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Experiment is the interpreter of nature. Experiments never deceive. It is our judgment 

which sometimes deceives itself because it expects results which experiment refuses. 

 
Leonardo Da Vinci, 15th century 

 
 
 
 
La lumière joue dans notre vie un rôle essentiel: elle intervient dans la plupart de nos 

activités. Les Grecs de l'Antiquité le savaient déjà, eux qui pour dire «mourir» 

disaient «perdre la lumière». 

 
Louis de Broglie, 1941 
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Abstract 

Background: Molecular imaging (MI) is fundamental in clinical settings for 

diagnosis, treatment selection, intraoperative guidance and treatment efficacy 

evaluation. This field has progressed rapidly in recent years, driven by the need for 

diagnostic tools and as a tool to monitor the efficacy of new cancer treatments, 

including gene-based therapies. MI in combination with reporter genes allows in vivo 

monitoring of enzyme expression and follow-up of the success of gene-directed 

enzyme prodrug therapies (GDEPT), where the suicide gene also acts as reporter 

gene. In this thesis, nitroreductase NfsB (NTR) from E. coli has been concurrently 

employed as a reporter gene (Papers I and III) and suicide gene (Paper III). The 

work of this thesis has also focused on the contrast agents of two main MI 

methodologies, namely optical imaging (mainly fluorescence imaging (FLI) for 

longitudinal imaging (Papers I – III) and fluorescence image-guided surgery (FIGS) 

(Paper II)) and nuclear-based PET/CT imaging (Paper III). 

Aims: To highlight and resolve the discrepancies present in the literature in regard to 

the near-infrared (NIR) dye CytoCy5S. For this purpose, four NIR dyes were 

synthesised and analysed. Based on their physicochemical and optical properties and 

their in vivo behaviour, we aimed to define the best candidate for preclinical optical 

imaging of NTR (Paper I). To compare how common NIR dyes affect the in vivo 

behaviour of conjugates and to identify the optimal dye that could be used to improve 

the further development of fluorescent conjugates for FIGS (Paper II). To repurpose 

the hypoxia radiopharmaceutical 18F-FMISO for PET/CT imaging of NTR expression 

in an in vivo GDEPT setting (Paper III). 

Materials and methods: We synthesised, purified and characterised four NTR 

substrates (1 – 4), including alternately described structures currently referred by the 

name CytoCy5S. A comparative NTR enzymatic assay was performed to assess the 

spectroscopic characteristics of the different reductively activated dyes. The NTR 

expressing triple-negative breast carcinoma cell line, MDA-MB-231 NTR+, was 
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employed to compare, both in vitro and in vivo, the suitability of these fluorophores 

as reporters of NTR activity. Comparison of the reporting properties was achieved by 

flow cytometry, fluorescence microscopy and optical imaging, both in vivo and ex 

vivo (Paper I). The NHS esters of ZW800-1, ZW800-1 Forte, IRDye® 800CW, ICG, 

and Cy7 derivative were conjugated to folate through an ethylenediamine linker to 

give conjugates 1 – 5, respectively. The optical properties of conjugates 1 – 5 were 

determined by spectroscopy, their specificity assessed in vitro by flow cytometry and 

FLI, and their biodistribution studied in vivo and ex vivo using FLI in a subcutaneous 

Skov-3 ovarian cancer model (Paper II). The efficacy of 18F-FMISO to report NfsB 

NTR activity in vivo was investigated using the MDA-MB-231 model. For validation, 

subcutaneous xenografts of cells constitutively expressing NTR were imaged using 
18F-FMISO PET/CT and FLI with CytoCy5S. Further, examination of the non-

invasive functionality of 18F-FMISO PET/CT in reporting NfsB NTR activity in vivo 

was assessed in metastatic orthotopic NfsB NTR expressing xenografts and 

metastasis confirmed by bioluminescence imaging. 18F-FMISO biodistribution was 

acquired ex vivo by an automatic gamma counter measuring radiotracer retention to 

confirm in vivo results. To assess the functional imaging of NTR-based GDEPT with 
18F-FMISO, PET/CT was performed to assess both gene transduction and 

cytotoxicity effects of prodrug therapy (CB1954) in subcutaneous models (Paper 

III). 

Results: The introduction of the methoxy group in 3 and the sulfonate and cyanine 

scaffold in 4 resulted in a modest bathochromic shift compared to 1 and 2. All 

compounds were confirmed as NTR substrates with delayed kinetics observed for 2 

and low emission intensities for 3 and 4. In vitro, 3 was found to display the highest 

NTR+/NTR- ratio, followed by 1. 4 performed poorly in vitro and in vivo. 1 and 2 

provided similar suitability for NTR interrogation, being 1 slightly more sensitive at 

smaller tumour volumes and presenting faster kinetics and a functional group for 

conjugation to biomolecules. We determined that substrate 1 is the ideal candidate for 

further studies (Paper I). We demonstrated time- and receptor-dependent binding of 

folate conjugates in vitro and in vivo. Healthy tissue clearance characteristics and 
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tumour-specific signal varied between conjugates 1 - 5. 2 revealed the highest 

contrast in folate receptor alpha (FRα) positive xenografts and was the only conjugate 

that reported significant differences between Skov-3 and A549 (p < 0.05). Whilst 

conjugates 1, 2 and 3 are renally cleared, hepatobiliary excretion and no or very low 

accumulation in tumours was observed for 4 and 5 (Paper II). 18F-FMISO retention 

was detected in NTR+ subcutaneous xenografts, displaying significantly higher PET 

contrast than NTR- xenografts (p < 0.0001). Substantial 18F-FMISO retention was 

evident in metastases of orthotopic xenografts (p < 0.05). Accordingly, higher 18F-

FMISO biodistribution was prevalent ex vivo in NTR+ xenografts. 18F-FMISO NfsB 

NTR PET/CT imaging proved useful for monitoring in vivo NTR transduction and 

the cytotoxic effect of prodrug therapy (Paper III). 

Conclusions: We have fully characterised the chemical and biological properties of 

four NIR dyes and clearly defined which is the best for imaging of NTR (Paper I). 

Our work highlights the high impact the physicochemical properties of the dye have 

on the tumour accumulation and biodistribution of the conjugate and demonstrates 

the potential of alternative fluorophores to IRDye® 800CW for targeted approaches in 

FIGS (Paper II). We have demonstrated that 18F-FMISO is a readily implementable 

PET probe to be employed as companion diagnostic test for NTR-based GDEPT 

systems (Paper III). 
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1. Introduction 

1.1 Cancer 

Cancer is characterised by the rapid increase of abnormal cells that grow 

uncontrolled, followed by invasion of adjacent tissues, entry into the blood stream 

migrating to other organs, and infiltration in a process known as metastasis [1]. It 

defines a range of diseases with high heterogeneity and challenging prognosis based 

on its molecular phenotype, location or stage 

of disease. Cancer requires accumulation of 

several mutations in different genes to pass 

from a normal cell to a malignant one and this 

occurs in a multistep process (tumour 

progression) (Figure 1) [2]. Mutations in two 

main types of genes are believed responsible 

in the early stages of cancer initiation in 

healthy cells, i.e. activation of oncogenes or 

loss of tumour suppressor genes. 

The different biological capabilities acquired by the cells during clonal evolution 

allow them to become malignant and conform the hallmarks of cancer [3] (Figure 2). 

They include biological capabilities such as sustained proliferative signalling, 

replicative immortality or induced angiogenesis; and enabling characteristics such as 

genomic instability or inflammation. The exploitation of these cellular traits can be 

applied to select appropriate treatment strategies (examples included in Figure 2), as 

well as to develop novel molecular probes for imaging modalities suitable for disease 

monitoring [4, 5]. 

Figure 1: Schematic representation 
of tumour progression and clonal 
evolution of tumours. [2] 
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According to the WHO, more than 70% of the deaths caused by cancer are reported 

in low- to middle-income countries, where the resources in place for prevention, 

diagnosis or treatment are limited [6]. Early detection, either by early diagnosis of 

symptomatic patients at early stages of the disease or by mass screening of an 

asymptomatic population (for breast, cervical and colorectal cancers), plays a key 

role in disease control [7]. One of the most successful examples of screening 

methods, and one of the few imaging-based, has 

been the use of mammography for breast cancer 

[8]. This X-ray picture of the breast permits the 

detection of cancerous lesions in asymptomatic 

women prior to the development of metastatic 

disease. Accordingly, breast cancer is more 

often successfully treated in early stages 

resulting in a pronounced decrease in mortality 

in the last decades (Figure 3) [9]. 

In general, conventional imaging, including mammography screening [10], has 

limitations, such as false-positive or false-negative results due to insufficient 

Figure 3: Breast cancer mortality 
statistics over 20 years from 
Norway, Spain and USA. [9] 

Figure 2: Therapeutic targeting of the hallmarks of cancer. 
Reproduced from [3] with permission from Elsevier. 
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specificity and sensitivity, respectively, which molecular imaging (MI) aims to 

overcome [11]. A recently published multicenter study investigated the use of a novel 

imaging strategy. This method combined prostate specific membrane antigen 

(PSMA) and positron emission tomography/computed tomography (PET/CT) and has 

been shown to be superior to CT and bone scanning, supporting the claim of being “a 

suitable replacement for conventional imaging” [12]. This supports a paradigm shift 

from conventional imaging (structure) towards MI (function). 

 

1.2 Molecular imaging of cancer 

Cancer therapies have progressed rapidly in recent decades [13], moving from 

chemotherapies to personalised therapies using cancer-specific targeted approaches 

[14] (e.g. with prognosis (HER-2) and prediction (KRAS) biomarkers). In addition, 

immune cell therapies are used to boost the patient's tumour-supressing immune 

responses [15] (e.g. with CAR T-cells or immune checkpoint inhibitors). These 

personalised strategies targeting specific molecular traits have led to reduced toxicity 

and increased efficacy, and their development requires the employment of MI to 

clinically monitor efficacy. Moreover, the emergence of drug resistance requires 

continuous therapeutic development in relevant preclinical models, where MI is a 

prerequisite. This remains key to advancing the most promising therapies into clinical 

trials, while reducing the bench-to-bed time required [16, 17]. 

MI allows the study of gene and protein function, as well as molecular processes 

preclinically in small animals or clinically in humans [18]. Therefore, MI in cancer 

has gained traction in the last 25 years, with more than 6000 works published on the 

subject in the last five years [19]. This highly multidisciplinary strategy begins with 

the identification of a molecular target. Once the relevant target has been validated, 

the proof-of-principle testing phase follows, which includes synthetic chemistry, cell 

biology and imaging technology. If the preclinical results obtained are favourable, 

further translational phases with clear endpoints will be implemented to ultimately 

develop the imaging strategy for clinical use (Figure 4). This lengthy research process 
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is a challenge that must be addressed by an interdisciplinary team of chemists, 

biologists, physicists, physicians, pharmacists and imaging specialists [20]. 

 
 

Figure 4: Schematic overview of the main steps of a molecular imaging study. 
From conceptualisation identifying a molecular target to the clinical evaluation of 
the imaging methodology. Adapted from [18, 21]  

MI can be divided in two main groups: nuclear imaging (pink in Table 1) and non-

radionuclide-based imaging (blue in Table 1). Nuclear imaging requires the use of 

radionuclides that decay via the emission of two collinear gamma rays (positron 

emission tomography, PET) or of a single gamma ray (single-photon emission 

computed tomography, SPECT). These rays are captured by detector rings (PET) or 

by a gamma camera that rotates around the imaged subject (SPECT) creating a 

tomographic reconstruction. Optical imaging comprises a variety of techniques 

including fluorescence imaging (FLI) and bioluminescence imaging (BLI). They 

allow non-invasive monitoring of biological processes by detection of light and will 

be described in detail below. Magnetic resonance imaging (MRI) is an 

anatomical/morphological methodology that employs an external magnetic field to 



 21 

obtain images based on the different relaxation times of magnetic particles from 

certain atomic nuclei like 1H in different tissues. Computed tomography (CT) is a 

tomographic technique that relies on the attenuation of X-rays when travelling 

through tissues providing 3D anatomic images. CT is often combined with functional 

techniques such as PET or SPECT. Ultrasound (US) relies on the propagation of 

sound waves from a transducer through tissue. Interaction of these waves with the 

tissues, that present different elastic properties, reflect the waves (echo) non-

uniformly and energy is detected by the transmitting transducer, reporting structural 

or functional information. 

All the aforementioned imaging modalities differ in key features such as depth 

penetration, spatial and time resolution and type of probes employed. Other factors 

such as the target organ or cells, its use in either human or animal models, together 

with the availability of the necessary probes, determine which technique is best for a 

specific purpose [22]. Each of these techniques shows weaknesses, such as use of 

radiation or low penetration, and strengths such as being non-invasive or high spatial 

resolution. The synergistic integration of several techniques is a favourable strategy 

to overcome drawbacks of the individual techniques [23]. The different 

characteristics of the methodologies comprised within each group are briefly 

described in Table 1 [18, 21, 22]. In clinical practice, molecular imaging techniques 

that provide information about function are combined with anatomical modalities that 

provide structure information. Some common examples are PET/CT and PET/MRI, 

which improve the image visualisation and thereby aid surgeons in locating diseased 

tissue and vital structures preoperatively. 
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1.2.1 Optical imaging 
The use of light to visualise cells and tissues is a simple method that has been widely 

employed in preclinical and clinical settings since the invention of the microscope in 

1674 [21]. The introduction of live cell fluorescence microscopy has permitted the 

evaluation of molecular events in real time using fluorophores. Further development 

of macroscopic imaging techniques allowed whole-body interrogation of molecular 

events in living small animals and patients. A number of different macroscopic 

optical imaging techniques [24] are available, including endoscopy [25, 26], optical 

coherence tomography (OCT) [27, 28], super-resolution intravital microscopy [28, 

29], photoacoustic imaging [30, 31] or Raman spectroscopy [32, 33]. All these 

techniques present distinct advantages and are at different stages of technology 

readiness and clinical acceptance and they are further discussed elsewhere [21]. The 

main focus of this thesis is in reflectance FLI and to a minor extent BLI, techniques 

that are described in detail below.  

FLI requires an external energy source, i.e. light, to obtain information from cells and 

tissues. Light with an appropriate wavelength excites either an endogenous or an 

exogenous fluorophore that upon relaxation will emit light with lower energy than 

that absorbed. In the case of bioluminescence imaging, an enzymatic reaction causes 

the spontaneous emission of photons and therefore the presence of an external 

excitation source is not needed.  

FLI systems, including fluorescence image-guided surgery (FIGS) systems, are 

composed of an excitation light source, a detection system, excitation and emission 

filters and imaging software. Based on the position of the light source and the 

detector, epi-illumination or trans-illumination techniques are distinguished. In epi-

illumination, the light source and the detector are placed on the same side and the 

light is reflected (Figure 5). For trans-illumination, the light source and detector are 

on opposite sides and the light is transmitted through the imaged subject (Figure 5A). 

This distinct configuration of the FLI system confers different advantages, such as 

rapid imaging times in the case of epi-illumination or increased sensitivity due to the 

attenuation of tissue autofluorescence in the case of trans-illumination [34]. For BLI, 
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the same instruments are employed, but only the detection system and the imaging 

software come into play (Figure 5B).  

 

Figure 5: Schematic overview of the instrumentation employed in fluorescence 
imaging (FLI), depicting the differences between A) epi-illumination and trans-
illumination, and B) in bioluminescence imaging (BLI). C) Fluorescence planar 
image of a subcutaneous xenograft obtained with epi-illumination and 
bioluminescence planar image of an orthotopic xenograft (Image courtesy of Katrin 
Kleinmanns).  

The excitation source can be a laser at a given wavelength or a white-light source 

with low-pass filters. Excitation and emission filters maximise the detected signal by 

blocking the photons at undesired wavelengths. This maximised signal is detected by 

a photomultiplier tube detector (PMT) or by a charged-coupled device (CCD) 

camera. CCD cameras, particularly cooled back-tinned and back-illuminated CCD, 

are preferred over PMTs since they are more sensitive and provide better resolution. 

For BLI, the use of emission filters is not required and all the photons emitted by the 

sample under study are collected. The acquired photons are then converted into 

electric charges proportional to the light intensity that are further amplified and 

digitised by means of the imaging software. This results in a planar (Figure 5C) 

image that allows localisation of the fluorophore under study and hence evaluation of 

the physiological process of interest [35-37]. This final image shows the number of 

photons per region in the animal under study and this fluorescent/bioluminescent 

signal is often reported as average radiance (p/s/cm2/sr). 
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1.2.2 Positron Emission Tomography (PET) 
PET is a functional imaging modality that allows preclinical and clinical evaluation 

of metabolic or biologic function by radiotracer uptake. It is commonly combined 

with X-ray CT for structural localisation. Clinically, it is a very relevant modality that 

allows investigation of cancer during the different stages of the disease from 

diagnosis to treatment efficacy assessment [38].  

Radiotracers are composed of a radionuclide, an organic targeting ligand and, in 

many cases, a linker between these. Radionuclides are the unstable isotopes of a 

given atom and they emit radiation while decaying towards more stable nuclear 

configurations. One of the most widely employed radionuclides is 18F, which is 

present in the glucose analogue 18F-fluorodeoxyglucose (18F-FDG). Different 

synthetic methods are known to obtain 18F [39], but the most commonly employed 

method is the proton bombardment of 18O-enriched water in a cyclotron, 18O(p,n)18F 

[40]. 18F exhibits an excess of protons, and neutron deficiency, and its decay results in 

positron (β+) emission accompanied by a neutrino (Figure 6) [41]. One of the 

advantages of 18F over other positron emitters, such as 15O, 13N or 11C, is its low 

positron energy (0.635 MeV), which translates into shorter diffusion ranges within 

tissues and hence higher resolution [42].  

 

Figure 6: The principles of PET. The positron (β+) is emitted and it travels a short 
distance before interacting with an electron (β-) and undergoing annihilation. The 
two gamma photons (511 keV and 180°) are simultaneously detected by detector 
rings (coincidence). Reconstruction of registered events gives a PET/CT 3D image 
that can be overlaid with a CT image (image from a subcutaneous xenograft).  

As illustrated in Figure 6, the emitted positron travels briefly through tissue until it 

loses its kinetic energy. It then reacts with an electron (β-) in an annihilation process 
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that produces two 511 keV gamma photons with opposed directions of around 180°. 

These photon pairs, when detected simultaneously in a coincidence event by the 

detector rings that are formed of scintillation crystals coupled to PMTs, provide the 

localisation of the annihilation process. The many annihilation processes registered 

by the detectors are reconstructed to give accurate 3D images of the radiotracer 

biodistribution in the tissue under study [41, 42]. The radiotracer activity 

(disintegrations per second) is most commonly reported as Standard Uptake Value 

per body weight (SUVbw) and it comprises the activity concentration of the 

radionuclide (kBq/mL), the total dosage of injected radiotracer (MBq) and the body 

weight of the study subject [43]. 

 

1.3 Reporter genes 

MI techniques based on indirect imaging strategies require the genetic insertion of a 

reporter gene that encodes for a certain protein that can be visualised employing MI. 

This genetic insertion, or cell transduction, is commonly performed, both in vitro and 

in vivo, using viral vectors. Non-replicating adenoviruses are widely employed, but 

dilution of the expressed gene through division and proliferation limits their potential. 

Retroviruses target only actively dividing cells and DNA methylation leads to 

undesired gene silencing. Thus, lentiviruses, a class of retroviruses, which target 

replicating cells and cells in the stationary phase, integrating the exogenous gene in 

the host cells with low cytotoxicity and exhibiting no gene silencing are preferred 

[44].  

When the reporter gene is a fluorescent protein, FLI can be employed for 

visualisation. In other instances, exogenous reporter probes (e.g fluorophore or 

radiotracer) are necessary to image the reporter gene [45, 46]. In these cases, reporter 

genes allow retention and accumulation of the reporter probe thereby permitting 

detection of the signal by different imaging techniques (e.g. FLI or PET) [45]. The 

reporter genes used in imaging express a wide variety of proteins, such as membrane 
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transporters (e.g. sodium iodide symporter, NIS [47]), intra- and extra-cellular 

receptors (e.g. human estrogen receptor ligand, hERL [48] and dopamine 2 receptor, 

D2R [49]) or enzymes (e.g. thymidine kinase, HSV1-TK [50] and β-lactamase [51]). 

Some of the most commonly used reporter genes are luciferase and green fluorescent 

protein (GFP), which have been used together with the nitroreductase (NTR) in this 

project, and are further described (see section 1.7).  

1.3.1 Luciferase and bioluminescence imaging (BLI) 
Luciferase proteins have been isolated from different terrestrial organisms, such as 

the firefly Photinus pyralis (FLuc) and from marine species, such as the sea pansy 

Renilla reniformis (hRLuc). These enzymes can be divided into two main groups 

based on the substrate preference, benzothiazoyl-thiazole luciferin (FLuc) or 

benzylimidazo-pyrazinone coelenterazine (hRLuc) (Figure 7) [52]. 

