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Abstract
Suicide gene therapy has represented an experimental cancer treatment modality for nearly 40 years. Among the 
various cancers experimentally treated by suicide gene therapy, high-grade gliomas have been the most promi-
nent both in preclinical and clinical settings. Failure of a number of promising suicide gene therapy strategies in the 
clinic pointed toward a bleak future of this approach for the treatment of high-grade gliomas. Nevertheless, the de-
velopment of new vectors and suicide genes, better prodrugs, more efficient delivery systems, and new combina-
torial strategies represent active research areas that may eventually lead to better efficacy of suicide gene therapy. 
These trends are evident by the current increasing focus on suicide gene therapy for high-grade glioma treatment 
both in the laboratory and in the clinic. In this review, we give an overview of different suicide gene therapy ap-
proaches for glioma treatment and discuss clinical trials, delivery issues, and immune responses.
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High-grade gliomas (HGGs), collectively known as WHO 
grade III and IV primary brain tumors, belong to the most 
deadly and incurable group of cancers.1 Lack of specificity of 
chemotherapeutic drugs, delivery issues to the central nervous 
system, and development of therapy resistance pose chal-
lenges in glioma management. The urgent need for novel 
and more efficient treatment strategies has produced various 
novel molecularly targeted therapeutic options that have been 
tested in clinical trials alongside the traditional chemotherapy/
radiation approaches.2 However, the outcomes have mostly 
fallen short of expectations.2,3 Another experimental treatment 
modality that has persistently been tested in HGG patients is 
suicide gene therapy (SGT) or also known as gene-directed 
enzyme prodrug therapy. The initial successful proof of con-
cept in animal models4 and small-scale clinical trials5 could 
not be replicated in a large-scale trial6 generating a negative 

wave against further development of SGT. However, con-
tinued research has promoted further improvements of this 
strategy resulting in a more tailored therapeutic avenue for 
HGG. SGT is a multi-componential approach (Figure  1) and 
thus offers unique possibilities of tailoring the therapy fur-
ther by improving the individual components according to the 
new mechanistic insights into glioma biology, novel vector de-
velopments, and also the development of new delivery tech-
niques such as convection-enhanced delivery (CED). Therefore, 
these new developments have been molding SGT to become 
potentially more effective for HGG treatment. As a result, sev-
eral improved SGT systems are currently being tested in the 
laboratory and some have entered clinical trials. In this review, 
we discuss past and present developments in the SGT field 
and also critically review the clinical translation, delivery is-
sues, and immune responses.

Suicide gene therapy for the treatment of high-grade 
glioma: past lessons, present trends, and future 
prospects

  

applyparastyle "fig//caption/p[1]" parastyle "FigCapt"
applyparastyle "fig" parastyle "Figure"

http://creativecommons.org/licenses/by/4.0/
mailto:Hrvoje.miletic@uib.no?subject=
mailto:J.Hossain@uib.no?subject=


 2 Hossain et al. Suicide gene therapy of glioma

The Concept of SGT

SGT represents the most common form of gene therapy 
used to treat HGGs in both preclinical and clinical set-
tings. From a theoretical perspective, SGT is a two-step 
treatment modality for solid tumors (Figure  2A): the 
first step is the transduction of cancer cells by a vector 
encoding an enzyme (suicide gene) capable of cata-
lyzing a prodrug into a toxic metabolite. The second step 
involves administration of the corresponding prodrug 
that upon catalysis by the prodrug-converting enzyme 
induces cell death. Ideally the prodrug should exhibit 
(1) features of an ideal substrate for the enzyme, (2) ac-
tivation of cell death after catalysis with minimal or no 
off-target toxicity, (3) capability of crossing the blood–
brain barrier efficiently, and (4) induction of the so-called 
bystander effect (BE). Since 100% transduction of all 
tumor cells is virtually impossible, the BE is an impor-
tant feature of SGT. It facilitates collateral killing of non-
transduced (“bystander”) cells caused by the transfer of 
intermediate or final metabolites of the prodrug. Thus, it 
is sufficient to transduce a certain fraction of the tumor to 
potentially achieve complete eradication of all malignant 
cells. Growing evidence indicates that the process of cell 
death induced by certain SGTs is immunogenic, which 
means that it can alert and stimulate an antitumor re-
sponse adding to the treatment effect of SGT (Figure 2B).

