Increased focus is, thus, di-
rected to quality of life of patients post-treatment and the mitigation of radiation-related
side effects [5].

Paediatric CNS tumours are now commonly treated with proton therapy since this leads
to increased sparing of healthy tissue and could potentially decrease the rate of both acute
and late toxicity. However, there is a lack of clinical evidence, particularly for the latter,
which emphasises the importance of further study [6, 7, 8]. The goal of radiation therapy
as a form of cancer treatment is to maximise the dose to the tumour while minimising
the dose to healthy tissue, thus achieving tumour control while avoiding adverse effects
in healthy tissue [9]. For photons, this is achieved by irradiating from several angles with
high energy X-ray beams. Treatment with photons has been the standard since radiation
therapy was first used in 1896 [10, 11]. However, proton therapy is an alternative to the
photon therapy which comes with certain key advantages [12]. The damage from radia-
tion to biological tissue is described by the energy deposition from the radiation to the
traversed mass, referred to as the dose. Protons can achieve significantly lower entry doses
than photons, and the point of highest dose is deeper in the tissue and more localised.
The point of maximum dose for a proton beam is referred to as the Bragg peak. The goal
of proton therapy is for the position of the Bragg peak to fully cover the planning target
volume (PTV), which is the volume to be treated and encompasses the cancerous tissue
and error margins [9, 13]. This achieves increased sparing of healthy tissue while still
achieving the target dose to the tumour. A spread-out Bragg peak (SOBP) is typically
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utilised to ensure sufficient tumour coverage. Here, a beam configuration consisting of
several different energies is used, resulting in several overlapping Bragg peaks that com-
bine to a more extended range of consistent high dose deposition [12].

A disadvantage with proton therapy is the relative novelty of the technology compared to
X-ray treatment technology and the long experience we have in treating with X-rays [10,
14]. A standard method of translating this experience to proton therapy is utilising the
relative biological effectiveness (RBE) of a given modality, which relates the dose from
the modality to the dose from photons. For proton therapy, this factor is generally set to
1.1 relative to photons [15] based on in vivo studies in the early days of proton therapy
[16]. However, a constant factor of 1.1 is an oversimplified approach since in vitro studies
have shown that not only is the RBE variable across the beam path, the maximum RBE
in the distal end of the SOBP approaches a factor of 1.7 [16]. The variability of the RBE
has been observed to correlate with other radiation and tissue properties, increasing with
increasing linear energy transfer (LET) of the radiation and decreasing with physical dose
[16] and (α/β)x of the tissue. The (α/β)x-ratio of a tissue describes the response of the
tissue to a reference radiation (i.e. photons), with high ratios being associated with tissues
that respond early to radiation, while low ratios correspond to tissues that react later to
radiation. This translates to higher predicted RBE for lower (α/β)x, but uncertainties in
experimental values of the tissues makes this trend difficult to quantify [16]. The variable
RBE and LET might be especially critical for paediatric proton therapy patients since
their tissue is associated with low (α/β)x-ratios [17, 18], treatment is delivered in several
fractions with low dose per fraction (≤ 2 Gy(RBE)) [19] and SOBPs with lesser modula-
tion widths are associated with higher LET [16].

To account for variations in RBE, several phenomenological RBE models have been pro-
posed [20, 21, 22], which are empirical formulas that approximate experimental in vitro
results of RBE weighted dose. The LET is a particularly central parameter in describing
RBE since the increase in RBE in the distal end of the SOBP is to a high degree at-
tributed to the increase in LET [16, 21]. Additionally, most models account for increasing
RBE with decreasing physical dose and (α/β)x [20]. Recalculating RBE with variable
RBE models typically leads to higher average RBE-weighted doses and considerably al-
tered dose distributions compared to the constant factor [20]. These are shown to better
describe the RBE from experimental in vitro results [20, 16]. Currently, variable RBE is
only accounted for clinically by avoiding the position of the SOBP falloff coinciding with
vital organs close to the tumour site [23]. However, studies are increasingly investigat-
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ing LET distributions and how variable RBE affects rates of toxicity, and while studies
of brainstem necrosis have been inconclusive so far [24, 25], lesser degrees of brainstem
injury have been associated with areas of increased LET and RBE [26, 27, 28].

An unfortunate side-effect of radiotherapy as cancer treatment is the associated risk of
adverse effects to healthy tissue, referred to as toxicity. Toxicity spans a wide range of
severities and can be both strictly asymptotic or potentially lethal. Limiting the risk of
toxicity for vital radiosensitive organs close to the tumour volume is particularly concern-
ing during radiotherapy treatment. These organs are referred to as organs at risk (OAR)
[13] and are typically subject to strict dose constraints in the treatment planning phase
to minimise the risk of complication [12].

In the treatment of CNS tumours, the brainstem is a critical OAR since the brainstem
is responsible for vital body functions such as breathing [29], swallowing and regulating
blood pressure [30]. The brainstem may also be associated with higher radiosensitivity
than what is currently accounted for clinically [17, 31]. Brainstem dose constraints are
not universal [32] and, apart from avoiding hot spots of excessive dose and the delin-
eation of an outer 3 mm margin with slightly stricter constraints for the core [33], the
further substructures of the brainstem are treated equivalently. However, studies have
concluded that the brainstem’s radiosensitivity is likely to be regionally variant due to
the neuroanatomy of brainstem substructures [17]. Additionally, differences in fibre tract
dose responses have been observed and given grounds for a further transversal delineation
of the pons [34, 35], which could warrant refining the current dose constraints.

Dose constraints are upper limits of dose an OAR can be subject to from a given treatment
plan in radiotherapy before the risk of toxicity becomes unacceptable. The constraints are
based on experience from previous treatment and clinical studies [9, 32]. An alternative
approach to utilising collected clinical data to guide future therapy is to construct normal
tissue complication probability (NTCP) models. NTCP models are based on a cohort of
patients where the prescribed treatment has resulted in a specific adverse clinical end-
point to an OAR [12]. The NTCP models are, thus, organ- and endpoint-specific. The
model takes dosimetric data from the cohort as input, which is converted to a probability
for the treatment plan of a given patient to result in the same clinical endpoint. NTCP
models can then be utilised on future treatment schemes to associate the prescribed dose
distribution with a probability of toxicity. The models can be used to guide treatment
and to provide a second opinion on a specific dose plan. NTCP models have already been
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utilised clinically for a time [36]. However, with increased amounts of data to build the
models, increased hardware power and a heightened focus on machine learning (ML) and
modelling in radiotherapy, NTCP models are likely to become an even more important
aspect of modern treatment planning [37].

Cancer rates are observed to increase with age [38] and as a consequence NTCP models
based on adult patients are typically further developed than peadiatric models [5, 39].
Paediatric tissue is associated with different radiosensitivity and clinical endpoints com-
pared to adult patients, which need to be accounted for in their treatment [5, 39]. Hence,
establishing new models based on paediatric data is crucial since paediatric patients are
expected to live long lives following their treatment, and toxicity severely compromises
the quality of life of these patients [39].

1.1 Objectives

The overall aim of this thesis was to investigate brainstem necrosis related to paediatric
proton therapy in the interest of limiting incidence. A secondary goal was to explore
if the parameters incorporated in phenomenological RBE models would yield significant
changes in dose distributions compared to the constant RBE factor of 1.1 and if the
constant RBE assumption could be underestimating the dose to the brainstem. A further
aim was to study the regional differences in radiosensitivity across brainstem substructures
to establish if certain volumes required prioritising over others. Additionally, constructing
NTCP models for the brainstem and its substructures with brainstem necrosis as clinical
endpoint based on RBE-weighted dose to brainstem substructures was another important
objective of the thesis. Finally, the ability of cluster analysis to discover trends in the
data not apparent through manual study of the cohort was another point of interest.
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Chapter 2

Background

This chapter will cover the medical physics background important for understanding the
method and results presented in this thesis. The interactions of photons and charged
particles provide the basis of radiotherapy and will, thus, be recounted first (section 2.1).
The description of radiation qualities, both physical and biological, will then be discussed
(section 2.2), before moving on to how radiation interacts with and damages biological
tissue, known as radiobiology (section 2.3). The subsequent section is dedicated to the
principles behind radiotherapy, both with photons and protons (section 2.4). Further,
the relative biological effectiveness is outlined, which is a means of quantifying the rela-
tive effect of two radiotherapy modalities (section 2.5). The treatment planning process
that precedes the delivery of radiotherapy is the focus of the next section (section 2.6).
Statistical methods useful for processing and presenting clinical data follows, which are
necessitated in order to report results objectively (section 2.7). The processed clinical
data can then be used to guide future treatment through incorporations in predictive
clinical models, which are explained in the following section (section 2.8). Machine learn-
ing algorithms are increasingly being utilised within radiotherapy and will subsequently
be covered (section 2.9), while the final section consists of a brief explanation of brainstem
necrosis (section 2.10).

2.1 Radiation Interactions with Matter

The use of radiation in treating cancer is explained mainly by the mechanisms behind the
energy deposition of ionising radiation. Thus, this section will describe the interactions
of ionising particles with matter, both photons and heavier charged particles.

2.1.1 Photon Interactions with Matter

Photons interact with matter through several processes, but the most important contribu-
tors in the attenuation of a photon beam are the photoelectric effect, Compton scattering
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and pair production, which are the processes dominant at energies relevant to radiation
therapy [40, 41]. However, the range of energies is also characterised by different in-
teractions, with the photoelectric effect dominating lower energies, Compton scattering
dominating at intermediate energies, while pair production becomes important to account
for at higher energies. The interaction processes reduce the intensity of the photon beam
traversing matter, with radiation intensity at a point given as

I(x) = I0 exp (−µx) (2.1)

where I0 is the initial radiation intensity, µ is the linear attenuation coefficient of the mat-
ter the photon beam is passing through, and x is the penetration depth of the material.
The linear attenuation coefficients for the different interaction processes outlined earlier
vary depending on the incident photon energy and the electron density (Z) of the absorb-
ing material. Hence, the linear attenuation coefficient describes what process contributes
most significantly to the intensity loss of the beam given the current conditions [40, 41].
The relation between the linear attenuation coefficient and photon energy of the three
processes is shown in figure 2.1.

Figure 2.1: The dependence of linear attenuation coefficient on photon energy for photoelectric effect,
Compton scattering and pair production. The figure is retrieved from [42].

The Photoelectric Effect

First described by Albert Einstein in 1905, the photoelectric effect entails a photon’s
absorption by an orbital electron and the subsequent ejection of the electron from its
orbit. A schematic outlining the photoelectric effect is shown in figure 2.2.
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Figure 2.2: The photoelectric effect describes an orbital electron knocked out from its orbit by absorbing
an incident photon. Modified figure from [42].

The electron is ejected with a kinetic energy equal to the difference between the incident
photon energy and the electron’s binding energy, given as

E = hν − φ (2.2)

where E is the energy of the electron, hν is the energy of the photon, the product of
Planck’s constant h = 6.63 · 10−34 m2kg/s and the frequency of the photon (ν), and φ is
the binding energy of the electron. The probability of a particle interaction is commonly
expressed as a cross-section. The cross-section of the photoelectric effect for photon energy
exceeding 100 keV, which illustrates the rapid decline with increasing energy, is partially
described by the proportionality given as

σ ∝ Z4

E3
γ

(2.3)

where Z is the atomic number of the material and Eγ is the energy of the incident photon
[9]. Thus, the process is dominant at lower photon energies, as can be seen from figure 2.1,
and its probability increases with increasing atomic number (Z ) of the material [9, 40, 41].

Compton Scattering

Unlike the photoelectric effect, Compton scattering does not result in the absorption of
the photon, but the photon is instead scattered from its initial path. The process describes
a photon colliding with an outer orbital electron, or a free electron, and transferring part
of its energy to the electron. An illustration of the process is shown in figure 2.3.
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Figure 2.3: Compton scattering describes the process of an incident photon colliding with an electron and
absorbing some of its energy, before both particles continue at an angle to each other. Figure modified
from [42].

The particles are subsequently ejected at an angle between each other, with the angle
dependent on the magnitude of energy transferred between the particles. The outgoing
photon’s energy is related to the incident energy of the photon by

Eγ′ =
Eγ[

1 + Eγ
mec2

(1− cos θ)
] (2.4)

where Eγ′ is the energy of the outgoing photon, Eγ is the energy of the incident photon,
me is the mass of the electron and, θ is the angle between the path of the incident pho-
ton and the outgoing photon [9]. Maximum energy occurs when the angle θ = π, which
describes a direct collision between the photon and the electron. The cross-section of
Compton scattering has no direct energy proportionality, which makes Compton scatter-
ing dominate at intermediate energies, as can be seen in figure 2.1 [9, 40, 41].

Pair Production

Pair production is the final photon interaction process outlined and describes a photon
affected by a nucleus’ electromagnetic field and the subsequent spontaneous conversion
into an electron-positron pair, as shown in figure 2.4.
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Figure 2.4: Pair production describes the spontaneous annihilation of a photon into an electron-positron
pair. Modified figure from [42].

The particles are ejected at an angle θ to conserve momentum, but not necessarily at
θ = π since the nucleus absorbs parts of the energy. Hence, conservation of energy is
the reason pair production only occurs in the presence of a nucleus. Pair production is
dominant at higher energies, with threshold energy equivalent to twice the rest mass of
the electron, 1.022 MeV. The energy dependence of the process is illustrated in figure 2.1
[9, 40, 41].

2.1.2 Charged Particle Interactions with Matter

The mechanisms of energy deposition of photons and charged particles differ significantly,
and as such, they are characterised by very different interaction patterns. A charged
particle interacts with matter primarily through three processes: inelastic Coulomb in-
teractions with atomic electrons, elastic Coulomb interactions with nuclei and inelastic
nuclear reactions between heavier incident particles and nuclei. Several other processes
are also partly responsible for the energy deposition of a charged particle, for example,
bremsstrahlung and Cherenkov radiation. However, the former does not contribute much
to the total loss for heavier particles but is integral to the energy loss of lighter particles,
such as electrons and positrons. The latter, on the other hand, only becomes significant
when the particle traverses a medium at velocities higher than the speed of light [41].
Thus, the following paragraphs will focus on the first three processes listed.

Unlike photon interactions where the photon is either absorbed, scattered or continues
unhindered, the charged particle will instead lose small parts of energy in a series of inelas-
tic interactions. As a result, the particle will eventually reach velocities where individual
interaction events will alter its course to such an extent that the particle fluctuates ran-
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domly in a localised space before finally stopping altogether [12]. For charged particles
heavier than electrons, individual inelastic collisions with atomic electrons only contribute
to a negligible part of kinetic energy lost. A particle will, however, interact with a large
number of electrons through its path, which eventually adds up to a considerable average
energy loss per unit length. The Coulomb interactions between a charged particle and
atomic electrons, and the subsequent average energy loss of the charged particle (also
called stopping power), is described by the Bethe-Bloch equation, which is given as

−dE
dx

= 2πNar
2
emec

2ρ
Z

A

z2

β2

[
ln

(
2meγ

2v2Wmax

I2

)
− 2β2 − δ − 2

C

Z

]
(2.5)

where all constants are given in table 2.1 [41].

Table 2.1: Constants in the Bethe-Bloch equation for the average stopping power of radiation in a
medium. Contents of table taken from [41].

2πNAr
2
emec

2 = 0.1535 MeVcm2/g

NA Avogadro’s number = 6.022 · 1023 mol−1

re classical radius of the electron = 2.817 · 10−13 cm

mec
2 rest energy of the electron = 0.511 MeV

ρ density of the absorbing material

Z atomic number of the absorbing material

A atomic weight of the absorbing material

z charge of the incident particle, in units of the elementary charge e

β velocity of the incident particle in units of the speed of light, v/c

γ Lorentz factor, 1/
√

1− β2

Wmax maximum transfer of energy in a single collision

I mean excitation potential

δ density correction

C shell correction

Of note from equation 2.5 is the energy loss being proportional to the atomic number of
the absorbing material (Z) and the square of the charge of the incident particle (z2), as
well as the inverse proportionality to the square of the velocity of the incident particle
(β2). There are also two correction terms incorporated in equation 2.5, where the density
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correction (δ) accounts for the offset in energy predicted by the Bethe-Bloch formula as
the incident particle approaches relativistic velocities. The shell correction (C), on the
other hand, becomes important at lower energies where the velocity of the incident par-
ticle approaches the orbital velocity of the bound electrons [41].

While inelastic Coulomb scattering largely accounts for the energy loss of the beam, the
lateral spreading of the beam profile is instead caused by elastic Coulomb scattering with
atomic nuclei. Elastic Coulomb scattering is often referred to as Multiple Coulomb Scat-
tering. This process is also described by several small scattering events that individually
deflect the beam only a slight amount, but which sum up to a significant widening of
the beam. The spread of the particles in the beam can be approximated as a Gaussian
distribution and is, unlike the total stopping power from equation 2.5, almost independent
of the charge (z ) of the traversing particle [12, 40, 43].

Lastly, there are nuclear reactions. These are inelastic and describe the absorption of
the primary traversing particle by a nucleus and the subsequent ejection of secondary
particles. The secondary particles are created with low energies, which leads to substan-
tial localised energy deposition. Thus, the secondary particles cannot be neglected when
considering the total energy loss of a particle beam. Furthermore, secondary particles are
also responsible for the tails of energy deposition that can be observed following the peak
of energy deposition of heavy particles [12].

The point of maximum energy deposition of charged particles is called a Bragg peak. As
the velocity of the traversing particle decreases, the distance between subsequent inelastic
Coulomb scattering events also decreases, which leads to increased localisation of the en-
ergy loss. The Bragg peak is associated with considerably higher energy loss compared to
the previously traversed distance and is followed by a sharp fall-off in energy deposition,
in what is called the range of the beam. The range is not fixed but instead normally
distributed around a mean due to varying energy deposition along the tracks of individ-
ual particles. These individual variations are referred to as range straggling [12, 40, 44].
The low energy deposition of charged particles relative to the energy deposition in the
Bragg peak, and the nearly complete fall-off following the Bragg peak, is one of the main
arguments for the utilisation of charged particles in cancer treatment. This property can
be utilised to maximise the dose to the tumour while minimising the dose to healthy tissue
[12].
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The Bethe-Bloch formula is an accurate approximation of the energy loss of heavier par-
ticles. However, for electrons and positrons, the assumption that only a small amount
of energy is lost in any individual collision is no longer valid. Additionally, the indistin-
guishability of the electrons changes the calculations slightly. Finally, bremsstrahlung,
which is energy lost in the form of a photon as the particle is decelerated by the electric
field of nuclei and electrons in the medium, becomes relevant at a lower energy threshold
for the lighter particles [41].

2.2 Formalism in Dosimetry and Biologically Modi-

fying Factors

Ionising radiation is known to be hazardous to living tissue, and, in the interest of describ-
ing the damage induced by the radiation, several physical measures have been described.
Furthermore, quantifying the effects of radiation are required both for radiation protec-
tion and for the planning of radiation therapy of cancers, a concept further described in
section 2.4. This section will give an overview of units relevant in describing the physical
effects of ionising radiation and factors used to quantify the biological effects of radiation,
which are internationally agreed upon and outlined in the regularly updated International
Commission on Radiation Units and Measurements (ICRU) reports [45].

2.2.1 Absorbed Dose

Absorbed dose, or physical dose, is the simplest and most objective measure of the damage
from radiation. ICRU report 33 [45] defines absorbed dose as

D =
∆E

∆m
(2.6)

where ∆E is energy deposited by ionising radiation, and ∆m is the mass that absorbs
the energy. Its unit is the Gray [Gy], equivalent to Joules per kilogram [J/kg] [46].

2.2.2 Radioprotection

Absorbed dose gives a physical description of the energy deposition of radiation, but in
the interest of radioprotection, one must also account for the biological damage induced
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by radiation. Radioprotection aims to protect the population from adverse effects caused
by radiation based on the ALARA principle. ALARA spells out As Low as Reasonably
Achievable and is based on limiting exposure to the greatest extent possible since the risks
involved in particularly low dose radiation are difficult to quantify [9, 47, 48]. However,
adverse effects from radiation is known to be linked not only to the physical dose deposition
of the radiation, but also on other parameters, such as the type of radiation received and
the radiosensitivity of the irradiated biological tissue [40]. Equivalent dose is a measure
that accounts for the former by including a weighting factor, wR, accounting for the degree
of damage typically induced by the specific type of radiation received. The equivalent dose
is described by

HT =
∑

R

wRDT,R (2.7)

where HT is the equivalent dose received by a tissue T, R describes the different type of
radiation, wR are the aforementioned weighting factors, while DT,R is the absorbed dose
to a tissue T from radiation type R. The unit of equivalent dose is the Sievert [Sv] [40].
Weighting factors for common types of radiation are given in table 2.2.

Table 2.2: Weighting factors wR, for common types of radiation. Contents of this table taken from
Cerrito, L. [40].

Radiation type Weighting factor, wR

Photons 1

Electrons and muons 1

Protons and charged pions 2

α, fission fragments and
heavy ions

20

neutrons
Between 2 and 22, depending
on neutron energy.

By incorporating a weighting factor (wT) accounting for the radiosensitivity of the different
biological tissue in addition to wR, one receives the effective dose (E). The effective dose
is given as

E =
∑

T

wTHT =
∑

T

wT

∑
R

wRDR (2.8)
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where E is the effective dose which also has the unit Sievert [Sv], wT is the weighting
factor for a specific tissue type, T, and HT is the equivalent dose as found from equation
2.7 [40]. Commonly used estimates for weighting factors, wT, are given in table 2.3.

Table 2.3: Commonly used tissue weighting factors, wT . Contents of table retrieved from Cerrito, L.
[40].

Tissue Weighting factor, wT

∑
TwT

Bone marrow (red), colon, lung, stomach 0.12 0.72

Breast, remainder tissues 0.12 0.72

Gonads 0.08 0.08

Bladder, oesophagus, liver, thyroid 0.04 0.16

Bone surface, brain, salivary glands, skin 0.01 0.04

2.2.3 Linear Energy Transfer

An alternative physical quality of the radiation used to describe the degree of damage
induced is the linear energy transfer (LET). LET was first described by Zirkle et al. in
1952 and describes the energy transferred to the traversed medium along a single particle
track of the radiation [49]. LET of a charged particle is given as

LET =
dE

dl
(2.9)

where dE is the average energy loss of a charged particle over an average distance dl.
The unit most commonly used for LET is [keV/µm] [47]. One typically differentiates
between the unrestricted LET (LET∞) and restricted LET (LET∆). LET∞ takes into
account all energy deposited by the particles and is equal to the stopping power acting
on the particle, as given by equation 2.5. However, a significant portion of the energy
can potentially travel quite far from the local tissue in the form of delta rays. As such,
LET∆, which excludes delta rays above a certain energy threshold, generally represents a
more accurate depiction of the localised energy deposition, although for clinically relevant
proton energies there is little difference between the two definitions of LET [9].