 

Figure 7: Substrates of luciferase and organisms from which the enzymes were 
isolated. D-Luciferin is the substrate of Fluc from Photinus pyralis (left) and 
Coelenterazine is the substrate of hRLuc from Renilla reniformis (right).  

BLI of molecular and cellular processes is routinely employed in different biomedical 

fields [53] and is a reporter-based technique that requires the combination of an 

enzyme, luciferase, and its corresponding substrate, luciferin. FLuc catalyzes the 

oxidation of D-luciferin to oxyluciferin in the presence of O2, Mg2+ and ATP (Figure 

8). Unlike FLuc, coelenterazine-oxidasing enzymes (hRLuc) do not require ATP to 

convert coelenterazine into its corresponding coelenteramide, CO2 and light. 
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Figure 8: The enzymatic oxidation of luciferin to produce light in the presence of 
different cofactors. 

This biochemical reaction produces spontaneous emission of visible light when the 

electrons of the oxidised molecule, which are in an electronically excited state, return 

to the ground state (S1 Æ S0). The emitted photons are captured by the CCD camera 

and converted into electronic signals that are processed to provide planar real-time 

images within short data acquisition times [18, 52].  

BLI does not require an excitation source, thus avoiding photon attenuation, scatter 

and diffusion of light when passing through the different tissues. It is a very sensitive 

technique due to the lack of enzyme expression in animal tissues, and hence signal, 

from healthy surrounding tissues, providing high signal to background ratios (SBR). 

One of the major limitations is the requirement of cell engineering by means of viral 

transduction to achieve luciferase expression. This has hampered its clinical 

translation but it remains a key tool in preclinical oncological models for visualisation 

of cancer cells. 

1.3.2 Green fluorescence protein (GFP)  
GFP, a visible light-emitting fluorophore isolated from the bioluminescent jellyfish 

Aequorea victoria (Figure 9), is one of the most widely employed reporter genes. Its 

discovery and development awarded three scientists with the Nobel Prize in 

Chemistry in 2008.  
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Figure 9: Aequorea victoria and schematic representation of the β-barrel structure 
of EGFP and its covalently bound chromophore. Representation of the alternative 
colours obtained by modification of the chromophore. [54-57] 

The chromophore of this protein is located inside a β-barrel structure in the protein 

and it is formed by three amino acid residues (Ser 65, Tyr 66 and Gly 67) that 

spontaneously cyclise to form a highly conjugated imidazolidinone ring (Figure 9) 

[54, 55]. Genetic modifications of this chromophore, e.g. substitution of Ser 65 by 

Thr 65, have provided fluorescent proteins with higher photostability, longer 

emission and absorption wavelengths, generating a whole palette of alternative 

colours, e.g. enhanced green fluorescent protein (EGFP; λexc = 490 nm λem = 510 nm), 

blue-shifted (EBFP; λexc = 382 nm λem = 448 nm), cyan-shifted (ECFP; λexc = 439 nm 

λem = 476 nm) or yellow-shifted variants (EYFP; λexc = 514 nm λem = 527 nm) [54-

57]. Moreover, problems such as low fluorescence or slow maturation (fluorophore 

formation) have been overcome [18]. These fluorescent proteins have allowed 

monitoring of gene expression or tumour growth in vivo [58, 59].  

1.3.3 Nitroreductase (NTR)  
The nitroreductase superfamily, with its diverse enzymatic functionalities that 

contains over 20,000 different sequences [60], receives its name from the discovery 

of the killing potency of some nitroaromatic compounds towards bacteria. This 

observation, which led to the development of nitrofurazone [61], was followed by the 

discovery of nitrofurazone sensitivity genes (NfsA and NfsB) in Escherichia coli [62].  

The NfsB gene encodes for the NTR enzyme that is formed by two identical subunits 

(homodimeric, 48 kDa) that catalyses the reduction of nitro-containing compounds in 

the presence of bound flavin mononucleotide (FMN) cofactor and NADH or NADPH 
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as electron donors [63-65]. This catalytic reaction, in which a nitro group (R-NO2) is 

reduced to the hydroxylamine group (R-NHOH) via the nitroso form (R-NO), 

requires two electron (e-) transfers (Figure 10) [66].  

 

Figure 10: The catalytic mechanisms of type I and II nitroreductases under 
different oxygenation conditions. 

The reduction of the substrate follows a ping-pong Bi-Bi mechanism and in this type 

of non-sequential mechanism, the enzyme, like a ping-pong ball, bounces from the 

initial state to an intermediate state and back to the initial state. In the intermediate 

state, reduction by NADPH of FMN in a two e- transfer to FMNH2 leads to a small 

conformational change in the pyrazine ring. The oxidised species, NADP+, leaves the 

binding pocket and the second substrate, in this case a nitro-containing compound, 

binds close to FMNH2. The R-NO2 group is reduced to R-NHOH thereby oxidising 

reduced FMNH2 to its initial state (FMN) in a two e- transfer [63].  

NTR belongs to the Type I or oxygen-insensitive nitroreductases (Figure 10) that are 

able to reduce their substrates in both the presence and absence of oxygen due to the 

simultaneous transfer of the two electrons. Type II or oxygen-sensitive 

nitroreductases, on the other hand, are only able to reduce their substrates in the 

absence of oxygen. The reduction occurs by two consecutive transfers of one e-, 

producing an unstable radical intermediate that oxidises in the presence of oxygen 

(Figure 10) [66, 67]. This type of nitroreductases are found in hypoxia, and are the 

basis of PET/CT or FLI imaging of this condition both pre- and clinically [68, 69]. 

NfsB NTR has been widely used as suicide gene for gene enzyme prodrug therapy 
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(GDEPT) by exploiting the capacity of this enzyme to reductively activate nitro-

containing prodrugs to their cytotoxic metabolites in the presence of oxygen [70, 71]. 

Some examples of commonly employed prodrugs in the setting of NTR-based 

GDEPT are the azidirinyldinitrobenzamide CB1954 and the dinitrobenzamide 

mustard SN23862, whose hydroxylamine products get acetylated causing DNA cross-

linking and hence cell death [72, 73]. In addition, the imaging possibilities offered by 

NTR as reporter gene have been explored in a wide variety of studies. Our group 

demonstrated the promising potential of CytoCy5S, a near-infrared quenched 

fluorophore substrate of NTR, for non-invasive in vivo near-infrared (NIR) reporter 

gene imaging in preclinical metastatic cancers [71]. 

1.3.4 Fluorescence imaging (FLI) of GFP or NTR substrates 
The first written evidence of the phenomenon of fluorescence corresponds to a 

Spanish physician in 1565. Nicolás Monardes reported (in Joyful News out of the New 

Found World) the peculiar blue colour of an infusion of a wood called Lignum 

nephriticum used by the Aztecs to treat kidney and urine diseases [74]. The molecule 

responsible for this case of luminescence, the product of a chain of spontaneous 

oxidations of a flavonoid, was recently identified [75] (Figure 11). 

 

Figure 11: Schematic of the sequential reaction from Coatline B to Matlaline, the 
fluorophore responsible for the blue tinge of Lignum nephriticum [75] 

FLI of biological molecular processes is also broadly employed in different 

biomedical fields, both preclinically and clinically [76]. It requires a fluorophore (e.g. 

a fluorescent protein or an exogenous fluorescent contrast agent) and an external 

excitation source. The fluorophore absorbs photons that bring the molecule to a 

higher singlet electronic state (S1). There it resides for a certain time (ps – ns) before 
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it returns to the fundamental electronic state (S0) with the release of photons and the 

retention of the state multiplicity (Figure 12). This spontaneous emission of radiation 

(fluorescence) occurs at lower energies and higher wavelengths than the absorption, 

and the difference in wavelength between absorption and emission is known as the 

Stokes shift of the probe (Figure 12). The energy loss is caused by vibrational 

relaxation during the residency of the molecule in the excited state. High Stokes shifts 

are desirable to avoid excitation photons contributing to the fluorescent image. Non-

radiative decays from excited electronic states such as S2 Æ S1 or S1 Æ S0 with the 

same spin multiplicity are also possible and are known as internal conversion (IC). 

Additionally, forbidden transitions to the T1 triplet state by inter-system crossing 

(ISC), followed by relaxation to the electronic ground state, result in emission of 

photons in a process known as phosphorescence. Compared to fluorescence, 

phosphorescence is a very slow process due to the fact that the transition T1 Æ S0 is 

forbidden [74].  

 

Figure 12: Perrin-Jablonski diagram depicting absorption, fluorescence and 
phosphorescence processes and their corresponding characteristic times. Straight 
arrows represent radiative processes while wavy arrows correspond to non-
radiative processes, such as internal conversion (IC) or intersystem crossing (ISC). 
Graphical illustration of the Stokes shift, gap between the maximum of the first 
absorption band and the maximum of the fluorescence spectrum expressed in 
wavenumbers. [74] 

FLI is an inexpensive imaging modality that allows non-invasive and repetitive 

imaging of different pathologies in small animals. Due to its low cost it is a key tool 

in the preclinical development of new drugs, since it allows full evaluation of drug 

efficacy in biological systems before moving them into lengthy and more expensive 



 33 

clinical phases. Another advantage is that FLI allows multiplexed imaging [71, 77, 

78]. However, the limited depth of penetration of light (< 1 cm) has hampered its use 

in humans. In addition, autofluorescence, scattering and tissue absorption of light 

diminish the sensitivity of this technique. By taking advantage of fluorophores with 

spectral properties in the NIR region, some of these issues can be circumvented.  

 

1.4 Organic fluorophores for Fluorescence imaging 

To date, the different fluorophores available for in vivo imaging can be divided into 

two groups based on their chemical nature: organic compounds or inorganic 

nanomaterials. The first group (see Figure 13) includes heterocyclic compounds like 

coumarins (D), xanthene dyes (E&F), pyrromethene derivatives (G), cyanines (H&I), 

quinone-imine dyes (J) and fluorescent proteins. The second group is formed by 

nanoparticles (NPs) including semiconductor nanocrystals like quantum dots (QDs) 

[79, 80] or lanthanide-based NPs [81, 82] and by carbon nanostructures like single-

walled carbon nanotubes (SWNTs) [83, 84]. This last group exhibits desirable 

properties such as strong absorption, stability and tunable optical properties, but due 

to their inherent inorganic properties and their safety profile, fluorescent proteins and 

organic dyes are preferred for biomedical imaging applications.  
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Figure 13: General structures of common fluorophores and fluorescent scaffolds 
with emission in the UV, visible and NIR regions. A: N-Carbazole; B: 
Naphthalimide; C: Styryl; D: Coumarin; E: FITC; F: Fluorescein; G: BODIPY; H: 
ICG; I: Cy5; J: MB. [74, 85] 

The chemical structure and the nature of the different organic fluorophores dictate the 

fluorescence properties of these compounds. In figure 13, the chemical structures of 

some representative organic fluorophores and fluorescent scaffolds are shown. As 

observed for the cyanine derivatives (H and I), an increase in the length of the π-

system (conjugation) is translated into a red-shifted emission wavelength, 

bathochromic shift [86]. In addition, introduction of substituents onto the core 

scaffolds of fluorescent probes, such as coumarin or BODIPY (D and G, 

respectively), with either electron-donating or electron-withdrawing groups, will have 

an effect on their physicochemical and optical properties. These derivatisations can 

also be exploited to enhance the affinity of the fluorophores towards a given 

molecular target [87]. 

The ideal fluorophore for biomedical imaging must meet certain minimum 

requirements, such as high brightness, photochemical stability, long Stokes shift, 

aqueous solubility and low toxicity [87, 88]. The brightness of the fluorophore is 

determined by the molar absorption coefficient (ε, or extinction coefficient) and by 
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the quantum yield (ϕF) of the compound [74]. The ε indicates the ability of a 

molecule to absorb light of a given wavelength (λE), with high values indicating 

probable electronic transitions. The ϕF expresses the ratio between the number of 

emitted photons during relaxation and the number of absorbed photons, and the larger 

the value the easier it is to observe the fluorophore. Hence, the product of these two 

terms, ε(λE) x ϕF, determines the brightness of a given fluorophore. Excitation and 

emission spectra are also characteristic properties of each fluorophore. The excitation 

spectrum represents the fluorescence intensity at different wavelengths and the 

emission spectrum represents the distribution of the probability of S1 Æ S0 electronic 

transitions during relaxation [74]. Fluorophores with spectral properties (λex and λem) 

in the NIR region (650 – 900 nm) are of great interest due to their promising 

properties for biomedical imaging [89, 90] (see section 1.4.1). 

1.4.1 Near-infrared Fluorescent (NIRF) probes 
Electromagnetic radiation ranging from the ultraviolet (UV) to the near-infrared 

region (NIR) is widely exploited for imaging in the biomedical field, as illustrated in 

Figure 13. The UV region comprises wavelengths below 400 nm while the visible 

window ranges from 400 to 650 nm. The NIR region is divided further into NIR I 

(650 to 900 nm) and NIR II (1000 to 1700 nm). Between 900 and 1000 nm there is an 

increase in the absorption by water and lipids, limiting the applicability of this small 

region [91]. Compared to UV or visible light, NIR light exhibits favourable properties 

for bioimaging applications, such as reduced scattering and attenuation by tissues, as 

well as reduced absorption by cytochromes, haemoglobin or melanin in living 

organisms (Figure 14) [52, 92]. Thus, the use of fluorescent probes emitting in this 

privileged region of the electromagnetic spectrum allows for deeper tissue penetration 

and increased sensitivity due to reduced tissue autofluorescence [21].  
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Figure 14: Schematic overview of the behaviour of light in the different regions of 
the electromagnetic spectrum. UV suffers from complete absorption by tissue, the 
visible suffers absorption and scattering of light, and NIR allows deep tissue 
imaging [90]. 

Ever since the 1980s, extensive research has been undertaken in order to exploit the 

NIR region of the spectrum for biological imaging applications, with particular 

interest in fluorescence image-guided surgery (FIGS). Two representative examples 

are indocyanine green (ICG; λex = 807 nm and λem= 822 nm) and methylene blue 

(MB; λex = 665 nm and λem = 688 nm), the only two NIR fluorophores clinically 

approved as contrast agents (structures H and J in Figure 13, respectively). They have 

been used to identify sentinel lymph nodes (SLN) [93, 94] and certain tumours [95-

98]. However, the poor optical properties and the high chemical instability of MB 

have hampered its use [88]. ICG exhibits better optical properties than MB, and its 

tumour accumulation by the enhanced permeability and retention (EPR) effect has 

been exploited in intraoperative settings. Despite good malignancy detection rates, it 

was not able to specifically distinguish between healthy and diseased tissue, resulting 

in high background signals and thus high false-positive rates [95]. In addition, its 

poor aqueous stability, poor photostability, tendency to form aggregates and lack of 
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functional groups for conjugation to targeting moieties have limited its adoption as 

the standard contrast agent [4, 88, 99]. Formulations based on the encapsulation of 

ICG have overcome some of these limitations [100-102], however, much effort is 

being dedicated to the development of improved cyanine-derived probes with clinical 

translational potential for disease investigation [103, 104].  

1.4.2 Cyanine derived probes 
Cyanine (derived from the Greek κυανος [kyanos] = dark blue) dyes are a class of 

polymethine functional dyes with applications that range from electrophotography to 

photovoltaics. Cyanines are cationic compounds with two N-heteroaromatic electron-

donating groups connected through a polymethine bridge of varying length with an 

odd number of carbon atoms. Two examples of natural occurring cyanine dyes, 

betanin and musca aurin (Figure 15), were accidentally discovered and their 

structures elucidated in the 1960s by Dreiding and in the 1970s by Musso, 

respectively [105]. Both dyes, responsible for the colour of beetroot and Amanita 

muscaria respectively, were found to share a common pentamethinium scaffold and 

an L-amino acid-derived chiral group.  

 

Figure 15: Structures of betanin (K) and musca aurin (L) with their corresponding 
absorption wavelengths and their distinct colouration. 

Based on the number of methine groups present in the bridge they are classified as 

monomethine (n = 0; Cy1), trimethine (n = 1, Cy3), pentamethine (n = 2, Cy5) or 

heptamethine (n = 3, Cy7) cyanines (Figure 16) [86]. While Cy1 and Cy3 exhibit 

spectral properties in the visible region of the spectrum (400 - 650 nm), Cy5 and Cy7 
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show absorption and emission in the NIR-I region (650 – 900 nm). The increase in 

the number of methine groups and increased conjugation entails an advantageous 

bathochromic shift of around 100 nm for each extra methine group, albeit with 

reduced fluorescence quantum yield [86, 106]. It has also been observed that 

elongation of the polymethine chain alters the pharmacokinetic properties of 

conjugates composed of the same αvβ3–recognising peptide bound to either Cy3, Cy5 

or Cy7 derived fluorophores [107]. Introduction of a squaryl moiety (M, Figure 16) 

or a cyclohexenyl (N, Figure 16) groups in the conjugating system increases the 

planarity and rigidity of the structure and has given compounds with improved 

photochemical stability compared to the corresponding cyanines [89, 106, 108].  

 

Figure 16: Schematic overview of the general structure of cyanines. M and N 
represent two common modifications of the polymethine chain to improve the 
stability of Cy5 and Cy7 derivatives. Some common examples of Cy5 and Cy7 
compounds employed in preclinical and clinical settings for fluorescence imaging 
are shown.  

In addition to modifications of the polymethine chain, variations in the nitrogen 

substituents R1 and R2 and/or in the heterocycles can tune the physicochemical and 
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optical properties of these compounds. Cyanines are quite lipophilic and this limits 

their applicability for in vivo FLI. Introduction of charged groups such as sulfonates 

on the heterocycles or aliphatic chains with terminal sulfonate groups as nitrogen 

substituents has rendered these compounds more hydrophilic [109]. In addition, a 

balanced surface net charge of zero (zwitterionic) is desirable to avoid off-target 

accumulation, thus reducing background signal [110]. ZW800-1 is an example of a 

zwitterionic fluorophore with reduced binding to proteins compared to ICG, however 

the labile ether linkage on the meso carbon renders this compound unstable, which 

results in decreasing fluorescence signal over time [88]. To overcome this, a stable 

derivative with a carbon-carbon bond in the meso position, ZW800-1 Forte, was 

synthesised [111]. This derivative exhibits long-term stability, but it displays H-

aggregation due to the distinct polarity and the rigidity of the meso carbon substituent 

[111]. IRDye® 800CW is the most widely employed cyanine derivative and it has 

been conjugated to a variety of targeting ligands in preclinical FLI and clinical FIGS 

[112-115]. The highly hydrophobic core is decorated with four negatively charged 

groups that confer a highly anionic surface charge [116]. Therefore, excretion is 

expected to occur via the renal route, but when targeting ligands are conjugated to 

this fluorophore, increased liver uptake and off-target accumulation has been 

observed, likely due to the interaction of this fluorophore with serum proteins [116]. 

It is evident that the physicochemical properties of the fluorophores play a key role in 

their in vivo behaviour, even when conjugated to large molecules such as antibodies, 

and should be balanced to obtain optimal results [87].  

These are just a few examples of cyanine dyes under development for optical 

imaging, but the list of potential candidates is long (AF680 [117], BM104 [118, 119], 

AF750 [120, 121], S0456 [122, 123] or LS288 [124, 125]). Hence, part of the work 

of this thesis has focused on derivatives of the polymethines Cy5 and Cy7 and their 

potential as conjugatable fluorophores for targeted approaches.  
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1.5 Targeted fluorescent imaging approaches 

The dyes described in the previous section have proven useful for imaging a wide 

variety of biological processes. However, their utility is often restricted by their lack 

of specificity, rendering them inefficient for FLI [95]. In this context, many different 

targeted approaches have been implemented to reduce undesired background signal 

and thus obtain better contrast [126-128]. 

Targeted approaches employ fluorophores, often referred to as “always-on” probes, 

covalently bound through a linker to a targeting ligand against a specific 

overexpressed target in the tumoral tissue or the tumour microenvironment (TME) 

[129]. The number of molecular targets (biomarkers) that can be exploited for disease 

interrogation has increased in the last decades [114, 130, 131]. And with this, the 

number of different targeting ligands has also risen including small molecules, 

peptides, antibodies (intact or fragments), functionalised nanoparticles, etc. [114, 122, 

132, 133]. Fluorophores for stable labelling and long-term monitoring of these 

molecular ligands are also well developed, as explained earlier [76, 134]. The ideal 

conjugate needs to exhibit low toxicity, high photochemical stability and fast 

clearance. Hence, the design of targeted molecular contrast agents requires special 

attention not only with regard to the choice of targeting ligand, but also to the linker 

and to the fluorescent contrast agent selection. Several cases have been previously 

reported in which the choice of linker or fluorescent contrast agent affected the 

affinity of the targeting ligand for the molecular target of interest [123, 135]. 