Development of Suicide Genes and 
Prodrugs

The possibility of using microbial enzymes and an anti-
microbial compound to introduce selective cytotox-
icity in mammalian cells was first reported in the 1980s 
demonstrating that transfer of genetic material of the 
Herpes simplex virus 1 (HSV), rendered the cells more 

sensitive to acyclovir (ACV)7 (Figure 3). Nishiyama et al.8,9 
adopted this concept for cancer treatment by showing that 
delivery of cytosine deaminase (CD) from Escherichia coli 
followed by 5-fluorocytosine (5FC) administration leads 
to a significant reduction of tumor burden in a syngeneic 
EA285 rat glioma model. Moolten et al.10,11 contemporarily 
introduced SGT based on thymidine kinase (TK) from HSV 
for cancer treatment (Figure 3). CD and HSV-TKHSV-TK are 
the two most widely used suicide genes for cancer treat-
ment including HGGs. However, a wide variety of other 
SGTs have been HSV-TK established (Table 1).

CD-Based SGT

CD, an enzyme found in bacteria and lower eukaryotes 
(eg, yeast), is involved in microbial pyrimidine metab-
olism and deaminates 5FC (and other analogs, namely, 
6-azacytosine, isocytosine) into 5-fluorouracil (5FU). 5FU 
is a pyrimidine analog that directly inhibits nucleic acid 
synthesis due to misincorporation instead of uracil or thy-
mine. 5FU can also be catalyzed by cellular enzymes into 
fluorodeoxyuridine monophosphate that can interfere 
with DNA metabolism by binding thymidylate synthase.12 
Therefore, 5FU itself has been used as a potent anticancer 
chemotherapeutic agent for many years, but off-target tox-
icity has limited its direct applicability.8,9,13 Two different 
CD proteins have been adopted for developing the SGT 
system with CD/5FC: bacterial CD (bCD; source: E.  coli) 
and yeast CD (yCD; source: Saccharomyces cerevisiae). 
Although bCD and yCD bear little homology, they cata-
lyze cytosine and 5FC in a similar fashion, albeit with dif-
ferent efficiency. yCD has a significantly lower Km and a 
higher Vmax for 5FC than bCD13; however, yCD exhibits 
thermal instability. The enzyme works optimally at around 
26°C and loses activity as temperature rises.8,13 This short-
coming has been mended by rational protein engineering 
that involves alteration of 3 amino acids in the yCD gene.14 
Currently, both bCD and the recombinant yCD are being 
used for HGG treatment.15,16
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Fig. 1  SGT consists of different modules where each single module can be subjected to improvement to enhance therapeutic efficacy. CED, 
convection-enhanced delivery.
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HSV-TK-Based SGT

HSV encodes a TK gene that is evolutionarily and func-
tionally different than the human thymidine kinases 
(hTKs).17 Compared to hTKs, HSV-TK more efficiently 
catalyzes various prodrugs (synthetic nucleoside 
analogs) producing mono-phosphorylated nucleoside 
analogs that are further phosphorylated by cellular 

kinases.17 The resulting triphosphorylated analogs are 
incorporated into DNA strands during replication and 
cause strand abrogation leading to cell death of actively 
proliferating cells. Importantly, the analogs (ie, prodrugs) 
are not efficiently recognized by the hTKs preventing tox-
icity for normal cells. As a result, HSV-TK acts as a suicide 
gene upon prodrug exposure without any major interfer-
ence of the hTKs. Various purine and pyrimidine analogs 
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Fig. 3  Timeline of major developments in SGT for HGG treatment.
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Fig. 2  The basic mechanism of SGT. (A) The suicide gene is delivered into glioma cells by viral vectors that convert the nontoxic prodrug (green) 
into a toxic metabolite (orange) that causes tumor cell death. Note that the toxic metabolite (or intermediate byproducts) can travel from the 
transduced tumor cells (dark) to the untransduced tumor cells (light) by either gap junctions or diffusion, finally leading to the death of both trans-
duced and untransduced cells. This phenomenon is known as the bystander effect (BE). The precise mechanism of BE is dependent on the nature 
of the toxic drug. Suicide gene-modified stem cells kill the tumor cells via BE only. (B) Recent studies suggest that SGT can cause a release of 
damage-associated molecular pattern (DAMP) molecules and/or can induce a display of neo-antigens (neo-Ags) leading to immunogenic cell 
death. Both myeloid antigen-presenting cells (APCs) and lymphocytes are instrumental in the resulting antitumor immune response.
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are compatible with HSV-TK SGT such as ganciclovir 
(GCV), ACV, and brivudin (BVDU).18,19 BVDU is an effi-
cient substrate of HSV-TK and a potent inducer of cell 
death,20 but exhibits poor BE.21 GCV is a better substrate 
for HSV-TK compared with ACV and exhibits a greater 
BE compared to either ACV or BVDU.21,22 Valganciclovir 
(valGCV), an oral analog of GCV, has recently been 
shown to be suitable for long-term treatment in a GBM 
xenograft model.23