Since LET is a property associated with individual particles, a given position is described
by several different LET values that combined make up an LET spectrum. Additionally,
for massive particles, the LET varies along the radiation beam path, with LET increasing
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as the particle is slowed down. Thus, a maximum LET is located in the distal end of the
Bragg peak [12]. However, a spectrum of LET values is difficult to work with, so several
methods are used to calculate average LET values for beam positions instead. The dose
averaged LET (LETd) gives a relationship dependent on both LET and absorbed dose
and is defined as

LETd(z) =

∫∞
0
Sel(E)D(E, z)dE∫∞
0
D(E, z)dE

(2.10)

where z is the depth in the tissue, Sel is the stopping power, or LET∞, for a particle of
energy E, and D is the dose at a specific depth z from particles with energy E [50]. Track
averaged LET (LETt), also sometimes referred to as fluence averaged LET, incorporates
the particle flux of the radiation and is defined by

LETt(z) =

∫∞
0
Sel(E)Φ(E, z)dE∫∞
0

Φ(E, z)dE
(2.11)

where z is the depth in the tissue, Sel is the stopping power, or LET∞, for a particle
of energy E, and Φ is the particle flux at a certain depth z of particles with energy E.
LET cannot be directly measured, so Monte Carlo (MC) methods are commonly used to
estimate the LET from a given radiation description, a concept that will be described in
further detail in section 2.7.3 [50].

2.3 Radiobiology and Quantifying Biological Effects

Radiobiology is the study of ionising radiation’s effect on living organisms and is primarily
described by damage to deoxyribonucleic acid (DNA), which disrupts the cells’ ability to
reproduce. On a molecular level, the damage from ionising radiation can be categorised
as direct action or indirect action. A schematic of both processes is given in figure 2.5.
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Figure 2.5: Figure outlining damage directly from the radiation (direct action) and subsequent damage
from a radical produced by radiating a water molecule (indirect action), both on a nm and mm scale.
Figure taken from Paganetti, H [12].

Direct action refers to the local damaging of the molecules in the cell, such as a protein
molecule or nucleic acid, from the radiation itself or from δ-rays created from particle
interactions. Damage from direct action is localised, which means only cells in the im-
mediate vicinity of the radiation beam path are affected. Direct action is associated with
high-LET radiation, such as heavier particles and ions, and also typically induces a high
number of double-strand breaks (DSB) to the DNA molecular structure. DSB is the
breaking of both DNA strands by a single particle and is more challenging for the cell to
repair than its counterpart, the single-strand break (SSB). Thus, DNA damaged by DSB
is more likely to lead to cell-killing, but is also at higher risk of leading to faulty repair
of the cell. Faulty repair can result in mutations of the cell or even carcinogenesis, the
development of cancer in the irradiated tissue [46, 47].

Indirect action, on the other hand, describes the ionisation of water molecules into chem-
ically toxic radicals, which can then travel a distance from the site of the radiation before
interacting with biological tissue. Indirect action will eventually damage DNA strands
through chemical interactions between the molecules in the DNA and the radicals, which,
unlike direct action, is more likely to induce an SSB. SSBs are typically easier to repair
compared to DSB, which means most of the biological damage of radiation is associated
with the DSB. Indirect action is generally associated with low-LET radiation, such as low
energy X-rays [46, 47].



2.3. RADIOBIOLOGY AND QUANTIFYING BIOLOGICAL EFFECTS 17

2.3.1 Linear Quadratic Model

While parts of our knowledge regarding the biological effects of radiation come from in vivo
data collected from, for example, survivors of atomic disasters, most of our understanding
of radiative biological effects are discovered through in vitro experiments of irradiated cell
cultures. From in vitro studies, the linear-quadratic (LQ) model has been developed, a
mathematical model describing radiation damage in cell cultures. The surviving fraction
of cells predicted by the model coincide well with experimental results, particularly for
lower dose regions [47]. The LQ model describes the surviving fraction of cells after being
irradiated with a dose D as given by

SF = exp (−(αD + βD2)) (2.12)

where α is a factor that can be thought of to describe cell-killing induced by a single
particle, while β represents cell-killing caused by several separate particles [51]. Cell
survival, as described by equation 2.12, is often characterised by survival fraction curves,
which is a graphical representation of the surviving cells in a cell culture radiated by a
dose D. An example of a cell survival curve is given in figure 2.6.

Figure 2.6: Example of a survival fraction curve showing the contribution of both the linear and quadratic
term on the resultant survival fraction. The effect LET has on survival fraction is also outlined, and the
α/β-ratio is indicated. Figure taken from Ridolfi, R [52].

In addition to showing the effect of the linear and the quadratic terms from equation 2.12,
figure 2.6 also shows how LET relates to cell killing, with high LET radiation leading to
a higher degree of cell killing than low LET radiation. The point where the linear and
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quadratic components contribute to the same amount of cell killings is referred to as the
α/β-ratio. The α/β-ratio of tissues and their radiosensitivity typically correlate, with
early-responding tissues having high α/β-ratios, while late-responding tissues have lower
α/β-ratios [9].

2.3.2 Fractionation

A radiotherapeutic approach to exploiting the different response of cells is to split ra-
diotherapy treatment into several fractions. The initial rationale behind fractionated
treatment was mainly empirical. However, the LQ model provides a generally accepted
explanation for its success. Late responding-tissue (low α/β-ratio) is more sensitive to
dose within a fraction than early-responding tissue (high α/β-ratio). Thus, by irradiating
a cell culture in several iterations of low dose, one would see a higher degree of cell-killing
to the latter than the former. This can be interpreted from figure 2.6 by low doses max-
imising the initial linear slope of the curves while not achieving a high enough dose for
the quadratic slope to become significant. Human tumour tissue is typically associated
with high α/β-ratios, while healthy tissue is typically late-responding. Thus, fractionation
achieves maximum cell-killing of tumour tissue while minimising the damage to healthy
tissue [9].

2.4 Radiation Therapy

Radiation therapy, or radiotherapy, is a central technology within cancer treatment that
utilises the damage from ionising radiation to biological tissue to kill malignant tumour
growths. Radiotherapy aims to achieve sufficient tumour control probability (TCP) by
maximising the dose to the tumour volume while simultaneously avoiding excessive normal
tissue complication probability (NTCP) by minimising the dose to healthy tissue. The
TCP is defined as the dose required to achieve a certain probability of killing the tumour
cell, whilst NTCP is the dose corresponding to a probability of causing a specific adverse
effect to healthy tissue [9, 12, 53]. Adverse effect to healthy tissue from radiation is referred
to as toxicity and is graded from 1 to 5 according to a universal set of guidelines referred
to as the Common Terminology Criteria for Adverse Events (CTCAE) [54]. Hence, ideal
radiotherapy treatment minimises the risk of toxicity by achieving a sufficient balance
between TCP and NTCP, which is referred to as the therapeutic window and is shown
graphically in figure 2.7.
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Figure 2.7: Graph outlining the relation between tumour control, normal tissue complication and the
therapeutic window. Figure taken from Ytre-Hauge, K [55]

Treatment within the therapeutic window is achieved through careful treatment planning
and quality assurance. First, the patient’s anatomy is imaged with diagnostic imaging
modalities, which is used to contour the volumes in the area of the tumour site. The dose
plan is then calculated to cover the tumour volume while avoiding unnecessary dose to vi-
tal organs near the tumour [9]. The general workflow of the treatment is further explained
in section 2.6, while this section focuses on the basic concepts of radiotherapy modalities.
First, photon therapy will be discussed, its delivery techniques and the production of the
X-rays that are central for the treatment. The basics of proton therapy will subsequently
be explained, along with its beam modalities and the production and acceleration of the
protons.

2.4.1 Photon Therapy

Radiotherapy using photons was, for a long time, the only modality available. Following
Wilhelm Röntgen’s discovery of X-rays, photons with energies between 124 eV and 124
keV, in 1895 [56], the particles were quickly used to treat breast cancer [10]. Our un-
derstanding of ionising radiation improved the following years, with a large part of the
credit attributed to the efforts of Becquerel and the Curies [10]. Common for most X-ray
production is the acceleration of electrons that in turn create X-rays through interacting
with a target. Hence, X-ray beams are typically characterised by the voltages to which
the electrons were accelerated before reaching the target and will consist of a range of
X-ray energies peaking at the energy of the accelerated electrons [9].
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As can be seen from figure 2.8 higher voltage X-rays have deeper peaks of dose deposition
than lower voltage X-rays, and achieving sufficiently high voltage was historically an
obstacle of radiotherapy. Damage to healthy tissue was then minimised by irradiating
from several angles, which is a central principle within radiotherapy for higher voltage
X-ray beams, as well. The 1950s to 1980s saw improved options for achieving higher
voltage X-rays with the development of cobalt therapy machines, which use gamma-ray
emitting 60Co sources as the radiation source, and the linear particle accelerator (linac).
The linac continues to be the primary source of X-rays for radiotherapy in modern times
[57, 58].

Figure 2.8: Depth-dose curve in an arbitrary medium for 4 MV and 20 MV energy X-ray beams, a 4
MeV electron beam and a 150 MeV proton beam. Modified figure from [59].

Linear Accelerator

The linear accelerator (linac) is the primary mechanism behind the modern production of
high energy photons for clinical purposes, with clinical linacs typically able to accelerate
electrons to energies up to 22 MeV [9]. Shallow tumours can be treated directly with elec-
trons due to their high entrance doses, as seen from figure 2.8. However, more commonly
the electrons are converted to X-rays by interacting with a target. Clinical X-rays are
typically in the voltage range 6-20 MV [9].

An electron gun, usually a heated cathode releasing electrons through thermionic emis-
sion, is powered by a voltage pulse. The electrons then propagate through a waveguide
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of alternating electric potential, accelerating the electrons in a linear beam path. The
alternating potentials and the voltage to the electron gun are controlled by a radiofre-
quency pulse, which ensures the electrons are constantly accelerated towards a positive
potential. Due to their large size, the linac is constructed horizontally, which means that
the electron beam must be redirected approximately 90° before reaching the target. This
is achieved by using magnetic fields since this will induce a Lorentz force on the moving
charges and, subsequently alter the propagation path. The electrons are then directed
towards a high Z target, typically tungsten, which will convert the electrons into X-rays
[9]. A schematic of the linac system is given in figure 2.9.

Figure 2.9: Schematic of a linac. The electrons are produced in the electron gun, accelerated and steered
to a target where they produce electrons, which are subsequently delivered to the patient. Modified
figure from Paganetti, H [9]

The X-rays are mainly produced through two mechanisms, bremsstrahlung and the exci-
tation of orbital electrons. Bremsstrahlung describes the photons emitted as the electrons
lose energy being slowed down by the electric field of orbital electrons or nuclei in the
medium, as described earlier in section 2.1. The result of bremsstrahlung is a continuous
energy spectrum of X-rays, and production is inversely proportional to the energy of the
electrons. Unlike bremsstrahlung, the spectrum of X-rays released from the excitation
of orbital electrons is not continuous. The orbital electrons inhibit quantised energies,
and as they absorb energy, they ascend to a higher quantised potential. The subsequent
de-excitation of the electrons will release the energy difference between the states as an
X-ray. Due to the specific energy states these X-rays are emitted with, they are referred
to as characteristic X-rays [60].

Beam Shaping and Delivery

The target is located in the beam head in the treatment room, and the next step in the
process is for the X-ray beam profile to be contoured to match the prescribed treatment
before being delivered to the patient. This is achieved by utilising different forms of phys-
ical blocking of the beam. The beam escaping the target does not have a homogeneous
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beam profile. Instead, most of the X-rays are concentrated centrally in the beam profile,
and to even out the beam profile a flattening filter is used. The flattening filter is a
physical shape that is thicker in the centre than at the edges, which results in a larger
number of X-rays absorbed from the centre of the beam profile compared to the edges.
The beam escaping the flattening filter will, thus, have a significantly more homogeneous
beam profile. The beam profile must also be limited to only irradiate the volume of the
patient that was prescribed dose, which is achieved through collimation. The primary
collimator shapes the beam to a circular beam profile, while the secondary collimator at-
tains a rectangular field. Both are physical blockings made of high Z material, typically
lead. Further shaping of the beam is achieved by more flexible collimators referred to
as multi-leaf collimators (MLC) [60], and while the primary collimator is always present
in the system, the MLC can replace the secondary collimator [9]. The MLC is a system
of independently moving leaves that can flexibly shape the beam, resulting in a beam
accuracy only limited by the width of the leaves [9].

The flexibility of shaping the beam developing alongside more advanced imaging methods
and more powerful computing power has led to significant advancements within radiother-
apy in the last decades [57]. Oncologists would previously plan treatment by hand with
inflexible beam shaping mechanisms and limited knowledge of the actual dose distribution
[9], but the application of MLCs and computer algorithms to achieve highly conformal
and homogenous dose to the tumour volume has significantly improved the quality of the
treatment. This form of treatment is commonly referred to as three-dimensional confor-
mal radiotherapy (3D-CRT) and allows improved sparing of healthy tissue surrounding
the tumour volume [11].

Further improvement in technology has also allowed the intensity of the beam to be
adjusted during treatment to achieve even higher conformity to the tumour volume, in
what is known as intensity-modulated radiotherapy (IMRT) [9]. The beam intensity is
altered by using segmented beam apertures, where each segment has different beam-on
times. Beam intensity can be changed during beam-on time, but one can also periodically
turn off the beam and adjust the intensity [11]. Furthermore, volumetric Modulated Arc
Therapy (VMAT) is a more recent development within photon therapy, and while IMRT
utilises a fixed gantry, VMAT uses a 360° rotating treatment system. By delivering the
treatment in arcs, while dynamically altering the intensity and collimation of the beam
during therapy, the treatment time can be significantly shortened [61].
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2.4.2 Proton Therapy

While there have been significant developments within photon therapy, proton therapy,
and heavier particle therapy, have developed in parallel and inhibits certain advantages
over their photon counterpart. The main benefit of particle therapy over photon therapy
is shown in the depth-dose profile of protons in figure 2.8. Unlike photons that have
considerable dose deposition along their full beam paths, protons accelerated to sufficiently
high energies, typically 200-250 MeV [9], will have low entrance dose, high and localised
maximum dose deposition in the Bragg peak, and a nearly complete fall-off following the
Bragg peak [12]. To ensure the Bragg peak covers the entire tumour volume, a beam
profile consisting of several different proton energies, and accordingly several differently
positioned Bragg peaks, is often utilised. This is known as a spread-out Bragg peak
(SOBP) [12], with the depth-dose profile of an SOBP shown in figure 2.10.

Figure 2.10: Example of a spread out Bragg peak curve of a radiation beam traversing a water medium.
The wide Bragg peak on the top is the sum of all the smaller curves. Figure taken from Paganetti, H
[12].

With improvements in imaging modalities and the ability to more accurately position the
Bragg peak to cover the tumour volume, proton therapy and heavier particle therapy has
been getting increased focus the last decades. However, the preferable depth-dose profile
of particles has been known, and the subject of study, for considerably longer [62]. The
use of protons for cancer treatment was first proposed by Robert R. Wilson in 1946 [63]
and was first used clinically to treat a case of breast cancer in 1954 [14]. While early
studies of the treatment method showed promising results, the expense of maintaining
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cyclotrons to accelerate the protons and the lack of public support for the subject meant
that the development stagnated for a while, until 1990 saw the first clinical synchrotron
installed at the Loma Linda University Medical Center [14]. Since then, several proton
centres have been established globally, and per April 2021, 97 proton centres were in
operation, with both cyclotrons and synchrotrons being used as accelerators [64].

Cyclotron

A cyclotron utilises the Lorentz force set up by combined electric and magnetic fields to
accelerate charged particles. The Lorentz force acting on a particle is described by

~F = q( ~E + ~v × ~B) (2.13)

where q is the charge of the particle, ~E is the electric field acting on the particle, ~v is the
velocity of the particle, and ~B is the magnetic field acting on the particle. The mechanism
of a typical cyclotron is given in figure 2.11.

Figure 2.11: Schematic of a cyclotron. Left shows the magnets vertically over the vacuum chamber,
while the right side shows the circular orbits of the charged particles in the vacuum chamber, and the
extractor. Figure retrieved from Paganetti, H [12]

Two magnets, called "Dees", are positioned vertically over a hollow chamber, with the
particles to be accelerated in the centre of the chamber. The resultant magnetic force im-
posed on the particles is, thus, pointing towards the centre. This would merely maintain
the particles enclosed in a circular orbit, but, in addition to the magnetic field, there is an
alternating electric field that changes polarity depending on the current position of the
particles. Furthermore, a radiofrequency pulse alters the charge of the two sides of the
system, constantly accelerating the particles towards the side of opposite charge. Hence,
the radius of the particles will increase since the time taken to complete the circle remains
constant, while the particle’s velocity is increasing. Finally, when the particles have been
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accelerated to sufficient energy, the particles are extracted from the circular orbit [40].

Synchrotron

A synchrotron also utilises the Lorentz force to accelerate and steer the particles, but
through a slightly different approach. A depiction of a synchrotron given in figure 2.12.

Figure 2.12: Schematic of a synchrotron. The particles are accelerated prior to entering the tube. In the
tube their position is maintained by magnets, before they are extracted when the target particle energy
is achieved. Modified figure from Khan et al. [60].

In synchrotrons, the particles are accelerated with electric fields, while several magnets
keep them bound within a large, evacuated circular tube. The magnetic field is increased
as the velocity of the particle increases, and this, combined with the considerable size
of the main tube, results in greater flexibility in extracted particle energy from the syn-
chrotron compared to the cyclotron. Before entering the main tube, the particles must
first be accelerated to high velocity to maintain their rotational period despite the in-
creased radius. This initial acceleration is generally achieved using a linac. The particles
are subsequently accelerated by altering the electric fields in the main tube. Finally, when
sufficient particle energy has been achieved, the magnetic fields are altered to bend the
path of the particles and extract them from the circular orbit [40].

Beam Shaping and Delivery

The particles are extracted from the accelerator and delivered to the patient through one
of two main categories of particle therapy delivery systems, passive scattering and active
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scanning [12]. Passive scattering is the oldest particle delivery technique and uses physical
blocks to shape the beam. The simplest technique utilises a single scattering foil called a
flat scatterer. However, the flat scatterer is an energy inefficient approach since the dose
profile is heterogeneous and a considerable fraction of the beam profile must be blocked
to achieve clinically acceptable homogeneity of the treatment. A means of achieving more
energy efficient treatment is to implement a contoured scatterer in the system. The het-
erogeneous beam profile escaping the flat scatterer is homogenised by blocking different
regions of the beam profile to different degrees by the contoured scatterer. This achieves
improved energy efficiency of the treatment by creating a wider beam profile of clinically
acceptable homogeneity. However, while the contoured scatterer achieves improved en-
ergy efficiency, a high number of protons are still blocked in the process. This is not
only energy inefficient, but the blocked protons also produce neutrons that can reach the
patient and deposit unwanted dose [12].

In more recent years active scanning is instead more commonly utilised to shape the pro-
ton beam. Active scanning, also called spot scanning or pencil beam scanning, primarily
uses magnets to steer the beam. Active scanning is an iterative process that irradiates the
tumour volume spot-wise within a layer before adjusting the energy to repeat the process
but contoured to a different volume in a deeper layer. Hence, active scanning can achieve
a highly conformal treatment to the tumour. Still, due to the sequential nature of the
treatment, the process is time-consuming and sensitive to organ motion. Since physical
barriers are avoided, however, higher energy efficiency is achieved, and fewer secondary
neutrons are produced [12, 65].

Active scanning forms the basis of the technical implementation of proton therapy, but
equivalently to IMRT for photon therapy, each field’s intensity and dose distribution
is also commonly altered during treatment. The result is a dose distribution summed
over all beams that fits the intended treatment but comprise several individually varying
dose distributions [12, 66]. This is referred to as intensity-modulated proton therapy
(IMPT). Additionally, equivalently to VMAT, proton arc therapy has been proposed as
an alternative treatment modality in later years where the gantry is rotated in an arc
around the patient. This can improve dose conformity to the target volume but gives less
control over the distal ends of the Bragg peaks of the individual beams. The consequence
of this, as will be explained further in the next section, is possibly excessive radiation
damage to sensitive organs close to the target volume [67].



2.5. RELATIVE BIOLOGICAL EFFECTIVENESS 27

2.5 Relative Biological Effectiveness

Proton therapy is a less explored treatment modality than photon therapy, and our expe-
rience of the body’s response to photon therapy is difficult to directly translate to proton
therapy. The standard method utilised clinically to account for the different qualities of
the radiotherapy modalities is to incorporate the relative biological effectiveness (RBE)
of the radiation. RBE is defined as the ratio between the dose from a reference radia-
tion and the dose from a test radiation that both result in the same clinical outcome.
Mathematically, the RBE factor is defined as

RBE =
Dx

Dtest

(2.14)

where Dx is the physical dose, as outlined by equation 2.6, from a reference radiation,
while Dtest is the physical dose from the radiation utilised, to which the RBE factor
corresponds [47]. The physical dose is then recalculated to yield the RBE-weighted dose
[Gy(RBE)], by rearranging equation 2.14 to give

DRBE = RBE ·D (2.15)

The RBE factor is often used to correct dose calculations for non-photon beams, such as
proton and carbon ion therapy. For proton therapy, the ICRU report 78 recommends the
utilisation of a constant RBE factor of 1.1, from here referred to as RBE1.1, compared to
the photon dose from a 60Co source resulting in similar cell-kill as the proton beam [12,
15, 68], while carbon ion therapy instead utilises different RBE models based on in vitro
data [69]. However, the RBE of protons has been shown from in vitro experiments to vary
in the interval 1.1 to 1.7 across the SOBP, resulting in an average value of approximately
1.15 in the centre [16]. RBE has been observed to increase with increasing LET of the
radiation, up to a maximum at approximately 100 keV/µm before decreasing for further
increasing LET [16, 47]. Additionally, RBE has been shown to increase with decreasing
physical dose and (α/β)x-ratio of the tissue, which describes the sensitivity of the tissue
to the reference radiation [47]. The peak RBE is observed in the distal end of the Bragg
peak, since this is associated with high LET values [16].

An alternative expression of RBE as a function of the test dose and the LQ parameters
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of both the test and the reference radiation is given by

RBE(Dp, α, β, αx, βx) =
1

2Dtest

√(αx

βx

)2

+ 4Dtest
αx

βx

α

αx

+ 4D2
test

β

βx

− αx

βx

 (2.16)

where Dtest is the dose from the test radiation, α and β are the parameters for the LQ
model (equation 2.12) for the test radiation, and αx and βx are the parameters for the
reference radiation [16]. The minimum and maximum RBE values are defined as the RBE
in the high dose limit and low dose limit, respectively, and are described by

RBEmin = lim
D→∞

RBE =
α

αx

(2.17)

and

RBEmax = lim
D→0

RBE =

√
β

βx

(2.18)

This shows mathematically how the linear component dominates the low dose region of
the LQ model, while the quadratic component dominates the high dose region [20].

2.5.1 Modelling Relative Biological Effectiveness

The increase in RBE in the distal end of the SOBP is accounted for clinically by avoiding
the position of the distal end coinciding with sensitive organs at risk (OAR) [23], but
otherwise variable RBE is not considered in treatment planning. However, several ap-
proaches to modelling the variations of RBE on dose distributions have been developed in
recent years, with varying degrees of complexity [20]. The following paragraphs will out-
line a selection of RBE models utilised in this thesis accounting for several combinations
of the previously outlined parameters. Phenomenological RBE models are a subcategory
of RBE models that approximate experimental results and are often based on the formu-
lation of the LQ model as shown in equation 2.16. What separates the phenomenological
RBE models are their definitions of the extremal RBE values, as given by equations 2.17
and 2.18 [20].