Folate receptor alpha (FRα) is an example of a widely studied molecular target with 

both diagnostic [136] and therapeutic applications [137, 138]. FRα is overexpressed 

in several different types of tumours, including ovarian and lung adenocarcinomas, 

but has limited expression in healthy epithelial tissues [139, 140]. Folate is a vital 

vitamin for DNA synthesis and repair, thus playing an important role in rapid cell 

division and growth. The internalisation of folate after binding to the membrane-

bound FRα has been exploited for drug delivery [141-143], as well as for contrast 

agents with imaging purposes [122, 144, 145]. 
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However, most of these targeted approaches employ “always-on” contrast agents that 

contribute to background signal by off-target accumulation of unbound fluorescent 

contrast agent, which degrades the quality of the images and requires longer washout 

periods. To further increase the specificity of the signal, targeted strategies employing 

activatable fluorescent probes [146] could be implemented to provide increased 

tumour-to-background ratios (TBR) by reducing off-target fluorescence signals. The 

fluorescence of such probes is quenched until activation by tumour-specific enzymes 

[147] or by chemical reactions that occur once specifically internalised in the cells 

[148, 149]. CytoCy5S is an example of a quenched fluorescent contrast agent 

activated by NTR enzymatic reduction. NTR reduces the nitro groups of this cyanine 

derivative to hydroxylamine groups, thereby restoring its fluorescence and allowing 

sensitive investigation of NTR expression by fluorescence imaging [150]. 

These activatable probes represent a good choice for applications where high contrast 

is imperative, such as FIGS. Additionally, they offer potential applicability in 

intraoperative settings where washing procedures are not possible, i.e. probes 

topically applied for residual disease identification after tumour debulking or probes 

employed during endoscopic examinations [88, 151, 152]. 

1.6 Applications and clinical translatability of reporter genes 
and/or fluorescence imaging 

1.6.1 Gene-directed enzyme prodrug therapy 
GDEPT is a promising anti-tumour strategy that aims to reduce off-target toxicity and 

limit severe side effects by the combination of a prodrug and its activating enzyme 

[153]. In a first step, tumours are transduced to express a gene encoding the prodrug-

activating enzyme. In a second step, a non-toxic prodrug, delivered systemically, is 

converted in situ into a cytotoxic metabolite by the expressed enzyme [154] (Figure 

17). In some cases, the activated metabolites are able to diffuse to neighbouring cells 

(bystander effect) exerting their cytotoxic effect and thus increasing the killing 

potential of this approach [155, 156]. In this way, GDEPT achieves high 
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concentration of cytotoxic compounds locally, minimising systemic side effects 

associated with conventional cancer chemotherapy [157]. 

 

Figure 17: Schematic overview of the key steps in GDEPT. From left to right: 
Transduction of cells to express protein of interest, in this case NTR. Bioreductive 
activation of prodrug CB1954 by NTR. Reduction of contrast agents, radiotracers 
or fluorescent contrast agents, by NTR allows PET or FLI imaging. 

The most extensively studied prodrug/enzyme pairs for GDEPT are ganciclovir 

(GCV)/herpes simplex virus-thymidine kinase (HSV-TK) [158] and 5-(aziridin-1-yl)-

2,4-dinitrobenzamide (CB1954)/E. coli nitroreductase NfsB (NTR) [159]. HSV-TK 

phosphorylates GCV, allowing its incorporation into DNA and resulting in toxicity 

due to interference with the DNA synthesis. NTR reduces the nitroaromatic groups 

(R-NO2), present in CB1954, into hydroxylamines (R-NHOH), converting it into an 

alkylating agent with cytotoxic activity [160, 161]. In addition, the activity of these 

enzymes can also be exploited with imaging purposes, i.e. to identify promising 

responder candidates before therapy and to monitor the drug efficacy post-treatment. 

Radiolabeled probes, such as 18F-FIAU (1-(2- deoxy-2-[18F]-fluoro-1-D-

arabinofuranoside)-5-iodouracil), 18F-FHBG  (9-[4-[18F]-fluoro-3-
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(hydroxymethyl)butyl]guanine) and GCV analogues are available for the assessment 

of HSV-TK activity. Thus, PET/CT imaging has been successfully applied 

preclinically to monitor transduction efficiency, tissue specificity and therapeutic 

effect [162, 163] and it was subsequently incorporated into phase I clinical trials to 

monitor transduction efficiency in healthy individuals and in cancer patients [164, 

165].  

NTR exhibits promising therapeutic potential by generating alkylating agents that 

target both dividing and quiescent cells indistinctly, a clear advantage compared to 

HSV-TK, which is only able to kill rapidly dividing cells. NTR activity has been 

successfully evaluated in preclinical settings using a NIR fluorescent dye, CytoCy5S 

[150] and a caged bioluminescent substrate, “NTR caged luciferin” (NCL) [166]. 

However, the lack of probes for NTR activity investigation by employing well-

established clinical imaging modalities, such as PET/CT, has hampered the further 

progress of NTR-based GDEPT clinical trials [159]. But the last word is not yet 

spoken as Mowday and co-workers have recently demonstrated effective NTR PET 

imaging employing NfsA from E. coli in combination with the PET tracer 18F-HX4 

[167]. 

1.6.2 Fluorescence image-guided surgery (FIGS) 
FLI has proven useful in a variety of preclinical studies, but translation to the clinic is 

hampered outside the intraoperative settings. This is due to different factors, mainly 

to the low depth of penetration of the light but also to the lack of FDA-approved NIR 

probes hindered by the lack of standardisation protocols, or the lack of adequate 

instrumentation [24]. However, promising examples on the clinical use of 

fluorescence imaging to aid surgeons delineate the surgical area of interest in real-

time are available [114, 168-170].  

FIGS aims for complete diseased tissue resection, while avoiding morbidity by 

preserving vital structures like nerves or blood vessels [90]. It relies on the 

fluorescence emitted by an exogenous fluorescent probe, either untargeted or 

targeted, after excitation by an appropriate light source [171]. This fluorescence-
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based imaging technique provides real-time illumination of tumour burden allowing 

surgeons to resect margins [172] and small metastases that are difficult to identify 

with the naked eye. Other advantages are its safety, because light is non-destructive 

and non-ionising probes are employed to provide contrast, and its low cost compared 

to other techniques employed in the operating room (OR) such as CT or MRI. 

Moreover, this technique can easily be implemented in the OR, without 

compromising sterility or workflow, and allowing increased sensitivity compared to 

preoperative imaging modalities [21].  

One critical aspect for the success of this technique is a high SBR. Targeting highly 

expressed molecular biomarkers with despisable expression in surrounding tissues 

can help to attain the desired high contrast. The use of targeted-activatable 

fluorophores is another promising approach that is being actively researched [88]. In 

addition, the last years have witnessed an increased interest in exploiting the NIR II 

window, were the spectral characteristics of tissues play no role in scattering, 

allowing even better contrast and deeper tissue penetration. Some promising 

examples include the localisation of minute tumour metastases in a murine model of 

ovarian cancer employing SWNT in the NIR II window [84] or the first-in-human 

multispectral approach exploiting simultaneously the NIR I and II windows with 

ICG, suggesting the potential of the latter to improve FIGS outcomes [173]. 

Despite the promising results obtained using FIGS in different clinical trials, unmet 

needs have hampered its extensive use in the clinic and most surgeries are still 

performed without real-time image-based assistance [174]. Vast efforts in chemistry 

and in preclinical imaging research are ongoing [121] to resolve these issues and to 

develop improved targeted contrast agents, with particular emphasis in NIR II agents, 

for optimal performance during intraoperative procedures [149]. Development of 

improved contrast agents and multispectral surgical image-based systems exploiting 

simultaneously the NIR I and II windows will facilitate progress of molecular 

characterisation of disease by means of imaging [175].  
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2. Aims of the study 

2.1 Background and general aims 

Nitroreductases are enzymes of bacterial origin capable of reducing nitro groups. This 

nitroreduction potential has been widely exploited in different biotechnology 

applications. Nitroreductase NfsB (NTR) from E. coli is an example of an oxygen-

insensitive nitroreductase that has been relevant in biomedical research. The presence 

of nitro groups on some aromatic compounds, such as CytoCy5S, quenches the 

fluorescence of these compounds. NTR-catalysed reduction of the nitro groups to 

hydroxylamines or amines restores the fluorescence of these compounds allowing 

detection of the signal in optical imaging settings. In addition, non-toxic nitro-

containing compounds (prodrugs), such as CB1954, can be converted to highly toxic 

compounds by NTR reduction, that restores the reactivity capacity of these 

compounds.  

In this thesis, we aimed to develop fluorescent NTR substrates with improved 

physicochemical and optical properties for NTR fluorescence imaging in oncology 

settings. Furthermore, to improve the tumour contrast provided by ”always-on” 

fluorophores, we employed a targeted approach against an overexpressed biomarker 

such as folate receptor alpha (FRα) and studied and compared the impact of the 

physicochemical properties of five fluorophores on the in vivo behaviour of the same 

ligand. In addition, we assessed whether NTR nitroreduction of a hypoxia 

radionuclide (18F-FMISO) could be exploited in more clinically amenable settings 

employing PET/CT imaging of NTR expression. The suitability of 18F-FMISO for 

imaging transgene expression and prodrug treatment efficacy in an in vivo GDEPT 

setting was evaluated.  

2.2 Specific aims 

1. To define the physicochemical and optical properties of CytoCy5S (Paper I) 
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2. To identify the substrate with the best in vitro and in vivo characteristics for 

NTR interrogation in preclinical oncology animal models (Paper I) 

3. To compare the imaging performance of five different fluorophores conjugated 

to a ligand targeting folate receptor alpha in an ovarian cancer model (Paper 

II) 

4. To repurpose 18F-FMISO for PET/CT imaging of NTR expression (Paper III) 

5. To use the validated NTR PET/CT tracer to monitor the two main steps of an 

NTR gene-directed enzyme prodrug therapy (GDEPT) (Paper III) 

6. To analyse the potential of CytoCy5S in a “two-hit strategy” exploiting NTR 

for activation and folate receptor alpha for targeting (Appendix I) 
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3. Methodological considerations 

3.1 General synthetic overview 

3.1.1 Synthesis of Fischer bases 
The different Fischer bases employed in the synthesis of the four NTR substrates (1 – 

4 in paper I) and the NIR dyes 3, 5 and 6 in appendix I were obtained through N-

alkylation of 2,3,3-trimethyl-3H-indole, its 5-methoxy analogue or 1,1,2-trimethyl-

1H-benzo[e]indole (Scheme 1). 

Scheme 1: Synthesis of Fischer bases 8 - 13 that have been employed in 
the synthesis of NTR substrates 1 – 4 and NIR dyes 3, 5 and 6. 
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Their reaction with the different halogenated starting materials (3,5-dinitrobenzyl 

iodide, 6-bromohexanoic acid or iodomethane) under the conditions described in 

Scheme 1 yielded the intermediates 8 – 13 (paper I) in yields that ranged from 14% 

to 94% 

3.1.2 Condensation final compounds 
Substrates 1 (4 in appendix I), 3 and 4 in paper I and NIR dyes 16 in paper II and 3 

in appendix I were successfully synthesised through a one-pot condensation of the 

various Fischer bases with either squaric acid, malonaldehyde bis(phenylimine) or the 

Vilsmeier-Haack reagent shown in Scheme 2.  

Scheme 2: Synthesis of A) NTR substrates 1 – 4 (paper I) and NIR dyes 

B) 16 (paper II) and C) 3 (appendix I). 
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Substrate 2 was obtained in a stepwise manner through synthesis of the mono-

substituted methyl squaraine intermediate. Deprotection of the methyl ester under 

acidic conditions to give 14 and subsequent condensation of 14 and 8 gave 2. 

3.1.3 Condensation with squaric acid esters of Substrate 1 (Stepwise 
strategy) 

Substrate 1 in paper I (4 in appendix I) was also synthesised employing an 

alternative strategy that required the stepwise introduction of methylene bases (as 

previously described for substrate 2). Methyl and ethyl squarate were employed as 

starting materials and they were reacted with the Fischer bases 8 and 9 under the 

different conditions depicted in Scheme 3.  

Scheme 3: Stepwise introduction of methylene bases [176-178] 

3.1.4 Solid support synthetic approach for Substrate 1 
A third synthetic approach was attempted to improve the yield of substrate 1 in paper 

I (4 in appendix I). Fischer base 9 was immobilised on a 2-chlorotrytil chloride resin 

and reaction with 18 (Scheme 3) in the presence of carbodiimide (DIC) gave 

substrate 1 (Scheme 4).  



 50 

 

Scheme 4: Synthesis of substrate 1 using a solid supported approach. 

3.1.5 Synthesis of targeting ligand 
To obtain γ-ethylenediamine folate (EDAF, 7), folic acid was converted to pteroic 

acid (12) in two steps. Ethylenediamine was protected with di-tert-butyl dicarbonate 

(Boc) to give tert-butyl (2-aminoethyl)carbamate (6) that was further reacted with 

Fmoc-Glu-OtBu followed by basic deprotection to yield 11. 12 and 11 were reacted 

to give γ-ethylenediamine folate (7) after acidic deprotection and RP-HPLC 

purification. 

 

Scheme 5: Synthetic route through pteroic acid (12) and tert-butyl N5-(2-

((tert-butoxycarbonyl)amino)ethyl)-L-glutaminate (11) employed to obtain 

γ-ethylenediamine folate (EDAF, 7). (Numbering from paper II) 
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3.1.6 Conjugation to targeting ligands 
Conjugates 1 – 5 in paper II and 1 and 2 in appendix I were synthesised by common 

amide bond formation (Schemes 6 and 7, respectively). The NHS esters of the 

different fluorophores were reacted with the targeting ligand EDAF in dry DMSO at 

rt for 24 h (1 – 5) or for 6 h (1 and 2). All conjugates except 3 were formed in the 

presence of DIPEA as base. The synthesis of conjugate 3 required less sterically 

hindered bases and TEA was employed.  

 

Scheme 6: Synthesis of EDAF-Cy7 conjugates 1 – 5 in paper II  
 

Scheme 7: Synthesis of EDAF-Cy5 conjugates 1 - 2 in appendix I  
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3.2 Purification methods 

Most of the compounds synthesised required purification approaches prior to further 

reaction. Flash column chromatography with narrow particle range silica as stationary 

phase was employed for most of the intermediates. Mobile phase solvent composition 

and isocratic or gradient elutions were chosen based on the polarity properties of the 

different compounds.  

Automated flash chromatography was employed for highly polar intermediates 

(sulfonate containing intermediates, paper I) whose elution required reversed-phase 

methods. 40 g octadecyl silane (C18) columns were employed in combination with 

water-based mobile phases in the presence of ion-pairing substances such as 

ammonium acetate (CH3CO2NH4). This technique, which permits higher loading 

capacities than HPLC, was performed on a Puriflash XS 420 system (Interchim, 

Montlucon Cedex, France).  

Final compounds aimed for biological testing were purified by high-performance 

liquid chromatography (HPLC) using C18 reversed-phase columns. The elution 

methods used mixtures of acetonitrile and water both containing 0.1% of either 

trifluoroacetic acid (TFA), formic acid (CH3CO2H) or 10 mM of ammonium acetate. 

The linear gradients employed are described in detail in the electronic supplementary 

materials for each compound (Papers I and II). 

 

3.3 Characterisation techniques 

Nuclear magnetic resonance (NMR) was employed to confirm the structure of the 

different compounds throughout the synthetic steps. 2D experiments including 

COSY, ROESY and NOESY were employed to unequivocally assign the protons in 

the final structures. This technique proved indispensable to discern the correct isomer 

of the sulfonate substrate (paper I) after purification based in the coupling constants 

J given in Hertz (Hz). Multiplicity of the signals reported as singlet (s), broad singlet 
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(bs), doublet (d), double doublet (dd), triplet (t) or multiplet (m). High-resolution 

mass spectra were recorded with an AccuTOFTM mass spectrometer operated with an 

orthogonal electrospray ionization source (ESI), an orthogonal accelerated time of 

flight (TOF), single stage reflectron mass analyser and a dual micro channel plate 

(MCP) detector (papers I, II and III). 

 

3.4 In vitro experiments 

3.4.1 Enzymatic assay 
The use of the nitroreductase NfsB (NTR) from Escherichia coli in the presence of β-

NADH and β-NADPH allowed us to evaluate the suitability of four different 

compounds as substrates of this oxydoreductase (paper I). Once we proved that 1 - 4 

were substrates of NTR, their kinetic profiles were studied by evaluation of the 

fluorescence emission intensity over time. Fluorescence intensity of the different 

substrates was analysed using a Tecan Spark® multimode microplate reader and it 

was plotted as the average of the triplicates ± standard deviation. 

3.4.2 Cell culture 
The human embryonic kidney HEK-293T cell line is one of the most commonly used 

cell lines for lentiviral vector production. This cell line stably expresses the large T-

antigen (TAg) of simian virus 40 (SV40) that promotes plasmid-mediated gene 

expression during transient transfections [179]. These cells were used for lentiviral 

production for NTR-based gene therapy in papers I and III.  

The human mammary carcinoma MDA-MB-231 cell line was employed for in vitro 

and in vivo studies in papers I and III. Two different variants, MDA-MB-231Luc+ 

referred to as NTR- and MDA-MB-231Luc+/GFP+NTR+ stably expressing NTR (NTR+) 

were used.  

Many non-small cell lung carcinoma (NSCLC) cell lines, including NCI-H460, 

present increased DT-diaphorase (oxidoreductase) activity, which is involved in the 
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bioreduction of nitro-containing compounds [180, 181] and it is known to present 

higher levels of hypoxia. The two variants of this cell line, NCI-H460 Luc+ (NTR-) and 

NCI-H460 Luc+/GFP+NTR+ (NTR+), were employed in vitro and in vivo in paper III to 

study the effect of higher levels of hypoxia in the retention of 18F-FMISO. 

The human ovarian adenocarcinoma Skov-3 cell line is commonly used in ovarian 

cancer models. Skov-3 was employed in paper II for comparative studies of five 

different folate conjugates due to its known folate receptor alpha (FRα) expression 

[182, 183]. Another human NSCLC cell line, A549, was employed as the negative 

control for FRα [184] and the human cervical carcinoma HeLa cell line was used as 

the positive control for FRα in the same study. OV-90, stably expressing GFP, was 

employed in appendix I to study the in vivo fate over time of 1 using confocal 

fluorescence microscopy.  

Cell lines were maintained in DMEM (HEK293T, MDA-MB-231, Skov-3, A549 and 

HeLa) or in RPMI-1640 (NCI-H460, OV-90) media supplemented with 10% fetal 

bovine serum (FBS) and 1% L-glutamine. Cells were incubated in a humidified 

atmosphere at 37 °C and 5% CO2. Media were supplemented with 1% 

penicillin/streptomycin after cells were sorted or virally transduced.  

3.4.3 Viral transduction and gene expression assessment  
For in vitro NTR transduction, retroviruses and lentiviruses have been used. 

Retroviral transductions of the cell lines employed in paper III have been described 

elsewhere [150].  

For in vivo NTR transduction of subcutaneous tumours (paper III), lentiviruses were 

employed. Compared to retroviruses, lentiviruses are able to transduce cells in any 

step of their cycle offering higher transduction efficiencies. A more detailed 

description of the process can be found in the methods section of the corresponding 

paper III.  
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3.4.4 Flow cytometry 
Flow cytometry allows simultaneous characterisation of cell size, granularity (optical 

properties) and protein expression (fluorescence emission) in a single cell basis [185]. 

In addition, the use of several fluorophores with distinct spectral properties can be 

exploited for simultaneous interrogation of different proteins of interest. 

This technique was employed to assess the suitability of four in-house synthesised 

fluorophores to interrogate the levels of NTR expression in MDA-MB-

231Luc+/GFP+NTR+ cells (Paper I) and compared to MDA-MB-231Luc+.  

CytoCy5S was employed as the standard fluorophore for cytometric analysis of NTR 

expression in different cell lines after viral NTR transduction (Papers I, II and III). 

Enrichment of NTR expressing cells before tumour implantation was performed 

based on the 5% brightest population by incubation with CytoCy5S (Paper I).  

In paper II we investigated the expression of FRα in the ovarian carcinoma Skov-3. 

Pre-labelled antibodies and self-conjugated EDAF to commercial fluorophores were 

employed. HeLa was used as positive control showing the highest expression and 

A549 was employed as negative control to set the threshold of no expression. The 

FRα expression level of the different cell lines was quantified using calibration beads 

to measure the antibody-binding capacity (ABC) of each cell line. 