The wild-type HSV-TK suffers from a few shortcom-
ings: higher affinity toward its natural substrate endoge-
nous thymidine (dT) compared to GCV24 and presence 
of cryptic sites leading to anomalous transcription25 or 
splicing.26 Such limitations can be overcome by optimizing 
sequences of the HSV-TK gene,27 and a novel mutant with 
superior functionality has been developed to be used for 
treatment of experimental HGG.17,23,28,29

Vector Systems for SGT

Soon after the emergence of SGT principles,9,10 γ-
retroviral vectors (RVs) and later adenoviral vectors 
(AdVs) were employed to deliver suicide genes into tu-
mors.4,30 Although these vectors were effective in glioma 
animal models and to some extent in early-phase clinical 
trials, results from a larger phase III trials were disap-
pointing.6,31 Treatment failure was mostly attributed to 
various shortcomings of the viral vectors indicating that 
more efficient vector systems need to be developed to 
harness the power of SGT for cancer treatment. Thus, 
per today a wide variety of vectors derived from dif-
ferent viral backbones are used for SGT (Table 2). Apart 
from viral vectors, stem-cell-based vectors have been 
developed for SGT.

  
Table 1.  List of Most Prominent Suicide Gene Therapy Systems Used for HGG Treatment

Suicide Gene Origin of Suicide Gene Prodrug/Drug PMID

HSV-TK Viral GCV/GCV-TP 19617915

VZV-TK Viral GCV/GCV-TP 9231072

Tomato-TK Viral AZT/AZT-TP 20154339

EHV4-TK Viral GCV/GCV-TP 12489026 

Cytosine deaminase Bacterial and yeast 5-FC/5-FU 23969884

Purine nucleoside phosphorylase (PNP) Bacterial MeP-dR/MEP 15374975

Nitroreductase Bacterial CB1954/AHNB 27840931

Guanine phosphorybosyl transferase Bacterial 6TX/6GMP 9414253

Carboxylesterases (CE) Mammalian IRT/SN-38 24167321

Cytochrome P450 Mammalian, rodent CPA/PM 9354446

While some suicide genes are compatible with several prodrugs, only one representative prodrug along with the corresponding toxic drug is 
mentioned here.

GCV-TP, GCV triphosphate; MeP-dR, 9-β-d-[2–deoxyribofuranosyl]-6-methylpurine; MEP, 6-methylpurine; CB1954, 5-aziridinyl-2,4-dinitrobenzamide; 
AHNB, 5-(aziridinyl)-4-hidroxylamine-2-nitrobenzamide; IRT, irinotecan; 6TX, 6-thioxanthine; 6GMP, 6-thioguanine monophosphate; CPAC, cyclophos-
phamide; PM, phosphoramide mustard.

  

  
Table 2.  Key Features of an Efficient SGT System for HGG Treatment

SGT type Transduction  
of Dividing  
Tumor Cells

Transduction  
of Quiescent  
Tumor Cells

Tumor  
Specificity

Long-Term  
Transgene  
Expression

Activation  
of Anticancer IR

Multiple  
Rounds of  
Transduction

RV-HSV-TK
    

?  

AdV-HSV-TK
      

RRV-γCD
      

NSC-bCD — —
  

? —

LV-HSV-TK
    

?  

Some SGTs exhibit particular features strongly (white) or weakly (gray), while some SGTs lack features (black). Some SGT approaches demand 
more research in a specific area for the conclusion (interrogative).
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AdV-Mediated SGT