Unkelbach et al. established what has come to be known as the LET weighted dose as
a means of accounting for LET in dose calculations for proton therapy, to spare healthy
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tissue [70]. The original description used dose averaged LET and is given by

DLET = D × (1 + cLETd) (2.19)

where D is the physical dose, c is a weighting factor, and LETd is the dose averaged LET.
Unkelbach et al. used a factor c = 0.04 since this achieved an RBE = 1.1 in the centre
of an SOBP of 5 cm modulation and 10 cm range. Further, McMahon et al. empirically
established a weighting factor c = 0.055± 0.003 by fitting the curve to points from clono-
genic cell survival experiments [71].

McNamara et al. [21] established a phenomenological RBE model based on 285 in vitro
cell survival experiments previously assessed by Paganetti, H [16]. The RBE model is
based on the LQ-model in equation 2.12, and predicts an increasing RBE with increasing
LETd and increasing RBE with decreasing absorbed dose and (α/β)x. The extreme RBE
values of the model are given by

RBEmin

(
LETd,

(
α

β

)
x

)
= 1.1012− 0.0038703 Gy−

1
2

(
keV

µm

)−1
√(

α

β

)
x

LETd (2.20)

and

RBEmax

(
LETd,

(
α

β

)
x

)
= 0.99064 +

0.35605 Gy
(

keV
µm

)−1(
α
β

)
x

LETd (2.21)

where LETd is the dose averaged linear energy transfer, and (α/β)x is the (α/β)-ratio
of the tissue to the reference radiation [21]. Furthermore, Rørvik et al. [22] established
two phenomenological RBE models; the unweighted and the weighted Rørvik model. The
models are based on 85 in vitro cell survival experiments and differ in whether weighted
or unweighted regression was utilised to determine a model fit to the database. Both
models assume a constant RBEmin = 1, with the unweighted RBEmax given by

RBEmax

(
LETd,

(
α

β

)
x

)
= 1 +

0.645 Gy
(

keV
µm

)−1(
α
β

)
x

LETd (2.22)

Thus, incorporating (α/β)x and LETd in the extreme value, while equation 2.16 also shows
the model predicting increased RBE with decreasing absorbed dose. On the other hand,
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the weighted function has a definition of RBEmax dependent on the full dose weighted
LET spectrum (L), incorporated as a biological weighting function rmax(L). The RBEmax

of the Rørvik weighted model is given by

RBEmax (d(L)) =

∫ ∞
0

rmax(L)d(L)dL (2.23)

where L is the range of LET values, and d(L) is the local dose weighted LET spectrum
at a given position in the patient. The biological weighting function rmax(L) incorporates
L and (α/β)x as parameters [22].

2.6 Treatment Planning

As mentioned in section 2.4, radiotherapy treatment is preceded by a careful treat-
ment planning process, which will be described further in this section. The first step
in treatment planning is to diagnose the patient, where anatomical information is ac-
quired through diagnostic imaging tools. Anatomical images are central through all steps
in the treatment planning process. When a diagnosis has been established, the cancerous
tissue is defined and delineated according to a universal set of volume definitions [13].
Further, the beam setup must be decided, with the current standard being inverse plan-
ning. In inverse planning, dose goals and constraints are set for the delineated volumes,
and the beam configuration is subsequently optimised by a computer algorithm. Finally,
the planned dose must be evaluated before the patient can be treated [9].

2.6.1 Image Acquisition

The first step in the treatment planning of tumours is to diagnose the patient, where the
acquisition of anatomical information of the patient is essential. Several imaging modali-
ties have importance within cancer diagnostics, but they also form the basis of delineating
clinical volumes used to define prescribed doses and beam configurations. Magnetic Res-
onance Imaging (MRI) is commonly used for diagnostics, while computed tomography
(CT), in addition to diagnostic use, is also widely used after the diagnosis has been given
to assist in the calculation of a dose plan for the treatment [9].

Magnetic Resonance Imaging (MRI) utilises nuclear magnetic resonance (NMR) to image
the protons in human tissue. NMR is a means of quantifying a spin system’s alignment
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with an external magnetic field, and the hydrogen atom is the atom that gives the strongest
NMR signal. Thus, an MRI scan effectively maps the hydrogen composition of water and
lipid molecules in the body which make up most of the body’s soft tissues. Hence, an MRI
scan yields images with good soft-tissue contrast, but an MRI can be time-consuming [72].

Computed tomography (CT) is another imaging modality commonly used in cancer di-
agnostics. CT is an X-ray scan performed 360° around the patient, and the individual
X-ray images can then be digitally reconstructed to give three-dimensional anatomical
information. The interactions of photons are highly dependent on the atomic number
(Z) of the tissue, so CT is well suited for imaging bone structures, as their Z-values
are significantly higher than for soft tissues. The soft-tissue contrast, however, while
sufficient for most purposes is not as good as for an MRI. Another disadvantage of the
CT is the use of ionising radiation. However, the CT is typically quicker than the MRI,
and for radiotherapy the CT allows the acquisition of images in treatment position [9, 72].

In CT each voxel is assigned a Hounsfield unit (HU), which is defined by

HU = 1000× µtissue − µwater

µwater

(2.24)

where µ is the linear attenuation coefficient of the given material, as shown in equation
2.1. By definition, water has HU = 0, air has HU = −1000, while bone typically has
HU = 1000 − 3000. The HUs are translated to graphical information as shades of grey
[72, 60]. Additionally, since the HU is a direct measure of the dose deposition in different
media, the CT scan is central in dose planning for radiotherapy [9].

2.6.2 Volume Definitions

After the image acquisition, the patient’s anatomy is contoured, either manually or
through auto-segmentation by computer algorithms [73]. The volumes that are impor-
tant for the delivery of radiotherapy are delineated. They are divided into several clinical
subvolumes outlined in the ICRU 50 report and, thus, agreed upon by oncology clinics
globally [13]. First, there is the gross tumour volume (GTV) which only contains the vol-
ume of the initial solid tumour. The clinical target volume (CTV) includes the GTV and
also accounts for subclinically diseased tissue, not visible as a physical tumour. Including
error margins around the CTV to account for organ motion and inherent uncertainties in
the treatment setup yields the planning target volume (PTV). Additionally, depending
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on the position of the tumour, there may be organs nearby that are especially sensitive
to radiation and are, thus, often subject to dose constraints that should ideally not be
exceeded. These are referred to as organs at risk (OAR) [9, 60]. A schematic showing the
clinical volumes with relative position and size is given in figure 2.13.

Figure 2.13: Clinically used volume definitions shown with relative sizes to each other. Gross tumour
volume (GTV) in the center, surrounded by all subclinically diseased tissue in the clinical target volume
(CTV). Error margins give the planning target volume (PTV). Adjacent to the target volume is an organ
at risk (OAR). Modified figure from Mayles, P et al. [9].

2.6.3 Dose Optimisation

When the details of the anatomy are known the dose planning is the next step in the
treatment planning. In modern treatment planning, this is usually supported by a treat-
ment planning system (TPS). The current preferred method is to plan treatment inversely,
which means a dose distribution is used as the basis, and a radiation field setup is planned
from this basis. The contoured volumes and their corresponding dose goals and dose con-
straints are all given manually to the TPS. The TPS will then find beam setup and
energies that meet the dose criteria to the greatest extent possible. The goal is to meet
the required dose to the entire PTV while avoiding exceeding dose constraints set for
proximate OARs. The treatment plan is typically found by setting up a function that
penalises underdosage of treatment volume and overdosage of OARs and then attempt-
ing to minimise this equation. The function is typically a weighted sum of several cost
functions, as given by

f(x) =
∑
i

wici (2.25)

where ci are i cost functions, one for each dose goal to be met, while wi are i corresponding
weighting factors. The cost functions are only unequal to zero when their corresponding
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dose criteria are not met. By attempting to minimise the given function, the TPS will
find a dose regime as close as possible to fulfilling all dose criteria. The weighting factors
ensure that if one dose criterion is more important to meet than another, this can be
taken into account [9, 74].

The TPS also calculates the dose of each individual voxel. The HUs of the CT images
form the basis of the dose distributions, and different algorithms are used to make the
simulated doses as true to the physical dose distribution as possible. Currently, the pencil
beam algorithm is the most used algorithm for these calculations. The pencil beam al-
gorithm utilises point dose kernels to calculate dose distributions. Point dose kernels are
localised descriptions of energy deposition from secondary electrons and scattered photons
in water given by a predefined set of photon tissue interactions originating from a single
point coordinate [53]. The pencil beam algorithm incorporates point dose kernels along
an infinite ray of photons, and the localised dose to a point or voxel in the patient is then
given by the dose contribution of each photon ray integrated over the area of the treat-
ment field [9]. The pencil beam algorithm was initially developed for electrons but was
quickly adapted for treatment planning with photons [9], and have also been translated
to implementation for protons [75, 76]. An alternative approach to dose calculations are
Monte Carlo based algorithms, which are generally agreed to be the most accurate means
of simulating particle interactions, but was prohibitive for treatment planning purposes
due to long computing times. With increased modern computing power, however, the
methods have become the focus of development for treatment planning as well [77]. The
concept of Monte Carlo methods will be further described in section 2.7.3.

2.6.4 Dose Plan Evaluation

Following the dose calculation, the planned treatment needs to be manually assessed be-
fore delivery. This is also often done in the TPS itself. There are several tools implemented
in the system to help visualise the planned treatment. Colour mapped isodose curves are
visualisations of the beams, where areas receiving lower dose will be coloured in cooler
colours, such as blue. In contrast, areas receiving high dose will be coloured with warmer
colours such as yellow and red. Isodose curves contoured over a CT image in the Eclipse
TPS are shown in figure 2.14 [9].
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Figure 2.14: CT picture of vertical view of the head of a brain tumour patient with isodose curves
showing the dose distribution of the treatment. Image is created with Eclipse TPS.

A dose-volume histogram (DVH) plots the relative irradiated volume against radiation
dose and is another valuable tool for evaluating a dose plan. DVHs are divided into
differential DVHs and cumulative DVHs, but the latter are used significantly more often
than the former. The cumulative DVH considers all volume irradiated by a specific dose
or higher, which means that as the dose approaches the maximum dose, the volume
percentage will approach 0% [9]. An example of a cumulative DVH is shown in figure
2.15.

Figure 2.15: Example of a cumulative DVH for a given clinical volume with dose on the x-axis and
percentage volume on the y-axis. DVH inspired by Mayles P. et al. [9]

From the DVH, dose statistics can be extracted to describe the dose given to a structure.
Maximum dose (Dmax), minimum dose (Dmin), mean dose, modal dose and median dose
give simplified views of the dose within a structure. Hence, they can be useful for com-
paring dose plans and clinical results, despite not providing direct anatomical information
of the dose distribution. Additionally, they can be used as basis for dose constraints to
organs since they give a concrete point of reference and can be compared directly to earlier
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cases leading to adverse toxicity [32, 33]. The volume corresponding to a reference dose
Dref , VDref

is also an often-used statistic that gives the percentage of the total volume that
received a dose equal to or greater than the user-specified Dref . Additionally, the reverse
is also an often-used statistic, the dose corresponding to a reference volume Vref , DVref ,
which is the dose that means the specified volume Vref received a dose equal to or larger
than the given dose [9].

2.7 Statistical Methods

A clinical study of a patient cohort is a necessary tool to pinpoint the current treatment
situation to determine whether altercations to the treatment regime are necessary. This
section will outline statistical approaches central for the development and presentation of
the results in this thesis. First regression will be outlined, along with methods that can be
used in conjunction with regression to estimate the uncertainty in the model. Further, the
Wilcoxon signed-rank test is outlined which tests the statistical significance of a matched
database. Finally, the Monte Carlo (MC) method will be outlined, which is an algorithm
that utilises randomised, statistical approaches to simulate particle behaviour.

2.7.1 Regression

Regression is used to find a relationship between two (or more) variables in the interest
of using information from one variable to deduce further trends in the other(s). This is
commonly done by fitting a model, a mathematical function, to a set of data points to
minimise the error between predicted values and the true data points while preserving
the general trend in the data [78].

Data points are sampled from a total population, and as such, the true distribution can
only be determined with a certain accuracy. This is accounted for in regression by defining
the model’s parameters within a confidence interval (CI). A CI estimates how likely one
is to find the true mean close to the predicted mean from a sample. The CI is associated
with a given percentage, with 95% and 68% being common values, corresponding to the
percentage of points within the first and second standard deviations of a perfectly normally
distributed sample, respectively. The CI is then interpreted as the interval containing the
given percentage of results after an experiment has been repeated several times [78].
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The CIs can be estimated with several different approaches. The profile-likelihood method
finds the log-likelihood of the parameters, which are then adjusted until the log-likelihood
decreases below a pre-determined threshold. The threshold values will then yield the CI
[78]. A mathematically easier but more computationally intensive method is the boot-
strap. Bootstrapping was first developed in 1979 by Bradley Efron [79] and is a relatively
brute force approach to establishing a CI. For non-parametric bootstrapping, a random
sample is chosen with replacement from the data set and a model is fitted based on
this random sample. The process is repeated several times, typically 1000-2000 itera-
tions, which ultimately yields a distribution of parameters. The CI is determined at
the relevant percentile cutoff of these parameters. Parametric bootstrapping differs from
non-parametric bootstrapping by assuming the sampled data is a good representation of
the population the sample is extracted from. Thus, synthetic patients derived from the
distribution of the model are used to build the bootstrapped models instead of random
selections of data points from the original data set [78, 79, 80].

In addition to estimating CIs, the bootstrap can also be used for bias estimation. Bias
describes the difference between the predicted and true value of a data point, which
bias correction can then help correct for. Median bias correction is used to shift the
calculated median towards the true median of the population, which can be done with
the bootstrapped median by

MBias Corrected = 2MSample −MBootstrap (2.26)

where M is, from left to right, the bias-corrected median, the median from the original
sample and the average median from the bootstrapped samples. Median bias correction
shifts the sample median in the opposite direction of the bootstrapped median, which will
move the median closer to the true population median, but at the risk of overshooting
and underestimating the true value [81].

2.7.2 Wilcoxon Signed-Rank Test

A Wilcoxon signed-rank test is a non-parametric test used to determine whether the
difference between the means of two groups of data is statistically significant [78]. The test
applies to datasets where the data points are structured in matched pairs. The absolute
differences between the matched pairs are found and ranked from lowest to highest. The
sum of all positive ranks and negative ranks are then calculated, with the absolute lowest of
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these two sums being called the test statistic. Suppose the null hypothesis (the hypothesis
that there is no noticeable difference between the two means) is true. In that case, all
rank distributions are equally likely, which means that the most probable test statistic
would be close to the mean of the total sum of ranks. If the test statistic is small, the
sum is less likely to be explained by the null hypothesis, with the probability of this
test statistic translating to a p-value. The p-value can be found mathematically by first
finding a z -score through

z =
s− µ
σ

=
s− n(n+1)

4√
n(n+1)(2n+1)

24

(2.27)

where s is the test statistic, µ is the mean, and σ is the standard deviation of the values,
calculated by the respective formulae in the equation, where n is the number of matched
pairs in the test [78]. The z -value gives the number of standard deviations between the
null mean and the new mean. The p-value is then given by the area under the z -curve
outside the standard deviations between the two means. For example, z = 2 translates
to 95% of the area covered by the standard deviations and would give a p-value of 0.05.
A p-value of 0.05 is a common threshold to use for statistical significance from the test.
One commonly distinguishes between one-tailed and two-tailed Wilcoxon tests, where a
two-tailed test has been described so far. In contrast, the one-tailed test only accounts
for one side of the normal distribution and can be utilised if one knows the nature of the
shift and the only interest is in either a positive or a negative difference [78].

2.7.3 Monte Carlo Method

Monte Carlo (MC) methods use random number generators to simulate complex, stochas-
tic systems. Due to the stochastic nature of particle behaviour, particle tracking is a
common use of MC simulation [12]. Particles traversing a medium are simulated on a
particle-by-particle basis. Since many of the interaction processes a moving particle is
involved in produces secondary particles, these are generally simulated following the sim-
ulation of the primary particle. The knowledge of a particle’s trajectory is known as
the particle history, and the accuracy of the simulation is inversely proportional to the
square root of the number of particle histories, 1/

√
N . The simulation requires a well-

defined geometry for the particle to traverse, with the particles simulated one at a time
and with small step sizes. The step size is limited by the resolution of the underlying CT
image since the probability of particle processes is mainly decided by the properties of
the medium. Averaging material composition of adjacent voxels is a possible solution, but
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this limits the accuracy of the simulation. Small step sizes and a large number of particles
are ideal for accurate simulations but come at the cost of computational intensity and,
hence, time-consuming simulations [12, 77].

2.8 Predictive Models

Predictive Models are models designed to take specific input parameters and predict the
probability of any given output value. The models have importance within predicting the
probability of NTCP from a given treatment scheme, as will be further elaborated during
the course of this section. Predictive models are trained on a certain subset of data, such
as a patient cohort for NTCP modelling, and will attempt to generalise the information
from this subset to a population [82]. Thus, the ideal predictive model will have good
accuracy on a large and inhomogeneous set of data, which is characterised by a high rate
of correctly labelling positives, true positives, while also correctly labelling negatives, true
negatives.

2.8.1 Area Under the Receiver Operating Characteristic

Several operations can be utilised to rate a predictive model, with one example being the
area under the receiver operating characteristic (AUROC). A receiver operating charac-
teristic (ROC) curve is a curve that plots the rate of false positives against the rate of true
positives for a predictive model. The true positive and false positive rates, or sensitivity
and 1 - specificity (true negative rate), are defined as

TPR =
TP

TP + FN
and FPR =

FP

TN + FP
(2.28)

where TPR and FPR are the true positive rate and false positive rate, respectively, TP
is the number of true positives, FN is the number of false negatives, TN is the number of
true negatives, and FP is the number of false positives [83]. A depiction of a ROC curve
is given in figure 2.16.
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Figure 2.16: Example of a receiver operating characteristic (ROC) curve. The black line represents a
model that performs equally well to a random guess, while the red line shows a typical shape of a ROC
curve representing a better predictive model. Modified figure from Zou, K. et al. [83]

The black line in figure 2.16 represents the rate of true positives equal to false positives
and describes a model that performs on par with a random guess. The red curve shows a
typical curve comparing true positives to false positives, and the model’s predictive ability
improves as the curve approaches the upper left corner of the plot. The ROC curve can
be generalised to evaluate predictive models by studying the area under the ROC curve,
the AUROC. Thus, an AUROC-value of 0.5 describes a poor predictive model performing
on par with a random guess, while an AUROC-value of 1 will describe a perfect model
labelling all points correctly [83].

2.8.2 Logistic Regression Models

Logistic regression models, or logit models, are predictive models that utilise regression,
as outlined in the previous section, to classify data points [82]. Logistic regression takes
in data with at least one input variable (usually continuous) and discrete labels, with the
simplest models having only binary labels. NTCP modelling is a possible use of logistic
regression, where the data points are individual patients labelled either with toxicity
or without toxicity, while the continuous input parameter is a dosimetric value [12]. A
weighted linear sum is fit to the data points, which is then converted to a sigmoid function
to yield an output between 0 and 1. In binary classification, each label has the binary
value 0 or 1, with a threshold at 0.5 determining the label [84]. A sigmoid curve resulting
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from logistic regression is illustrated in figure 2.17.

Figure 2.17: Example of a sigmoid curve for logistic regression. Coloured data points share a label of
either 0 or 1. The given sigmoid curve would correctly label 6/8 points. Modified figure from Paganetti,
H [12].

The example from figure 2.17 would correctly label 6/8 points for a standard threshold
of 0.5, and the example had an AUROC-value of 0.94. The sigmoid function is given by

f(wTx + w0) =
1

1 + e−(wTx+w0)
(2.29)

where x is the set of input variables, wT are corresponding weights for the input variables,
and w0 is a constant weight independent of all input variables. The summed weights are
the parameters that describe the given model and are commonly optimised by maximising
the likelihood, or more precisely, the model’s log-likelihood, with respect to the fitted data
points [82]. The likelihood, given an event, describes the probability distribution most
likely to explain the event. In logistic regression, the event is the distribution of the data
points’ input variables and their corresponding labels, while the likelihood describes the
weights resulting in the model with the best ability to fit the data points and label them
correctly. The log-likelihood of a binary classifier is described by

L(w, w0) =
N∑
i=1

yi log fi(w
Tx + w0) + (1− yi) log(1− fi(wTx + w0)) (2.30)

where L is the log-likelihood, N is the total number of data points to be fitted, fi(wTx+

w0) is the solution of the sigmoid described in equation 2.29 for data point i, and yi is the
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label of data point i [78, 82]. Since the label, yi, is discretely 0 or 1, equation 2.30 will have
one term cancelled out for each data point. The log-likelihood can then be maximised by
setting the first derivative equal to 0 and solving, which is generally done with iterative
methods since the derivative of the log-likelihood does not have a closed-form solution [82].

One iterative approach that can be used to maximise the log-likelihood is gradient descent
[84]. Gradient descent starts by calculating the weights at an arbitrary starting point and
the derivative is subsequently found and set to 0 to find the point of maximum ascent.
The derivative is then subtracted from the original weights. This process is repeated until
a local minimum is found. Mathematically gradient descent is outlined as

wj,k = wj,k−1 + ∆wj,k−1, where ∆wj,k−1 = −η ∂L
∂wj,k−1

(2.31)

where wj,k is the weight corresponding to input variable j, after gradient descent iteration
k, while wj,k−1 is the weight from the previous iteration (k − 1). ∆wj,k−1 is the update
to the weight, which is dependent on a manually determined step size, η, quantifying
how much each iteration should update the weight, and the partial derivative of the log-
likelihood (L) with respect to the weight wj,k−1 [84]. For binary classification, the weight
updates, ∆wj,k, have the forms

∆wj,k = η
∑
i

(yi − fi(wTx + w0))xi,j (2.32)

and

∆w0,k = η
∑
i

yi − fi(wTx + w0) (2.33)

2.8.3 NTCP Models

Shackell et al. found as early as 1924 that biological effect relative to toxin dosage trans-
lates to a roughly S-shaped curve [85], which is similar to the biological effect of radiation.
Dose-response curves are, thus, often given as sigmoid shapes, and logistic regression is a
normal basis for what is often referred to as NTCP models [12]. NTCP models use pa-
tient data to determine the relationship between the treatment scheme’s dosimetric (and
non-dosimetric) characteristics and a given adverse clinical endpoint [12]. The Trans-
parent reporting of a multivariable prediction model for individual prognosis or diagnosis
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(TRIPOD) includes a set of guidelines used to guide the validity of multivariable NTCP
models and universalise the models between clinics [86].

DVH Reduction Models

DVH-reduction models are NTCP models that compress information from DVHs into a
singular representative metric. Since DVHs contain no spatial information of the radiation
treatment, DVH-reduction models are based on estimated complication probability for
uniform radiation. The difference in the volume of the organs can be considered by
expressing tissue tolerance as a power law of fractional volume irradiated, as given in

D(Virradiated) = D(Vreference)

(
Vreference

Virradiated

)n
(2.34)

where Vreference is a reference volume, Virradiated is a uniformly irradiated volume, D repre-
sents the tolerance doses of the respective volumes, and n accounts for how highly small
irradiated volumes impact the final dose calculation [36]. Small n-values translate to
changes in irradiated volume having a minor impact on the tolerance doses, while large
n-values mean the tolerance dose is highly dependent on irradiated volume fraction [12].
Lyman used equation 2.34 as a basis to quantify risks associated with partial organ volume
uniform irradiation in what would later come to be known as the Lyman-Kutcher-Burman
(LKB) model [36, 87].