3.4.5 Fluorescence confocal microscopy 
Fluorescence microscopy allows the visualisation of general cell physiology traits and 

biological processes in living cells with the use of fluorophores. Better image 

resolution is achieved with confocal microscopy by acquiring only the light that 

comes from an equivalent point in the cell (confocal) [186]. 

Fluorescence confocal microscopy of live cells allowed us to study the uptake, 

fluorescence release and the intracellular fate of the four different substrates studied 

in paper I as well as the conjugates 1 and 2 from appendix I. Cells were kept at  

37 °C and 5% CO2 while images were acquired using a confocal Andor Dragonfly 

microscope (Oxford instruments).  
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3.5 In vivo experiments  

3.5.1 Ethical approval 
All applicable institutional and/or national guidelines for the care and use of animals 

were followed. Animal experiments were conducted according to The European 

Convention for the Protection of Vertebrates Used for Scientific Purposes and were 

approved by the Norwegian Food Safety Authority (FOTS ID no: 9059 and 14128). 

3.5.2 Optical imaging 

Bioluminescence  
BLI was performed (paper III) to monitor metastatic progression in mice 

orthotopically xenografted with the mammary carcinoma cell line MDA-MB-

231Luc+/GFP+NTR+. Animals were intraperitoneally injected with D-Luciferin (Biosynth, 

Switzerland) at a dose of 150 mg/kg 10 minutes before imaging. BLI images were 

acquired weekly using an In-Vivo FX Pro molecular imaging system (Carestream 

Health Inc., NY, USA). During acquisition, mice were anesthetised with 1.5% 

isoflurane. Regions of interest (ROI) were manually drawn in the primary tumour 

location and in the axillary region were metastasis was observed and BLI signal was 

measured.  

Fluorescence imaging 
FLI is the main in vivo technique used in this thesis. It has been used in all three 

papers with distinct purposes. In paper I, FLI allowed us to evaluate the biological 

behaviour of four different NTR substrates in a subcutaneous MDA-MB-231 model, 

while in paper II, FLI was employed to compare the biological behaviour of five 

different NIR fluorescent probes (Cy7 range) conjugated through the same linker to a 

FRα targeting ligand. In both papers, the fluorophores or fluorescent conjugates in 

solution were intravenously injected and biodistribution studies at different time 

points and longitudinal FLI of xenografted tumours were performed. In paper III, 

CytoCy5S-FLI was used for monitoring disease progression, transgene expression 

and therapeutic response.  
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When working with the Cy5 fluorophores, animals were fed with low-

autofluorescence rodent imaging food (Rodent imaging diet D1001; Research diets 

Inc., Brunswick, USA) from, at least, two weeks prior to experiments in an attempt to 

reduce fluorescence signal from the gastrointestinal tract. The fur was shaved to 

avoid autofluorescence. Animals anaesthetised and maintained with 1.5% isoflurane 

were imaged using an IVIS Spectrum imaging system (PerkinElmer Inc.) with the 

appropriate filter pairs (λex/λem) for each investigated fluorophore. Analysis of the 

collected data was performed with the Living Imaging® software v4.5 (PerkinElmer 

Inc.).  

Ex vivo FLI imaging was performed to further assess biodistribution of the different 

fluorophores and fluorescent conjugates with special attention to tumours and main 

organs involved in excretion. 

In addition, in paper II FLI was exploited using an intraoperative image-guided 

system (FLARETM) to visualise the resected tumours and organs after intravenous 

injection of the five different studied conjugates. A comparative analysis of the 

fluorescent signals in the tumours and the main excretion organs was performed by 

manually drawn ROIs. The purpose was to identify the best conjugate candidates and 

the best imaging conditions to proceed further with more relevant orthotopic models.  

3.5.3 Nuclear imaging 
In paper III nuclear-based imaging was employed to monitor tumour progression, 

metastatic spreading, transgene expression and prodrug therapy response.     
18F-FMISO, a widely used hypoxia radiotracer, was repurposed for interrogation of E. 

coli nitroreductase (NfsB) expression. Mice were intravenously injected with   
18F-FMISO with activities ranging from 8 to 12 MBq. After 90 minutes of washout, 

mice were scanned using a dual mouse bed with integrated heating (37 °C) and 

anaesthesia (3 – 4% sevoflurane) over 30 minutes. PET scans were performed in an 

integrated nanoScan PC PET/CT (Mediso Ltd, Hungary) with whole-body CT scan 

prior to PET acquisition for anatomical information. Spatial resolution of 800 μm and 
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300 μm of the PET and CT detector systems, respectively. Further PET/CT imaging 

and reconstruction details can be found in the methodology section of Paper III. 

 

3.6 Ex vivo analysis 

Histopathology allows microscopic assessment of changes in tissue associated with 

pathologies like cancer, with e.g. haematoxylin and eosin (H&E) staining. In 

addition, immunohistochemistry allows the identification of different proteins 

(antibody-antigen interaction) expressed in the tissues that can be associated with 

distinct molecular processes in tumours.  

For papers II and III tumours and organs of interest were cryopreserved (OCT at -80 

°C) or/and fixed in a 4% paraformaldehyde solution at rt for 24 h. The tissues were 

later kept in PBS and protected from the light at 4 °C before paraffin embedding. 

Formalin fixed paraffin embedded (FFPE) tissue blocks were sectioned (5 μm) and 

stained with H&E for verification of malignancy (Paper III). To evaluate the 

expression of FRα (Paper II) and Hypoxia-inducible factor-1 (HIF-1; Paper III) 

sections were prepared for immunohistochemical staining of rabbit anti-human 

antibodies. Sections were incubated overnight with FRα (Cat# PA5-24186, clone 

SA170417DD, 1:2000, Invitrogen) and HIF-1 (Cat# ab51608, 1:300, Abcam) 

antibodies. Histopathology examinations and scoring of the samples was performed 

by experienced pathologists from the Department of Pathology, Haukeland University 

Hospital (Bergen) and the Department of Pathology, The Norwegian Radium 

Hospital, Oslo University Hospital. 



 59 

4. Summary of results 

4.1 Paper I 

In this study, we set out to clarify an ongoing discrepancy regarding the structure and 

physicochemical properties of CytoCy5S, a NIR fluorescent NTR substrate, in order 

to establish which of the structures denoted as CytoCy5S in the literature is best 

suited for preclinical studies in oncology models. Four substrates (1 – 4) containing a 

3,5-dinitrobenzyl moiety, which renders them non-fluorescent, were synthesised and 

analysed in vitro and in vivo. The introduction of the methoxy group in 3 and the 

sulfonate and cyanine scaffold in 4 resulted in a modest bathochromic shift in the 

spectral properties of these substrates compared to 1 and 2. The kinetic assessment of 

NTR bioreduction of the four different substrates, revealed the delayed kinetics of 

substrate 2 and the low emission efficiency of substrates 3 and 4. The suitability of 

the four substrates for intracellular interrogation of NTR expression was assessed by 

incubation of NTR- and NTR+ MDA-MB-231 cells under different conditions. The 

results evidenced the high contrast between cell lines obtained when using substrate 3 

as well as the high dependence of this substrate on the concentration. Substrates 1 and 

2 exhibited comparable performances and substrate 4 performed poorly. The 

biological behaviour of these substrates was further investigated in murine 

subcutaneous xenograft models. Despite the promising in vitro performance of 

substrate 3, it did not prove as useful for discerning between NTR- and NTR+ tumours 

as substrates 1 or 2 did. Substrate 1 was found to be best suited for imaging of NTR, 

both in vitro and in vivo, with superior kinetics and lower background fluorescence 

from immediate surrounding tissues allowing a better delineation of tumours. In 

addition, this substrate presents a carboxylic functionality that can be further 

derivatised for biomarker interrogation. 
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4.2 Paper II  

In this study, we aimed to compare the impact of five different NIR fluorophores on 

the biodistribution, specificity and contrast of conjugates targeting folate receptor 

alpha (FRα) using an ovarian cancer model. Skov-3 and A549 cell lines with 

intermediate and low FRα expression, respectively, were employed. Four 

commercially available and one in-house synthesised fluorophores, namely ZW800-

1, ZW800-1 Forte, IRDye® 800CW, ICG and Cy7 derivative were conjugated to the 

folate ligand through an ethylenediamine linker to give conjugates 1 - 5, respectively. 

The biodistribution of conjugates 1 – 5 was assessed in vivo by FLI, indicating 

preferential renal clearance for 1, 2 and 3 and hepatobiliary clearance for 4 and 5. 

Tumour accumulation was observed for all conjugates except 4. However, the high 

off-target fluorescence obtained for 3 and the low fluorescence intensity of 5, 

together with its probable albumin-mediated accumulation in tumours by the EPR 

effect, limited their applicability. Conjugate 2 showed an intense fluorescence signal 

in tumours and it was the only conjugate that reported significant fluorescence 

differences between Skov-3 and A549 (p < 0.05). Our results confirmed the high 

impact of the fluorophore on the biodistribution of the conjugates to excretory organs 

and tumours and the potential of 2 as fluorophore for targeted strategies providing 

specific fluorescence signal.  

 

4.3 Paper III 

In this study, we have investigated the repurposing of 18F-FMISO as a companion 

diagnostic tool for NTR-based gene-directed enzyme prodrug therapy (GDEPT). To 

validate the suitability of 18F-FMISO PET/CT to image NTR expression, a 

subcutaneous mammary carcinoma (MDA-MB-231) xenograft model constitutively 

expressing NTR was studied. We demonstrated that 18F-FMISO PET/CT imaging is 

sensitive for detection of NTR with significantly higher contrast between NTR+ and 

NTR- xenografts from week four after implantation (p < 0.0001). We next evaluated 
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the sensitivity of this technique to detect NTR+ small metastatic lesions in an 

orthotopic model. We proved that 18F-FMISO PET/CT imaging allows visualisation 

of nodal metastatic tumours, with significantly higher contrast between healthy tissue 

and metastatic nodes from week ten after implantation (p < 0.05). Additional 

metastatic lesions in distal organs such as liver and lungs were observed in the 

PET/CT images and confirmed ex vivo by histological examination. Lastly, the 

suitability of 18F-FMISO PET/CT imaging was challenged in a GDEPT setting. 

Subcutaneous xenografts of MDA-MB-231 NTR- were transduced by intratumoral 

injection of NTR lentiviral particles. We demonstrated that 18F-FMISO PET/CT 

imaging allowed for detection of NTR expression with significantly higher contrast 

between in vivo NTR transduced xenografts and NTR- xenografts from week four 

after in vivo NTR transduction (p < 0.05). NTR transduced xenografts, NTR+ and 

NTR- xenografts were treated with the prodrug CB1954 and response to treatment 

was monitored by 18F-FMISO PET/CT imaging. We demonstrated that 18F-FMISO 

PET/CT imaging allowed the monitoring of treatment efficacy even when the 

response was limited, as is the case in the in vivo NTR transduced xenografts. Post-

treatment 18F-FMISO PET/CT imaging of in vivo transduced xenografts demonstrated 

a significant decrease in contrast compared to pre-treatment (p < 0.05). This decrease 

in contrast was also confirmed for the NTR+ xenografts with higher significance both 

at day 3 (p < 0.001) and 17 (p < 0.0001) after treatment. This was accompanied by a 

significant tumour volume decrease of NTR+ compared to NTR- xenografts (p < 

0.0001). These preclinical studies confirm 18F-FMISO NTR PET/CT as a readily 

available methodology for clinical application in NTR-based GEDPT. 
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5. General discussion 

Molecular imaging (MI) is fundamental in clinical settings for diagnosis, treatment 

selection, intraoperative guidance and treatment efficacy evaluation. This field has 

progressed rapidly in recent years, driven by the need for sensitive diagnostic tools 

and as a tool to monitor the efficacy of new cancer treatments, including gene-based 

therapies [20]. MI provides fundamental information on the in vivo behaviour of new 

drugs and contrast agents, simultaneously allowing assessment and visualisation of 

target expression and plays a key role in the early stages of drug discovery and 

development [16, 17]. The work of this thesis has focused on the contrast agents of 

two main MI methodologies, namely optical imaging (mainly fluorescence imaging 

(FLI) for longitudinal imaging (Papers I – III) and fluorescence image-guided 

surgery (FIGS) (Paper II)) and nuclear-based PET/CT imaging (Paper III). 

MI in combination with reporter genes allows in vivo monitoring of enzyme 

expression and follow-up of the success of gene-based therapies, where the suicide 

gene also acts as reporter gene (theranostic). In this thesis, nitroreductase NfsB 

(NTR) from E. coli has been concurrently employed as a reporter gene (Papers I and 

III) and suicide gene (Paper III). NTR is an oxygen-insensitive enzyme capable of 

reducing nitro groups to their corresponding hydroxylamines or amines, permitting 

the conversion of prodrugs into highly toxic metabolites (CB1954 in paper III) and 

the activation or retention of contrast agents (CytoCy5S and 18F-FMISO, 

respectively, in papers I and III). Our group has previously demonstrated the 

applicability of NTR in combination with CytoCy5S, a quenched NIR dye substrate 

of NTR, for imaging of cancer cells dissemination in an orthotopic murine model 

[150]. In addition, exploiting the NTR/CytoCy5S imaging platform has allowed the 

non-invasive monitoring of the therapeutic efficacy of prodrugs such as 

metronidazole and CB1954 in gene enzyme directed prodrug therapy (GDEPT) 

settings [150, 187].  
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In the context of this thesis work, the use of MI and different contrast agents for 

tumour detection and evaluation of therapeutic efficacy will be discussed in detail and 

compared with relevant literature. 

5.1 Fluorescent probes and their physicochemical properties, a 
double edged sword 

It is well accepted that exploiting the NIR region of the spectrum (650 – 1700 nm), 

where light scattering and background fluorescence are reduced and the penetration 

depth of light increases, is advantageous for acquiring fluorescent images with higher 

contrast [90]. To achieve the most out of this privileged region of the electromagnetic 

spectrum, novel fluorophores with appropriate spectral properties, high molecular 

brightness (ε x ϕ), large Stokes shifts, hydrophilicity, photochemical stability which 

are also safe to use are required [89, 188, 189]. Although the desired properties are 

clear, achieving all of them in a single molecule is a challenge that has not yet been 

solved.  

Cyanine-based fluorophores, with high molar absorption coefficients (ε) in the NIR, 

are the most widely employed dyes for NIR-I bioimaging in the medical field [88] 

and their use for imaging in the NIR-II region (1000 - 1700 nm) is being actively 

investigated [190]. Cyanine-based dyes have been the main focus of this thesis 

(Papers I – III) and will be used to illustrate the importance of finding common 

ground in terms of their physicochemical properties.  

Fluorophores with large Stokes shifts and emission at longer wavelengths provide 

better resolution and brighter images. However, the shift from Cy5 to Cy7 will have a 

detrimental effect on quantum yields (ϕ) caused by the loss of energy through non-

radiative relaxation processes, which are enhanced at lower energies (longer 

wavelengths) [191, 192]. To mitigate this trade-off, structural elements that impart 

rigidity to the heptamethine scaffold, such as the meso cyclohexyl (conjugates 1, 2, 3 

and 5 in paper II, dashed bonds in figure 18A), have been incorporated, thereby 

improving photostability and quantum yield [193]. Alternative strategies include the 
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substitution of indoline by indolizine groups in Cy5 scaffolds (Figure 18B & C). 

Despite being based on pentamethine chains, these compounds exhibit bathochromic 

shifts with respect to Cy7 dyes such as ICG and enhanced molecular brightness 

compared to their indole counterparts [194]. However, these cyanine derivatives (C5 

and PhIn2SQ) were poorly soluble in water, a major limitation for their use in 

biological systems. To circumvent this, two sulfonate groups were appended to these 

dyes in positions where the substituents did not have a strong impact on conjugation 

and, therefore, on the optical properties, achieving dyes (SO3C5 and SO3SQ) with 

enhanced hydrophilicity and stability in water with comparable spectral properties to 

their lipophilic counterparts [195]. 

Figure 18: Overview of different cyanine/squaraine-based 
fluorophores with indoline and indolizine functionalities highlighted 
in blue. A) General structure of heptamethine dye with cyclohexyl 
functionality in dashed bonds (O) and ICG structure, λem = 835 nm; 
B) Cyanine-based dyes including indoline (P) and indolizine 
derivatives (C5, λem = 852 nm and SO3C5); C) Squaraine-based dyes 
including indoline (Q) and indolizine derivatives (PhIn2SQ and 
SO3SQ). Emission wavelengths reported in DMSO [194,195]  
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The use of sulfonate groups is a common approach to compensate for the high 

hydrophobicity of the cyanine scaffold [188]. However, the introduction of several 

negative charges has proved to be counterproductive, as was found to be the case 

with IRDye® 800CW (conjugate 3 in paper II), which displayed off-target 

fluorescence signals that reduced the contrast of the image in addition to suboptimal 

biodistribution [196]. Furthermore, the presence of a single sulfonate on substrate 4 

(paper I) did not substantially improve water solubility but rather hampered cell 

penetration, limiting its usefulness.  

To increase hydrophilicity while avoiding some of these constraints, different 

strategies have been evaluated including PEGylation of fluorophores and their 

corresponding conjugates [197-199] or encapsulation formulations using 

nanoparticles [200] or micelles [201]. These strategies have the trade-off of creating 

larger molecules with slower excretion rates, requiring delayed imaging time points. 

However, this feature is advantageous to obtain longer blood circulation times and 

enhanced tumour uptake by the EPR effect [202]. Another approach has been the 

synthesis of hydrophilic zwitterionic dyes (conjugates 1 and 2 in paper II). These 

compounds contain two sulfonates but are designed to have a balanced net charge of 

zero through the introduction of trimethylammonium substituents. Such zwitterionic 

dyes exhibit remarkable water solubility and reduced non-specific binding to 

proteins, resulting exclusively in renal clearance [110]. However, ZW800-1 

(conjugate 1) contains a labile ether linkage on the meso position (functionality also 

present in conjugate 3) that renders this compound unstable towards nucleophilic 

attack with a decreasing fluorescence signal over time [203]. To overcome this, 

ZW800-1 Forte (conjugate 2) was designed with a C-C bond substituting the ether 

group and long-term stability was achieved [111]. However, due to the increased 

rigidity of this substituent, self-aggregation (H-aggregates) was observed [111], a 

common problem for such structures [204, 205]. An alternative zwitterionic cyanine-

based dye with improved stability and pharmacokinetic properties was later 

developed through shielding of the linear hydrophobic Cy7 scaffold by the 

introduction of two triethylenglycol chains [196]. These substituents increased the 
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photostability of the dye and prevented aggregation without limiting derivatisation 

with targeting ligands.  

5.2 NTR-activatable cyanine-based fluorophores 

Despite being at the limit of NIR spectral properties, Cy5-based dyes have found 

application in imaging of biological systems, including imaging of nitroreductases 

[206, 207]. In addition to the applications described above for the NTR/CytoCy5S 

imaging platform, it has also been employed in development studies to analyse 

differentiation and interaction of different cell types [208]. Moreover, it has proven 

useful for in vivo imaging of different bacterial strains and bacterial colonisation of 

tumours. The latter feature, has been suggested as a potential gene delivery method 

for gene therapy in cancer [209]. However, the structure or analytical characterisation 

of CytoCy5S is not included in any of the published papers and discrepancies were 

found regarding both the physicochemical and optical characteristics of this Cy5-

based dye. 

In an attempt to clarify these discrepancies and highlight the worryingly high number 

of biology papers reporting results of uncharacterised material, the unsymmetrical 

substrates 1 – 4 (paper I and depicted in Figure 19A) were synthesised, purified and 

chemically characterised, a key step for robust and reproducible inter- and intra-

laboratory results. In general, indoline-containing Fischer bases were easily obtained 

in modest to good yields. However, the sulfonate group required for substrate 4 posed 

a challenge, as several isomers were formed in the sulfonation step and separation of 

these was unsuccessful using conventional purification methods. 
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The final substrates 1 - 4 (Figure 19A) were prepared by condensation reactions via 

one-pot or stepwise approaches with yields that ranged from 1 - 16% due to the 

formation of symmetric by-products (Figure 19B). A stepwise strategy was required 

for substrate 2, since the one-pot approach only produced the N-methylated by-

product, probably due to the higher reactivity of this Fischer base. In addition, the 

synthetic reproducibility of substrate 4 proved to be limited. For the sake of proper 

comparison, substrate 4 from the same batch was used throughout the different 

experiments to avoid dye-based variability. 

Substrates 1, 2 and 3 are based on a squaraine scaffold, which in general imparts 

rigidity, increases polarity and photostability and reduces quantum yields [210, 211]. 