The failure of RV-mediated SGT in a phase III clinical 
trial6 was attributed to low transduction efficiency which 
gave an impetus to the development of viral vectors with 
better transduction capability. Since AdVs can transduce 
non-dividing cells, it was anticipated that the problem 
of suboptimal transduction of RVs would be solved by 
using AdVs. Indeed, non-replicating AdVs have been dem-
onstrated to deliver a transgene more efficiently than 
RVs in human gliomas.32 In line with this, AdV-mediated 
HSV-TK/GCV (AdV-TK/GCV) therapy demonstrated a sig-
nificant therapeutic benefit in experimental glioma models 
by several independent investigators18,33,34 and also in 
small-scale HGG clinical trials.35–37 No serious adverse ef-
fects were observed, which is an important finding since 
AdVs had caused death of a patient in a trial for ornithine 
transcarbamylase gene therapy.38 Thus, a phase III clin-
ical trial (known as ASPECT) was performed to evaluate 
the potential therapeutic benefit of AdV-TK/GCV therapy 
as an adjuvant treatment arm to standard of care (resec-
tion, radiotherapy, and temozolomide [TMZ] administra-
tion).31 While ASPECT showed significant improvement 
in “time-to-re-intervention” compared to standard care, 
unfortunately the study failed to show a significant effect 
on overall survival. Although there was a stronger treat-
ment effect in patients with non-methylated MGMT (O-6-
methylguanine-DNA methyltransferase; a DNA repair 
protein and a major prognostic factor for TMZ treatment), 
the results did not satisfy the European Medicines Agency 
(EMA) and thus the marketing request was denied. Several 
theoretical reasons could be attributed to the failure of the 
ASPECT trial. Firstly, it is possible that the interpretation 
of the therapeutic outcome of the SGT was compromised 
by the lack of universal standard care protocols (namely, 
differential TMZ administration) across all institutions.31,39 
Secondly, the therapy itself might not have been effec-
tive enough. Despite improved transduction capability, 
AdVs suffer from a major drawback by the lack of long-
term expression of transgenes. Unlike RVs, AdVs do not 
integrate into the host genome and thus transgenes are 
only expressed transiently for up to a few weeks.38,40 In 
this context, we have recently shown that short-term SGT 
can result in treatment-escape and that long-term suicide 
gene activity can improve treatment efficacy.23 While the 
problem of short-term gene expression can be somewhat 
mitigated in the CNS where the transgene expression may 
be detected for at least up to 3  months,18 the episomal 
maintenance of AdVs still causes the transgene expression 
to be reduced following cell divisions that would likely lead 
to compromised efficacy during tumor expansion.

Because of its excellent safety profile, high transduc-
tion efficiency in both dividing and non-dividing cells, 
standardized manufacturing process of clinical batches, 
and potential to immunogenic stimulation (discussed 
below), AdV-mediated SGT is still pursued in both la-
boratories and the clinic with different combinatorial 
HGG treatment strategies. In this context, concomitant 
radiotherapy with AdV-TK/ACV has recently been tested 
in clinical trials showing notable improvement in sur-
vival outcomes.19,41,42 Other combination strategies such 

as concomitant TMZ or Nivolumab (checkpoint inhibitor) 
are also being pursued in different clinical trials at this 
point (Table 3). Another combinatorial paradigm involves 
dual AdV therapy where the second vector delivers the 
immunostimulatory gene Flt3L that increases antitumor 
immune responses (Table 3).43,44

Replicating Retroviral Vector-Mediated SGT

The major drawbacks of RVs and AdVs, namely, low trans-
duction rate and episomal nature may be circumvented by 
using replicating retroviral vectors (RRVs). RRVs of non-
primate origin have been reported to efficiently transduce 
glioma cells and thus refocused the translational attention 
of SGT involving γ-RVs.51 Since RRVs exhibit a non-lytic life 
cycle, the therapy is mostly dependent on the suicide gene 
activity which could be achieved by using CD or viral TK.45,51 
While RRVs in general transduce only dividing cells, the 
high-transduction ability is conferred by the replicative na-
ture of the vectors. Most importantly, RRV replication is re-
stricted to glioma cells in vivo due to the post-mitotic state 
of most normal cells within the CNS.51 By using a recombi-
nant yCD gene,47 several clinical trials funded by Tocagen, 
Inc., were performed demonstrating safety as well as en-
couraging results compared to external lomustine-treated 
cohorts.51,52 These positive indications resulted in the desig-
nation of breakthrough and PRIME status for HGG treatment 
by FDA and EMA, respectively. The clinical studies took ad-
vantage of next-generation sequencing technologies re-
vealing some interesting aspects of the therapy in relation 
to associated prognostic factors. For example, an important 
discovery was made by identifying a transcriptomic sig-
nature, termed survival-related neuronal subtype (SRNS), 
that is associated with Toca 511/5FC-mediated survival.51 
Interestingly, the SRNS signature shows functional similar-
ities with the TCGA neural subtype and thus patients who 
exhibited SRNS (and a TCGA neural subtype) benefitted 
most from Toca 511/5FC. Aside from SRNS, some other 
prognostic factors were also identified including a ten-
tative identification of Isocitrate dehydrogenase 1 (IDH1) 
mutation as a positive prognostic factor.51,52 Furthermore, 
the study revealed that the activity of CD/5FC, similar to 
HSV-TK/GCV, is independent of patient MGMT status. 
The preliminary success warranted a phase III clinical trial 
(NCT02598011) which has been performed in 403 HGG 
patients. Recently Tocagen, Inc., made a press release an-
nouncing that the phase III trial unfortunately failed to meet 
the study endpoints.53 While detailed results are currently 
unavailable, the failure once again reveals the tremendous 
challenge of treating HGGs. Further improvement related to 
this treatment strategy may most likely depend on combi-
natorial approaches with other treatment modalities.