The Lyman-Kutcher-Burman Model

For uniform irradiation, the dose-response is described by a mathematical function with a
minimum of two parameters. The LKB model, which is both one of the first and one of the
most often used models [12], incorporates the parameters TD50, the dose corresponding
to a 50% complication probability and m, a constant describing the slope of the response
curve [36]. Partial volume irradiation is also accounted for by incorporating the volume
parameter, n [87]. The n parameter is considered through the generalised equivalent
uniform dose (gEUD), which is defined as the dose that, if given uniformly to the entire
organ, would result in the same probability of complication [36]. Mathematically, gEUD
is expressed as

gEUD =

[
1

NVoxels

NVoxels∑
i=1

d
1
n
i

]n
(2.35)
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where NVoxels is the number of equally sized voxels and di is the dose to voxel i. The LKB
model is given in terms of gEUD as

NTCP =
1√
2π

∫ t

−∞
e
−x2
2 dx, where t =

gEUD− TD50

m× TD50
(2.36)

The parameters of LKB models differ significantly based on both organ and clinical end-
point. The most apparent parameter difference is in the n parameter, which is highly
dependent on the seriality of the organs. Parallel organs, such as the liver, lung and kid-
ney, are organs where the components of the organ function reasonably independently of
each other and, as such low irradiated volumes cause minor damage to the organ. Hence,
complications in these organs are usually described by LKB models with large volume
effects, i.e. n ≈ 1 [36]. Serial organs, such as the rectum and the brainstem, on the other
hand, are highly dependent on the entire organ to function and as such, only a minor
volume of the organ irradiated will cause significant damage. Thus, they are described
by LKB models with smaller volume effects, for example n ≈ 0.1 for late rectal bleeding
[36] and n-values of 0.05 [87] and 0.16 [88] for brainstem toxicity. Comprehensive lists of
LKB parameters for several organs and endpoints have been collected and developed by
Lyman in 1985 based on published data at the time [87] and Burman et al. in 1991 [88]
based on tolerance doses compiled by Emami et al. [89] the same year. However, both
parameter sets are limited by the data available at the time.

Functional Subunit-Based Models

Several NTCP models have been established based on the seriality of organs, with the
initial three being the critical element model [90], the critical volume model [91] and the
relative seriality model [92]. The critical element model assumes that dose to any subvol-
ume of the organ will result in its failure and describes the response of serial organs. On
the other hand, the critical volume model accounts for parallel organs by incorporating
the organ’s spare capacity. As long as the volume irradiated does not exceed the capacity,
the dose will not result in organ failure. Finally, the relative seriality model incorporates
an adjustable fitting parameter that results in a flexible description of the organ’s degree
of seriality [12].

Multiparametric Models

DVH reduction models compress the data from a DVH to a single metric, which is at
risk of oversimplifying the distribution and yield similar metrics for significantly differ-
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ent DVHs. An alternative could thus be multiparametric models that consider several
parameters in predicting toxicity, typically a combination of both dosimetric and non-
dosimetric parameters [36]. Logistic regression is a common method of fitting the models
to the data, and there are several different techniques in establishing what parameters to
utilise. Examples of parameter choice methods range from experienced manual choices,
to determining the parameters that maximise the performance of the models through
statistical methods or machine learning (ML) approaches [36, 93, 94].

2.9 Machine Learning

Machine learning (ML) has in recent years seen considerable development within the field
of radiation oncology [95], and further improvements are likely to proceed. The regres-
sion and predictive modelling outlined in the previous sections are themselves examples
of ML [84], which is, by definition, the optimisation of a computer algorithm based on
a combination of past experience and example data [84]. ML can be roughly divided
into supervised learning and unsupervised learning. Supervised learning has known labels
for the computer to predict and a set of features for the computer to determine which
have the most robust patterns with the labels. On the other hand, unsupervised learning
provides the computer with a set of features as well but differs from supervised learning
by relying on the computer to establish patterns in the data [84].

2.9.1 Clustering

Clustering is an unsupervised ML algorithm and describes the process of applying an
algorithm to make a computer sort a set of data in groups based on specified parame-
ters [84]. Clustering evaluates a set of data point coordinates, separates the data points
tightly clustered together in dense areas and assigns the data points specific labels [84].
Examples of commonly used clustering algorithms include k-means clustering, hierarchi-
cal clustering and density-based clustering approaches.

k-means Clustering

As implied by the name, k -means clustering is a clustering algorithm that asks the user
for manual input of the desired number of clusters, k, and the computer will then sort the
data points into the most fitting of these clusters [82]. A cost function is defined as the
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variance of the clusters multiplied by their size and is given by

C(D1, ..., Dk) =
k∑
j=1

|Dj|V ar[Dj] =
k∑
j=1

∑
xi∈Dj

||~x− µj||2 (2.37)

where Dj represents the different clusters, ~x is a specific data point, and µj is the mean
vector of points belonging to cluster j. The computer aims to find the cluster partition
that minimises the value of this cost function, and a commonly used algorithm is Lloyd’s
algorithm, which is also referred to as Voronoi tesselation. Lloyd’s algorithm chooses k
random initial cluster centroids and clusters the data points accordingly. The centroids
are subsequently updated to the centres of the new clusters, and the data points are re-
labelled. The process continues iteratively until the relabelling of the data points yields
no changes in the clustering, which then gives the final clustering [82].

Hierarchical Clustering

Unlike k -means clustering, hierarchical clustering does not require the user to manually
select the number of clusters one wants out of the clustering. Instead, in hierarchical clus-
tering, the computer establishes a hierarchical order of differently sized clusters, and the
user must then determine the ideal number of clusters based on different quality measures
[82]. There are two main categories of hierarchical clustering, agglomerative clustering
and divisive clustering.

Agglomerative clustering is a "bottom-up" approach where each data point is initially
established as an individual cluster. The clusters are then consecutively merged based on
proximity from a specified linkage criterion until all data points are gathered in one large
cluster [82]. Divisive clustering describes the opposite approach where the basis is one
large cluster containing all data points, which is then iteratively split apart until one has
n clusters left with a single data point in each cluster. The clusters are formed based on a
given linkage criterion, and there are several such criteria available, with certain examples
being described here. Single linkage is defined as the distance from a data point to its
closest neighbour. Alternatively, complete linkage is the distance from a data point to
its furthest neighbour. Average linkage considers the average distance between all data
points in the two clusters. Finally, centroid linkage is the distance from the centre of one
cluster to the centre of an adjacent cluster [82].

Data from hierarchical clustering is often presented in a dendrogram, a graphical repre-
sentation of the clusters as shown in figure 2.18.
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Figure 2.18: Example of a dendrogram. The y-axis shows radial distance between clusters, while the
x-axis shows the data points in the clustering, referred to as the leaves. Figure inspired from Alpaydin
E. et al. [84]

The dendrogram has labels for all data points on the x-axis, referred to as leaves. The
y-axis gives the radial length between clusters. Hence, the dendrogram gives a visualisa-
tion of the distance where one cuts the tree in the horizontal direction, which yields the
resultant clustering from the algorithm [82].

Density-Based Spatial Clustering of Applications with Noise

Density-based spatial clustering of applications with noise (DBSCAN) is an alternative
clustering algorithm and, as the name implies, is prone to cluster dense regions of data
points. In contrast, less dense regions are excluded from being clustered and are instead
labelled noise. DBSCAN requires two parameters, the distance between two points that
would qualify them as part of the same cluster, referred to as an Epsilon-neighbourhood,
and a minimum amount of points required to form a cluster. These criteria exclude outliers
from being included as clusters, which separates the algorithm from k -means clustering
and hierarchical clustering and makes the algorithm a strong choice if one has a database
with known outliers [96].

The choice of parameters for the DBSCAN is a central aspect of running the algorithm.
A method of determining the ideal Epsilon-neighbourhood for the DBSCAN is to find the
point of steepest slope on the k-distance graph of the dataset [96, 97]. k -distance refers
to the distance from a point to its k -th nearest neighbour, and the point of inflection
in the resulting k -distance graph will indicate the ideal Epsilon-neighbourhood. The k-
distance graph plots distance versus data points with k neighbours within the specified
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distance. Examples of k -distance graphs are shown in Appendix D. The choice of k has
been suggested be set to twice the dimensions clustered minus one [98]. The minimum
number of points within a cluster was observed to not change significantly over a value
of 4 for 2-dimensional data in the original paper [96], which was generalised to a basis of
2 · dimensions, or more precisely 2k + 1 for higher dimensional data [98].

Silhouette Score

For all clustering algorithms described in this section, a metric to rate cluster quality
is essential. Several metrics can be used for this purpose, with one example being the
silhouette score of the clusters. The silhouette score is a measure that accounts for the
similarity of data points within a cluster and the dissimilarity of data points between
clusters. The silhouette score of a single data point is given by

s =
B − A

max(A,B)
(2.38)

where A is the average distance between the data point to the other data points in its
cluster, and B is the distance between the data point and the average distance to each
point within the closest neighbouring cluster. The silhouette score is normalised by the
maximum of the two values, max(A,B). An average silhouette score between all the data
points is calculated and is used to describe the total quality of the clustering. Hence, the
silhouette score will always lie between −1 and 1, where a value below 0 signifies a poor
clustering, while a score between 0 and 0.5 means the clustering is acceptable. Still, one
usually wants to achieve a silhouette score of higher than 0.5, which translates to a solid
clustering [99].

2.10 Brainstem Necrosis

Brainstem necrosis forms the clinical endpoint of the cases in this study, and this section
is dedicated to a description of the condition. Necrosis refers to the irreversible injury and
subsequent death of cells from external stimuli such as bacteria, toxins or radiation. Hence,
necrosis describes the result of several different mechanisms of cell death [100]. Necrosis
of brainstem tissue is a condition that can occur following radiotherapy treatment of
tumours in the brain and has in certain studies been observed at greater rates for proton
therapy compared to photon therapy [101]. Brainstem necrosis is graded from 1 to 5
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according to CTCAE v5.0 guidelines for CNS necrosis, where grade 1 translates to a mild
or asymptomatic condition, grade 2 to mild symptoms, grade 3 to moderate symptoms,
grade 4 to a critical condition requiring urgent intervention, and grade 5 to death [18, 54,
102].
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Chapter 3

Materials and Methods

This chapter will outline the acquisition of the data material that formed the basis for the
work performed in this thesis, and the subsequent methods used to process the material.
The origin of the patient cohort will be explained, as well as the recalculation of dose and
contouring of the clinical volumes. Further, the investigation and statistical analysis of
the cohort will be outlined, and the methods behind the NTCP modelling and the cluster
analysis based on the cohort will also be covered.

3.1 Patient Cohort

The database used in this thesis consisted of DVHs and LETd distributions from 36
anonymised paediatric patients part of a case-control study from an ongoing PhD project
at the University of Bergen. The cohort was extracted from 954 paediatric patients treated
with double-scattering proton therapy for posterior fossa tumours at the University of
Florida proton centre between 2006 and 2017. Nine of the included patients developed
symptomatic CTCAE grade 2+ brainstem toxicity following treatment and are, thus, the
cases included in the study. These were each matched to three control patients based on
diagnosis, adjuvant therapy, age (±1.5 years), as well as the maximum dose (D0.1cc) and
D10% to the brainstem (both ±2 Gy(RBE)).

As part of the PhD project, dose distributions and LETd distributions had been re-
calculated using FLUKA MC code with a model of the double scattering nozzle used
for treatments at the University of Florida proton centre [103]. Dose distributions were
recalculated with LETd-weighted doses [70], the McNamara RBE model [21], and the
Rørvik weighted RBE model [22]. The former incorporated weighting factors c = 0.04

and c = 0.055 [70, 71]. The latter two models assumed constant (α/β)x-ratios for the full
brainstem volume, and were recalculated with (α/β)x = 2.1 [17], (α/β)x = 2.5 [31] and
(α/β)x = 3.3 [104], as (α/β)x-ratios associated with the brainstem from previous studies.
The latter two models were chosen since they are based on a significant number of low
(α/β)x and LET values, while LETd-weighted dose was chosen as a model independent
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of the uncertain (α/β)x of brainstem tissue [105]. 2–5 treatment fields were simulated per
patient, with 600 million primary protons per treatment field, resulting in a statistical
uncertainty of less than 1% in the PTV. The MC calculated doses were normalised to
the same CTV coverage achieved during the initial treatment planning, which resulted in
scaling factors for the total dose between -3.2% and 2.4% [103].

The substructures of the brainstem for all 36 patients had been contoured in relation with
the PhD project. First, the brainstem was divided into its three primary substructures,
the medulla oblongata, the midbrain and the pons. The pons was further delineated into
four components; the posterior, the middle posterior, the middle anterior and the anterior,
to approximate transversal fibre tracts. Additionally, the outer 3 mm of the brainstem
was separated from the brainstem core, although the surface and core were not volumes
focused on in this thesis, since the volumes are already clinically accounted for [33]. All
delineated substructures are shown in figure 3.1.

Figure 3.1: Brainstem substructures. Top left shows the brainstem core versus brainstem surface (inner
versus outer structure). Top right shows the midbrain (pink), pons (turqoise) and medulla oblongata
(white). The lower two images show a transversal view (bottom left) and a sagittal view (bottom right)
of the four substructures of the pons: posterior (blue), middle posterior (white), middle anterior (dark
pink) and anterior (light pink). Figure courtesy of Stokkevåg, C et al. [106].
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3.2 Extracted Raw Data

The simulated dose distributions and LETd distributions for all RBE calculations were
extracted from FLUKA as DICOM files (.dcm) and exported to Eclipse TPS. The dose
distributions of all patients were combined with the delineated volumes from CT and
MRI images of the corresponding patients. DVHs and LETd-volume were constructed
with Eclipse TPS for all combinations of delineated subvolumes and recalculated RBE-
weighted doses, and were then extracted from the system as text files (.txt). Isodose
images were also studied in Eclipse TPS to illustrate the dose and LETd distributions
of the patients since, in the extraction of DVHs, the spatial information is limited to
the delineation of the substructures. The LETd had a cut-off threshold at 1 Gy(RBE)
to avoid excessive impact from areas with insignificant dose, but moderate LETd. This
threshold was utilised in the study of isodose images, the LETd-volume histograms and
the LETd statistics, which will be described later in this chapter.

3.3 Average Dose Volume Histograms

Average DVHs were constructed from the DVHs of the cohort through an in-house Python
script [107], which takes as input the text files with DVH information from Eclipse and
outputs a similar text file, but averaged over all cases and all controls. The text file
was then plotted with a Python script made by the author of this thesis with imported
functions from the Python library Matplotlib [108] for the plotting and the libraries Pan-
das [109] and Numpy [110] for data handling. Average LETd-volume histograms were
constructed to study the difference in LETd distributions of the cases and controls. Ad-
ditionally, DVHs comparing LETd-weighted doses, McNamara RBE-weighted doses and
Rørvik RBE-weighted doses with RBE1.1-weighted doses for cases and controls were also
made. The full brainstem, the substructures medulla oblongata, midbrain and pons, and
the further delineated pons were included in both LETd-volume histograms and DVHs.

3.4 Statistical Analysis

The D50%, D10% and Dmax were the primary dose statistics studied since D50% repre-
sents a significant fraction of the total volume, D10% represented the approximate volume
that maximised the difference between cases and controls as observed from DVHs, while
Dmax quantifies the effect of hot spots in the volumes. Dmax is here defined as the dose
to a volume 5 mm× 5 mm× 3 mm = 0.075 cm3, as determined by the resolution of the
images in Eclipse TPS. The volumes studied were the same that were outlined in the pre-
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vious paragraph and RBE-weighted dose from McNamara, Rørvik, and RBE1.1 formed
the dosimetric basis. A constant (α/β)x = 2.1 was assumed for the full brainstem where
applicable. From the DVHs made in Eclipse TPS the dose statistics D50% and D10%

were calculated, while the Dmax was provided in and read directly from the .txt files with
the DVH information. gEUD was also studied with volume parameters n established
previously by Lyman [87] and Burman et al. [88], n = 0.05 and n = 0.16, respectively.
gEUD was calculated with equation 2.35, by using an in-house Python script [107]. LETd

statistics were also investigated, specifically the L50%, the LETd to 50% of the total
structure volume, and the maximum LETd (Lmax). The variation in dose statistics within
and between individual case-control groups was studied and summarised as the average
case and control patient with 95% CIs. The D50%, D10% and Dmax to the full brainstem
volume were compared to the dose constraints set for the full brainstem at the University
of Florida proton centre [33].

The cases were further compared to their average matched control by studying the differ-
ence between them, as given mathematically by

tox n− cn.1 + cn.2 + cn.3
3

for n ∈ [1, 9] (3.1)

where tox n refers to the case of group n, while cn.i refers to its corresponding matched con-
trols. Subsequently, an average was calculated for the differences of the nine case-control
groups. A Wilcoxon signed-rank test was utilised to determine statistical significance of
the differences, with a standard threshold of p = 0.05 used to signify statistical signif-
icance. Statistical significance is noted in tables where the differences are provided by
an asterisk (*). The calculations and the Wilcoxon signed-rank test were both done in
Microsoft Excel. The differences were found for the full brainstem, the medulla oblon-
gata, the midbrain, the pons and the pons’ substructures. The dose and LETd statistics
outlined in the previous paragraph include all the differences calculated, with the sole
exception of (α/β)x-ratio, where the effect of utilising a higher (α/β)x = 3.3 was also
investigated in these calculations.

3.5 Lyman-Kutcher-Burman Modelling

LKB models were fitted to the dataset through the use of an in house Python script
[107], which processes DVHs, allows the extraction of dose statistics and using dosimetric
patient data to establish parameters used for NTCP modelling. The models were used
as binary classifiers with either toxicity or no toxicity as the outcome, and the clinical
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endpoint was brainstem necrosis CTCAE grade 2+. LKB models were fitted based on
the gEUD of the cohort with volume parameters n = 0.05, n = 0.16 and n = 0.25. The
parameters n = 0.05 and n = 0.16 were established in previous studies by Lyman in 1985
[87] and Burman et al. in 1991 [88], respectively. The final parameter, n = 0.25, was
chosen as an investigative value, since both n = 0.05 and n = 0.16 are relatively low
estimates of the parameter.

The slope parameter (m) and the tolerance dose for 50% of the patients (TD50) were
determined parametrically by establishing an initial model and using gradient descent, as
outlined in section 2.8.2, to find a local maximum for the log-likelihood of the model. The
gradient descent was performed using an algorithm called the Truncated Newton method.
The method uses an iterated optimisation algorithm to minimise the log-likelihood of a
function. The initial and subsequent parameter estimates are then updated by adjusting
the parameters towards the gradient of decreasing log-likelihood error [111]. Additionally,
to avoid local minima hiding a global minimum, a basin-hopping procedure was applied.
Basin-hopping translates the identified local minimum in a random direction, before a
new gradient descent search is started that might identify another lower local minimum
[112]. The LKB parameters were constrained to relatively wide intervals encompassing
parameters for previously established models, with m in the interval [0.03, 1.00] and
TD50 in the interval [10 Gy(RBE), 200 Gy(RBE)]. Initially, the volume parameter n was
also established by gradient descent. However, the log-likelihood consistently improved
for n-values approaching 0, making the defined CIs insignificant since the parameter was
overrepresented on the lower threshold. Hence, the choice was made to determine the
parameter by literature instead.

The two parameters were defined within 95% CIs by performing non-parametric boot-
strapping in 1500 iterations on the data, which was also performed using an in-house
Python script [107]. The models were fitted based on the bootstrapped samples, as out-
lined in section 2.7.1, and each parameter associated with the model were subsequently
assigned their respective CIs. The specific number of iterations was chosen since the pa-
rameters and CIs stayed reasonably consistent between runs, while the computing time
was limited to around two minutes. Subsequently, the CIs were used to approximate the
true parameters of the LKB models by applying a median bias correction. The boot-
strapped parameters were compared to the original parameters based on the sample, and
the parameters were shifted as outlined in section 2.7.1. However, the shift in the param-
eters after bias correction was minor so there was limited risk of significantly overshooting
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the true value.

The gEUD of the cohort based on the variable RBE models by McNamara et al. [21],
Rørvik et al. [22], and RBE1.1 were the primary basis for the modelling, but modelling
solely based on the cohort proved difficult and yielded models with wide CIs. Since out-
liers were prone to account for a significant percentage of the patients in the bootstrapped
cohorts, and the patient cohort was mostly concentrated in a limited dose range, syn-
thetic constraints were introduced. The synthetic constraints consisted of controls at
gEUD = 20 Gy(RBE) and cases at gEUD = 100 Gy(RBE) and were introduced to avoid
unrepresented high and low doses too heavily impacting the model curvature around the
TD50. The lowest weighting utilised was two controls at gEUD = 20 Gy(RBE) and two
cases at gEUD = 100 Gy(RBE), while models with nine of each were also investigated.
This was implemented in the Python script [107] as the ratio of the chosen weight divided
by the total number of patients in the cohort. Thus, the first weight would correspond
to 2/36 ≈ 0.056. The weights were minimised to the greatest extent possible to ensure
the models were mostly fitted to the original patient cohort instead of the synthetic con-
straints. This resulted in the full brainstem, midbrain and pons using two patients at each
constrained point. On the other hand, the medulla oblongata and the pons substructures
used nine of each respective constraint.

The validation of the models was based on AUROC-values, with all toxicity thresholds
along the sigmoid curves as the basis for the ROC-curve. The principles behind ROC-
curves and AUROC are outlined in section 2.8.1, with the AUROC-value being a com-
monly used metric for evaluating the performance of a predictive model. The AUROC was
found with a Python script plotting the ROC-curve, using the Pandas [109] and Numpy
[110] libraries for data handling. The Sci-kit Learn library [113] was, subsequently, used
to calculate the AUROC.

3.6 Cluster Analysis

Dose statistics of the patient cohort were also used as the basis of cluster analyses, to
investigate if cluster analysis could discover systematic differences between the cases and
controls of the cohort. The clustering was performed using Python scripts with imported
packages from Sci-kit Learn [113]. The two clustering algorithms utilised were DBSCAN
and hierarchical clustering and a range of dose statistics were clustered, with selected
clusterings being presented in this thesis.
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DBSCAN was chosen as a clustering algorithm because certain patients, or even whole
case-control groups, differed significantly from the rest of the cohort. By labelling the out-
liers as noise, the hypothesis was that similar points could establish more robust clusters
than the hierarchical clustering. The minimum points within an individual cluster were
set to one more than the number of parameters tested, which does not follow the ideal
number of clusters set by Sander et al. [98], but maintained the notion of the threshold
being higher than the dimensions of the data, while allowing smaller clusters to form.
This was considered beneficial since the database was of limited size. The minimum dis-
tance between two points within a cluster was determined by a k-distance graph, with
k-distance graphs used for the clusterings presented in this thesis given in appendix D.
A k-value of 2 was used, but the graphs and points of inflection stayed close to constant
between different values of k. An interval within which the inflection point could be found
was determined by studying the graph manually. Subsequently, the distances within the
interval were explored until a distance yielding a maximum in silhouette score for the
clustering was found. The silhouette score was also compared between the different clus-
terings to compare the quality of the clusters. Standard euclidean distance was the chosen
distance metric utilised.