Substrate 4 is a cyanine-based dye and therefore longer absorption and emission 

wavelengths and better quantum yields are expected. However, it was not possible to 

directly compare the quantum yields of the different substrates, hereby limiting the 

Figure 19: A) Chemical structures of substrates 1 to 4 employed in 
paper I with the 3,5-dinitrobenzyl moiety that quenches their 
fluorescence highlighted in red; B) One-pot synthetic route to obtain 
substrates 1, 3 and 4 and stepwise route to 2 where R1 corresponds to 
the N-methyl substitued Fischer base. 
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comparison of the brightness of the dyes. Despite this limitation, the data obtained 

from the emission spectra in comparison to the absorbance and excitation spectra 

suggest that substrates 3 and 4 exhibit limited brightness, possibly due to non-

radiative decay. Most examples of NTR-activatable substrates in the literature [206, 

212, 213] (only those with NIR spectral characteristics have been considered) 

correspond to fluorophores substituted with a p-nitrobenzyl moiety as a caging group 

(depicted in purple in figure 20), rendering the caged fluorophore silent. Upon NTR-

mediated reduction, which results in a rearrangement-elimination reaction, the parent 

fluorophore is released and fluorescence is restored as illustrated in Figure 20.  

 

 

 

 

In our case, the quite unique 3,5-dinitrobenzyl moiety (depicted in red in Figure 19A) 

for NTR-mediated activation renders the substrates non-fluorescent due to a 

photoinduced electron transfer (PeT) process. Reduction of the nitro groups into 

hydroxylamines by NTR results in an increase in the energy of the lowest unoccupied 

molecular orbital (LUMO) of the acceptor, which hampers the quenching mechanism 

and results in fluorescent properties [214, 215].  

Our results demonstrate the large impact that small modifications in dye structure 

have on the physicochemical and optical properties of the dyes and will help 

scientists to make an informed decision on the optimal fluorophore for their work. 

They also highlight the necessity for stricter reporting requirements of the chemical 

characterisation of compounds used in biomedical research, both for research groups 

and commercial suppliers.   

Figure 20: Example of the NTR-mediated uncaging mechanism of 
p-nitrobenzyl (depicted in purple) and release of the parent 
fluorophore, methylene blue (MB), with restoration of the 
fluorescence [212]. 
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5.3 Stability, sensitivity and specificity: considerations in the 
design of fluorescent conjugates towards the clinic  

To avoid off-target fluorescence, which has a detrimental impact on contrast, in 

addition to activatable fluorophores, the use of fluorophores in targeted approaches is 

preferred. The properties of the fluorophores used should be optimised as described 

in section 5.1 for increased sensitivity [216]. To obtain highly specific signals, the 

conjugates should exhibit high receptor binding affinity leading to increased retention 

in the tumour and rapid clearance from off-target tissues [129]. Currently, a myriad of 

tumour-specific antibodies are approved for clinical use and their labelling with NIR 

cyanine-based fluorophores is a widely exploited approach for FIGS [88, 217]. 

However, the lack of control and consensus over labelling ratios makes it difficult to 

reproduce the results due to the different conjugates’ composition after each 

conjugation [218, 219]. Therefore, small molecules with a single reactive site are 

preferred, as they also overcome the slow in vivo kinetics of antibodies, allowing 

faster imaging time points after conjugate administration. However, as for antibodies, 

the in vivo behaviour and physicochemical properties of these small molecules will be 

greatly influenced by the choice of fluorophore [107]. In paper II we aimed to 

compare how the physicochemical properties of five commonly used NIR 

fluorophores affected the in vivo performance of a folate receptor alpha (FRα) 

targeting ligand. 

FRα is a well-known molecular target that has shown promising results when 

employed for MI as well as when used as a therapeutic target [136-138]. In fact, a 

phase III clinical trial of a folate-targeting small molecule labelled with a NIR 

fluorophore (OTL38, Figure 21A) for intra-operative imaging in ovarian cancer has 

recently been completed and results are awaited (NCT03180307). Hence, the folate 

ligand was conjugated though an ethylenediamine linker (Figure 21C) (same as for 

EC17, Figure 21B [220]) to five different NIR fluorophores and their in vitro and in 

vivo behaviour was compared (conjugates 1 – 5, paper II).  



 70 

 

Figure 21: A) OTL38 is a folate analogue ligand conjugated to a heptamethine dye 
(S0456); B) EC17 is a γ-folate-fluorescein isothiocyanate (FITC) conjugate; C) 
Chemical structure of the folate ligand composed of pteroic acid (blue) and L-
glutamic acid (purple) with the linker ethylenediamine (green) in the γ-carboxylic 
acid employed in paper II. 

During the literature research for paper II, several references were found claiming 

attachment to folic acid via so-called γ-isomers (Figure 21A), while the chemistry 

described to obtain the conjugate proved to be inefficient for the synthesis of the 

desired regioisomer, resulting in mixtures of γ- and α- isomers [221-223]. This issue 

was also addressed by Figliola et al. [224]. The use of isomeric mixtures could pose a 

major problem for in vivo use, as the binding affinity to the target could be 

compromised, altering the reproducibility of the results, especially when the ratio of 

isomers is unknown. Although Bettio et al. reported that these isomers exhibited 

FRα-binding affinities in the same range [225], another study with a mixture of γ- and 

α- isomers of different conjugates showed differences in their biodistribution [226]. 

Therefore, to avoid variabilities caused by uncontrolled regioisomer ratios, the ideal 

approach is to synthesise isomerically pure compounds. To this end, different 

synthetic routes to obtain the pure γ-isomer were approached for paper II and the 

reaction of pteroic acid (blue in Figure 21C) with the protected glutamic acid (purple 

in Figure 21C) was found to be the most effective, as also described by Figliola et al. 

[224]. 
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In the stepwise strategy, the carboxylic acid side chain of glutamic acid provides a 

convenient handle for conjugation of the probe via various linkers. In addition, it has 

been demonstrated that the glutamic part of the folate conjugate does not play a 

critical role in the FRα-binding affinity [227], as also demonstrated by the OTL38 

structure (Figure 21A). This compound contains a tyrosine residue instead of the 

glutamic acid, in order to avoid by-product formation by R-NH2 nucleophilic attack 

when the ligand is reacted with fluorophores containing an ether linkage in the meso 

position [228]. However, small variations in the structure of the folate conjugates 

have been shown to have a major impact on the optical properties and biological 

behaviour [123]. In our case, the use of the lipophilic fluorophores for conjugates 4 

and 5 (Figure 22) compromised the targeting affinity of the conjugates, resulting in 

no tumour accumulation for 4 and the EPR effect-mediated accumulation for 5 after, 

most probably, fluorophore-mediated binding to albumin [229].   

 

 
Figure 22: Chemical structures of conjugates 1 – 5 with the folate ligand and the 
linker part showed in Figure 21A abbreviated as EDAF. Conjugates 1 – 5 are based 
on ZW800-1, ZW800-1 Forte, IRDye® 800CW, ICG and an in house synthesised 
Cy7 derivative, respectively. 

Due to the misplacement of one analytical HPLC trace, conjugates 1 – 5 were re-

analysed six months after finalising the project. To our surprise, we found that 

conjugates formed by hydrophilic fluorophores (1, 2 and 3) did not exhibit the same 

high purity as when they were analysed prior to use. An additional peak 

corresponding to a polar compound eluting at early retention times which absorbs 

both at 220 and at around 750 nm was observed for conjugates 1 - 3. This finding led 



 72 

us to initiate a study on the stability of the conjugates over time and this work is 

currently in progress. In addition, it was observed that one of the combined fractions 

for conjugate 1 exhibits a small shoulder in the HPLC trace, indicating the presence 

of free dye, as confirmed by the MS spectrum. Our study highlights the need for 

quality control and stability studies prior, during and after the imaging experiment to 

guarantee reproducible results from fluorophores and fluorescent conjugates.  

5.4 NTR beyond preclinical research 

Gene-based therapies, including in vivo delivery of viral vectors or genetically 

engineered T-cells and haemotopoietic stem cells, are applied to treat a myriad of 

inherited and acquired conditions and have become a promising therapeutic strategy 

[230]. In turn, the development of genome editing technologies, such as CRISPR-

Cas9 [231], which awarded Charpentier and Doudna, two female biochemists the 

Nobel Prize in Chemistry in 2020, allows for precise genome modifications through 

the addition, ablation or correction of genes ex vivo or in vivo, and has revolutionised 

the field of gene therapy [232].  

Suicide gene therapies, which aim to reduce the toxicity of cancer treatment by 

specifically activating prodrugs in cancer cells, have been investigated for several 

decades and there is resurgent interest in their use [167, 233-235]. Despite their 

promising potential and success in preclinical studies [155], their clinical application 

in cancer patients has not been fully realised [236]. There are several reasons for this, 

such as the choice of vector, suicide gene, prodrug or their combination thereof [237]. 

Despite this, I believe that the lack of appropriate molecular imaging methodologies 

to monitor transgene expression, particularly in the case of NTR, is a major limitation 

[238].  

As stated earlier, our group has previously demonstrated the feasibility of using 

CytoCy5S as a fluorescent NTR reporter in a preclinical model of GDEPT [150]. 

Despite the promising results exhibited, its translatability to clinical gene therapies is 

hampered due to the main drawback of FLI, namely low tissue penetrance of light, 
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and clinically relevant methodologies such as PET/CT are preferred. Since there are 

no clinical radiopharmaceuticals currently available to image NTR, our aim in paper 

III was to demonstrate that, due to the similar mechanistic reduction characteristics 

between oxygen-sensitive (hypoxia) and oxygen-insensitive nitroreductases (NTR), 

the hypoxia radiopharmaceutical 18F-FMISO could be repurposed to monitor the two 

steps of an NTR-based GDEPT.  

To do so, we employed NfsB from E. coli (NTR) in combination with CB1954 as this 

is the most extensively investigated enzyme/prodrug combination in NTR-based 

GDEPT strategies. Despite some limitations, we have demonstrated in paper III that 

the hypoxia tracer 18F-FMISO is useful to monitor NTR transgene expression after in 

vivo transduction and to evaluate prodrug treatment efficacy in an in vivo GDEPT 

setting. In parallel, Mowday et al. demonstrated the potential use of 18F-HX4 to 

detect NfsA NTR expression in two cell models engineered for NfsA overexpression. 

However, I believe that the use of 18F-FMISO, extensively used in clinical hypoxia 

imaging, compared to 18F-HX4, which is in the early stages of clinical development 

[239], would accelerate the approval for repurposed applications, making it a 

valuable companion diagnostic for clinical NTR-based GDEPT. 

In addition to NTR, other suicide genes have been investigated for their utility to treat 

different tumour types including HSV/TK [164], cytosine deaminase (CD) [240], 

purine nucleoside phosphorylase (PNP) [241] or carboxylesterases (CE) [242]. 

However, HSV/TK is the only one with a demonstrated clinically compatible imaging 

modality using either 18F-FHBG or 124I-FIAU. Furthermore, this imaging strategy has 

also been employed clinically for cell-based therapy imaging in glioma patients [243] 

emphasising the need for further development of MI to aid the improvement and 

rapid clinical translatability of these immunotherapies [244].  

Cell therapies, in particular immune cell therapies, have flourished in recent decades 

and their clinical benefit has already been demonstrated in various diseases [15]. 

However, despite promising results, for example in the treatment of B-cell 

haematological diseases [245], side effects, such as cytokine release syndrome in 
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chimeric antigen receptor (CAR) T-cell therapies, and the lack of appropriate non-

invasive clinical imaging techniques to follow the distribution of the engineered cells 

have hindered their wider application [246-248]. To avoid or modulate the side 

effects, safety strategies involving suicide genes have been envisaged. In a similar 

fashion to what has been proposed with the suicide genes HSV-TK [249] or caspase 9 

[250], NTR could be inserted as a suicide gene switch in CAR T-cells. When 

required, dosing of the prodrug CB1954 would eliminate these NTR-expressing cells 

with remission of side effects. However, this approach is not a one-size-fits-all 

remedy and in a recent study, elevated cytotoxicity and gene expression silencing was 

reported when human induced pluripotent stem cells (iPSCs) expressing HSV/TK 

were employed as a safety switch [251]. This highlights the necessity for a plethora 

of suicide genes for distinct uses in cell therapies. 

The advantage of NTR over other suicide genes is that its applicability would not be 

limited to its activity as a suicide gene, but could concurrently be exploited as a 

multimodal (FLI and PET/CT) imaging reporter gene. During the in vitro stages of 

CAR T-cell engineering, CytoCy5S activation by NTR could be leveraged for 

enrichment of fully functional cells by flow sorting or as a reporter of enzyme 

expression assessed by fluorescence microscopy, an advantage over other suicide 

genes that do not posses a specific NIR fluorescent substrate. In addition, the fate and 

expansion of NTR-engineered CAR T-cells after infusion could be tracked in vivo by 

PET/CT imaging using 18F-FMISO, as has already been demonstrated for HSV/TK-

engineered CAR T-cells using 18F-FHBG in glioma patients [243]. This approach is 

particularly useful when CAR T-cells are used to treat solid tumours, since it would 

allow visualisation of T-cell trafficking, confirming the cells penetrance into the 

tumours and possible on-target off-tumour accumulation, the two main limitations of 

CAR T-cells applied to solid tumours [245, 252]. This methodology would also allow 

side effects to be pre-empted before they have a major impact on the patient, helping 

to overcome some of the challenges affecting these therapies and improving clinical 

outcome. However, due to the bacterial origin of the NTR suicide/reporter gene, 

immunogenicity effects should be carefully evaluated in clinical studies. 
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6. Conclusions 

The work of this multidisciplinary thesis includes synthetic chemistry, basic 

molecular biology and molecular imaging. This work was based on the synthesis, 

purification and characterisation of small fluorescent molecules substrate of NTR and 

small molecules as biomarkers’ targeting ligands and their combination thereof. 

Alternative synthetic strategies have been successfully pursued in an attempt to 

increase the reaction yields by lowering the formation of by-products. Subsequent 

biological studies of these compounds both in vitro and in vivo and the use of 

molecular imaging modalities such as FLI and PET/CT imaging allowed us to:  

I) determine the best substrate for NTR expression interrogation in a 

preclinical oncology model using FLI 

II) demonstrate the high impact of the fluorophores on the biodistribution of 

fluorescent molecular targeting conjugates  

III) conclude that 18F-FMISO NTR PET/CT imaging is readily available for 

clinical application in NTR-based GDEPT settings 
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7. Future perspectives 

As discussed, the design of functional molecular dyes with optimal properties is a 

necessity for further development of the MI field and, at the same time, a challenge 

that requires careful chemical design to fine-tune the often in conflict 

physichochemical properties. To this end, the rational design of improved NIR dyes 

substrates of NTR aided by quantum chemistry calculations can improve our 

understanding of the structure-property relationships by using density functional 

theory (DFT). These calculations can also help us predict the optical properties of the 

different NIR dyes, reducing the need for lenghthy synthetic approaches to multiple 

compounds, leading to the synthesis and biological evaluation of a reduced number of 

candidates with the required characteristics.  

 

We aim to complete the study on the identification of superior fluorophores for 

targeted approaches in FIGS. For this purpose, we plan to assess the role of protein 

binding in the biodistribution of the different conjugates used in paper II and to 

analyse their fate in cells over time by fluorescence microscopy. Moreover, our group 

is working on the incorporation of linkers that allow the release of the fluorophore 

into the cytoplasm to exploit NTR-activatable dyes for targeted approaches. As 

already demonstrated by our group [121], CD24 is a promising target for FIGS in 

ovarian cancer. A multiplexing approach combining fluorescent targeting ligands 

against CD24 and FRα could help to reduce the impact of the high inter- and intra-

tumoral expression heterogeneity of FRα, improving the outcome of intraoperative 

procedures in ovarian cancer. To evaluate the full potential of this approach, 

representative animal models will be used to allow for complete cytoreductive 

surgery and survival studies. 

 

For suicide gene therapies, PET/CT imaging provides relevant information that can 

help stratify patients into those who will benefit from prodrug treatment and those 

who require an additional transduction prior to treatment. Hence, to increase the 

potential of 18F-FMISO PET/CT for imaging of NTR expression after in vivo 
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transduction we would like to investigate the correlation between the transduction 

efficiency and the SUVmax values. Since a commercial anti-NTR antibody is not 

available, we envision the generation of an NTR-specific nanobody to be able to 

confirm and quantify the in vivo transduction efficiency and correlate the 

heterogeneous levels of expression to distinct 18F-FMISO SUVmax values.  
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8. Appendix I:  

1. Introduction 
To further increase signal specificity, targeted strategies employing activatable 

fluorescent dyes may be implemented. The advantage of these dyes over “always-on” 

fluorophores is that they exhibit reduced off-target fluorescence signals and provide 

increased TBR [1, 2]. The fluorescence of such dyes is quenched until activation by 

tumour-specific enzymes [3] or by chemical reactions following cellular 

accumulation [4, 5]. CytoCy5S is a NIR activatable fluorophore whose fluorescence 

is quenched by the presence of the 3,5-dinitrobenzyl moiety. The enzyme 

nitroreductase NfsB (NTR) from E. coli is able to reduce the nitro groups (-NO2) to 

hydroxylamines (-NHOH) restoring its fluorescence. This bioreductive mechanism 

has previously been exploited to follow-up the dissemination of NTR-expressing 

cancer cells using CytoCy5S-FLI, providing higher sensitivity than bioluminescence 

or GFP-FLI, and to evaluate the therapeutic efficacy of a prodrug in a preclinical 

metastatic model [6].  

The NTR-activatable fluorescent dye CytoCy5S (substrate 1 in paper I) was 

conjugated to EDAF to obtain a fluorescent conjugate (2) that is expected to bind to 

the membrane-bound FRα. Endolysosomal internalisation of the conjugate and 

release of the fluorophore, with subsequent fluorescence enhancement after the 

activating reduction by NTR, will allow the localisation of engineered NTR-

expressing cancer cells. Furthermore, compared to the free dye, a reduction of the 

fluorescence signal in healthy tissues is expected. To test all this, the in vitro 

behaviour of this conjugate was compared with that of a conjugate (1) formed by an 

“always-on” fluorophore with the same squaraine scaffold (Cy5 active). 
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2. Results and discussion 

The specificity of 1 and 2 (Figure 1) towards FRα was investigated in vitro by 

fluorescence microscopy using three different cells lines, Skov-3, OV-90 and A549, 

with intermediate (Skov-3 and OV-90) and low (A549) levels of expression of the 

molecular target. First, calcein AM (green fluorescence) stained Skov-3NTR+ and 

A549 cells were incubated with 1 or 2 for 2.5 h and up to 36 h and imaged (Figure 1). 

A weak NIR fluorescence signal was observed 2.5 hours after incubation with 1, 

which increased with longer incubation times, particularly at 24 and 36 hours in 

Skov-3NTR+ (Figure 1a). A weaker NIR fluorescence signal is also observed in the 

negative control cell line A549 at 36 hours. No fluorescence signal in cells incubated 

with 2 was obtained at any of the given incubation times (Figure 1b). We next used 

the GFP+ OC cell line OV-90, which allowed us to follow the fate of 1 over time, 

starting 8 hours after conjugate removal. These results confirmed the data obtained 

previously (Figure 1a), demonstrating that the contrast agent is not able to reach the 

cytoplasm, but is retained in vesicles for up to 24 hours after removal of the conjugate 

from the medium.  

 

Figure 1: Live cell fluorescence confocal microscopy imaging. Images of the 

representative times for the green channel and for the far-red channel are presented 

with their corresponding chemical structures for a) 1, “always-on” dye and b) 2, 

activatable dye. 



 99 

The selected activatable Cy5-derivative 2 and its control 1 served as proof of 

principle prior to working with more clinically relevant fluorophores e.g. Cy7. 

Retention in vesicles was observed after internalisation of 1 in the two different 

experiments, thus preventing the passage of the dye to the cytoplasm. This 

observation has a major impact for the use of 2 as the release of the dye into the 

cytoplasm is imperative for the activating reduction by NTR to occur and therefore 

no fluorescence signal can be observed at any given time with this conjugate. This 

finding deterred us from further experiments with these conjugates and prompted us 

to study new linkers to ensure cytoplasmic release of the CytoCy5S fluorophore to 

ultimately reduce the off-target signal in optical FLI (ongoing work in our group). 

 

3. Materials and methods 

3.1 Synthetic overview of conjugates 1 and 2 

γ-Ethylenediamine folate was conjugated to the NHS esters of Cy5 active (1, in 

house synthesised) and CytoCy5S (2, in house synthesised). As shown in Scheme 

1, activation of the carboxylic acid of the dyes 3 and 4 was performed by reacting 

them with NHS and DIC in dry DMSO at rt overnight. 5 and 6 were purified by 

RP-HPLC and further reacted with EDAF and DIPEA in dry DMSO at rt for 6 h 

to give conjugates 1 and 2 in modest yields. Conjugates 1 and 2 were purified by 

RP-HPLC prior to in vitro and in vivo testing. 
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3.2 Cell lines and cell culture 

Human ovarian carcinoma, Skov-3 and OV-90GFP+ and lung carcinoma A549 cell 

lines were employed to study the suitability of conjugates 1 and 2 in a targeted 

approach. Cells were cultured in DMEM (Sigma-Aldrich, St. Louis, USA) with 

exception of OV-90 cultured in RPMI 1640, supplemented with 10% FBS and 1% 

L-glutamine (Sigma-Aldrich), and kept at 37 °C and 5% CO2. Skov-3 and OV-

90GFP+ cell lines were transduced in vitro to express E. coli NfsB nitroreductase 

(NTR) using lentiviral particles [7]. NTR expression was assessed using an 

established flow cytometric method [6]. 