Lentiviral Vector-Mediated HSV-TK/GCV Therapy

Lentiviral vectors (LVs), developed as a spin-off from HIV 
research, serve as one of the most popular vector sys-
tems in gene therapy. In contrast to the aforementioned 
vectors, LVs offer 2 unique features that are very impor-
tant for SGT toward HGGs: transduction capability in 
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quiescent cells and long-term gene expression. Similar 
to all retroviruses, lentiviruses integrate the provirus 
into host-cell genomes. However, unlike γ-retroviruses, 
lentiviruses are equipped with active nuclear transport 
machinery leading to genome integration independent 
of mitosis. LVs, availing this mechanism, can transduce 
quiescent glioma cells much more efficiently than RVs, as 
shown in biopsy-based glioma spheroids,48 where a sig-
nificant fraction of non-dividing tumor cells is present. 
These resting glioma cells could not be targeted by 
RVs neither in vitro nor in vivo. LVs are most frequently 
pseudotyped with the glycoprotein (GP) of vesicular sto-
matitis virus (VSV-G). However, GPs from other viruses 
can also be used. We have shown that LVs pseudotyped 
with the GPs of the lymphocytic choriomeningitis virus 

transduce glioma cells more specifically compared to 
VSV-G pseudotyped vectors which have a strong tro-
pism for neurons.54 To investigate therapeutic efficacy, 
LV-based HSV-TK/GCV treatment was tested in a patient-
derived GBM xenograft model and subsequently com-
plete, albeit temporary, tumor remission after GCV 
administration was observed.48 In this study, a fraction 
of tumor cells from recurrent tumors still expressed the 
suicide gene indicating that short-term prodrug adminis-
tration (2–3 weeks), which is currently standard in clinical 
trials, is not sufficient to achieve the maximum treatment 
effect. This hypothesis was confirmed in a follow-up study 
showing that long-term administration of valGCV, a pro-
drug tailored for oral application, increased the treatment 
effect compared to short-term GCV treatment.23 Due to 

  
Table 3.  Clinical Trials Involving SGT for HGG Treatment

Trial No. Start– 
Completiona

Phase Patients Vector  
Used

Suicide 
Gene/ 
Prodrug

Combination Result Citation

NCT00751270 2005–2011 Ib Newly diagnosed 
HGG

AdV HSV1-TK/ 
valACV

RT+TMZb Safety assessed 20

NCT00589875 2007–2015 Iia Newly diagnosed 
HGG

AdV HSV1-TK/ 
valACV

RT+TMZb Safety assessed 45

NCT00870181 2008–2012 II Recurrent HGG AdV HSV1-TK/ 
GCV

N/A Improved survival 42

NCT01172964 2010–2015 I Recurrent HGG NSC(HB1. 
F3.CD)

bCD/5FC  Safety assessed 46

NCT00634231 2010–2015 I Newly diagnosed 
HGG (pediatric)

AdV HSV1-TK/ 
valACV

RT+TMZb Safety assessed/ 
ongoing

47

NCT01156584 2010–2016 I Recurrent HGG RRV yCD/5FC N/A — —

NCT01470794 2012–2016 I Recurrent HGG 
(undergoing  
surgery)

RRV yCD/5FC N/A Safety + encouraging 
efficacy

48,49

NCT01985256 2014–2016 I Recurrent HGG 
(undergoing  
surgery)

RRVc yCD/5FC N/A — —

NCT02015819 2014–2019 I Recurrent HGG NSC(HB1. 
F3.CD)