For the specific DBSCANs included in this thesis, the parameters established were as
follows. The DBSCAN of the D50% to the medulla oblongata, the midbrain and the
pons used four minimum samples to form a cluster, one plus the number of dimensions
clustered. The McNamara and Rørvik clusterings used a nearest neighbour distance, Ep-
silon, of 1.00 determined through studying the k -distance graph and the silhouette scores
of the resultant clusterings. For the RBE1.1 clustering, a nearest neighbour distance, Ep-
silon, of 0.8 was chosen through the same method. The gEUD of the midbrain and pons
with n = 0.05 used a minimum points to form a cluster of three. The nearest neighbour
distance, Epsilon, of 0.80 was chosen for all three RBE weighted doses, decided from a
combination of the k -distance graph and the silhouette scores.

The hierarchical clustering is not as robust to outliers as the DBSCAN. However, an
advantage of the algorithm is less required input from the user and its ability to give
an overview of all possible cluster combinations. The hierarchical clustering used the
silhouette score to determine where to set the threshold for the result of the clustering, and
the silhouette score also gave an estimate of the quality of the clustering. The clustering
was an agglomerative approach and used the centroid linkage method to cluster the data
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points.
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Chapter 4

Results

The first results given are the isodose curves studied for selected example patients from
the cohort. LETd-volume histograms and LETd statistics follow. Subsequently, average
DVHs and dose statistics will be presented, before the study of the gEUD is provided. The
next section is dedicated to LKB models fitted for the cohort before finally, the results
from the cluster analyses are shown.

4.1 Isodose Curves

Both dose and LETd distributions of the patients varied considerably across the case-
control groups, mainly because individual case-control groups were matched based on
different diagnoses. Notably, most of the patients in case-control groups one and two
had a treatment field that did not cover the medulla oblongata, which can be seen from
both dose and LETd distributions of the case from group one in figure 4.1 (since the
LETd was subject to a cut-off at 1 Gy(RBE)). Otherwise, the LETd was relatively low in
large parts of the brainstem for the majority of the patients, which is a consequence of
the treatment planning attempting to avoid overlap of the brainstem and the distal end
of the Bragg peak. However, while average LETd was reasonably low as shown in LETd

statistics presented in this chapter, certain outliers received considerable LETd to parts of
the brainstem volume. For the case from group six, the distal end was unable to avoid the
brainstem altogether, and the patient ended up receiving LETd in the 6−8 keV/µm range
to both the midbrain and the pons posterior. The patient also received Dmax approaching
70 Gy(RBE), exceeding average Dmax for the cohort to the full brainstem, which is also
presented in this chapter.
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Figure 4.1: CT images showing dose and LETd distributions from FLUKA MC recalculation using
RBE1.1, and the McNamara and Rørvik RBE models, shown in Eclipse TPS. The left shows the case
from group 1, the middle shows the case from group 6, and the right shows a control from group 9.
From top to bottom row are LETd distributions, dose distribution from the McNamara model, dose
distribution from the Rørvik model and dose distribution from RBE1.1.
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4.2 Linear Energy Transfer

Average LETd-volume histograms constructed for the brainstem showed that, on average,
cases received slightly higher LETd than the controls, particularly in the 2 − 8 keV/µm

range. The brainstem is shown along with its substructures in figure 4.2. The medulla
oblongata had a similar increase for cases compared to controls in the range 2−6 keV/µm,
while the midbrain also showed the same trend in the whole 2−8 keV/µm range. The pons
showed the smallest interval of increased LETd to cases over controls at only 2−4 keV/µm.
The pons substructures, shown in figure 4.3, showed similar trends with increased LETd to
cases compared to controls for most LETd. However, the values fluctuated more compared
to the previously studied volumes.

Figure 4.2: Average LETd-volume histograms for cases versus controls for the full brainstem, the medulla
oblongata, the midbrain and the pons.
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Figure 4.3: Average LETd-volume histograms for cases and controls for the substructures of the pons.

Average L50% was seen to increase towards the anterior of the brainstem, as shown by
the substructures of the pons in table table 4.1. Lmax followed a similar trend, but also
had high values for the midbrain. All subvolumes had larger standard deviations for Lmax

compared to L50%.

Table 4.1: Average L50% and Lmax for brainstem substructures for the whole cohort. The first standard
deviation is included as an uncertainty estimate.

L50% [keV/µm] Lmax [keV/µm]

Brainstem 3.08± 0.61 6.29± 2.10

Medulla Oblongata 2.34± 1.04 4.41± 1.78

Midbrain 3.34± 1.07 5.46± 2.29

Pons 3.26± 0.76 5.74± 1.96

Pons Posterior 3.00± 0.76 4.07± 1.57

Pons Middle Posterior 3.22± 0.78 4.66± 1.57

Pons Middle Anterior 3.56± 0.97 5.17± 1.75

Pons Anterior 3.90± 1.32 5.40± 1.97

From investigating the variation in L50% and Lmax within and between case-control, as
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well as average cases and controls, all subvolumes were observed to have higher values
for cases than controls for both statistics. However, the differences were within the 95%
CIs of both average case and control. This is depicted in figure 4.4 for the brainstem, the
medulla oblongata, the midbrain and the pons, and for the pons substructures in figure
4.5. Similarly, Lmax is given in figures 4.6 and 4.7. The full brainstem showed the least
variation in L50%, despite the medulla oblongata having most points more concentrated,
but with notable outliers. The midbrain showed the greatest difference between cases
and controls but with comparable CIs to the medulla oblongata. On the other hand,
the pons showed a smaller difference between cases and controls than the other volumes
and similar CIs to the full brainstem. The pons posterior and middle posterior exhibited
similar minor variation and CIs for both cases and controls, while the middle anterior had
wider CIs for controls. The anterior showed even greater CIs for both cases and controls.

The largest difference in Lmax between cases and controls was observed for the full brain-
stem and the midbrain. However, these also yielded the widest CIs. The pons had slightly
narrower CIs than the previous two structures, while the medulla oblongata yielded even
narrower CIs. For the pons substructures, the CIs of the controls were similar across all
four subvolumes, with the posterior showing the greatest consistency in the position of the
data points. However, the CIs of cases for the two anterior subvolumes were significantly
wider than their posterior counterparts.

Figure 4.4: L50% of the brainstem, the medulla oblongata, the midbrain and the pons for all case-control
groups, including average case and control with 95% CI.
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Figure 4.5: L50% of the substructures of the pons for all case-control groups, including average case and
control with 95% CI.

Figure 4.6: Lmax of the brainstem, the medulla oblongata, the midbrain and the pons for all case-control
groups, including average case and control with 95% CI.

Figure 4.7: Lmax of the substructures of the pons for all case-control groups, including average case and
control with 95% CI.

The average difference in L50% and Lmax between the cases and their average matched
control showed that cases received higher LETd, compared to controls, consistent for all
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subvolumes studied. The results are provided in table 4.2. The greatest differences were
observed in the Lmax of the full brainstem and the midbrain. However, the differences
were all less than one standard deviation. Additionally, none of the differences proved
statistically significant from a Wilcoxon signed-rank test.

Table 4.2: Average difference in L50% and Lmax between cases and their average matched controls
for brainstem substructures. The first standard deviation is included as an uncertainty estimate. No
difference was found to be statistically significant from a Wilcoxon signed-rank test

L50% [keV/µm] Lmax [keV/µm]

Brainstem 0.28± 0.54 1.02± 1.87

Medulla Oblongata 0.33± 0.92 0.23± 1.40

Midbrain 0.52± 1.02 1.01± 2.21

Pons 0.18± 0.71 0.44± 1.84

Pons Posterior 0.14± 0.69 0.30± 1.17

Pons Middle Posterior 0.15± 0.71 0.42± 1.51

Pons Middle Anterior 0.30± 0.91 0.43± 1.81

Pons Anterior 0.45± 1.37 0.22± 2.15

4.3 Variable Relative Biological Effectiveness

Average DVHs showed that the full brainstem had slightly larger differences between cases
and controls for the LETd-weighted dose with c = 0.04 than for RBE1.1. A further in-
crease was observed for LETd-weighted dose with c = 0.055. The DVHs of the brainstem
are shown in figure 4.8 along with the medulla oblongata, the midbrain and the pons.
The further delineated pons is given in figure 4.9. The differences for the full brain-
stem, the medulla oblongata and the pons were greatest in the high dose range, between
55 Gy(RBE) and 62 Gy(RBE) for both RBE1.1 and LETd-weighted dose. However, the
midbrain differed by instead having the most significant difference between cases and con-
trols in the middle to high dose range, at around 40 Gy(RBE) to 58 Gy(RBE).

An increase in the difference between cases and controls from RBE1.1 to LETd-weighted
dose can also be seen in the high dose range for all pons substructures except the anterior.
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However, the pons anterior had a lower average dose to cases compared to controls, but
with increased LETd weighting, the difference was seen to decrease, consistent with the
trend of the remaining substructures.

DVHs for the McNamara and Rørvik models are given in figures 4.10 and 4.11. The
models yielded greater differences between variable RBE and RBE1.1 in the high dose
range (55 Gy(RBE) and up) compared to RBE1.1 versus LETd weighted doses. The two
phenomenological RBE models had similar differences between cases and controls.

Figure 4.8: Average DVHs of cases and controls for the full brainstem, the medulla oblongata, the
midbrain and the pons. RBE-weighted doses are found with RBE1.1, and LETd weighted doses with
c = 0.04 and c = 0.055.
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Figure 4.9: Average DVHs of cases and controls for the substructures of the pons. RBE-weighted doses
are found with RBE1.1, and LETd weighted doses with c = 0.04 and c = 0.055.

Figure 4.10: Average DVHs of cases and controls for the full brainstem, the medulla oblongata, the
midbrain and the pons. RBE-weighted doses are found with RBE1.1, and the McNamara and Rørvik
variable RBE models. Both variable RBE models assume a constant (α/β)x = 2.1 for the full brainstem
volume.
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Figure 4.11: Average DVHs of cases and controls for the substructures of the pons. RBE-weighted doses
are found with RBE1.1, and the McNamara and Rørvik variable RBE models. Both variable RBE
models assume a constant (α/β)x = 2.1 for the full brainstem volume.

The subsequent study of dose statistics showed that the variation in D50% exceeded the
observations for D10% and Dmax, for both variable RBE and RBE1.1. Average D50% is
given in table 4.3 for RBE1.1, as well as the Rørvik and McNamara RBE models, and
showed structures with lower average D50% accompanied by high standard deviations.
This can imply that the D50% was consistently high for most groups, but with a few
outliers. The University of Florida proton centre practises an upper constraint of D50% =

54 Gy(RBE) to the full brainstem, which the average patient met for RBE1.1, while both
variable RBE models exceeded the limit [33].
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Table 4.3: Average D50% to brainstem substructures for the whole cohort. RBE-weighted doses are
found with RBE1.1, and the McNamara and Rørvik RBE models. Both variable RBE models assume
a constant (α/β)x = 2.1 for the full brainstem volume. The first standard deviation is included as an
uncertainty estimate.

Structure
D50% RBE1.1
[Gy(RBE)]

D50% Rørvik
[Gy(RBE)]

D50% McNamara
[Gy(RBE)]

Brainstem 49.1± 9.5 54.3± 9.1 55.7± 9.4

Medulla Oblongata 43.3± 22.1 46.8± 23.5 48.1± 24.1

Midbrain 44.7± 10.7 50.2± 10.2 51.5± 10.6

Pons 49.3± 9.6 54.6± 9.2 56.1± 9.5

Posterior 45.6± 18.9 49.8± 19.4 51.1± 20.0

Middle Posterior 48.5± 11.8 53.7± 11.6 55.1± 12.0

Middle Anterior 48.2± 7.6 54.3± 6.8 55.8± 7.1

Anterior 41.2± 15.3 47.3± 14.9 48.6± 15.4

The variation within and between case-control groups confirms that the low averages and
large standard deviations were mainly caused by outlier groups, as shown in figures 4.12
and 4.13 for the McNamara variable RBE model. Appendix A provides additional plots
for the Rørvik model and RBE1.1 in figures A.1-A.4. The variation in D50% was great-
est for the medulla oblongata, but this was mainly caused by outliers. The average was
higher for cases than controls for the full brainstem volume, the midbrain and the pons,
while the medulla oblongata showed the opposite trend. However, the differences were
well within the CIs of both cases and controls. The average dose received by both cases
and controls to the full brainstem volume, as calculated by variable RBE, exceeded the
University of Florida dose constraint, while both cases and controls met the constraint
for RBE1.1.

The substructures of the pons showed wide CIs for the posterior and the anterior, with the
posterior showing mostly compact values, bar a few outliers. The variable RBE models
had higher means for cases compared to controls for all pons substructures. On the
other hand, RBE1.1 showed higher averages for cases than controls for the two middle
subvolumes but similar average case and control for the posterior and the anterior.



68 CHAPTER 4. RESULTS

Figure 4.12: D50% to the brainstem, the medulla oblongata, the midbrain and the pons for all case-
control groups, including average case and control with 95% CI. RBE-weighted doses are found with the
McNamara model assuming a constant (α/β)x = 2.1 for the full brainstem volume. Dose constraint for
D50% utilised clinically at the University of Florida is also given as a horizontal blue line [33].

Figure 4.13: D50% to the substructures of the pons for all case-control groups, including average case
and control with 95% CI. RBE-weighted doses are found with the McNamara model assuming a constant
(α/β)x = 2.1 for the full brainstem volume.

The average D10% to all brainstem substructures for the whole cohort are given in table
4.4 and generally showed smaller deviation compared to the D50% for most substructures.
Additionally, the University of Florida proton centre limit of D10% = 56 Gy(RBE) to the
full brainstem was met for RBE1.1, but not for the McNamara and Rørvik RBE models
[33],
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Table 4.4: Average D10% to brainstem substructures for the whole cohort. RBE-weighted doses are
found with RBE1.1, and the McNamara and Rørvik RBE models. Both variable RBE models assume
a constant (α/β)x = 2.1 for the full brainstem volume. The first standard deviation is included as an
uncertainty estimate.

Structure
D10% RBE1.1
[Gy(RBE)]

D10% Rørvik
[Gy(RBE)]

D10% McNamara
[Gy(RBE)]

Brainstem 55.4± 1.4 59.8± 1.8 61.4± 1.8

Medulla Oblongata 45.9± 20.7 49.7± 21.6 51.1± 22.2

Midbrain 53.5± 2.3 58.2± 2.5 59.7± 2.6

Pons 55.2± 1.6 59.8± 1.9 61.4± 2.0

Posterior 50.3± 13.0 54.7± 13.0 56.1± 13.5

Middle Posterior 53.6± 4.0 58.5± 4.6 60.1± 4.8

Middle Anterior 53.5± 2.9 58.8± 2.6 60.5± 2.7

Anterior 48.1± 10.3 54.0± 9.5 55.5± 8.3

The D10% to the full brainstem, midbrain and pons showed similar trends between cases
and controls as the D50% to the same volumes. On the other hand, the D10% to the
medulla oblongata showed very similar means between cases and controls, as can be seen
for the McNamara model in figure 4.14. The D10% to the further delineated pons is
shown in figure 4.15, while similar plots for Rørvik and RBE1.1 are provided in appendix
A in figures A.5-A.8. The average D10% to the full brainstem for both cases and controls
exceeded the University of Florida dose constraint for variable RBE, with all individual
patients exceeding the constraint. However, RBE1.1 had both averages meeting the con-
straint, but with 33% of cases and a lower percentage of controls individually not meeting
the constraint. The dose constraints not being met for certain patients for RBE1.1 is
possibly a consequence of the FLUKA recalculation and rescaling to achieve similar CTV
coverage as the original treatment. The groups had minor variance and narrow CIs for
the full brainstem, the midbrain and the pons. On the other hand, the medulla oblon-
gata had significant CIs, with case-control groups one and two deviating from the other
groups. The narrow CIs can partly be explained by the fact that the case-control groups
were directly matched based on D10% to the full brainstem volume.

The pons substructures posterior and anterior had relatively wide CIs, and all four pons
substructures had a higher average for cases than controls for both variable RBE and
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RBE1.1.

Figure 4.14: D10% to the brainstem, the medulla oblongata, the midbrain and the pons for all case-
control groups, including average case and control with 95% CI. RBE-weighted doses are found with the
McNamara model assuming a constant (α/β)x = 2.1 for the full brainstem volume. Dose Constraint for
D10% utilised clinically at the University of Florida is also given as a horizontal blue line [33].

Figure 4.15: D10% to the substructures of the pons for all case-control groups, including average case
and control with 95% CI. RBE-weighted doses are found with the McNamara model assuming a constant
(α/β)x = 2.1 for the full brainstem volume.

The average Dmax is given for the whole cohort in table 4.5 and the standard deviations
were minor, comparably to the variation in D10%. Similarly to the other dose statistics,
the University of Florida proton centre constraint of Dmax = 58 Gy(RBE) was met for
RBE1.1, but not for the variable RBE [33].
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Table 4.5: Average Dmax to brainstem substructures for the whole cohort. RBE-weighted doses are
found with RBE1.1, and the McNamara and Rørvik RBE models. Both variable RBE models assume
a constant (α/β)x = 2.1 for the full brainstem volume. The first standard deviation is included as an
uncertainty estimate.

Structure
Dmax RBE1.1
[Gy(RBE)]

Dmax Rørvik
[Gy(RBE)]

Dmax McNamara
[Gy(RBE)]

Brainstem 57.2± 1.9 61.7± 2.2 63.4± 2.3

Medulla Oblongata 49.6± 18.0 53.9± 18.2 55.4± 18.7

Midbrain 55.9± 1.5 60.3± 2.1 62.0± 2.2

Pons 57.0± 1.9 61.6± 2.2 63.3± 2.3

Posterior 54.2± 7.9 58.6± 7.8 60.2± 8.1

Middle Posterior 56.0± 2.5 60.7± 2.7 62.4± 2.9

Middle Anterior 55.6± 2.4 60.7± 2.5 62.4± 2.7

Anterior 52.6± 6.3 58.3± 5.4 59.9± 5.6

The variation between case-control groups and the average case and control are depicted
for the McNamara RBE model in figures 4.16 and 4.17, while the Rørvik model and
RBE1.1 are shown in appendix A in figures A.9-A.12. The full brainstem volume, the
midbrain and the pons showed very narrow CIs, and all had slightly higher Dmax for the
cases compared to controls for variable RBE. In comparison, RBE1.1 showed very sim-
ilar means between both cases and controls for all three volumes. On the other hand,
the medulla oblongata exhibited wide CIs for both variable RBE and RBE1.1. The lack
of intra-group variations for the full brainstem volume can partly be attributed to the
matching of patients based on D0.1cc. Additionally, the Dmax with variable RBE models
exceeded the dose constraint to the full brainstem for both average cases and controls,
with all patients receiving excessive Dmax to the organ. On the other hand, RBE1.1 had
both mean case and control meeting the constraint, with a similar ratio of cases and con-
trols not meeting the constraint as the D10%.

The pons substructures mostly showed cases and controls with similar means but, for
RBE1.1, posterior and anterior had the average case lower than the control. On the other
hand, the variable RBE showed all substructures with slightly higher Dmax to cases than
controls.
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Figure 4.16: Dmax to the brainstem, the medulla oblongata, the midbrain and the pons for all case-
control groups, including average case and control with 95% CI. RBE-weighted doses are found with the
McNamara model assuming a constant (α/β)x = 2.1 for the full brainstem volume. Dose constraint for
Dmax utilised clinically at the University of Florida is also given as a blue horizontal line [33].

Figure 4.17: Dmax to the substructures of the pons for all case-control groups, including average case
and control with 95% CI. RBE-weighted doses are found with the McNamara model assuming a constant
(α/β)x = 2.1 for the full brainstem volume.

The difference in D50% between cases and their average matched controls are given in
table 4.6 and shows an increased difference of 0.5 Gy(RBE) to 1 Gy(RBE) between cases
and controls for variable RBE compared to RBE1.1, where a positive difference translates
to a higher dose received by the case. This trend was observed for all substructures except
the medulla oblongata, which was the only substructure without a positive difference for
the variable RBE. On the other hand, RBE1.1 had negative differences for the medulla
oblongata, the pons posterior and the pons anterior. However, the differences between
cases and controls were minor compared to their first standard deviations. Additionally,
no statistical significance was found from a Wilcoxon signed-rank test for any of the
differences.
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Table 4.6: Average difference in D50% between cases and controls for brainstem substructures. RBE-
weighted doses are found with RBE1.1, and the McNamara and Rørvik RBE models. Both variable RBE
models assume a constant (α/β)x = 2.1 for the full brainstem volume. The first standard deviation is
included as an uncertainty estimate. No difference was found to be statistically significant from Wilcoxon
signed-rank test.

Structure
D50% RBE1.1
[Gy(RBE)]

D50% Rørvik
[Gy(RBE)]

D50% McNamara
[Gy(RBE)]

Brainstem 0.4± 6.1 1.1± 5.2 1.1± 5.4

Medulla Oblongata −4.4± 11.6 −4.0± 11.0 −4.1± 11.3

Midbrain 0.7± 13.8 1.5± 13.2 1.7± 13.6

Pons 2.4± 6.9 3.1± 5.9 3.2± 6.0

Posterior −0.3± 2.7 0.7± 1.7 0.7± 1.8

Middle Posterior 1.9± 6.9 2.9± 6.1 3.0± 6.2

Middle Anterior 1.7± 7.1 2.7± 6.4 2.8± 6.7

Anterior −0.1± 16.0 1.0± 15.5 1.1± 17.1

The average differences in D10% between cases and their average matched controls are
given in table 4.7 and showed increases between 0.5 Gy(RBE) and 1 Gy(RBE) from
RBE1.1 to variable RBE for almost all substructures. The only substructure with higher
D10% to cases than controls was the medulla oblongata, which also had the second largest
first standard deviation, second to the pons anterior. Furthermore, The D10% to the full
brainstem volume and the pons middle posterior were found to be statistically significant
from a Wilcoxon signed-rank test.
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Table 4.7: Average difference in D10% between cases and controls for brainstem substructures. RBE-
weighted doses are found with RBE1.1, and the McNamara and Rørvik RBE models. Both variable
RBE models assume a constant (α/β)x = 2.1 for the full brainstem volume. The first standard deviation
is included as an uncertainty estimate.
*Statistically significant from Wilcoxon signed-rank test

Structure
D10% RBE1.1
[Gy(RBE)]

D10% Rørvik
[Gy(RBE)]

D10% McNamara
[Gy(RBE)]

Brainstem 0.5± 0.7 0.9± 1.0* 1.0± 1.1*

Medulla Oblongata −1.1± 7.9 −0.3± 8.8 −0.3± 9.1

Midbrain 0.3± 3.0 1.1± 1.9 1.2± 1.9

Pons 0.5± 0.9 1.0± 1.2 1.0± 1.2

Posterior 1.1± 3.6 1.4± 3.3 1.4± 3.4

Middle Posterior 1.1± 2.1 1.6± 1.7* 1.7± 1.8*

Middle Anterior 0.7± 2.8 1.3± 2.7 1.4± 2.9

Anterior 0.7± 11.5 1.6± 11.7 1.7± 12.3

Dmax was subsequently studied, with the average difference between cases and their av-
erage matched controls provided in table 4.8. Dmax showed more apparent systematic
differences compared to the D10% and D50%, where, for the variable RBE, all differences
were positive. In contrast, for RBE1.1, the differences were minor and not systematic in
either direction for all substructures, bar the medulla oblongata. The medulla oblongata
was, however, the substructure with the greatest standard deviation. An increase from
RBE1.1 to variable RBE of between 0.2 Gy(RBE) and 1.0 Gy(RBE) was observed for
all substructures. The highest increase was seen for the midbrain at approximately 1
Gy(RBE) for both RBE models, and both were found to be statistically significant.
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Table 4.8: Average difference in Dmax between cases and controls for brainstem substructures. RBE-
weighted doses are found with RBE1.1, and the McNamara and Rørvik RBE models. Both variable
RBE models assume a constant (α/β)x = 2.1 for the full brainstem volume. The first standard deviation
is included as an uncertainty estimate.
*Statistically significant from Wilcoxon signed-rank test

Structure
Dmax RBE1.1
[Gy(RBE)]

Dmax Rørvik
[Gy(RBE)]

Dmax McNamara
[Gy(RBE)]

Brainstem 0.2± 0.6 0.4± 0.9 0.5± 1.0

Medulla Oblongata 1.5± 14.2 1.9± 15.5 2.0± 15.9

Midbrain 0.1± 1.3 1.0± 0.9* 1.1± 0.9*

Pons −0.0± 0.6 0.4± 1.1 0.5± 1.2

Posterior −0.1± 2.2 0.4± 2.2 0.4± 2.3

Middle Posterior 0.0± 1.0 0.5± 1.1 0.5± 1.1

Middle Anterior 0.3± 1.8 0.9± 2.0 1.0± 2.2

Anterior −0.2± 8.1 0.4± 8.0 0.5± 8.4

RBE-weighted dose from the Rørvik and McNamara models both depend on (α/β)x of
the irradiated tissue, so to study the effect of changing (α/β)x on the dose distribution,
average DVHs are shown in figures 4.18 and 4.19. The DVHs showed minor differences
with altered (α/β)x-ratio of the tissue, with DVHs shifted slightly to the right with de-
creasing (α/β)x. Additionally, the difference between (α/β)x did not reposition cases and
controls to varying degrees, resulting in constant deviations between the curves.