 

3.3 Confocal fluorescence microscopy 

1 x 105 Skov-3NTR+ cells were seeded in 35 mm µ-dishes with high glass bottom 

(Ibidi, Martinsried, Germany) and incubated with 4 µM of 1 or 2 for 2.5, 12, 24 

and 36 hours at 75% confluency. 1 x 105 of A549NTR- cells incubated for 36 hours 

with 4 µM of the aforementioned conjugates were employed as negative control. 

30 minutes before fluorescence imaging, cells were washed with PBS and fresh 

medium containing calcein AM (1 µM) was added.  

Scheme 1. Synthesis of EDAF-Cy5 conjugates. 



 101 

OV-90GFP+NTR+ cells (1 x 105) were incubated with 1 for 14 hours. After this time, 

the cells were thoroughly washed with PBS and fresh medium was added. 8 hours 

post-removal of the conjugate, fluorescence images were acquired at 10 min 

intervals for up to 16 hours (24 hours post-removal). Cells were maintained at  

37 °C and 5% CO2. 

Live cell imaging fluorescence was acquired using a confocal Andor Dragonfly 

microscope (Oxford Instruments America, Inc., Concord MA, USA) with a 40X 

magnification. 488 nm excitation filter and green emission filter (500 to 550 nm) 

for calcein AM internalisation and GFP expression and 637 nm excitation filter 

and far-red emission filter (663 to 738 nm) for Cy5-derivatives interrogation were 

employed. All data collected were analysed with Imaris 9.6 (Oxford Instruments, 

USA). 

 

3.4 Synthesis of (Z)-4-((1-(5-carboxypentyl)-3,3-dimethyl-3H-indol-1-ium-2-

yl)methylene)-3-oxo-2-(((E)-1,3,3-trimethylindolin-2-

ylidene)methyl)cyclobut-1-en-1-olate (3): [8] 

 

1,2,3,3-Tetramethyl-3H-indolium iodide (303 mg, 1.01 mmol), 1-(5-

carboxypentyl)-2,3,3-trimethyl-3H- indolium iodide (417 mg, 1.04 mmol) and 

3,4-dihydroxycyclobutane-1,2-dione (128 mg, 1.10 mmol) were mixed with 

pyridine (4.5 mL), acetic acid (4.5 mL) and acetic anhydride (1 mL) and the 

mixture was heated at 110 qC for 3 h. The reaction mixture was partitioned 

between dichloromethane (10 mL) and water (10 mL) and the organic layer was 

dried over MgSO4, filtered and the solvent was evaporated to yield an iridescent 

blue sticky residue. This material was purified using semi-preparative RP-HPLC 
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(50 - 90% acetonitrile in water, both solvents containing 0.1% formic acid) to give 

the title compound. 

Blue solid; 29 mg (21% yield). 1H-NMR (850 MHz, (CD3)2SO): δ = 12.10 (bs, 

1H), 7.52 (m, 2H), 7.34 (m, 4H), 7.16 (m, 2H), 5.79 (s, 1H), 5.76 (s, 1H), 4.07 (s, 

2H), 3.57 (s, 3H), 2.20 (t, J = 7.2 Hz, 2H), 1.71 (m, 2H), 1.68 (s, 12H), 1.56 (m, 

2H), 1.40 (m, 2H); 13C-NMR (MHz, (CD3)2SO): δ = 180.5 (2C), 178.8 (2C), 

174.3, 169.7, 168.9, 142.8 , 142.2, 141.4 (2C), 127.6 (2C), 123.3 (2C), 121.9 

(2C), 109.9 (2C), 85.9, 85.7, 48.4 (2C), 42.5, 33.2, 30.1, 26.1 (5C), 25.6, 23.9; 

ESI-MS: Calcd. m/z for C33H37N2O4
+ [M + H]+: 525.3; found: 525.3 and 547.3.  

 

3.5 Synthesis of (Z)-2-(((E)-1-(5-carboxypentyl)-3,3-dimethylindolin-2-

ylidene)methyl)-4-((1-(3,5-dinitrobenzyl)-3,3-dimethyl-3H-indol-1-ium-2-

yl)methylene)-3-oxocyclobut-1-en-1-olate (4): [8] 

 

1-(5-Carboxypentyl)-2,3,3-trimethyl-3H-indolium iodide (765 mg, 1.9 mmol), 1-

(3,5-dinitrobenzyl)-2,3,3-trimethyl-3H-indolium iodide (999 mg, 2.1 mmol) and 

3,4-dihydroxy-3-cyclobuten-1,2-dione (238 mg, 2.1 mmol) were dissolved in 

pyridine (9.7 mL), acetic acid (9.7 mL) and acetic anhydride (2.2 mL) and the 

resulting mixture was heated at 110 qC for 3 h. The reaction mixture was 

partitioned between dichloromethane (10 mL) and water (10 mL). The combined 

organic phases were dried over MgSO4, filtered and evaporated under reduced 

pressure to give an iridescent blue sticky residue (1.261 g), which was purified 

using semi-preparative RP-HPLC (50 - 90% acetonitrile in water, both solvents 

containing 0.1% TFA). 
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Iridiscent blue solid; 109 mg (9% yield). 1H-NMR (850 MHz, (CD3)2SO) δ = 

11.99 (s, 1H), 8.73 (d, J = 2.6 Hz, 1H), 8.40 (d, J = 2.1 Hz, 2H), 7.58 (d, J = 7.3 

Hz, 1H), 7.55 (dd, J = 7.4, 1.1 Hz, 1H), 7.42 (d, J = 8.0 Hz, 1H), 7.38 (td, J = 7.7, 

1.2 Hz, 1H), 7.29 (td, J = 7.6, 1.2 Hz, 1H), 7.23 (q, J = 7.2 Hz, 2H), 7.16 (t, J = 

7.4 Hz, 1H), 5.88 (s, 1H), 5.75 (s, 1H), 5.66 (s, 2H), 4.14 (t, J = 7.6 Hz, 2H), 2.20 

(t, J = 7.3 Hz, 2H), 1.79 (s, 6H), 1.72 (m, 2H), 1.65 (s, 6H), 1.55 (p, J = 7.4 Hz, 

2H), 1.39 (p, J = 7.7 Hz, 2H); HR-ESI-MS: Calcd. m/z for C39H39N4O8
+ [M+H]+: 

691.27624; found: 691.27721. 

 

Analytical data are in accordance with those reported previously [8] 

 

3.6 Synthesis of (Z)-4-((1-(6-((2,5-dioxopyrrolidin-1-yl)oxy)-6-oxohexyl)-3,3-

dimethyl-3H-indol-1-ium-2-yl)methylene)-3-oxo-2-(((E)-1,3,3-

trimethylindolin-2-ylidene)methyl)cyclobut-1-en-1-olate (5):  

 

3 (22.4 mg, 0.04 mmol), N-hydrosuccinimide (13. 6 mg, 0.11 mmol) and DIC 

(0.01 mL, 0.06 mmol) were dissolved in 1.5 mL of anhydrous DMSO and the 

reaction mixture was stirred at rt overnight protected from the light. The excess of 

solvent was removed by rotary evaporation to give a bright blue sticky solid 

residue, which was purified using semi-preparative RP-HPLC (50 - 90% 

acetonitrile in water, both solvents containing 0.1% TFA) to give the title 

compound.  

Iridiscent blue solid; 18.1 mg (73% yield). 
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3.7 Synthesis of (Z)-4-((1-(3,5-dinitrobenzyl)-3,3-dimethyl-3H-indol-1-ium-2-

yl)methylene)-2-(((E)-1-(6-((2,5-dioxopyrrolidin-1-yl)oxy)-6-oxohexyl)-3,3-

dimethylindolin-2-ylidene)methyl)-3-oxocyclobut-1-en-1-olate (6): 

 

4 (18.5 mg, 0.04 mmol), N-hydrosuccinimide (13. 6 mg, 0.11 mmol) and DIC 

(0.01 mL, 0.06 mmol) were dissolved in 1.5 mL of anhydrous DMSO and the 

reaction mixture was stirred at rt overnight protected from the light. The excess of 

solvent was removed by rotary evaporation to give a blue sticky solid residue, 

which was purified using semi-preparative RP-HPLC (50 - 90% acetonitrile in 

water, both solvents containing 0.1% TFA) to give the title compound.  

Iridiscent blue solid; 17.2 mg (55% yield). 
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3.8 Synthesis of (Z)-4-((1-(6-((2-(4-(4-(((2-amino-4-oxo-3,4-dihydropteridin-6-

yl)methyl)amino)benzamido)-4-carboxybutanamido)ethyl)amino)-6-

oxohexyl)-3,3-dimethyl-3H-indol-1-ium-2-yl)methylene)-3-oxo-2-(((E)-1,3,3-

trimethylindolin-2-ylidene)methyl)cyclobut-1-en-1-olate (1):  

 

Folate derivative 7 (13 mg, 0.027 mmol), 5 (18.1 mg, 0.03 mmol) and DIPEA 

(200 µL) were dissolved in DMSO (1.1 mL) and the mixture was stirred for 6 h at 

rt. The reaction mixture was then purified using semi-preparative RP-HPLC (30 - 

90% acetonitrile in water, both solvents containing 0.1% TFA) to give the title 

compound. 

Blue solid; 7.67 mg (30% yield). ESI-MS: Calcd m/z for C54H60N11O8
+ [M + H]+: 

990.4621; found: 990.4622. 
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3.9 Synthesis of (Z)-2-(((E)-1-(6-((2-(4-(4-(((2-amino-4-oxo-3,4-

dihydropteridin-6-yl)methyl)amino)benzamido)-4-

carboxybutanamido)ethyl)amino)-6-oxohexyl)-3,3-dimethylindolin-2-

ylidene)methyl)-4-((1-(3,5-dinitrobenzyl)-3,3-dimethyl-3H-indol-1-ium-2-

yl)methylene)-3-oxocyclobut-1-en-1-olate (2): 

 

Folic acid derivative 7 (11 mg, 0.022 mmol), 6 (17.2 mg, 0.02 mmol) and DIPEA 

(200 µL) in DMSO (1 mL) were reacted for 6 h at rt. The reaction mixture was 

then purified using semi-preparative RP-HPLC (30 - 90% acetonitrile in water, 

both solvents containing 0.1% TFA) to give the title compound. 

Blue solid; 7.99 mg (32% yield). ESI-MS: Calcd m/z for C60H62N13O12
+ [M + 

H]+: 1156.4635; found: 1156.4638. 
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Abstract: 15 

CytoCy5S™, a quenched, red-shifted fluorescent probe, has been used to exploit the 16 

imaging potential of the nitroreductase (NTR) reporter gene platform. Its use has been 17 

reported in a number of publications, however there are discrepancies in both the reported 18 

structure and its physicochemical properties. Herein, we aim to highlight these discrepancies 19 

and to define the best candidate of the four substrates under study for preclinical work in 20 

NTR reporting by optical applications. 21 

We report the synthesis, purification and characterisation of four NTR substrates, including 22 

alternately described structures currently referred by the name CytoCy5S. A comparative 23 

NTR enzymatic assay was performed to assess the spectroscopic characteristics of the 24 

different reductively activated probes. The NTR expressing triple-negative breast carcinoma 25 

cell line, MDA-MB-231 NTR+, was employed to compare, both in vitro and in vivo, the 26 

suitability of these fluorescent probes as reporters of NTR activity. Comparison of the 27 

reporting properties was achieved by flow cytometry, fluorescence microscopy and optical 28 

imaging, both in vivo and ex vivo. 29 

This study evaluated the different spectroscopic and biological characteristics of the four 30 

substrates and concluded that substrate 1 presents the best features for oncological in vivo 31 

preclinical optical imaging. 32 

Keywords: 33 

CytoCy5S, Cyanine, Squaraine, Nitroreductase, NfsB, Near-Infrared Fluorescence Imaging 34 

  35 
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1. Introduction 36 

Fluorescence imaging (FLI) is a non-invasive, easy to perform and cheap imaging modality 37 

permitting real-time visualisation, which has become fundamentally important in preclinical 38 

studies of oncological malignancies [1]. This technique relies on the detection of the light 39 

emitted directly by an exogenous fluorescent probe, endogenous reporter gene or indirectly 40 

by the combination of a reporter gene and its corresponding fluorescent substrate. By 41 

employing an appropriate selection of reporter genes, FLI can be used to assess anatomical 42 

location of tumour cells and ongoing biological processes [2, 3]. 43 

Of particular relevance in biological applications is the exploitation of the near-infrared 44 

(NIR) region of the electromagnetic spectrum (650 - 950 nm) [4, 5]. This privileged region is 45 

characterised by reduced tissue absorption caused by haemoglobin or melanin and deeper 46 

tissue penetration compared to the visible region [6, 7]. Non-invasive FLI using NIR dyes 47 

has proven to be a very useful tool in preclinical oncology models for detection of metastasis 48 

and treatment response monitoring in orthotopic models [8] and has been widely explored in 49 

both preclinical and clinical settings for fluorescence image-guided surgery [9-12]. A 50 

number of fluorescent probes that emit light in the NIR region such as phthalocyanines [13], 51 

porphyrins [14] or BODIPY dyes [15] (Figure 1A I - III) have been employed as contrast 52 

agents or theranostics. However, so far cyanines and their squaraine analogues (Figure 1A 53 

IV - V) have been the preferred NIR dyes for the study of oncological conditions [4, 16].  54 
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 55 
Figure 1: Common scaffolds employed for molecular interrogation in biological applications.  56 

A) Phthalocyanine (I), porphyrin (II), BODIPY (III), cyanine structure (IV), squaraine structure (V). B) 57 
Different substrates evaluated in this study. Structures 1 and 4 referred as CytoCy5S in the literature. 58 
(Structures are represented in their cis conformation although this is not the most stable one [17]). 59 

One limitation of these “always-on” probes is the accumulation of background fluorescence 60 

in off-target tissues that limits the detection of the pathology under study. To overcome this 61 

challenge, activatable probes that are specifically activated at the pathology of interest are 62 

employed, providing better contrast that allows non-invasive FLI of different biological 63 

processes associated with tumour growth [18-21]. 64 

Several examples can be found where reductive properties of nitroreductases have been 65 

exploited for non-invasive FLI of tumorigenesis and hypoxia in tumour cells [22, 23] but 66 

also of bacterial infections and response to antibiotics [24-26], among others [27]. 67 

Furthermore, the NTR reporter gene can be exploited as a suicide gene, in a gene directed 68 

enzyme prodrug therapy setting (GDEPT), with high potential as a theranostic agent, 69 

affording therapy and therapy efficacy visualisation simultaneously [8, 28]. NTR-activatable 70 

probes, including CytoCy5S[29] or 6-chloro-9-nitro-5-oxo-5H-benzo[a]phenoxazine 71 

(CNOB)[30], are non-fluorescent prior to enzymatic metabolism and become highly 72 

fluorescent after the catalytic reaction. These NTR-activatable probes contain aromatic nitro 73 

groups that render them non-fluorescent. However, reduction of the nitro groups to the 74 
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corresponding hydroxylamines and/or amines by nitroreductases in the presence of FMN and 75 

NADH and NADPH restores fluorescence (Figure 2) [31, 32].  76 

 77 

Figure 2: NTR-mediated reduction of aromatic nitro groups 78 

NTR-mediated reduction of substrates 1 - 4 in the presence of FMN (bound to NTR) and NADH and NADPH 79 
to give the proposed product and restore fluorescence. 80 

CytoCy5S is the most extensively utilised NTR-activatable fluorescent probe. This 81 

compound has been widely exploited for different purposes [8, 24, 33-36] and despite its 82 

promising performance, there is a discrepancy in the literature with respect to its structure, as 83 

both 1 and 4 (Fig. 1B) have been referred to as CytoCy5S [37-39]. Both structures contain a 84 

3,5-dinitrobenzyl moiety, but while 1 is a squaraine derivative, 4 is a cyanine derivative. 85 

Consequently, there is also a lack of consensus in the literature regarding the spectroscopic 86 

properties and its behaviour in biological systems, which might hamper its use. The 87 

manufacturer describes CytoCy5S as a hydrophobic molecule, with limited availability in 88 

aqueous buffers, and with improved cell permeability [40], however Parker et al. [41] 89 

describe CytoCy5S as a photo-stable and water soluble compound. Furthermore, the reduced 90 

version of CytoCy5S is described by the manufacturer as a red-shifted substrate with 91 

excitation at 628 nm and emission at 638 nm [40], while Inglese et al. [42] reports the 92 

excitation and emission maxima for the reduced version to be 647 nm and 667 nm, 93 

respectively. No information on the structure was included [40, 42]. In our previous work, 94 

the final reduction product of 1 revealed excitation and emission maxima of 631 and 688 nm, 95 

respectively [8]. Finally, in a recent review [43], compound 4 is proposed as CytoCy5S and 96 
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the version we employed in the aforementioned work [8], 1, is described as a squaraine 97 

analogue of 4. 98 

Based on these discrepancies in the literature [8, 24, 33, 37, 40, 41, 43], we decided to 99 

compare four different NTR-activatable probes, two of them the alternative versions of 100 

CytoCy5S found in the literature. In addition, we included compound 2 (squaraine) as we 101 

believe that this compound might also have been used as CytoCy5S, however, also in order 102 

to investigate how the carboxylic acid tail that is present in both compounds 1 and 4 affects 103 

its behaviour in a biological system. Finally, we included compound 3 (squaraine) [37] since 104 

this NTR substrate was found to have superior spectroscopic properties to that of compound 105 

1 in an in vitro screening of different contrast agents (unpublished data). The four probes 106 

(Figure 1B) were synthesised and analysed in vitro and in vivo in order to shed light on their 107 

performance and properties with the intention of identifying the most suitable NIR dye for 108 

biological imaging of NTR. 109 

 110 

2. Materials and methods 111 

2.1. Synthesis and characterization of dyes 1 - 4 112 

Detailed protocols for the synthesis of 1 - 4 and investigations into increasing the yield 113 

for the synthesis of 1 are provided in the electronic supplementary material.  114 

2.2. NTR enzymatic assays 115 

A mixture containing 4.5% DMSO, 60 µM β-NADH in 10 mM Tris-HCl and 0.98 mM 116 

β-NADPH in 10 mM Tris-HCl was prepared and the reaction mixture completed as 117 

follows: For the blank, Tris-HCl 10 mM quantum satis (q.s.) and 0.2 µM NTR were 118 

added. For the references, 4 µM of either of 1 - 4 (in 90% DMSO and 10% Tris-HCl 100 119 



 121 

mM) q.s. was added. And for the study sample, 4 µM of either of 1 - 4 (in 90% DMSO 120 

and 10% Tris-HCl 100 mM) q.s. and 0.2 µM NTR were added (all reagents added in the 121 

stated order). After a two-hour reaction, the excitation and emission spectra of the 122 

different dyes reductively activated by NTR were acquired. Excitation and absorbance 123 

scans were performed from 500 to 700 nm and emission scans from 600 to 800 nm in 2 124 

nm steps and a 20 nm bandwidth in both cases. 125 

The optimal settings for excitation and emission were then used to measure the 126 

fluorescence intensity during the course of the enzymatic reactions (up to 24 h). The 127 

optimal settings for the different substrates were defined as follows: substrates 1 and 2: 128 

λex/λem 630/645 nm; substrate 3: λex/λem 650/670 nm; substrate 4: λex/λem 660/690 nm; 5 129 

nm bandwidth in all cases. Fluorescence intensity was analysed using a Tecan Spark® 130 

multimode microplate reader (Tecan Group Ltd., Männedorf, Switzerland) and data 131 

was plotted as the average ± SD. 132 

2.3. Cell lines and cell culture 133 

The human mammary carcinoma cell line MDA-MB-231 was employed for in vitro and 134 

in vivo assays. MDA-MB-231Luc+ (NTR-) cells were kindly provided by Prof. James 135 

Lorens (University of Bergen) and MDA-MB-231Luc+GFP+NTR+ (NTR+) cells have been 136 

generated in our lab as previously reported by McCormack et al. [8]. All cell types were 137 

cultured in DMEM (Sigma-Aldrich, Merck KGaA, Darmstadt, Germany) supplemented 138 

with 10% FBS and 1% L-glutamine (Sigma-Aldrich) in a humidified atmosphere at 37 139 