bCD/5FC+ 
Leucovorin

N/A Ongoing  

NCT01811992 2014–2020 I Newly diagnosed 
HGG

AdV HSV1-TK/ 
valACV

AdV-Flt3L Ongoing —

NCT02414165 2015–2019 II-III Recurrent HGG RRV yCD/5FC — — 50

NCT02192359 2016–2020 I Recurrent HGG HB1. 
F3.CD21. 
hCE1m6

hCE1m6/ 
irinotecan

— Ongoing —

NCT03596086 2017–2023 I-II Recurrent HGG AdV HSV1-TK/ 
valACV

RT+TMZ Ongoing —

NCT03603405 2018–2023 I-II Newly diagnosed 
HGG

AdV HSV1-TK/ 
valACV

RT+TMZ Ongoing —

NCT03576612 2018–2021 PI Newly diagnosed 
HGG

AdV HSV1-TK/ 
valACV

RT+ 
Nivolumab+TMZb

Ongoing —

NCT02598011 2016–2022 I Newly diagnosed 
HGG

RRV yCD/5FC RT+TMZ Planned —

Only the trials carried on/undertaken/planned since 2010 are mentioned here. See review from Kaufmann et al.36 where some of the trials before 
2010 are discussed.
aPrimary completion.
bTMZ allowed after prodrug administration.
cIntravenous administration.
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unrestricted transducing potential, LVs, in particular those 
pseudotyped with VSV-G, can also transduce normal 
post-mitotic brain cells, however, without toxicity even 
when using HSV-TK/GCV.55 On the contrary, normal brain 
cells expressing HSV-TK contribute in eliminating glioma 
cells through BE.49 LV-based SGT has not yet been tested 
in clinical trials; however, the various auspicious features 
observed in the most clinically relevant GBM models 
strongly warrant clinical investigation.

Cell-Based SGT

Apart from viral vectors, different types of cells are also 
used as vectors for SGT. Stem cells such as neural stem 
cells (NSCs) and mesenchymal stem cells (MSCs) are 
the major sources for this strategy. Recently, olfactory 
ensheathing cells have also been shown to be an ef-
ficient vector for SGT.50 In general, these cells show an 
intrinsic migratory capacity and exhibit exceptional tro-
pism toward pathological conditions including neoplastic 
lesions in the CNS.50,56 The tumor-tropic property of these 
cells has its origin in the bona fide regenerative and re-
parative roles in cellular homeostasis which also relates 
to the sensing of various pro-tumorigenic signals such as 
angiogenesis, hypoxia, inflammatory signals, etc..50,57–60 
Furthermore, these cells survive in vivo engraftment 
(even in an allogeneic situation) for a certain time period 
due to low or undetectable MHC expression56 and do not 
form neoplastic lesions indicating a high safety profile.56 
Cell-mediated tumor-killing activity solely depends on the 
BE and thus an SGT system with high bystander efficiency 
is a prerequisite.57,61 NSCs were the first type of cells used 
as a vector for SGT. The delivery potential of NSCs for 
SGT of glioma was first reported by using an immortal-
ized murine NSC line which was retrovirally transduced 
with bCD. The engrafted NSCs migrated in a glioma-
specific manner, both ipsilaterally and contralaterally, 
and were able to kill tumor cells upon 5FC administra-
tion.15 An important issue for clinical translation of NSC-
mediated SGT (or any cell-based system for that matter) is 
to choose between an autologous and allogeneic source. 
Ideally an autologous source of NSC will be preferen-
tial based on immune escape. Although NSCs normally 
show low levels of MHC expression, there exists an im-
munogenic potential62 that would eventually promote the 
clearing of allogeneic NSCs within week(s).56 This issue 
can be partially circumvented by using immunosuppres-
sive drugs; however, this may thwart anticancer immune 
responses and interfere with the overall treatment effi-
cacy. Furthermore, the use of autologous NSCs is asso-
ciated with several logistic shortcomings such as lack of 
adequate source as well as long-term culture for expan-
sion to large cell numbers for clinical application. Cellular 
reprogramming technologies such as induced pluripotent 
stem cells are currently being pursued to obtain sufficient 
cell numbers of autologous NSCs.63,64 In contrast, the 
use of allogeneic NSCs offers several advantages over 
autologous NSCs in terms of time, cost, scalability, and 
standardization procedures.57 To date, two different NSC-
mediated SGTs have been pursued in clinical studies and 
both are based on an immortalized allogeneic human NSC 

line known as HB1.F3.65,66 The first trial involved treatment 
with a bCD-modified HB1.F3 cell line in order to evaluate 
initial safety and feasibility.67 The NSCs were observed to 
migrate to distant tumor sites in the HGG patients and in-
itial safety was demonstrated. As a result, a phase I trial 
with 18 patients has been started which will be completed 
soon (Table 3). The second trial involves the HB1.F3 line 
expressing the suicide gene human carboxylesterase 
(hCE1m6) (Table 3).