The differences between cases and the average of their controls for the different (α/β)x-
ratios are given in table 4.9 for the McNamara model and table 4.10 for the Rørvik model.
However, the differences between altered (α/β)x were minor compared to the effect of
variable RBE to RBE1.1. Additionally, the D50% from RBE models with (α/β)x = 3.3

did not show statistical significance from a Wilcoxon signed-rank test for any of the
substructures.
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Figure 4.18: Average DVHs for cases (dashed lines) and controls (full lines) with RBE-weighted doses
from RBE1.1, and the McNamara RBE model assuming constant (α/β)x = 2.1, (α/β)x = 2.5 and
(α/β)x = 3.3 for the full brainstem.

Figure 4.19: Average DVHs for cases (dashed lines) and controls (full lines) with RBE-weighted doses
from RBE1.1, and the Rørvik RBE model assuming constant (α/β)x = 2.1, (α/β)x = 2.5 and (α/β)x =

3.3 for the full brainstem.
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Table 4.9: Average difference in D50% between cases and controls for brainstem substructures. RBE-
weighted doses are found with RBE1.1, and the McNamara RBE model assuming constant (α/β)x = 2.1

and (α/β)x = 3.3, for the full brainstem. The first standard deviation is included as an uncertainty
estimate. No statistical significance was found from aWilcoxon signed-rank test for any of the differences.
†Variable RBE from McNamara model

Structure
D50% RBE1.1
[Gy(RBE)]

D50%†
(
α
β

)
x

=

2.1 [Gy(RBE)]

D50%†
(
α
β

)
x

=

3.3 [Gy(RBE)]

Brainstem 0.4± 6.1 1.1± 5.4 1.0± 5.5

Medulla Oblongata −4.4± 11.6 −4.1± 11.3 −4.2± 11.3

Midbrain 0.7± 13.8 1.7± 13.6 1.5± 13.6

Pons 2.4± 6.9 3.2± 6.0 3.1± 6.1

Posterior 0.3± 2.7 0.7± 1.8 0.5± 1.9

Middle Posterior 1.9± 6.9 3.0± 6.2 2.8± 6.3

Middle Anterior 1.7± 7.1 2.8± 6.7 2.7± 6.7

Anterior −0.1± 16.0 1.1± 17.1 0.9± 16.8

Table 4.10: Average difference in D50% between cases and controls to brainstem substructures. RBE-
weighted doses are found with RBE1.1, and the Rørvik RBE model assuming constant (α/β)x = 2.1 and
(α/β)x = 3.3 for the full brainstem volume. The first standard deviation is included as an uncertainty
estimate. No statistical significance was found from aWilcoxon signed-rank test for any of the differences.
†Variable RBE from Rørvik model

Structure
D50% RBE1.1
[Gy(RBE)]

D50%†
(
α
β

)
x

=

2.1 [Gy(RBE)]

D50%†
(
α
β

)
x

=

3.3 [Gy(RBE)]

Brainstem 0.4± 6.1 1.1± 5.2 1.0± 5.3

Medulla Oblongata −4.4± 11.6 −4.0± 11.0 −4.1± 11.0

Midbrain 0.7± 13.8 1.5± 13.2 1.4± 13.3

Pons 2.4± 6.9 3.1± 5.9 3.0± 6.0

Posterior 0.3± 2.7 0.7± 1.7 0.5± 1.9

Middle Posterior 1.9± 6.9 2.9± 6.1 2.8± 6.2

Middle Anterior 1.7± 7.1 2.7± 6.4 2.5± 6.5

Anterior −0.1± 16.0 1.0± 16.4 0.8± 16.3
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4.4 Generalised Equivalent Uniform Dose

Trends in gEUD were similar for volume parameters n = 0.05 [87] and n = 0.16 [88], and
no n-value was shown to systematically predict higher gEUD. The variations in gEUD
between case-control groups are given in figures 4.20 and 4.22 for n = 0.05, and figures
4.21 and 4.23 for n = 0.16, all for the McNamara model. The equivalent figures for the
Rørvik model and RBE1.1 are included in appendix A in figures A.13-A.20 For n = 0.05,
the full brainstem, the medulla oblongata, the midbrain, and the pons all showed higher
average gEUD to cases than controls, with a higher difference for variable RBE compared
to RBE1.1, although well within the CIs of both cases and controls. Similar results were
observed for n = 0.16, with the exception of the medulla oblongata, where the average
control was higher than the average case. Additionally, the higher n-value showed wider
CIs compared to n = 0.05, with the medulla oblongata having wider CIs than the full
brainstem volume, the midbrain and the pons. ¨

The further delineated pons showed the variable RBE with a higher average gEUD for all
substructures and both n values. On the other hand, RBE1.1 showed very similar values
between cases and controls for the posterior and anterior, while the middle subvolumes
had higher averages for cases than controls. The posterior and anterior also had the widest
CIs, and the greatest intra-group variations, among the substructures.

Figure 4.20: gEUD with n = 0.05 to the brainstem, the medulla oblongata, the midbrain and the pons
for all case-control groups, including average case and control with 95% CI. RBE-weighted doses are
found with the McNamara model assuming a constant (α/β)x = 2.1 for the full brainstem volume.
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Figure 4.21: gEUD with n = 0.16 to the brainstem, the medulla oblongata, the midbrain and the pons
for all case-control groups, including average case and control with 95% CI. RBE-weighted doses are
found with the McNamara model assuming a constant (α/β)x = 2.1 for the full brainstem volume.

Figure 4.22: gEUD with n = 0.05 to the substructures of the pons for all case-control groups, includ-
ing average case and control with 95% CI. RBE-weighted doses are found with the McNamara model
assuming a constant (α/β)x = 2.1 for the full brainstem volume.

Figure 4.23: gEUD with n = 0.16 to the substructures of the pons for all case-control groups, includ-
ing average case and control with 95% CI. RBE-weighted doses are found with the McNamara model
assuming a constant (α/β)x = 2.1 for the full brainstem volume.
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The average difference in gEUD between cases and the average of their matched controls
are given in table 4.11 for n = 0.05 and table 4.12 for n = 0.16 and showed an increase
of between 0.3 Gy(RBE) and 0.8 Gy(RBE) from RBE1.1 to variable RBE. Additional
minor increases were observed from Rørvik to McNamara of about 0.1 Gy(RBE). For
the variable RBE, all the differences were positive for all structures, except the medulla
oblongata. However, the medulla oblongata and the pons anterior showed greater first
standard deviations than the remaining volumes. Additionally, no statistical significance
was found from a Wilcoxon signed-rank test.

Table 4.11: Average difference in gEUD with n = 0.05 between cases and controls to the brainstem
substructures. RBE-weighted doses are found with RBE1.1, and the McNamara and Rørvik RBE models.
Both variable RBE models assume a constant (α/β)x = 2.1 for the full brainstem. The first standard
deviation is included as an uncertainty estimate. No difference was found to be statistically significant
from a Wilcoxon signed-rank test.

Structure
gEUD RBE1.1
[Gy(RBE)]

gEUD Rørvik
[Gy(RBE)]

gEUD McNamara
[Gy(RBE)]

Brainstem 0.3± 1.1 0.7± 1.2 0.8± 1.2

Medulla Oblongata 0.3± 11.5 0.7± 12.6 0.7± 12.9

Midbrain 0.5± 3.0 1.3± 2.3 1.3± 2.4

Pons 0.4± 1.4 0.9± 1.4 1.0± 1.5

Posterior 0.2± 2.6 0.6± 2.6 0.6± 2.7

Middle Posterior 0.5± 1.6 1.1± 1.6 1.1± 1.7

Middle Anterior 0.6± 3.6 1.3± 3.5 1.4± 3.6

Anterior −0.0± 10.3 0.6± 10.6 0.7± 11.1
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Table 4.12: Average difference in gEUD with n = 0.16 between cases and controls for brainstem sub-
structures. RBE-weighted doses are found with RBE1.1, and the McNamara and Rørvik RBE models.
Both variable RBE models assume a constant (α/β)x = 2.1 for the full brainstem volume. The first
standard deviation is included as an uncertainty estimate. No difference was found to be statistically
significant from a Wilcoxon signed-rank test.

Structure
gEUD RBE1.1
[Gy(RBE)]

gEUD Rørvik
[Gy(RBE)]

gEUD McNamara
[Gy(RBE)]

Brainstem 0.1± 2.5 0.5± 2.4 0.6± 2.5

Medulla Oblongata −1.1± 10.2 −0.7± 10.8 −0.8± 11.1

Midbrain 0.6± 5.5 1.3± 5.0 1.4± 5.2

Pons 0.4± 2.9 1.0± 2.7 1.0± 2.8

Posterior −0.1± 3.0 0.4± 2.8 0.4± 2.9

Middle Posterior 0.6± 3.2 1.3± 3.1 1.4± 3.2

Middle Anterior 0.7± 5.4 1.5± 5.2 1.6± 5.5

Anterior 0.1± 12.5 0.7± 13.0 0.8± 13.5

4.5 Lyman-Kutcher-Burman Models

LKB model curves for the full brainstem volume with n = 0.05, n = 0.16, and n = 0.25

showed that variable RBE gave steeper LKB curves compared to RBE1.1 and that the
slope of the curves became even steeper for decreasing volume parameter n. The LKB
models are shown in figures 4.24 and 4.25 with synthetic constraints in the form of two pa-
tients and nine patients, respectively. More heavily weighting the constraints also caused
most models to become steeper. The TD50 generally decreased for increased weighting.
Additionally, TD50 increased with increasing n for w = 2, but remained nearly constant
with changing n for w = 9.

The LKB model parameters of the full brainstem volume for n = 0.05, n = 0.16 and
n = 0.25, as well as both sets of synthetic weights, are shown in table 4.13. The models
had TD50 values that fluctuated between 61 Gy(RBE) and 70 Gy(RBE), with CIs ranging
from around 55 Gy(RBE) to approaching 80 Gy(RBE). Thus, the TD50 values with cor-
responding CIs are distributed around the TD50 established from previously established
models [87, 88]. The m-parameter, on the other hand, ranged from approximately 0.150
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to slightly exceeding 0.300, with CIs from 0.030 to 0.500, which consistently exceeded the
previously established parameters. The CIs of both parameters were wider for RBE1.1
than the variable RBE and were narrowed slightly by decreasing n and more prominently
by weighting the synthetic patients more heavily.

The AUROC-values decreased with decreasing n-values, and variable RBE had stronger
AUROC-values to RBE1.1. However, the weighting had minimal impact on the AUROC.
The AUROC-values ranged from slightly exceeding 0.50 to just surpassing 0.60, which
are AUROC-values describing poor predictive models.

Figure 4.24: LKB models for the brainstem with RBE-weighted doses from RBE1.1, and the McNamara
and Rørvik RBE models. A synthetic constraint of two controls with gEUD = 20 Gy(RBE), and two
cases with gEUD = 100 Gy(RBE) were included in the fitting of the model.
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Figure 4.25: LKB models for the brainstem with RBE-weighted doses from RBE1.1, and the McNamara
and Rørvik RBE models. A synthetic constraint of nine controls with gEUD = 20 Gy(RBE), and nine
cases with gEUD = 100 Gy(RBE) were included in the fitting of the model. Three different n-values are
shown.

Table 4.13: Parameters of the LKB models for the full brainstem with RBE-weighted doses from RBE1.1,
and the McNamara and Rørvik RBE models, including 95% CIs of the parameters. A synthetic constraint
of controls with gEUD = 20 Gy(RBE), and cases with gEUD = 100 Gy(RBE) were also included in the
modelling, with w as seen in the table referring to the amount of patients introduced with each gEUD.
Parameters established by Lyman [87] and Burman et al. [88] are included for comparison.
*Lyman [87], †Burman et al. [88]

RBE w n m TD50 AUROC

MCN 2 0.05 0.153 [0.030, 0.269] 66.28 [59.17, 73.04] 0.609

9 0.05 0.153 [0.059, 0.252] 66.68 [59.82, 70.89] 0.609

2 0.16 0.261 [0.099, 0.430] 69.04 [59.05, 76.97] 0.580

9 0.16 0.219 [0.130, 0.358] 67.11 [60.86, 73.14] 0.580

2 0.25 0.306 [0.115, 0.500] 70.02 [59.28, 78.79] 0.564

9 0.25 0.249 [0.122, 0.368] 66.91 [60.61, 73.52] 0.560

RORW 2 0.05 0.157 [0.030, 0.287] 65.53 [57.78, 72.17] 0.609

9 0.05 0.162 [0.067, 0.265] 65.43 [58.67, 69.88] 0.611

2 0.16 0.264 [0.107, 0.444] 67.90 [57.77, 75.68] 0.582

9 0.16 0.229 [0.112, 0.346] 65.83 [59.55, 71.95] 0.582

2 0.25 0.312 [0.104, 0.521] 68.82 [56.66, 77.92] 0.564

9 0.25 0.254 [0.141, 0.374] 65.36 [59.05, 72.15] 0.564
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RBE1.1 2 0.05 0.287 [0.145, 0.473] 64.12 [54.75, 72.48] 0.553

9 0.05 0.246 [0.130, 0.362] 62.12 [55.22, 68.66] 0.556

2 0.16 0.261 [0.106, 0.443] 67.66 [57.60, 75.69] 0.543

9 0.16 0.263 [0.141, 0.377] 61.94 [55.43, 69.04] 0.541

2 0.25 0.312 [0.099, 0.512] 68.61 [57.57, 77.77] 0.506

9 0.25 0.289 [0.201, 0.435] 61.69 [54.98, 69.03] 0.508

MCN* 0.05 0.1 64 0.609

RORW* 0.05 0.1 64 0.609

RBE1.1* 0.05 0.1 64 0.556

MCN† 0.16 0.15 65 0.580

RORW† 0.16 0.15 65 0.582

RBE1.1† 0.16 0.15 65 0.539

The LKBmodels for the midbrain and pons with RBE-weighted doses from the McNamara
model and RBE1.1 are given in figure 4.26. The midbrain model had steeper curves than
the pons, which increased for variable RBE compared to RBE1.1. Additionally, decreas-
ing n led to increasing slopes of the curves. On the other hand, the medulla oblongata,
which is given in figure 4.27, proved difficult to fit because most patients in case-control
groups one and two received low dose to the substructure. Thus, the dosimetry did not
correspond with representative NTCP of the cohort. Hence, the resulting model excludes
these two case-control groups. Despite heavier weighting and the exclusion of a subset
of the cohort, the medulla oblongata models were still more shallow than the other two
substructures.

The parameters of the LKB models fitted for the three substructures are given in table
4.14. Decreasing n caused decreased m-values and increased TD50 values for all substruc-
tures, similar to the full brainstem. The pons had similar m-values to the full brainstem
in the approximate range of 0.150 to 0.350. The TD50, however, had a narrow interval
compared to the full brainstem, ranging from 63 Gy(RBE) to 67 Gy(RBE). The midbrain
differed from the pons with greater variations in m and TD50 with altered n-values. The
midbrain had m defined between 0.130 to 0.330 and TD50-values between 62 Gy(RBE)
and 70 Gy(RBE). The heavier weighting and the exclusion of case-control groups in the
fitting of the medulla oblongata models were found to have the effect of narrowing the
CIs. However, the CIs of the resultant LKB models for the medulla oblongata were still in
similar ranges to the other two substructures. The variations in m and TD50 parameters
with changing n were also minor compared to the other substructures. The m-values were
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similar at 0.190 to 0.300, while TD50 was higher at 67 Gy(RBE) to 73 Gy(RBE).

The models’ AUROC-values are also included in table 4.14, with the highest AUROC-
value of 0.64 observed for the midbrain with variable RBE. However, the AUROC-score
fluctuated more for the midbrain and pons than for the medulla oblongata, with the
medulla oblongata having consistent AUROC at around 0.63. The ranges of the midbrain
and pons were similar, but the pons showed slightly lower AUROC-values. The lowest
AUROC of all models in table 4.14 were seen for the pons with higher n-values and RBE-
weighted dose from RBE1.1. The value was marginally lower than 0.5. AUROC was
generally seen to decrease with increasing n parameter and was more robust for variable
RBE compared to RBE1.1, similar to the models of the full brainstem.

Figure 4.26: LKB models for the midbrain and the pons with RBE-weighted doses from the McNamara
RBE model and RBE1.1 with n = 0.05 and n = 0.16. A synthetic constraint of two controls with
gEUD = 20 Gy(RBE), and two cases with gEUD = 100 Gy(RBE) were also included in the modelling.
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Figure 4.27: LKB models for the medulla oblongata with RBE-weighted doses from the McNamara
RBE model and RBE1.1 with n = 0.05 and n = 0.16. A synthetic constraint of two controls with
gEUD = 20 Gy(RBE), and two cases with gEUD = 100 Gy(RBE) were also included in the modelling.

Table 4.14: Parameters of the LKB models for the medulla oblongata, the midbrain and the pons with
RBE-weighted doses from RBE1.1, and the McNamara and Rørvik RBE models, including bootstrapped
95% CIs of the parameters. A synthetic constraint of two controls with gEUD = 20 Gy(RBE), and two
cases with gEUD = 100 Gy(RBE) were also included in the modelling, two for the pons and the midbrain,
and nine for the medulla oblongata.
*Excluding case-control groups one and two.

RBE substructure n m TD50 AUROC

MCN Pons 0.05 0.149 [0.030, 0.279] 66.56 [59.73, 73.76] 0.613

0.16 0.243 [0.099, 0.405] 68.81 [59.03, 75.80] 0.595

0.25 0.285 [0.113, 0.462] 69.48 [58.85, 77.79] 0.576

RORW Pons 0.05 0.151 [0.030, 0.280] 64.82 [57.90, 72.26] 0.613

0.16 0.254 [0.100, 0.416] 67.38 [57.45, 74.47] 0.586

0.25 0.297 [0.117, 0.480] 68.44 [57.63, 76.30] 0.572

RBE1.1 Pons 0.05 0.229 [0.110, 0.387] 63.42 [54.61, 70.00] 0.539

0.16 0.305 [0.144, 0.488] 64.28 [54.71, 72.92] 0.498

0.25 0.347 [0.163, 0.516] 64.84 [53.82, 74.54] 0.490

MCN Midbrain 0.05 0.145 [0.030, 0.262] 63.74 [57.39, 71.01] 0.640

0.16 0.279 [0.110, 0.446] 66.83 [55.92, 74.98] 0.601

0.25 0.327 [0.096, 0.509] 69.93 [55.20, 77.07] 0.576
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RORW Midbrain 0.05 0.133 [0.030, 0.256] 61.97 [56.46, 70.11] 0.642

0.16 0.289 [0.120, 0.454] 65.82 [54.64, 73.68] 0.609

0.25 0.337 [0.115, 0.527] 66.35 [53.66, 75.61] 0.572

RBE1.1 Midbrain 0.05 0.246 [0.098, 0.419] 63.48 [53.10, 69.90] 0.574

0.16 0.323 [0.133, 0.521] 63.90 [52.10, 72.60] 0.537

MCN Med Obl* 0.05 0.191 [0.077, 0.310] 70.58 [63.77, 75.87] 0.629

0.16 0.233 [0.104, 0.419] 72.52 [64.65, 78.65] 0.633

0.25 0.253 [0.085, 0.456] 73.15 [64.79, 79.64] 0.633

RORW Med Obl* 0.05 0.205 [0.100, 0.337] 69.42 [62.06, 74.78] 0.633

0.16 0.244 [0.119, 0.436] 71.18 [62.81, 77.65] 0.636

0.25 0.262 [0.106, 0.471] 72.21 [62.75, 78.47] 0.633

RBE1.1 Med Obl* 0.05 0.244 [0.129, 0.421] 67.02 [59.21, 73.37] 0.612

0.16 0.282 [0.125, 0.513] 68.35 [59.93, 75.40] 0.629

0.25 0.300 [0.129, 0.547] 68.85 [58.87, 76.53] 0.629

The LKB models for the substructures of the pons with n = 0.05 are shown in figure 4.28
and gave posterior, anterior, middle posterior and, finally, middle anterior in ascending
order of steepness. RBE1.1 gave similarly shaped curves to variable RBE, but they were
slightly shifted to the left, implying a more significant change in TD50 compared to the
change in the m parameter. The model parameters for the pons substructures are given
in table 4.15, and similarly to the previously studied structures decreasing n caused de-
creased m values, as well as slightly decreasing TD50 values. Posterior had high m and
the highest TD50 among the pons substructures. Unlike the other three substructures,
the pons posterior did not have models fitted for n = 0.25 since the variance in the data
points made the fitting of a model with bootstrapped samples yield undefined CIs. Fur-
ther, the middle posterior had significantly lower m and TD50 values than the posterior,
while the middle anterior had the lowest range of m and similarly low TD50. The anterior
had higher m-values than the middle anterior, but similar TD50.

The highest AUROC-value of all eight structures modelled for this thesis was observed
at 0.667 for the middle anterior with variable RBE (both Rørvik and McNamara) and
n = 0.05. In contrast, the RBE1.1 model for the same substructure barely exceeded 0.5.
The middle posterior had AUROC-value around 0.57 for variable RBE, while RBE1.1
had lower values at around 0.53. Compared to the middle posterior, the posterior had
lower AUROC-value for variable RBE but higher for RBE1.1. The anterior showed the
consistently lowest AUROC-value, with the highest only slightly exceeding 0.5, while
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many were below the 0.5 benchmark.