°C and 5% CO2. 140 

2.4. Flow Cytometry  141 

Comparative quantification of the fluorescence intensities obtained with the different 142 

substrates was performed by incubating 1 x 105 of the NTR+ and NTR- cells (negative 143 
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control) with each of them. First, different substrate concentrations (1 µM, 3 µM, 12 µM, 144 

25 µM) were tested, by incubating the cells for one hour. Once the best concentration 145 

was identified, different incubation times were assessed in triplicate (0.25 h, 0.5 h, 1 h, 2 146 

h, 4 h and 8 h). In all cases, after the incubation time the cells were rinsed with PBS, 147 

trypsinised and washed twice before resuspension in PBS supplemented with 2% BSA. 148 

Acquisition was performed in a BD LSR Fortessa flow cytometer (BD Biosciences, 149 

Franklin Lakes, NJ, USA) with a 640 nm excitation laser and a 670 ± 14 nm emission 150 

filter. The voltage of the detector was optimised for the brightest signal and kept at the 151 

optimal setting for all the different experiments. 152 

2.5. Fluorescence microscopy 153 

1 x 105 NTR+ cells were seeded in 35 mm µ-dishes with high glass bottom (Ibidi, 154 

Martinsried, Germany) and were incubated with 3 µM of each individual substrate for 10 155 

min. Uptake, fluorescence release and the fate of the reduced substrates in the cell was 156 

followed at 10 min intervals for up to 4 h. Cells were maintained at 37 °C and 5% CO2. 157 

Live cell imaging fluorescence was acquired using a confocal Andor Dragonfly 158 

microscope (Oxford Instruments America, Inc., Concord MA, USA) with a 40X 159 

magnification, with the 488 nm excitation filter and green emission filter (500 to 550 160 

nm) for GFP expression and the 637 nm excitation filter and the far red emission filter 161 

(663 to 738 nm) for NTR interrogation. All data collected were analysed with Imaris 9.6 162 

(Oxford Instruments, USA). 163 

2.6. General animal care 164 

All applicable institutional and/or national guidelines for the care and use of animals 165 

were followed. All experiments were approved by The Norwegian Animal Research 166 

Authority (Application ID 14128) and conducted according to The European Convention 167 
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for the Protection of Vertebrates Used for Scientific Purposes. NOD-scid IL2Rgnull mice 168 

(referred to as NSG) were bred at Vivarium (University of Bergen) from breeding pairs 169 

purchased from Charles River. Mice were housed in groups of ≤� 5 in individually 170 

ventilated cages (Techniplast S.p.A., Buguggiate, Italy). Observations for general 171 

condition and body weights were recorded twice a week. Mice were fed with low-172 

autofluorescence rodent imaging food (Rodent imaging diet D1001 from Research diets 173 

Inc., Brunswick, USA) from, at least, two weeks prior to experiments. Mice were 174 

depilated prior to image acquisition. When required, mice were anesthetised under 1.5% 175 

isoflurane (Abbot Laboratories Ltd., North Chicago, USA) and they were euthanised 176 

according to institutional guidelines. 177 

2.7. MDA-MB-231 subcutaneous xenografts 178 

NTR- and NTR+ MDA-MB-231 subcutaneous xenografts were implanted in the left flank 179 

of the scapular area by injection of 5 x 106 cells suspended in 100 µL DMEM with 25% 180 

Matrigel (Corning Inc., Waltham, USA). Tumour volumes were measured weekly with a 181 

digital calliper and calculated using the ellipsoid volume formula: Volume = π (length x 182 

width x height)/6. 183 

2.8. in vivo fluorescence imaging  184 

2.8.1. in vivo biodistribution 185 

For biodistribution and pharmacokinetic assessment of the four different substrates, 186 

when mean tumour volumes reached 120 ± 16 mm3, mice were intravenously injected 187 

with 100 µL of a 1 mM substrate solution. Optical imaging was performed at established 188 

time points (0 h, 0.75 h, 2 h, 4 h, 8 h, 12 h and 24 h) using an IVIS Spectrum imaging 189 

system (PerkinElmer Inc., Waltham, USA) with the following filter pairs (λex/λem) 190 

640/680 and 640/700 nm. To assess the background fluorescence, all mice were imaged 191 
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prior to injection. Analysis of the collected data was performed with the Living 192 

Imaging® software v4.5 (PerkinElmer Inc.). Regions of interest (ROI) in the lateral view 193 

were manually drawn around the tumours and fluorescence was expressed as radiance 194 

(p/s/cm2/sr). The radiance values reported were normalised by the mean of the NTR- 195 

radiance values.  196 

2.8.2. Longitudinal tumour imaging 197 

Tumours were longitudinally imaged three times over the course of the tumour 198 

progression. Imaging acquisitions were performed when the mean tumour volumes 199 

reached 222 ± 44 mm3, 300 ± 71 mm3 and 451 ± 115 mm3. 100 µL of a 1 mM substrate 200 

solution were injected intravenously and images were acquired after 0.75 hours for 1 and 201 

3 and after two hours for 2 using an IVIS Spectrum imaging system with λex = 640 nm 202 

and λem = 680 nm. To assess the background fluorescence, all mice were imaged prior to 203 

injection. Analysis of the collected data was performed as explained before. The radiance 204 

values reported were normalised by the mean of the NTR- radiance values. 205 

2.8.3. Ex vivo biodistribution 206 

Mice were euthanised 0.75 hours after i.v. administration of 1 and 3 and two hours after 207 

i.v 2 injection (100 µl, 1 mM) and tumours and organs were harvested. Organ 208 

biodistribution was assessed for each substrate in the NTR- and the NTR+ groups. 209 

Fluorescence intensities were measured and analysed as explained above. The reported 210 

values were normalised by the sum of the radiance values for all organs and they were 211 

presented as the percentage of biodistributed substrate in the organs of interest. 212 

2.9. Statistics 213 

Results are given as mean ± standard deviation (SD). All statistical tests were performed 214 

using GraphPad Prism v 6.0h (GraphPad Software Inc) and p < 0.05 was considered 215 
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significant. After randomisation, a one-way ANOVA was applied to ensure unbiased 216 

assignment of tumour volumes among the experimental groups. Comparison of means 217 

was performed using Student t-tests and one-way ANOVA. 218 

 219 

 Results and discussion 220 

3.1. Synthesis of 1 - 4 221 

Detailed discussion of the different synthetic approaches for 1 – 4, purification strategies 222 

and characterisation by 1H-NMR and high-resolution mass spectrometry (HRMS) are 223 

provided in the electronic supplementary material (Figures S1 to S22). 224 

3.2. Spectroscopic properties and performance of the four NTR substrates in an 225 
enzymatic assay 226 

After two hours incubation with NTR, absorbance, excitation and emission spectra 227 

(Figure S24C and Figure 3A) revealed overlapping excitation and emission maxima for 1 228 

and 2 and higher, red-shifted properties for 3 and 4, which presented the highest 229 

bathochromic shift and the largest Stokes shift (Table 1). For 3, this far-red shift is a 230 

result of the introduction of the methoxy groups, while for 4, this can be attributed to 231 

both the sulfonate group and the lower planarity of cyanines compared to the squaraine 232 

derivatives, which renders substrate 4 less conformationally restricted [17]. It was also 233 

observed that 1 and 2 exhibit an emission intensity in the same range as their 234 

corresponding excitation, although 2 exhibits a markedly lower absolute fluorescence 235 

intensity. 3 and 4, however, exhibit high excitation intensities but very low emission 236 

intensities (Table 1). The UV-vis-NIR absorbance spectra of the quenched substrates and 237 

the vis-NIR absorbance spectra of the reduced substrates can be found in the electronic 238 

supplementary material (Figure S24). 239 
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Table 1: General spectroscopic properties from the substrates under study.  240 

Substrate 
Excitation 

max. (nm) 

Emission 

max. (nm) 

Stokes Shift 

(nm) 

Excitation intensity 

(RFU) 

Emission intensity 

(RFU) 

1 628 646 18 18500 18800 

2 628 646 18 3000 4300 

3 650 670 20 25000 4300 

4 666 692 26 205000 28000 
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241 
Figure 3: Spectral characterisation of substrates 1 - 4 242 

A) Chemical structures of substrates 1 – 4 and their respective excitation and emission spectra after two hours 243 
incubation of 4 µM of substrate and 0.2 µM NTR enzyme. The Y axis represents both the excitation and 244 
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emission fluorescence intensity maxima expressed in Relative Fluorescence Units (RFU) for each substrate. 245 
For each dye the maximum of the scale is adjusted to the highest excitation RFU as follows: 1 (Max: 19000 246 
RFU), 2 (Max: 4500 RFU), 3 (Max: 25000 RFU) and 4 (Max: 210000 RFU). B) Kinetic assessment of NTR 247 
reduction of the four different substrates, starting 3 minutes after NTR addition and over 24 hours, expressed in 248 
Relative Fluorescence Units (RFU) as arbitrary units (a.u.). Blank consists of DMSO, β-NADH and β-NADPH 249 
in Tris-HCl buffer and NTR (0.2 µM). Reference contains DMSO, β-NADH and β-NADPH in Tris-HCl buffer 250 
and substrate under study (4 µM). Sample is composed of DMSO, β-NADH and β-NADPH in Tris-HCl buffer, 251 
substrate under study (4 µM) and NTR (0.2 µM). C) Overlay of the four different reduction kinetic curves for 252 
the reference and the sample, for easier visual comparison of the fluorescence intensity of the different 253 
substrates before and after reduction. From 3 minutes after enzyme addition and up to 24 hours. 254 

From the excitation and emission spectra, the optimal fluorescence settings for each 255 

substrate were selected to perform a kinetic assay in which the fluorescence intensity was 256 

monitored for 24 hours. As shown in Figure 3B, 1, 3 and 4 displayed a similar kinetic 257 

profile reaching the maximum fluorescence emission intensity at around 0.75 hours, 258 

while maximum fluorescence for 2 was reached after seven hours. Of note, 1 exhibits the 259 

steepest reduction in fluorescence intensity of all the examined substrates (Figure 3C). 260 

Interestingly, despite the low absolute fluorescence intensity of 2, this is the substrate 261 

with the highest ratio of emission intensity at any given time between the reference and 262 

the sample, mainly due to the low fluorescence background it exhibits in the presence of 263 

NADH and NADPH (Figure 3C). The three other substrates showed higher non-specific 264 

activation by the NADH and NADPH present in the mixture. All the data suggest that the 265 

four fluorescent probes are suitable substrates of NTR and worthy of biological 266 

evaluation in cell cultures. 267 

3.3. in vitro performance of the four NTR substrates 268 

The suitability of the four substrates for intracellular interrogation of NTR expression 269 

was assessed by incubation of NTR- and NTR+ MDA-MB-231 cells with different 270 

substrate concentrations (1 – 25 µM), followed by flow cytometry analysis (Figure 4A). 271 

The mean fluorescence intensity (MFI) of the NTR+ cells increased with increasing 272 
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concentrations of the substrates, plateauing at 12 µM for 1 and 2. In contrast, a plateau 273 

was not observed for 3, demonstrating a high dependence of this substrate on the 274 

concentration. Indeed, MFI values of around 12 x 103 were obtained with 1 µM of 2 and 275 

3 µM of 1, while 12 µM of 3 were required to obtain MFI in the same range. The MFI of 276 

NTR- cells was notably lower but also increased with increasing concentrations of the 277 

substrates, except for 2 where a maximum was reached at 12 µM. 4 performed poorly at 278 

any given concentrations in both cell types. For 2, NTR+/NTR- ratios were very similar at 279 

all concentrations whereas for 1 and 3 the highest ratios were achieved at 12 µM, due to 280 

a higher MFI of the NTR+ cells for 1 and a reduced MFI of the NTR- cells for 3, at this 281 

concentration. Substrate 3 shows the highest NTR+/NTR- ratios followed by 1 and 2 with 282 

comparable ratios.  283 

 284 

Figure 4: Flow cytometry analysis 285 

A) Dose-dependent fluorescence intensity was assessed by incubation of NTR- and NTR+ cells for one hour 286 
with increasing concentrations of the four substrates. Values are reported as Mean Fluorescence Intensity 287 
(MFI). NTR+/NTR- ratios represented for each substrate at the different studied concentrations. B) With 3 µM, 288 
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time-dependent fluorescence intensity was determined at different incubation times with NTR- and NTR+ cells 289 
(0.25 h, 0.5 h, 1 h, 2 h, 4 h and 8 h). NTR+/NTR- ratios represented for each substrate at the different studied 290 
time points. 291 

In order to examine the dependency of MFI on incubation times, the suboptimal 292 

concentration of 3 µM was chosen and different incubation times (0.25 h to 8 h) were 293 

assessed (Figure 4B). For the NTR- cells, the MFI showed a similar trend for the four 294 

different substrates with the highest values observed at the longest incubation times. 295 

Non-specific activation of the substrates was observed, however not significantly higher 296 

compared to the unstained cells (Figure S25). For the NTR+ cells, the fluorescence 297 

intensity of 1 and 3 plateaued at two hours, in accordance with the observations in the 298 

kinetic enzymatic assay where the fluorescence intensity started to decrease after three 299 

hours. The results for 2 are also in accordance with the delayed reduction reaction 300 

observed during the kinetic assay (Figure 3B), with MFI values reaching the maximum at 301 

eight hours, although in the same range for two, four and eight hours. Interestingly, the 302 

NTR+/NTR- ratios for all substrates did not increase with increasing incubation times, 303 

reaching their maximum after 0.5 h.  304 

Based on the spectroscopic data, similar fluorescence behaviour was expected for 3 and 305 

4, however, as can be seen in Figures 4A and 4B, the sulfonated 4 exhibited almost no 306 

fluorescence enhancement at any of the given conditions. In contrast, substrate 3 resulted 307 

in modest MFI values when incubated in NTR- cells and a high fluorescence 308 

enhancement in NTR+ cells, rendering this substrate around 200 times brighter after 309 

reduction (Figure 4B). 1 and 2 showed comparable results, both under concentration- and 310 

time-dependent conditions, with NTR+/NTR- ratios in the same range.  311 

The flow cytometry results suggest different substrate-cell interactions and confocal 312 

fluorescence microscopy was performed to investigate the intracellular behaviour of the 313 
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substrates. Qualitative analysis of the fluorescence live imaging of NTR+ cells incubated 314 

with the different substrates (3 µM) corroborated the previous observations, yielding 1 315 

and 2 as the brightest substrates and highlighting the low emission intensity from 3 and 4 316 

(Figure S23). As can be seen in Figure 5, substrate 4 required longer incubation times for 317 

the signal to be observed. From the images obtained, cellular accumulation of this 318 

substrate occurred in discrete vesicle-like structures, in contrast to the more 319 

homogeneous staining observed for the other substrates. 1, 2 and 3 displayed 320 

homogeneous perinuclear staining. While the localisation of these three substrates was 321 

the same, the kinetics of accumulation of 3 differed from the others. The first two 322 

substrates appear to sustain comparable fluorescence intensity during four hours of 323 

incubation, while the fluorescence intensity of 3 starts decaying after 90 minutes of 324 

incubation, in line with the steeper decrease in MFI observed in flow cytometry (see 325 

video S1 - S4 for full time lapse for each substrate). To get a clearer idea of the 326 

biological behaviour of these substrates, in particular regarding tumour biodistribution, 327 

they were further investigated in murine xenograft models. 328 
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 329 

Figure 5: Live cell fluorescence confocal microscopy imaging 330 

Uptake, fluorescence enhancement and localisation of the NTR-reduced metabolites were assessed over time 331 
and up to four hours. Cells were incubated with 3 µM of each substrate for ten minutes and sequential images 332 
were acquired every ten minutes for 240 minutes. Images of the most representative time points are presented 333 
as the merged images of the green channel (GFP; excitation: 488 nm and emission: 500 - 550 nm) and far-red 334 
channel (NTR-substrate; excitation: 637 nm and emission: 663 – 738 nm) obtained at 40X magnification. GFP 335 
is included to allow localisation of the cells in the field of view. Images are displayed in the optimal far-red 336 
channel intensity for each of the substrates. A video with the complete time-lapse for each substrate is included 337 
in the electronic supplementary material (Video S1 – S4). 338 

 339 
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3.4. in vivo biodistribution 340 

To understand the pharmacokinetic properties of these substrates, in vivo biodistribution 341 

studies over a course of 24 hours were performed and compared in a subcutaneous 342 

xenograft model. Mice bearing NTR- or NTR+ subcutaneous tumours in the scapular 343 

region (indicated by the pink sphere in Figure 6A) were intravenously injected with 100 344 

µL of a 1 mM substrate solution and imaging was performed at the optimal excitation 345 

and emission wavelengths for each substrate (n = 3 per substrate and cell type). As 346 

shown in Figure 6A, fluorescence from the NTR+ tumours was observed 0.75 hours post-347 

intravenous administration with the exception of 2, whose signal became obvious two 348 

hours post-injection.  349 
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 350 

Figure 6: in vivo pharmacokinetic assessment  351 

A) NIR FLI of NTR- and NTR+ xenografts (n = 3 per group per substrate) at the two most representative time 352 
points acquired, one and two hours, after i.v. injection of 100 µL of a 1 mM substrate solution. Accumulation in 353 
the NTR+ tumours is observed after one-hour injection of 1 and 3 and after two hours for 2. Substrate 4 354 
accumulates indistinctly in NTR- and NTR+ tumours at both time points. B) Fluorescence intensity of NTR- and 355 
NTR+ tumours over time and up to 24 hours for each substrate. Data expressed as radiance in px108/s/cm2/sr. 356 
For substrate 4, fluorescence intensity is consistently higher in NTR- than in NTR+ xenografts. C) NTR+/NTR- 357 
ratios calculated to determine the time point with the best contrast for each substrate. One hour for 1 and 3 and 358 
two hours for 2 (dashed black box) were found optimal. 359 

 360 

 361 
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Radiance decreased with time for substrates 1, 3 and 4 after 0.75 h, 2 h and 0.75 h 362 

respectively, and increased with time for substrate 2 reaching the maximum at 8 h 363 

(Figure 6B). As seen in Figure 6C, the best contrast (dashed black box in Figure 6C) for 364 

1 and 3 was observed 0.75 h post-injection, with NTR+/NTR- ratios of 1.5 and 1.8 365 

respectively, and after two hours for 2 with an NTR+/NTR- ratio of 1.3. These time 366 

points were employed for longitudinal imaging. The fluorescence intensity of 4 was 367 

consistently higher in NTR- compared to NTR+ tumours at all time points studied (Figure 368 

6B), thus it was excluded from further in vivo experiments. Interestingly, strong 369 

fluorescence intensity decay was observed for 1 after 0.75 h, in accordance with the 370 

observations in vitro. Also, the decrease in fluorescence emission of 3 after two hours is 371 

in line with the fluorescence decay observed by confocal microscopy (Figure 5). 372 

3.5. Longitudinal tumour imaging 373 

Further longitudinal FLI studies were performed at different mean tumour volumes, with 374 

the selected incubation times for each substrate. Mice bearing NTR- and NTR+ tumours  375 

(n = 6 per substrate and cell type) were injected with the three different substrates under 376 

study (1 - 3) and imaged 0.75 hours or two hours after injection (Figure 7A).  377 

 378 
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 379 

Figure 7: Longitudinal in vivo optical imaging of MDA-MB-231 NTR- and NTR+ subcutaneous xenografts and 380 
ex vivo biodistribution 381 

A) Representative NIR fluorescence images of NTR- and NTR+ xenografts (n = 6 per group and substrate) at 382 
different mean tumour volumes. B) NTR+/NTR- ratios calculated for the different mean tumour volumes. For 1 383 
and 2, average radiance was significantly higher in the NTR+ group at any mean tumour volume (with p-values: 384 
**, p < 0.01 and *, p < 0.05 respectively at 220 mm3; ***, p < 0.001 for both at 300 mm3 and ****, p < 0.0001 385 
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for both at 450). The NTR- and NTR+ groups imaged with 3 showed no significant differences in average 386 
radiance until mean tumour volumes reached 450 mm3 (**, p < 0.01). C) ex vivo biodistribution assessment 387 
after i.v. injection of 100 µL of a 1 mM substrate solution. Values expressed as radiance in px109/s/cm2/sr. 1: 388 
NTR- tumour; 2: NTR+ tumour 3: Interscapular brown adipose tissue (BAT); 4: Liver; 5: Kidneys; 6: Stomach; 389 
7: Intestine; 8: Muscle. D) ex vivo biodistribution of the different substrates represented as % of sum average 390 
radiance in all organs. It shows hepatobiliary clearance of 1 and 3 and high biodistribution of the former in the 391 
gastrointestinal tract. 2 biodistributes, to all organs studied, in a more homogenous manner than the other two 392 
substrates. Higher biodistribution in NTR+ tumours than in NTR- was observed in all instances. 393 