MSCs68 possess an intrinsic migratory capacity to-
ward pathological lesions similar to NSCs and in this re-
gard no substantial differences have been found between 
these two cell types.69 In addition, MSCs can be derived 
from various tissues and organs such as bone marrow, 
adipose tissue, umbilical cord blood, and placenta68 of-
fering better accessibility for procurement compared 
to NSCs. Furthermore, MSCs can be easily expanded to 
high cell numbers for clinical application. Thus, the acces-
sibility and also scalability of MSCs can provide advan-
tages over NSCs for treatment application. The first SGT 
approach using MSCs for HGG treatment was reported 
by Miletic et al.70 in an orthotopic, syngeneic rat glioma 
model. The study showed a substantial treatment effect 
of intratumorally injected MSCs termed bone-marrow-
derived tumor-infiltrating cells expressing HSV-TK fol-
lowing prodrug treatment. The direct tumor cell killing 
by MSCs was mediated through BE, while an immune 
response with infiltration of T cells and NK cells was de-
tected in the treated tumors, which may have contributed 
to the treatment effect.70 Since then a number of preclin-
ical studies have been published.46,71 However, no clinical 
trial has been performed yet for HGG treatment.

Delivery of SGT Vectors

Delivery of gene therapeutic products into brain tumors is 
an important issue that is critically discussed in the field, 
however still lacks optimal solutions. Systemic delivery 
of viral vectors is feasible72 but challenging due to poten-
tial off-target transduction in non-CNS tissues and/or in-
sufficient bioavailability in the CNS. Intranasal delivery of 
cell-based vectors has also been pursued successfully in 
preclinical models.50,73 However, intracranial injection has 
been the most popular mode of administration and for the 
majority of SGT trials so far vectors have been injected di-
rectly into the resection cavity after surgery using multiple 
injections.6,31,51 This method of application is suboptimal 
as the tissue around the resection cavity is very heteroge-
neous containing either diffusely infiltrating tumor cells or 
reactive brain tissue. Thus, there is no control of how much 
tumor tissue is reached with this method, which might also 
partly explain the failure of clinical trials. There is a huge 
interpatient variation concerning injection efficacy and 
the amount of target tissue reached, which makes inter-
pretation of clinical trial data extremely difficult. CED is a 
sophisticated delivery method into solid tissue that has 
been developed in particular for the brain and also brain 
tumors.74 CED is applied through stereotactically placed 
catheters that are connected to a micropump maintaining 
a continuous low-pressure flow into the tissue. This 
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method has substantially increased the amount of tissue 
that can be targeted and thus is frequently used to inject 
vectors or drugs into the brain.74 Regarding the treatment 
of brain tumors, this method is optimized for application 
into solid tumor tissue, however not into a resection cavity 
after surgery. The problem that emerges from here is that 
primary tumors are usually treated by neurosurgery that is 
the standard of care. Thus, at this point, the only choice in 
order to implement CED into future clinical trials is to inject 
the vectors either into recurrent tumors or inoperable pri-
mary tumors.

Interaction of Glioma SGT With the 
Immune System and Combination With 
Immunotherapy

In general, potential antitumor immune responses medi-
ated by SGT can originate from its different modules such 
as the type of vector, the cell death mechanism following 
suicide activity, the type of prodrug, the immune microen-
vironment of the tumor, and any additional treatment reg-
imen. Different types of vector systems can have a variable 
impact on the immune system. While RRVs, LVs, and NSCs 
are not highly immunogenic in nature,16,55,57,58,75 AdVs 
are capable of eliciting an acute immune response in-
cluding secretion of several proinflammatory cytokines.18 
However, vector-induced immune responses can be a dou-
ble-edged sword with either limiting transgene delivery 
and thereby impeding treatment efficacy or in contrast 
potentially breaking the immune tolerance of the glioma 
microenvironment76 and thereby enhancing the treatment 
effect of SGT.

The mechanism of HSV-TK/prodrug-mediated cell death 
can be variable involving necrotic and immunogenic cell 
death (ICD) in melanoma cells, but apoptotic and non-ICD 
in colorectal cancer cells.77 Glioma cells also undergo 
HSV-TK/prodrug-mediated cell death via apoptosis.78,79 
The immunogenicity of apoptosis in general is contro-
versial and not yet fully explored, in particular not in the 
context of SGT. Considering the plastic nature of leuko-
cytes and their dichotomous role in antitumor IR,80,81 
more studies are warranted to unravel the exact nature of 
HSV-TK/GCV-mediated cell death from an immunogenic 
point of view.

AdV-HSV-TK SGT has been shown to cause infiltration 
of various immune cells including macrophages and T 
cells in both rodent models18,30 and clinical settings.19,82 
Still, in glioma, the antitumor IR elicited by AdV-HSV-TK/
GCV therapy is often not strong enough without addi-
tional immunostimulatory strategies.43 When boosted 
by the co-expression of Flt3L or treatment with check-
point inhibitors such as anti-PD1 antibodies, AdV-HSV-TK/
GCV elicits a more robust antitumor IR.43,44,83–85 The 
co-expression of Flt3L has been shown to recruit den-
dritic cells to the tumor microenvironment and thereby 
increase antigen presentation and subsequently T-cell in-
filtration and activation in glioma animal models.43,44,83 
This strategy is currently being investigated in phase  I 
clinical trial (Table 3).