Figure 4.28: LKB models for the pons substructures with n = 0.05 with RBE-weighted dose from the
McNamara RBE model and RBE1.1. A synthetic constraint of nine controls with gEUD = 20 Gy(RBE),
and nine cases with gEUD = 100 Gy(RBE) and toxicity were also included in the modelling.

Table 4.15: Parameters of the LKB models for the pons substructures with RBE-weighted doses from
RBE1.1, and the McNamara and Rørvik RBE models, including bootstrapped 95% CIs of the pa-
rameters. A synthetic constraint of two controls with gEUD = 20 Gy(RBE), and two cases with
gEUD = 100 Gy(RBE) were also included in the modelling.

RBE substructure n m TD50 AUROC

MCN Posterior 0.05 0.320 [0.141, 0.565] 71.23 [63.41, 78.73] 0.566

0.16 0.374 [0.165, 0.651] 71.33 [62.94, 79.75] 0.549

RORW Posterior 0.05 0.328 [0.147, 0.569] 69.82 [62.56, 76.99] 0.564

0.16 0.374 [0.139, 0.660] 70.16 [62.14, 78.03] 0.551

RBE1.1 Posterior 0.05 0.354 [0.181, 0.614] 66.31 [58.48, 74.46] 0.541

0.16 0.400 [0.144, 0.488] 66.44 [58.28, 75.54] 0.549

MCN Mid Post 0.05 0.206 [0.094, 0.318] 68.93 [62.91, 74.43] 0.570

0.16 0.250 [0.105, 0.376] 68.94 [63.03, 75.18] 0.570

0.25 0.263 [0.166, 0.446] 69.08 [62.69, 75.69] 0.572

RORW Mid Post 0.05 0.328 [0.147, 0.569] 69.82 [62.56, 76.99] 0.570

0.16 0.374 [0.139, 0.660] 70.16 [62.14, 78.03] 0.568

0.25 0.273 [0.159, 0.435] 67.49 [61.20, 74.18] 0.568
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RBE1.1 Mid Post 0.05 0.247 [0.155, 0.369] 63.42 [57.04, 70.18] 0.527

0.16 0.289 [0.198, 0.454] 63.35 [56.50, 70.61] 0.516

0.25 0.310 [0.210, 0.464] 63.44 [56.42, 70.79] 0.535

MCN Mid Ant 0.05 0.169 [0.077, 0.279] 66.44 [59.60, 71.02] 0.667

0.16 0.218 [0.107, 0.334] 66.62 [60.24, 72.44] 0.609

0.25 0.237 [0.151, 0.361] 66.51 [59.97, 72.59] 0.569

RORW Mid Ant 0.05 0.166 [0.073, 0.274] 65.07 [57.50, 69.46] 0.667

0.16 0.225 [0.122, 0.343] 65.43 [58.80, 71.19] 0.611

0.25 0.240 [0.150, 0.372] 65.07 [58.23, 71.59] 0.560

RBE1.1 Mid Ant 0.05 0.248 [0.123, 0.354] 62.51 [55.61, 68.86] 0.504

0.16 0.278 [0.193, 0.401] 61.11 [54.28, 68.06] 0.516

0.25 0.295 [0.207, 0.409] 61.01 [53.31, 68.43] 0.529

MCN Anterior 0.05 0.307 [0.157, 0.469] 68.38 [61.13, 75.39] 0.527

0.16 0.352 [0.186, 0.507] 66.72 [59.31, 75.72] 0.494

0.25 0.371 [0.182, 0.540] 66.88 [59.29, 75.45] 0.494

RORW Anterior 0.05 0.302 [0.159, 0.476] 67.44 [60.26, 75.25] 0.527

0.16 0.357 [0.195, 0.512] 65.95 [57.41, 73.80] 0.488

0.25 0.377 [0.205, 0.525] 65.40 [57.73, 74.32] 0.492

RBE1.1 Anterior 0.05 0.367 [0.208, 0.513] 62.65 [54.57, 70.84] 0.477

0.16 0.410 [0.214, 0.566] 61.66 [53.03, 70.76] 0.496

0.25 0.435 [0.238, 0.583] 61.41 [52.73, 70.44] 0.504

4.6 Cluster Analysis

The DBSCAN of the D50% to the substructures medulla oblongata, midbrain and pons
did not show signs of classifying cases and controls together in the same clusters and
instead grouped patients within case-control groups together. The distributions of cases
and controls in clusters are given in table 4.16, while the actual clusters are shown in
figure 4.29. Most patients were included in one large cluster, while a high ratio of pa-
tients from case-control groups one and two were placed in a separate, smaller cluster.
Additionally, two patients were labelled noise. Most patients from groups one and two
received much lower dose to the medulla oblongata than the rest of the patients in the
cohort. Thus, the D50% to the medulla oblongata was the most central parameter in de-
termining the resultant clustering. The McNamara and Rørvik clusterings both ended up
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with silhouette scores of 0.69, while RBE1.1 had a silhouette score of 0.66. Both variable
RBE and RBE1.1 gave silhouette scores describing clusterings of decent quality, with the
dissimilarity of the clusters being evident from figure 4.29. The distribution of cases and
controls did not show clear patterns in the separation of cases and controls. The ratio
of cases to controls in cluster 2 was 33%, which exceeds the ratio of 25% for the whole
cohort but not by a significant margin, and the cluster is small.

Figure 4.29: DBSCAN of the D50% to the medulla oblongata, the midbrain and the pons with doses
from RBE1.1, and the McNamara and Rørvik variable RBE models. Cases are given as crosses, while
controls are given as dots.



4.6. CLUSTER ANALYSIS 91

Table 4.16: The distribution of cases and controls in the DBSCAN of theD50% to the medulla oblongata,
the midbrain and the pons. RBE-weighted doses are calculated with RBE1.1, and the McNamara and
Rørvik RBE models.

Clusters
McNamara

Cases
McNamara
Controls

Rørvik
Cases

Rørvik
Controls

RBE1.1
Cases

RBE1.1
Controls

Cluster 1 ( ) 6 23 6 23 6 23

Cluster 2 ( ) 2 4 2 4 2 4

Noise ( ) 1 1 1 1 1 1

The hierarchical clustering of the D50% was similar to the DBSCAN. However, the clus-
ters were slightly altered due to being obligated to incorporate the points deemed as
outliers by the DBSCAN. The distribution of cases and controls is shown in table 4.17,
while the clusters are shown in figure 4.30. Dendrograms of the clusters are given in figure
4.31 for the McNamara model and in figures B.1 and B.2 in appendix B for the Rørvik
clustering and RBE1.1. The resultant clusters had improved silhouette scores compared
to the DBSCAN, with silhouette scores of 0.77 for the two variable RBE models and
0.74 for RBE1.1. Similarly to the DBSCAN, the hierarchical clustering also showed case-
control groups clustered together rather than cases and controls in separate clusters. The
single smaller cluster was defined by case-control groups one and two in this analysis, as
well, which is illustrated in figure 4.31, where the case-control groups of the patients are
given in the leaves. The distribution of cases and controls, especially for RBE1.1, shows
a higher ratio of cases to controls in the smaller cluster compared to the whole cohort.

Table 4.17: The distribution of cases and controls in the Hierarchical clustering of the D50% to the
medulla oblongata, the midbrain and the pons. RBE-weighted doses are calculated with RBE1.1, and
the McNamara and Rørvik RBE models.

McNamara
Cases

McNamara
Controls

Rørvik
Cases

Rørvik
Controls

RBE1.1
Cases

RBE1.1
Controls

Cluster 1 ( ) 7 22 7 22 6 22

Cluster 2 ( ) 2 5 2 5 3 4
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Figure 4.30: Hierarchical clustering of the D50% to the medulla oblongata, the midbrain and the pons
with doses from RBE1.1, and the McNamara and Rørvik variable RBE models. Cases are given as
crosses, while controls are given as dots.
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Figure 4.31: Dendrogram for the hierarchical clustering of the D50% to the medulla oblongata, the
midbrain and the pons with RBE-weighted doses from the McNamara RBE model. The label tox n
refers to the case of group n, while cn.i refers to its corresponding matched controls.

The clustering of the gEUD to the midbrain and the pons gave one large cluster, one
smaller cluster and between two and five points labelled noise. The distribution of cases
and controls are given in table 4.18, while the clusters are shown in figure 4.32. Most cases
were part of the larger central cluster, thus setting a minimum threshold for the gEUD
received by the cases to both the midbrain and the pons. However, the clusters were less
distinct compared to the clustering of the D50%, which is reflected in their silhouette
scores. The variable RBE models had silhouette scores of 0.36, while RBE1.1 showed
slight improvement at 0.40. Another difference from the D50% was that the gEUD values
changed to a greater extent between RBE1.1 and the variable RBE models. This resulted
in different clusters forming, particularly evident from the DBSCAN is the presence of
more noisy points for RBE1.1.

Table 4.18: The distribution of cases and controls in the DBSCAN of the gEUD to the midbrain and the
pons. RBE-weighted doses are calculated with RBE1.1, and the McNamara and Rørvik RBE models.

McNamara
Cases

McNamara
Controls

Rørvik
Cases

Rørvik
Controls

RBE1.1
Cases

RBE1.1
Controls

Cluster 1 ( ) 8 21 8 21 8 21

Cluster 2 ( ) 0 3 0 3 1 4

Noise ( ) 1 4 1 4 0 2
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Figure 4.32: DBSCAN of the gEUD (n = 0.05) to the midbrain and the pons with RBE-weighted doses
from RBE1.1, and the McNamara and Rørvik variable RBE models. Cases are given as crosses, while
controls are given as dots.
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The hierarchical clustering of the gEUD showed deviations from the DBSCAN, which can
be mainly attributed to the obligation of incorporating all points in clusters. The distri-
bution of cases and controls in the hierarchical clustering of the gEUD is given in table
4.19, while the clustering itself is shown in figure 4.33. Dendrograms are provided for
the McNamara model in figure 4.34, while appendix B includes the Rørvik and RBE1.1
dendrograms in figures B.3 and B.4, respectively.

The hierarchical clustering of the gEUD yielded better silhouette scores for fewer clusters,
with McNamara having a silhouette score of 0.42 for two clusters but a local maximum
for five clusters at 0.32. Similarly, Rørvik also had a maximum silhouette score of 0.44 for
two clusters but with a local maximum of 0.32 for five clusters. However, the silhouette
score of RBE1.1 was instead decreasing for increasing number of clusters, from 0.50 at
two clusters to 0.30 at seven clusters. The five cluster models were chosen in all cases
since more information is yielded by a higher number of clusters, and an equal number
of clusters maintained grounds for comparison between the models. However, the high
silhouette scores of the models with fewer clusters suggest that the data is too similar
to yield a solid number of clearly separated clusters. All clusterings ended up with two
reasonably similar central clusters and three outer clusters ranging from one to five points
per cluster. Variable RBE had all cases incorporated in the two central clusters, while
RBE1.1 had all but one case in the centre.

Table 4.19: The distribution of cases and controls in the hierarchical clustering of the gEUD to the
midbrain and the pons. RBE-weighted doses are calculated with RBE1.1, and the McNamara and
Rørvik RBE models.

McNamara
Cases

McNamara
Controls

Rørvik
Cases

Rørvik
Controls

RBE1.1
Cases

RBE1.1
Controls

Cluster 1 ( ) 4 12 4 11 7 17

Cluster 2 ( ) 5 8 5 9 1 4

Cluster 3 ( ) 0 5 0 5 1 4

Cluster 4 ( ) 0 1 0 1 0 1

Cluster 5 ( ) 0 1 0 1 0 1
.
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Figure 4.33: Hierarchical clustering of the gEUD (n = 0.05) to the midbrain and the pons with RBE-
weighted doses from RBE1.1, and the McNamara and Rørvik RBE models. Cases are given as crosses,
while controls are given as dots.
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Figure 4.34: Dendrogram for the hierarchical clustering of the gEUD (n=0.05) to the midbrain and the
pons with RBE-weighted doses from the McNamara RBE model. The label tox n refers to the case of
group n, while cn.i refers to its corresponding matched controls.

Further clustering was also performed to investigate the cohort, but little of note was dis-
covered. The clustering of the D50% for the pons substructures is provided in appendices
attached to this thesis, with appendix B showing the hierarchical clustering and appendix
C showing the DBSCAN.
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Chapter 5

Discussion

This thesis has investigated a cohort of paediatric proton therapy patients from a case-
control study, where the cases experienced toxicity in the form of CTCAE grade 2+ brain-
stem necrosis following the treatment. RBE-weighted doses recalculated with variable
RBE models from McNamara et al. [21] and Rørvik et al. [22], as well as LETd-weighted
dose from Unkelbach et al. [70], showed that cases received higher RBE-weighted dose on
average compared to controls. Similar trends were also observed for most substructures.
Additionally, LETd was found to be slightly higher for average cases compared to average
controls for most substructures. The gEUD of the brainstem and its substructures showed
similarly increased gEUD to cases compared to controls. At the same time, different vol-
ume parameter n was not observed to affect the differences to a large extent. Based on
AUROC-values, the LKB models were shown to improve with lower n, and the curves
were shown to be more shallow for substructures receiving less average RBE-weighted
dose, such as the medulla oblongata. Additionally, this thesis has presented the first time
LKB models for brainstem necrosis have been fitted to brainstem substructures. The
LKB models for most substructures were also based on concentrated points around the
TD50 which provided increased nuance in a dose range associated with uncertain risk of
brainstem necrosis. Finally, the cluster analysis showed that data points were difficult
to separate into solidly dissimilar clusters and that outliers and the matching of patients
heavily impacted the clustering.

Average DVHs showed cases with a higher variable RBE-weighted dose than controls,
particularly in the high dose range. The corresponding D50%, D10% and Dmax further
showed that averages were systematically higher for cases compared to controls for vari-
able RBE, while the same was not seen for RBE1.1. However, the 95% CIs were wide
compared to the point estimate between the averages. Additionally, studying the dif-
ference between cases and the average of their matched controls showed similar results
with consistently higher RBE-weighted doses to cases than controls for variable RBE and
for most substructures. Still, few differences were shown to be statistically significant.
Statistical significance was found for the D10% to the full brainstem and pons middle



100 CHAPTER 5. DISCUSSION

posterior and Dmax to the midbrain. The position of the statistically significant sub-
structures varies and does not suggest prioritising any subvolumes over others. However,
despite few differences being statistically significant, the systematic differences observed
here for higher dose levels may warrant further study. This is strengthened by previous
studies concluding with toxicity rates being linked with higher dose and smaller volume
constraints [101, 102]. However, several other studies have also reported statistical signif-
icance or predictive ability for dose statistics incorporating higher volume fractions, and
lower dose constraints [102, 114, 115].

The difference between variable RBE and RBE1.1 is likely influenced by LET changes
since the variable RBE models predict increasing RBE with increasing LET. LETd-volume
histograms showed higher LETd to cases compared to controls for most substructures and
most LETd intervals. The LETd distributions of the case-control groups also showed
that, on average, the cases received higher LETd to the brainstem substructures than the
controls, although the CIs were wide. Differences between cases and the average of their
corresponding controls also showed a majority of cases with higher L50% and Lmax than
controls. However, no statistical significance was found, which, similarly to the variable
RBE, suggests that further study of LETd distributions and toxicity is needed.

Quantifying the effect of LETd on toxicity is difficult since LET cannot be measured di-
rectly, so different simulations of the LET is the typical experimental approach, where
MC methods are commonly utilised [25, 50, 116]. Additionally, many low dose areas
are associated with moderate LETd-values. The association between elevated LET and
higher RBE is well-known [16] and one would expect this to translate to increased risk of
toxicity compared to a constant RBE [117]. Low-grade toxicity in the form of MRI image
changes following proton therapy of brain tumours has been described and associated
with regional RBE and LET differences [26, 27, 28]. However, studies investigating MC
simulated LET and brainstem necrosis as clinical endpoint have so far been inconclusive
in finding any solid correlation [24, 25].

The (α/β)x is, in addition to the LETd, another central parameter for the variable RBE
models studied for this thesis. While different brainstem substructures failed to show
systematic differences between cases and controls specific to certain substructures, RBE-
weighted dose was seen to increase with decreasing (α/β)x. However, the assumption
that the full brainstem has a constant (α/β)x may be overly simple. Parts of the mo-
tivation for this thesis are the regional differences in radiosensitivity of the brainstem



101

substructures [17, 34, 35], which suggests separate (α/β)x for individual substructures.
The assumption of constant (α/β)x across the full brainstem means the recalculated vari-
able RBE-weighted dose between substructures does not account for potential regional
differences in (α/β)x-ratio. This would result in calculated RBE-weighted doses being
more similar between substructures than the reality of the individual tissues of the brain-
stem would be described by. Higher (α/β)x is also associated with higher NTCP [118],
which emphasises the importance of accounting for (α/β)x in treatment planning.

Differences in dose between patients, particularly across case-control groups and different
substructures, were considerable. Notably, the medulla oblongata received a low dose
for most patients in case-control groups one and two due to the position of the tumours
treated. Excluding case-control groups one and two from the statistical analysis could
possibly have led to statistical significance between case and controls for more substruc-
tures. In addition to significant dose differences, the LETd of the radiation was also
varied between patients. While the distal end of the Bragg peak was positioned to avoid
the brainstem to the greatest extent possible, the LETd-volume histograms still showed
high average LETd for several substructures. The inter-patient variations were also seen
to decrease for higher dose statistics, which is partly explained by the D10% and D0.1cc

being used as grounds for the matching of the case-control groups. Another possible ex-
planation is the different volume coverage of the substructures, which would affect lower
dose statistics to a greater extent than higher dose statistics.

The gEUD calculated with Lyman’s proposed n = 0.05 [87] and Burman et al.’s n = 0.16

[88] showed higher average values for cases than controls, with differences increasing for
variable RBE models and lower n. This is likely because a low n-value highly weights
small volumes, which are more dependent on doses approaching maximum doses. This
is consistent with the statistical significance seen for D10% and Dmax. Additionally, the
brainstem is generally considered a serial organ. Thus, damage to smaller volumes will
significantly affect the function of the entire organ, leading to gEUD being calculated with
low n-values.

The LKB models fitted in this thesis for both the full brainstem and brainstem substruc-
tures with RBE1.1 had reasonably similar TD50 values to the already established models
for the full brainstem by Lyman [87] and Burman et al. [88], while variable RBE was
slightly higher. In addition, the previously established model parameters tested on our
data had among the higher AUROC-values observed in this thesis, particularly for the
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variable RBE. However, the m-values for the models fitted in this thesis were consistently
higher than parameters from previous LKB models [87, 88], and the curves established
were subsequently more shallow. This was the result for both the full brainstem and its
substructures. Stronger AUROC-values were also found for models with lower n-values,
and when n was determined by fit to the data points, even lower n-values were preferred.
This further demonstrates the brainstem being sensitive to dose changes in smaller vol-
umes and strengthens the importance of high dose level constraints for the brainstem.
However, no substructures were found to give solid ground for prioritising over the others.
Further, the bootstrapped CIs were also fairly wide, even after the synthetic constraints
were introduced. This is correlated with the substructures receiving the most varied dose
between patients, but is also likely to be partly explained by the small dataset leading
to high degrees of patients being represented several times within a bootstrapped sample
and weighted very heavily for the resultant model, which will be partiularly evident if the
repeated patients are outliers.

The AUROC-values were also not as high as one would prefer for a predictor, with a con-
siderable number of the models having AUROC-values lower than 0.5. The highest values
of around 0.65 were mostly seen for variable RBE and small n-values, and the midbrain
and pons middle anterior were the substructures with the highest AUROC. However, the
AUROC-values presented in this thesis compares poorly to previous LKB studies eval-
uating based on AUROC, with examples being AUROC-values of 0.82 [119], 0.78 [120],
and 0.86–0.90 [121]. The poor comparison might be caused by the patients being so
highly concentrated that they were hard to separate based on a single metric, as well as
the fact that patients within a case-control group were associated with similar dosimetric
values, despite differing in the clinical outcome. The validation of the generalisability of
an NTCP model is an essential aspect of NTCP modelling and is discussed in three of the
seven TRIPOD guidelines for clinical machine learning [37]. The AUROC gives an unbi-
ased estimate of the performance and provides a direct point of comparing performance
between otherwise different NTCP models. AUROC was particularly important for the
LKB models presented in this thesis since the literature reports few LKB model fits for
brainstem toxicity as clinical endpoint.

The dataset consists of patients within a critical dose range representing a significant, but
uncertain risk of brainstem necrosis. The critical dose range is subsequently referring to
the dose range representing clinically relevant doses to the brainstem with a significant
risk of brainstem necrosis, in LKB terms, the adjacent area of the TD50. However, the



103

concentration of the patients around the TD50 means that the high and low dose regions
are subjects of uncertainty. Similar LKB models from other studies represent wider dose
spans and typically includes more patients to maximise accuracy. Thus, most LKB mod-
els studied for this thesis, while describing an assortment of different clinical endpoints,
shared the inclusion of larger cohorts than ours at N = 166 [119], N = 116 [121], N = 388

[122], N = 203 [123], and N between 49 and 382 (data from eleven previous studies) [124].
The selection of patients for the case-control study meant that the fit to the critical dose
range was prioritised but that the models did not accurately represent higher and lower
dose ranges. The synthetic constraints were the chosen solution to the limited dose range.
This was justified by the critical dose range remaining to a large degree defined by the
cohort, while the low and high dose ranges were constrained to certain toxicity for high
doses and no toxicity for low doses. Furthermore, the shallow curves due to largem-values
overpredicted NTCP for lower doses, compared to observed incidence rates [25, 101, 102,
115, 125, 126]. Thus, the constraints were based on our knowledge of the low incidence
of necrosis in lower dose ranges. This is supported by the fact that studies reporting
brainstem toxicity typically concern tumours where excessive dose to the brainstem is un-
avoidable [25, 101, 102, 115], the observation of statistical significance for dose statistics
to the full brainstem volume [102], as well as predictive ability for the percentage of the in-
fratentorial brain volume irradiated by doses between 50 Gy(RBE) and 60 Gy(RBE) [114].

While basing the cohort on a case-control design allows detailed study of a dose range
associated with uncertain risk of brainstem necrosis, the risk of brainstem necrosis is dif-
ficult to translate to a general population from a specifically matched case-control study.
An important aspect of clinical ML and modelling is the generalisability of a model to a
population. This is quantified by minimising the bias of the model, which are trends spe-
cific to the dataset used to fit the model that do not translate over to a general population
[84, 127]. Thus, the model would be most appropriately utilised on patients prescribed
treatment resulting in similarly high dose to the brainstem, but these are generally the
patients where the model would be useful regardless. However, by basing the study on
concentrated points around the TD50 with three controls for every case, the LKB model
might be partly biased towards a synthetic incidence rate of 25% brainstem necrosis in this
dose range. Incidence rates of brainstem necrosis are generally found to be low but un-
certain, and most studies consider lower doses than the ones included in this study which
could potentially underpredict the true incidence rate. Typical rates of brainstem necrosis
lie between 0% and 3.8% [25, 101, 102, 115, 125, 126]. However, the studies included base
incidence rates on cohorts of between 70-313 patients, which are generally small samples
to derive trends for entire populations from. The largest study by Indelicato et al. [102]
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with 313 patients found a 3.8% 2-year incidence rate of brainstem necrosis with average
D50% = 37.4 Gy(RBE) and D10% = 51.3 Gy(RBE) to the whole cohort. Our study had
an average D50% of 49.1 Gy(RBE) and an average D10% of 55.4 Gy(RBE), both from
the RBE1.1 factor, which one could assume to be associated with a higher toxicity rate.

A possible way of reducing bias is to fit the models based on all 954 patients the case-
control groups were initially extracted from. This would achieve a stronger basis for the
models in a wider dose interval including more patients. However, recalculation of all
954 patients would be time-consuming beyond the scope of this thesis, and many of the
patients received doses lower than the ones associated with a significant risk of brainstem
necrosis. Therefore, the synthetic constraint was considered a decent approximation, de-
spite precedence for introducing synthetic constraints not being found in the literature
studied for this thesis. The introduced constraints also result in parts of the modelling
accounting for data points not directly associated with the patients in the cohort. How-
ever, constraints being applied to both variable RBE and RBE1.1 equally maintained
grounds for comparison of the models for the different RBE-weighted doses and substruc-
tures. Additionally, the integrity of the critical dose range around the TD50 remained
largely intact since the constraints were not represented in this dose range. The synthetic
constraints were also not treated as actual patients for the AUROC scores, which means
they were only part of the model calibration.

Another possible prospect for the future is to evaluate different models than LKB on
the same patient cohort. Incorporating LETd directly as a parameter could be an idea
since this was also shown to be higher on average for cases compared to controls. One
could also account for several degrees of toxicity, which is not wholly uncommon for LKB
models either [119, 120, 122]. Additionally, while there is a lack of LKB models describing
brainstem necrosis as clinical endpoint, other NTCP models fit to minor brainstem toxicity
(i.e. MRI image changes) have been constructed. Peeler et al. [26] developed a probit
model, which is very similar to a logit model, based on the LETt of a cohort of 34 paediatric
ependymoma (a type of CNS tumour). The model achieved an AUROC-value of 0.91.
Bahn et al. [27] described a multivariate model incorporating absorbed dose, LETd and
distance to the ventricular system to establish a model for predicting radiation-induced
brain lesions following brain tumours (N = 110). This achieved an AUROC-score of 0.94.
Thus, there is a possibility that other models might have proved a better fit to our data
set and by using a multivariate model, one could have evaluated the cohort based on both
dosimetric and non-dosimetric parameters directly in the model.



105

The clustering generally showed the similarity of the patients within a case-control group
instead of uncovering less apparent trends in the data. This was not wholly unexpected
since they were matched based on similar parameters to the ones clustered. The cluster-
ing being based solely on dosimetric parameters is a weakness described by the TRIPOD
guidelines [86]. However, non-dosimetric parameters were indirectly considered through
the matching criteria of the case-control groups. Further, the clustering generally yielded
solid silhouette scores for the simpler models only because the data was not significantly
separated for most substructures. This also explains why the medulla oblongata was dom-
inant in determining the clusters’ shape. However, the data did include some considerable
outliers, which currently formed individual smaller clusters. However, for larger datasets,
the DBSCAN could prove a valuable asset in negating the effect of outliers.

Limitations of the cluster analysis performed for this thesis were primarily two-fold. The
primary and fairly evident cause was the small size of the data set, which prohibited larger
clusters from forming, and individual outliers were dominant in shaping the resultant
clusters. The ability of clustering algorithms to investigate a large set of data quicker
than could be achieved manually was also not utilised to its fullest potential in this
thesis. Additionally, the parameters were purely dosimetric, meaning they could not be
directly clustered against each other since all were co-dependent. This did not allow
for the simultaneous investigation of several parameters, which is another advantage of
cluster analysis as a data processing tool. Thus, this thesis has not found a strong cause
for utilising cluster analysis on this cohort. However, while not widely utilised in clinical
radiotherapy patient studies, cluster analysis is still valuable for clinical investigations.
An important example is the exploration of gene expression, where cluster analysis is
a valuable asset due to the large number of genes and complex genome systems to be
studied [128, 129].
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Chapter 6

Conclusion

In the assessment of the cases and controls, modest, but systematic increases in LETd

were observed for the average case compared to the average control. The differences were
consistent across all LETd ranges and most substructures. However, L50% and Lmax

showed significant CIs compared to the average differences between cases and controls,
and no statistical significance was observed for studies of the cohort.

The average RBE-weighted doses were also higher for cases than controls for the vari-
able RBE models, which was not seen for RBE1.1. In addition, the difference was found
to increase for higher dose statistics, where statistical significance in D10% and Dmax

was found for certain studied substructures. This, along with increased LETd, supports
RBE1.1 being an inaccurate assumption and that variable RBE may partly explain the
incidence of toxicity.

The LKB models fitted for the brainstem and brainstem substructures showed similar fit
parameters to previously established LKB models for the brainstem, and substructures re-
ceiving less consistent RBE-weighted dose across patients and case-control groups showed
more shallow LKB curves. Based on AUROC-values, the LKB models improved with
decreasing volume parameter (n) in the calculation of gEUD, which suggests prioritising
dose constraints to smaller volumes. However, the LKB models were not associated with
solid AUROC-values which could have been improved with a larger data set or exploring
the fitting of alternative NTCP models to the dataset.

Cluster analysis showed few trends in the separation of cases and controls, but instead
distinguished different case-control groups from each other. The dataset was likely too
small for cluster analysis to be used to its full potential, but the DBSCAN’s ability to
filter out outliers was demonstrated.
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Appendix A

Scatter Plots

Figure A.1 shows a scatter plot of D50% to the full brainstem, the medulla oblongata,
the midbrain and the pons for all case-control groups and mean case and control with
95% CIs. Dose distribution is recalculated with the Rørvik variable RBE model assuming
a constant (α/β)x = 2.1 for the full brainstem.

Figure A.1: D50% to the brainstem, the medulla oblongata, the midbrain and the pons for all case-
control groups, including average case and control with 95% CI. RBE-weighted doses are found with the
Rørvik model assuming a constant (α/β)x = 2.1 for the full brainstem volume. Constraint for D50%

utilised clinically at the University of Florida is also given as a horizontal blue line [33].

Figure A.2 shows a scatter plot of D50% to the full brainstem, the medulla oblongata,
the midbrain and the pons for all case-control groups and mean case and control with
95% CIs. Dose distribution is recalculated with the RBE1.1 factor.
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Figure A.2: D50% to the brainstem, the medulla oblongata, the midbrain and the pons for all case-
control groups, including average case and control with 95% CI. RBE-weighted doses are found with
RBE1.1. Constraint for D50% utilised clinically at the University of Florida is also given as a horizontal
blue line [33].

Figure A.3 shows a scatter plot of D50% to the substructures of the pons for all case-
control groups and mean case and control with 95% CIs. Dose distribution is recalculated
with the Rørvik variable RBE model assuming a constant (α/β)x = 2.1 for the full
brainstem.

Figure A.3: D50% to the substructures of the pons for all case-control groups, including average case
and control with 95% CI. RBE-weighted doses are found with the Rørvik model assuming a constant
(α/β)x = 2.1 for the full brainstem volume.

Figure A.4 shows a scatter plot of D50% to the substructures of the pons for all case-
control groups and mean case and control with 95% CIs. Dose distribution is recalculated
with the RBE1.1 factor.
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Figure A.4: D50% to the substructures of the pons for all case-control groups, including average case
and control with 95% CI. RBE-weighted doses are found with RBE1.1.

Figure A.5 shows a scatter plot of D10% to the full brainstem, the medulla oblongata,
the midbrain and the pons for all case-control groups and mean case and control with
95% CIs. Dose distribution is recalculated with the Rørvik variable RBE model assuming
a constant (α/β)x = 2.1 for the full brainstem.

Figure A.5: D10% to the brainstem, the medulla oblongata, the midbrain and the pons for all case-
control groups, including average case and control with 95% CI. RBE-weighted doses are found with the
Rørvik model assuming a constant (α/β)x = 2.1 for the full brainstem volume. Constraint for D10%

utilised clinically at the University of Florida is also given as a horizontal blue line [33].

Figure A.6 shows a scatter plot of D10% to the full brainstem, the medulla oblongata,
the midbrain and the pons for all case-control groups and mean case and control with
95% confidence intervals. Dose distribution is recalculated with the RBE1.1 factor.
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Figure A.6: D10% to the brainstem, the medulla oblongata, the midbrain and the pons for all case-
control groups, with average case and control with 95% CI. RBE-weighted doses are found with RBE1.1.
Constraint for D10% utilised clinically at the University of Florida is also given as a horizontal blue line
[33].

Figure A.7 shows a scatter plot of D10% to the substructures of the pons for all case-
control groups and mean case and control with 95% CIs. Dose distribution is recalculated
with the Rørvik variable RBE model assuming a constant (α/β)x = 2.1 for the full
brainstem.

Figure A.7: D10% to the substructures of the pons for all case-control groups, including average case
and control and averages with 95% CI. RBE-weighted doses are found with the Rørvik model assuming
a constant (α/β)x = 2.1 for the full brainstem volume.

Figure A.8 shows a scatter plot of D10% to the substructures of the pons for all case-
control groups and mean case and control with 95% CIs. Dose distribution is recalculated
with the RBE1.1 factor.
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Figure A.8: D10% to the substructures of the pons for all case-control groups, including average case
and control with 95% CI. RBE-weighted doses are found with RBE1.1.

Figure A.9 shows a scatter plot of Dmax to the full brainstem, the medulla oblongata, the
midbrain and the pons for all case-control groups and mean case and control with 95%
CIs. Dose distribution is recalculated with the Rørvik variable RBE model assuming a
constant (α/β)x = 2.1 for the full brainstem.

Figure A.9: Dmax to the brainstem, the medulla oblongata, the midbrain and the pons for all case-
control groups, incuding average case and control with 95% CI. RBE-weighted doses are found with the
Rørvik model assuming a constant (α/β)x = 2.1 for the whole brainstem volume. Constraint for Dmax
utilised clinically at the University of Florida is also given as a horizontal blue line [33].

Figure A.10 shows a scatter plot of Dmax to the full brainstem, the medulla oblongata,
the midbrain and the pons for all case-control groups and mean case and control with
95% CIs. Dose distribution is recalculated with the RBE1.1 factor.
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Figure A.10: Dmax to the brainstem, the medulla oblongata, the midbrain and the pons for all case-
control groups, including average case and control with 95% CI. RBE-weighted doses are found with
RBE1.1. Constraint for Dmax utilised clinically at the University of Florida is also given as a horizontal
blue line [33].

Figure A.11 shows a scatter plot of Dmax to the substructures of the pons for all case-
control groups and mean case and control with 95% CIs. Dose distribution is recalculated
with the Rørvik variable RBE model assuming a constant (α/β)x = 2.1 for the full
brainstem.

Figure A.11: Dmax to the brainstem, the medulla oblongata, the midbrain and the pons for all case-
control groups, including average case and control with 95% CI. RBE-weighted doses are found with the
Rørvik model assuming a constant (α/β)x = 2.1 for the full brainstem volume.

Figure A.12 shows a scatter plot of Dmax to the substructures of the pons for all case-
control groups and mean case and control with 95% CIs and dose distribution from
RBE1.1.
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Figure A.12: Dmax to the substructures of the pons for all case-control groups, including average case
and control with 95% CI. RBE-weighted doses are found with RBE1.1.

Figure A.13 shows a scatter plot of the gEUD with n = 0.05 to the full brainstem, the
medulla oblongata, the midbrain and the pons for all case-control groups and mean case
and control with 95% CIs. Dose distribution is recalculated with the Rørvik variable RBE
model assuming a constant (α/β)x = 2.1 for the full brainstem.

Figure A.13: gEUD with n = 0.05 to the brainstem, the medulla oblongata, the midbrain and the pons
for all case-control groups, including average case and control and averages with 95% CI. RBE-weighted
doses are found with the Rørvik model assuming (α/β)x = 2.1 for the full brainstem volume.

Figure A.14 shows a scatter plot of the gEUD with n = 0.05 to the full brainstem, the
medulla oblongata, the midbrain and the pons for all case-control groups and mean case
and control with 95% CIs. Dose distribution is recalculated with the RBE1.1 factor.
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Figure A.14: gEUD with n = 0.05 to the brainstem, the medulla oblongata, the midbrain and the pons
for all case-control groups, including average case and control with 95% CI. RBE-weighted doses are
found with RBE1.1.

Figure A.15 shows a scatter plot of the gEUD with n = 0.16 to the full brainstem, the
medulla oblongata, the midbrain and the pons for all case-control groups and mean case
and control with 95% CIs. Dose distribution is recalculated with the Rørvik variable RBE
model assuming a constant (α/β)x = 2.1 for the full brainstem.

Figure A.15: gEUD with n = 0.16 to the brainstem, the medulla oblongata, the midbrain and the pons
for all case-control groups, including average case and control with 95% CI. RBE-weighted doses are
found with the Rørvik model assuming (α/β)x = 2.1 for the full brainstem volume.

Figure A.16 shows a scatter plot of the gEUD with n = 0.16 to the full brainstem, the
medulla oblongata, the midbrain and the pons for all case-control groups and mean case
and control with 95% CIs. Dose distribution is recalculated with the RBE1.1 factor.
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Figure A.16: gEUD with n = 0.16 to the brainstem, the medulla oblongata, the midbrain and the pons
for all case-control groups, including average case and control with 95% CI. RBE-weighted doses are
found with RBE1.1.

Figure A.17 shows a scatter plot of the gEUD with n = 0.05 to the substructures of
the pons for all case-control groups and mean case and control with 95% CIs. Dose
distribution is recalculated with the Rørvik variable RBE model assuming a constant
(α/β)x = 2.1 for the full brainstem.

Figure A.17: gEUD with n = 0.05 to the substructures of the pons for all case-control groups, including
average case and control with 95% CI. RBE-weighted doses are found with the Rørvik model assuming
(α/β)x = 2.1 for the entire brainstem volume.

Figure A.18 shows a scatter plot of the gEUD with n = 0.05 to the substructures of
the pons for all case-control groups and mean case and control with 95% CIs. Dose
distribution is recalculated with the RBE1.1 factor.
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Figure A.18: gEUD with n = 0.05 to the substructures of the pons for all case-control groups, including
average case and control with 95% CI. RBE-weighted doses are found with RBE1.1.

Figure A.19 shows a scatter plot of gEUD with n = 0.05 to the substructures of the pons
for all case-control groups and mean case and control with 95% CIs. Dose distribution is
recalculated with the Rørvik variable RBE model assuming a constant (α/β)x = 2.1 for
the full brainstem.

Figure A.19: gEUD with n = 0.16 to the substructures of the pons for all case-control groups, including
average case and control with 95% CI. RBE-weighted doses are found with the Rørvik model assuming
(α/β)x = 2.1 for the entire brainstem volume.

Figure A.20 shows a scatter plot with the spread of gEUD with n = 0.05 to the substruc-
tures of the pons for all case-control groups and mean case and control with 95% CIs.
Dose distribution is recalculated with the RBE1.1 factor.
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Figure A.20: gEUD with n = 0.16 to the substructures of the pons for all case-control groups, including
average case and control with 95% CI. RBE-weighted doses are found with RBE1.1.
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Appendix B

Hierarchical Clustering

Figure B.1 shows a dendrogram for the hierarchical clustering of the D50% to the medulla
oblongata, the midbrain and the pons with RBE-weighted dose from the Rørvik RBE
model assuming a constant (α/β)x = 2.1 for the full brainstem.

Figure B.1: Dendrogram showing the hierarchical clustering of the D50% to the medulla oblongata, the
midbrain and the pons with RBE-weighted dose from the Rørvik RBE model. The label tox n refers to
the case of group n, while cn.i refers to its corresponding matched controls.

Figure B.2 shows a dendrogram for the hierarchical clustering of the D50% to the medulla
oblongata, the midbrain and the pons with RBE-weighted dose from RBE1.1.
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Figure B.2: Dendrogram showing the hierarchical clustering of the D50% to the medulla oblongata, the
midbrain and the pons with RBE-weighted doses from RBE1.1. The label tox n refers to the case of
group n, while cn.i refers to its corresponding matched controls.

Figure B.3 shows a dendrogram for the hierarchical clustering of the gEUD with n = 0.05

to the midbrain and the pons with RBE-weighted dose from the Rørvik RBE model
assuming a constant (α/β)x = 2.1 for the full brainstem.
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Figure B.3: Dendrogram showing the hierarchical clustering of the gEUD with n = 0.05 to the midbrain
and the pons with RBE-weighted doses from the Rørvik RBE model. The label tox n refers to the case
of group n, while cn.i refers to its corresponding matched controls.

Figure B.4 shows a dendrogram for the hierarchical clustering of the gEUD with n = 0.05

to the midbrain and the pons with RBE-weighted dose from RBE1.1.

Figure B.4: Dendrogram showing the hierarchical clustering of the gEUD with n = 0.05 to the midbrain
and the pons with RBE-weighted doses from RBE1.1. The label tox n refers to the case of group n,
while cn.i refers to its corresponding matched controls.
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The hierarchical clustering of the D50% to the pons substructures, posterior, middle
posterior, middle anterior and anterior with RBE-weighted doses from the McNamara
variable RBE model assuming (α/β)x = 2.1 for the full brainstem. The clustering yielded
a silhouette score of 0.65. The dendrogram is shown in figure B.5.

Figure B.5: Hierarchical clustering of D50% of pons substructures: posterior, middle posterior, middle
anterior and anterior With RBE weighted doses from the McNamara variable RBE model, assuming
α/β = 2.1 for the entire brainstem pons. The label tox n refers to the case of group n, while cn.i refers
to its corresponding matched controls.

The hierarchical clustering of the D50% to the pons substructures, posterior, middle
posterior, middle anterior and anterior with RBE-weighted doses from the Rørvik variable
RBE model assuming (α/β)x = 2.1 for the full brainstem. The clustering yielded a
silhouette score of 0.62. The dendrogram is shown in figure B.6.
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Figure B.6: Hierarchical clustering of D50% of pons substructures: posterior, middle posterior, middle
anterior and anterior With RBE weighted doses from the Rørvik variable RBE model, assuming α/β =

2.1 for the entire brainstem pons. The label tox n refers to the case of group n, while cn.i refers to its
corresponding matched controls.

The hierarchical clustering of the D50% to the pons substructures, posterior, middle
posterior, middle anterior and anterior with RBE-weighted doses from RBE1.1. The
clustering yielded a silhouette score of 0.61. The dendrogram is shown in figure B.7.
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Figure B.7: Hierarchical clustering of D50% of pons substructures: posterior, middle posterior, middle
anterior and anterior. The label tox n refers to the case of group n, while cn.i refers to its corresponding
matched controls.

The distribution of cases and controls for all three clusterings of D50% to the pons sub-
structures are given in table B.1.

Table B.1: The distribution of the cases and controls for the hierarchical clustering of the D50% to
the midbrain and the pons. RBE-weighted doses are calculated with RBE1.1, and the McNamara and
Rørvik RBE models.

McNamara
Cases

McNamara
Controls

Rørvik
Cases

Rørvik
Controls

RBE1.1
Cases

RBE1.1
Controls

Cluster 1 ( ) 6 16 8 23 7 22

Cluster 2 ( ) 1 6 1 4 2 4

Cluster 3 ( ) 2 4 - - 0 1

Cluster 4 ( ) 0 1 - - - -
.
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Appendix C

DBSCAN

The DBSCAN of D50% of the pons substructures, posterior, middle posterior, middle an-
terior and anterior with RBE weighted doses from the Rørvik RBE model and McNamara
RBE model, both assuming (α/β)x = 2.1 for the full brainstem used a minimum points
to form cluster of 5 and an epsilon of 1.0. The clusterings had silhouette scores of 0.65.
RBE1.1 used the same parameters, but had a silhouette score of 0.60. The distribution
of cases and controls are provided in table C.1

Table C.1: The distribution of cases and controls for the DBSCAN of the D50% for the pons posterior,
pons middle-posterior, pons middle-anterior and pons anterior using different RBE weighted doses.

McNamara
Cases

McNamara
Controls

Rørvik
Cases

Rørvik
Controls

RBE1.1
Cases

RBE1.1
Controls

Cluster 1 ( ) 6 17 6 17 7 22

Cluster 2 ( ) 2 3 2 3 2 3

Cluster 3 ( ) 1 5 1 5 - -

Noise ( ) 0 2 0 2 0 2
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Appendix D

k-distance Graphs

k-distance graph used to determine epsilon for the DBSCAN of the D50% to the medulla
oblongata, the midbrain and the pons with RBE-weighted dose from the McNamara RBE
model, shown in figure 4.29, is given in figure D.1.

Figure D.1: k-distance graph of the D50% to the medulla oblongata, the midbrain and the pons with
RBE-weighted dose from the McNamara RBE model. The x-axis shows the number of points with k = 2

neighbours within a radial distance epsilon, while the y-axis shows the corresponding nearest neighbour
distance, epsilon.

k-distance graph used to determine epsilon for the DBSCAN of the D50% to the medulla
oblongata, the midbrain and the pons with RBE-weighted dose from the Rørvik RBE
model, shown in figure 4.29, is given in figure D.2.



Figure D.2: k-distance graph of the D50% to the medulla oblongata, the midbrain and the pons with
RBE-weighted dose from the Rørvik RBE model. The x-axis shows the number of points with k = 2

neighbours within a radial distance epsilon, while the y-axis shows the corresponding nearest neighbour
distance, epsilon.

k-distance graph used to determine epsilon for the DBSCAN of the D50% to the medulla
oblongata, the midbrain and the pons with RBE-weighted dose from RBE1.1, shown in
figure 4.29, is given in figure D.3.

Figure D.3: k-distance graph of the D50% to the medulla oblongata, the midbrain and the pons with
RBE-weighted dose from RBE1.1. The x-axis shows the number of points with k = 2 neighbours within
a radial distance epsilon, while the y-axis shows the corresponding nearest neighbour distance, epsilon.



k-distance graph used to determine epsilon for the DBSCAN of the gEUD to the midbrain
and the pons with RBE-weighted dose from the McNamara RBE model, shown in figure
4.32, is given in figure D.4.

Figure D.4: k-distance graph of the gEUD with n = 0.05 to the midbrain and the pons with RBE-
weighted dose from the McNamara RBE model. The x-axis shows the number of points with k = 2

neighbours within a radial distance epsilon, while the y-axis shows the corresponding nearest neighbour
distance, epsilon.

k-distance graph used to determine epsilon for the DBSCAN of the gEUD to the midbrain
and the pons with RBE-weighted dose from the Rørvik RBE model, shown in figure 4.32,
is given in figure D.5.



Figure D.5: k-distance graph of the gEUD with n = 0.05 to the midbrain and the pons with RBE-
weighted dose from the Rørvik RBE model. The x-axis shows the number of points with k = 2 neighbours
within a radial distance epsilon, while the y-axis shows the corresponding nearest neighbour distance,
epsilon.

k-distance graph used to determine epsilon for the DBSCAN of the gEUD to the midbrain
and the pons with RBE-weighted dose from RBE1.1, shown in figure 4.32, is given in figure
D.6.

Figure D.6: k-distance graph of the gEUD with n = 0.05 to the midbrain and the pons with RBE-
weighted dose from RBE1.1. The x-axis shows the number of points with k = 2 neighbours within a
radial distance epsilon, while the y-axis shows the corresponding nearest neighbour distance, epsilon.
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