Toca 511 has been shown to activate an antitumor im-
mune response in murine glioma cells where CD4+ T cells 
seemed to be crucial.16,86 While the precise nature of cell 
death due to yCD/5FC is not known, Toca 511 generated a 
strong antitumor immune response with an immunolog-
ical memory that rejected a subsequent xenograft of the 
same tumor.16 This immune response was shown to be as-
sociated with reduced myeloid-derived suppressor cells 
and regulatory T cells in the tumor microenvironment.16,86 
By conducting the adoptive transfer of splenocytes from 
cured mice, Mitchell et  al.86 demonstrated that a T-cell-
mediated antitumor immunity can be transferred to 
the host.

To conclude, a number of studies indicate that SGT can 
elicit an antitumor immune response (Figure  2B). While 
some of the underlying mechanisms of this causality 
have been identified, there remain several open questions 
highlighting the need for more fundamental research. 
Disappointing results of the clinical trials with AdV-HSV-TK/
GCV31 and RRV-yCD/5FC53 further highlight the gravity of 
these issues.

Future Perspectives

Over the last decade(s), new developments in SGT have 
emerged, in particular new vectors and suicide genes with 
improved affinity to prodrugs (Figure 3). There are, how-
ever, some important issues that should be considered for 
further improvement of SGTs, which is urgently needed 
as larger phase III clinical trials have failed so far. For in-
stance, the preclinical model systems should be revisited. 
The serum-culture-based patient-derived-xenografts that 
have been used so far to develop various SGTs, namely, 
AdVs and RRVs, neither share the genetics nor the invasive 
features of human gliomas in patients.87 Another crucial 
difference is the proliferative index. U87, one of the most 
popular serum-culture-based glioma cell lines, shows an 
extreme in vivo proliferative index of up to 80%.88 In con-
trast, the median proliferative index of human glioblas-
toma in patients is about 27%.89 Thus, quiescent glioma 
cells, which often have been associated with a stem cell 
and resistant phenotype, pose an enormous challenge to 
γ-RV-based SGTs which only transduce actively dividing 
cells. The RRVs have not been tested either in patient-
derived primary spheroid models87,90 or glioma stem cell 
lines (GSCs) which contain such quiescent cells and are 
considered as the new standard for preclinical studies 
in gliomas.87,91 Another important issue is the delivery of 
the vectors as discussed above. CED could overcome the 
poor distribution of viral vectors; however, the presence of 
a solid tumor mass instead of a resection cavity is clearly 
preferred. Preclinical studies should be performed to test 
this hypothesis.

The immunosuppressive glioma microenvironment 
represents another clinical challenge. Although there are 
indications that the SGT-induced cell death is immuno-
genic, this has not been tested in detail, especially not in 
gliomas. Here, a lot can be learned from oncolytic viruses 
where an antitumor immune response is promoted by 
the vectors’ ability to induce ICD through oncolysis and 
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thereby recruit an efficient antitumor IR.92,93 ICD might 
thus be a compulsory prerequisite for the engagement 
of an effective antitumor IR. More fundamental research 
is needed to identify the intrinsic nature of cell death, 
namely, immunogenic or immunosuppressive by the SGT 
systems in GSCs. If one SGT system fails to elicit strong 
ICD in GSCs (or in primary glioma cells), novel strategies 
or combinations could be designed to reroute the cell 
death mechanism. Unfortunately, the syngeneic animal 
models for glioma available today remain a serious draw-
back in this regard, because the immune microenviron-
ment in these models differs substantially in composition 
from the one observed in HGG patients. The use of GSCs 
in humanized rodent models in this context may create 
valuable new information. Thus, a number of different 
preclinical models should be adopted to further develop 
SGT in the future and to achieve a better clinical transla-
tion procedure (Figure 4).

Combinatorial approaches using SGT with 
co-expression of immune-stimulating cytokines have 
been performed; however, these approaches might be 
too unspecific and are mostly directed toward T cells. Yet, 
T cell infiltration is scarce in glioblastoma, where immu-
nosuppressive microglia and macrophages predominate. 
To improve future SGT approaches, the changes in the 
immune microenvironment under SGT should be ana-
lyzed more thoroughly. Based on this knowledge, specific 
shortcomings in the antitumor immune response during 
SGT could be detected and more targeted approaches 
could be developed.
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