For 1 and 2 average radiance was significantly higher in the NTR+ group at any mean 394 

tumour volumes. NTR+/NTR- ratios through the longitudinal image range for 1 from 1.7 395 

± 0.5 to 2.1 ± 0.2 (p-values from 0.01 to 0.0001) and for 2 from 1.3 ± 0.2 to 2.2 ± 0.4 (p-396 

values from 0.05 to 0.0001). In the case of 3, no significant differences in average 397 

radiance were observed until mean tumour volumes reached 450 mm3 when NTR+/NTR- 398 

ratio was 1.9 ± 0.6 (p < 0.01) (Figure 7B). As observed in Figure 4A, substrate 3 requires 399 

higher concentrations (12 µM) to achieve fluorescence intensities in the range of those 400 

obtained with 3 µM of 1 or 1 µM of 2. It was also observed that, due to the low 401 

brightness of substrate 3, fluorescence intensities after 0.75 h were closer to background 402 

fluorescence than those from the other two substrates. NTR+/background ratios for 403 

substrates 1, 2 and 3 were 3.8 ± 2.1, 14.0 ± 5.9 and 2.9 ± 1.3, respectively. From these 404 

results it can be concluded that tumour contrast increased with the increase of the mean 405 

tumour volumes for all substrates. The quantitative comparison of fluorescence intensity 406 

as a function of time in NTR+ vs. NTR- xenografts over the progression of the tumours 407 

allowed us to conclude that 1 is the best substrate for in vivo NTR interrogation even at 408 

small tumour volumes, with the highest significance between groups.  409 

3.6. ex vivo biodistribution 410 

To acquire a deeper understanding of the substrates’ biodistribution, 0.75 hours post-411 

injection of 100 µL of a 1 mM solution of 1 and 3 and two hours post-injection of 2, 412 



 138 

NTR- and NTR+ tumour-bearing mice were euthanised, their organs excised and imaged 413 

(Figure 7C). The percentage of biodistributed substrate was calculated and plotted in 414 

Figure 7D. Consistent with the in vivo observations (Figure 6A) high hepatobiliary 415 

uptake is observed for 1 and particularly for 3, compatible with their highly lipophilic 416 

character. 1 also exhibits high fluorescence signal in the gastrointestinal tract with uptake 417 

in the stomach and with high uptake in the large intestine, due to activation by bacterial 418 

nitroreductases present in the GI tract [8, 33]. 2 exhibits a homogeneous accumulation 419 

pattern in all organs, without clear hepatobiliary or renal excretion pathway evidence, 420 

and with a slightly higher accumulation in NTR+ tumours compared to other organs. 421 

Residual signal is also observed for substrate 2 in control organs such as muscle and in 422 

mitochondria-enriched tissues, with known nitroreductase activity [44], such as the 423 

interscapular brown adipose tissue. 424 

 425 

4. Conclusions 426 

We have previously demonstrated that CytoCy5S is useful for non-invasive preclinical NIR 427 

NTR reporter gene imaging in cancers in vivo [8]. In the present study, we set out to clarify 428 

an ongoing discrepancy regarding the structure and physicochemical properties of CytoCy5S 429 

in order to establish which of the structures denoted CytoCy5S is best suited for preclinical 430 

studies in oncology models.  431 

The introduction of the methoxy group in 3 and the sulfonate and cyanine scaffold in 4 432 

resulted in a modest bathochromic shift compared to 1 and 2. All compounds were 433 

confirmed as NTR substrates with delayed kinetics observed for 2 and low emission 434 

intensities for 3 and 4. In vitro, 3 was found to display the highest NTR+/NTR- ratio, 435 

followed by 1. 4 performed poorly in vitro and in vivo. These results are in line with 436 
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previous studies which reported that due to the contribution of the sulfonate group to 437 

increased fluorescent probe polarity these compounds exhibit limited lipid bilayer penetrance 438 

[45, 46]. Despite its promising performance in vitro, 3 did not prove useful for discerning 439 

between NTR- and NTR+ until tumours reached 450 mm3 due to the limited brightness of this 440 

substrate in vivo. This substrate might benefit from an increase in concentration for in vivo 441 

applications, and although this may yield better imaging results, the cost may make in vivo 442 

use of this probe impracticable. 1 and 2 provided similar suitability for NTR interrogation, 443 

being 1 slightly more sensitive at smaller tumour volumes and presenting faster kinetics. 444 

In conclusion, the spectral and biological properties of substrates 1 – 4 have been discerned 445 

and compared. NIR dye 1 was found to be best suited for imaging of NTR, both in vitro and 446 

in vivo, with superior kinetics and lower background fluorescence from surrounding tissues 447 

allowing a better delineation of tumours in our model than 2. The latter result could 448 

potentially be explained by 2 having a methyl group and thus is expected to more easily 449 

permeate across cell membranes. Another key advantage of 1 over 2 is the presence of the 450 

carboxylic functionality, which can be exploited for further derivatisation or conjugation to 451 

biomolecules of interest for biomarker interrogation, making substrate 1 the ideal candidate 452 

for further studies. Although the substrates have been investigated in an oncology model we 453 

believe that these results can be extrapolated to other uses as already shown elsewhere [24]. 454 

 455 
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Synthesis of dyes: 692 

The Fischer bases that were required for the synthesis of the asymmetric substrates  693 
1 - 4 were obtained through N-alkylation of 2,3,3-trimethyl-3H-indole, its 5-methoxy 694 
analogue or 1,1,2-trimethyl-1H-benzo[e]indole (Scheme S1). The crude yields ranged 695 
from 24% to 94% and the intermediates, with the exception of the sulfonated 7, were 696 
employed in further steps without purification, as we found that except for 7, 697 
purification of the intermediates did not give any increase in the yields for the next 698 
steps. The introduction of the sulfonate functionality that was required for substrate 4 699 
proved as a challenge, as several isomers of 7 were formed during sulphonation of the 700 
benzoindole. The sulfonated Fischer base 13 and its precursor 7 were purified by C18 701 
flash chromatography to give the target compounds in modest yields of 14% and 702 
32%, respectively).  703 

 704 

4 
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 705 

Scheme S1. Synthesis of Fischer bases 8 - 13 that have been employed in the synthesis of NIR dyes 1 – 706 
4. 707 

As shown in Scheme S2, one-pot condensation of the various Fischer bases with 708 
either squaric acid or malonaldehyde bis(phenylimine) successfully gave substrates 1, 709 
3 and 4. In all cases, the reactions also gave the undesired symmetric side products, 710 
which resulted in overall low yields (1% to 16%) for the target dyes. The particularly 711 
low yield for substrate 4 is due to the co-elution with the symmetric dinitrobenzyl side 712 
product, which made the separation by conventional purification methods 713 
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unsuccessful. In the end, this material was purified by attaching it to a 2-chlorotrityl 714 
chloride resin, which was washed thoroughly prior to release and purification of 4 715 
(see experimental section below). The product was isolated with acceptable purity but 716 
signals from a minor isomer can still be observed in the 1H-NMR spectrum of 717 
substrate 4. 718 

 719 

Scheme S2. Synthesis of NIR dyes 1 – 4. 720 
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For substrate 2, the one-pot approach proved to be unsuccessful as only the symmetric 722 
side product containing N-methylated side chains could be isolated from the reaction 723 
mixture. Substrate 2 was ultimately obtained through first synthesis of the mono-724 
substituted methyl squaraine intermediate (Scheme S2), which after conversion to 14 725 
under acidic conditions followed by condensation with 8 gave substrate 2 in a 726 
modestly higher yield than what was obtained for the other three substrates. 727 

 728 

Based on the results for the synthesis of substrate 2 and in order to reduce the 729 
formation of the symmetric side products, a stepwise introduction of methylene bases 730 
was attempted also for substrate 1 (see Scheme S3) using either methyl or ethyl 731 
squarate as starting material. 732 

 733 
Scheme S3. Stepwise introduction of methylene bases [1-3]. 734 

To our dismay, these reactions produced complex mixtures, which translated into 735 
tedious purification procedures for each intermediate. Interestingly, the 3,5-736 
dinitrobenzyl containing 8 gave particularly low conversion, both at room temperature 737 
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conditions with 15 were largely unsuccessful. In the end, the stepwise approach only 740 
resulted in an increase time requirement while the overall yield was not improved. 741 

 742 

In a final attempt to improve the synthetic route to 1, a solid supported approach was 743 
investigated (Scheme S4) [4]. Toward this end, 9 was immobilized on a 2-chlorotrityl 744 

chloride resin followed by reaction with squaric acid at rt and at 80 °C. Unfortunately, 745 

test-cleavage of a small amount of the resulting resin bound material did not provide 746 
the desired product. On the other hand, reaction of 18 with immobilised 9 (Scheme 747 
S4) in the presence of a carbodiimide (DIC) proved successful for the synthesis of 1 748 
[4]. Overall, the solid supported approach reduced the number of side products 749 
formed, which alleviated the purification. Nevertheless, the overall yield of substrate 750 
1 was not increased and together with the cost and the extra time required this 751 
approach did not prove to be advantageous. 752 

 753 
Scheme S4: Synthesis of substrate 1 using a solid supported approach 754 
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Materials and instruments 755 

The reactants and reagents employed in the synthetic work were obtained from 756 
Sigma-Aldrich and were used as received. Reactions were generally carried out under 757 

argon atmosphere using overnight oven-dried equipment (130 °C) that was cooled 758 

down under reduced pressure and purged with argon prior to use. Solid phase 759 
syntheses were performed using a 2-chlorotrityl chloride polystyrene (1% DVB) resin 760 
(100 – 200 mesh, 1.14 mmol/g loading) provided by Novabiochem using 10 mL 761 
reactor vials (Biotage). Dry DCM was obtained from an anhydrous solvent delivery 762 
system (SPS-800 system from M. Braun GmbH, Garching, Germany) and kept in a 763 
Schlenk flask. Acetone, ethanol and methanol were dried over 3Å molecular sieves 764 
(10% w/v) overnight and stored under argon.  765 

Flash chromatography was performed using silica (Silica gel 60, 0.040 – 0.063 mm, 766 
Merck) using manually packed glass columns or on a Puriflash XS 420 system 767 
(Interchim, Montlucon Cedex, France) using GraceTM RevelerisTM SRC C18 768 
cartridges (40 µm, 40g, Grace Discovery Sciences, Maryland, USA). Preparative 769 
high-performance liquid chromatography (HPLC) was performed on a Gilson 321 770 
multisolvent pump with a Dionex Ultimate 3000 variable wavelength detector using 771 
an Ascentis C18 (250 x 21.2 mm, 100 Å, 5 µm) column with mixtures of acetonitrile 772 
and water (both containing 0.1% TFA) as eluent.  773 

Analytical HPLC was performed on a 1290 Infinity II Flexible pump with a 1260 774 
Infinity II DAD WR detector using a ZORBAX RRHD Eclipse plus 300-SB C18 (50 775 
x 2.1 mm, 300 Å, 1.8 µm) column with mixtures of acetonitrile and water (both 776 
containing 0.1% TFA) as eluent. High-resolution mass spectra were recorded with an 777 
AccuTOFTM mass spectrometer operated with an orthogonal electrospray ionization 778 
(ESI) source, an orthogonal accelerated time of flight (TOF), single stage reflectron 779 
mass analyzer and a dual micro channel plate (MCP) detector. NMR spectra were 780 
recorded using either a Bruker BioSpin AV500 and/or a Bruker BioSpin Ascend 781 
spectrometer operating at 850 MHz with an inverse-detected triple resonance (TCI) 782 
cryoprobe for 1H NMR and 2D NMR spectra of the final compounds.  783 
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Methods: 784 

3,5-Dinitrobenzyl iodide (5): 785 

 786 

3,5-Dinitrobenzyl chloride (5.00 g, 23 mmol) and KI (8.87 g, 53 mmol) were 787 
dissolved in dry acetone (50 mL) under an argon stream. The resulting orange 788 
mixture was stirred for 20 h at rt. Thereafter, the orange solution was filtered and 789 
washed with cold acetone (3 x 20 mL). The solvent was removed under reduced 790 
pressure to afford the title compound, which was used in the next step without 791 
further purification. 792 

Yellow-orange solid; 7.84 g (quantitative crude yield). 1H-NMR (500 MHz, 793 
(CD3)2SO) δ = 8.73 (d, J = 2.1, 2H), 8.68 (t, J = 2.1, 1H), 4.88 (s, 2H). 794 

Analytical data are in accordance with those reported previously [5] 795 

 796 

5-Methoxy-2,3,3-trimethyl-3H-indole (6): 797 

 798 

3-Methyl-2-butanone (3.7 mL, 34.6 mmol) and 4-methoxyphenylhydrazine (3.00 799 
g, 17.2 mmol) were dissolved in acetic acid (30 mL) and the resulting pale pink 800 

mixture was heated at 100 °C (oil bath) for 2.5 h. The mixture was allowed to cool 801 

to rt and the solvent was evaporated under reduced pressure. The resulting dark 802 
brown residue was separated between ethyl acetate (30 mL) and a saturated 803 
solution of NaHCO3 (60 mL). The organic phase was dried over MgSO4, filtered 804 
and the solvent was removed using a rotary evaporator to give the title compound. 805 
This material was used in the next step without further purification.  806 
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Brown oil; 2.22 g, (68% yield). 1H-NMR (500 MHz, (CD3)2SO): δ = 7.30 (d, J = 807 
8.3, 1H), 7.03 (d, J = 2.6, 1H), 6.80 (dd, J = 8.3, 2.6, 1H), 3.76 (s, 3H), 2.15 (s, 808 
3H), 1.22 (s, 6H).  809 

Analytical data are in accordance with those reported previously [6] 810 
 811 

1,1,2-Trimethyl-1H-benzo[e]indol-3-ium-7-sulfonate (7): [7] 812 

 813 

1,1,2-Trimethyl-1H-benz(e)indole (530 mg, 2.5 mmol) was cooled in an ice/water 814 
bath and partially dissolved in sulphuric acid (1 mL). To his mixture, fuming 815 
sulfuric acid (2.5 mL) was added dropwise and the mixture was stirred for 30 min 816 
after which the cooling bath was removed and stirring continued at rt overnight. 817 
The resulting mixture was poured into ice/water (50 mL) and the mixture was 818 
stirred for 30 min. Concentrated KOH was then added until basic pH (pH = 12). 819 
The mixture was placed in an ice/water bath to induce precipitation and the pearly 820 
yellow solid obtained was extracted with hot methanol. The solid material was 821 
isolated by filtration and dried under reduced pressure. The dried residue was then 822 
triturated with ethyl acetate, filtered and collected after drying by vacuum suction 823 
and it was further dried under vacuum. The crude product was purified using RP 824 
flash chromatography (1 - 50% acetonitrile in water, both solvents containing 10 825 
mM of NH4OAc) to give the title compound. 826 

Yellow solid; 228 mg (32% yield). 1H-NMR (500 MHz, (CD3)2SO): δ 8.21 (d, J = 827 
1.8, 1H), 8.07 (d, J = 8.7, 1H), 7.95 (d, J = 8.5, 1H), 7.78 (dd, J = 8.7, 1.8, 1H), 828 
7.69 (d, J = 8.5, 1H), 2.31 (s, 3H), 1.47 (s, 6H). The spectrum shows presence of a 829 
minor isomer. 830 

Analytical data are in accordance with those reported previously [8] 831 
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1-(3,5-Dinitrobenzyl)-2,3,3-trimethyl-3H-indol-1-ium iodide (8): [6] 833 

 834 

Iodide 7 (15.92 g, 51.7 mmol) was dissolved in 1,2-dichlorobenzene (65 mL) 835 
under argon and 2,3,3-trimethylindolenine (8.4 mL, 52.3 mmol) was added and 836 
the resulting brown mixture was stirred for 6 h at 90 °C (oil bath). The mixture 837 
was allowed to cool to rt, upon which a precipitate was formed. The red solid was 838 
isolated by filtration and washed with dichlorobenzene (2 x 25 mL) and diethyl 839 
ether (3 x 30 mL). The resulting yellow solid material was dried under vacuum to 840 
give the title compound, which was used in the next step without any further 841 
purification. 842 

Yellow solid; 22.24 g (92% crude yield). 1H-NMR (500 MHz, CD3OD): δ = 9.04 843 
– 9.00 (m, 1H), 8.60 – 8.55 (m, 2H), 7.90 – 7.81 (m, 2H), 7.69 (t, J = 7.7, 1H), 844 
7.62 (t, J = 7.7, 1H), 6.15 (s, 2H) 1.73 (s, 6H). One CH3 signal assumed to be 845 
hidden by solvent signal. LR-ESI-MS: Calcd. m/z for C18H18N3O4+ [M]+: 340.1; 846 
found: 340.2. 847 

Analytical data are not reported previously 848 
 849 

1-(5-Carboxypentyl)-2,3,3-trimethyl-3H-indol-1-ium iodide (9): 850 

 851 

2,3,3-Trimethyl-3H-indolenine (3.2 mL, 20.0 mmol), 6-bromohexanoic acid 852 
(4.826 g, 24.7 mmol) and KI (4.168 g, 25.1 mmol) were dissolved in acetonitrile 853 
(140 mL) and the resulting mixture was stirred at 85 °C (oil bath) for 72 h under 854 
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argon atmosphere. After cooling to rt, the resulting red solution was filtered to 855 
remove the beige solid (KBr) and the filtrate was concentrated using rotary 856 
evaporation. The brown oily residue was mixed with warm (65 °C) ethyl acetate 857 
(500 mL) and was slowly cooled (kept in the fridge overnight). The excess of 858 
solvent was removed by rotary evaporation to give the title compound, which was 859 
used in the next step without any further purification. 860 

Grey solid; 5.275 g (66% crude yield). 1H-NMR (500 MHz, (CD3)2SO): δ = 12.00 861 
(bs, 1H), 8.00 – 7.95 (m, 1H), 7.87 – 7.82 (m, 1H), 7.65 – 7.60 (m, 2H), 4.45 (t, J 862 
= 7.8, 2H), 2.84 (s, 3H), 2.23 (t, J = 7.3, 2H), 1.89 – 1.80 (m, 2H), 1.60 - 1.51 (m, 863 
2H), 1.54 (s, 6H), 1.47 – 1.38 (m, 2H). LR-ESI-MS: Calcd. m/z for C17H24NO2+ 864 
[M]+: 274.2; found: 274.2. 865 

Analytical data are in accordance with those reported previously [9] 866 
 867 

1,2,3,3-Tetramethyl-3H-indol-1-ium iodide (10): 868 

 869 

In three separate 10 mL microwave vials, 2,3,3-trimethylindolenine (0.96 mL x 3, 870 
17.9 mmol in total) and iodomethane (0.56 mL x 3, 27.0 mmol in total) were 871 
dissolved in acetonitrile (2.0 mL x 3).  The vials were sealed, and the reaction 872 

mixtures were heated at 130 °C in an oil bath for 30 min. The mixtures were 873 

allowed to cool to rt and then further cooled in an ice/water bath. The solvent was 874 
decanted, and the pink needle-shaped crystals from each vial were pooled and 875 
isolated by filtration, washed with cold ethanol and dried under vacuum. The 876 
crude product was used in the next step without further purification. 877 

Pink crystalline solid; 5.099 g (94% crude yield). 1H-NMR (500 MHz, (CD3)2SO): 878 
δ = 7.92 – 7.89 (m, 1H), 7.84 – 7.81 (m, 1H), 7.65 – 7.59 (m, 2H), 3.97 (s, 3H), 879 
2.76 (s, 3H), 1.52 (s, 6H); LR-ESI-MS: Calcd. m/z for C12H16N [M]+: 174.1; 880 
found: 174.2. 881 

Analytical data are in accordance with those reported previously [10]  882 
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1-(3,5-Dinitrobenzyl)-5-methoxy-2,3,3-trimethyl-3H-indol-1-ium iodide (11): 883 

 884 

To a solution of 6 (1.11 g, 5.9 mmol) in 1,2-dichlorobenzene (6 mL), 5 (2.72 g, 885 
8.8 mmol) was added. The reaction mixture was heated to reflux for 30 min and it 886 
was then allowed to cool to rt before it was cooled further in an ice/water bath. 887 
Once crystallization started, the mixture was heated to reflux for another 2 h and 888 
cooled to rt before the precipitate that formed was isolated by filtration and 889 
washed with 1,2-dichlorobenzene and diethyl ether and dried under vacuum to 890 
give the title compound. 891 

Pale orange powder; 1.36 g (48% crude yield). 1H-NMR (500 MHz, (CD3)2SO): δ 892 
= 8.82 (t, J = 2.0, 1H), 8.62 (d, J = 2.0, 2H), 7.77 (d, J = 8.9, 2.5, 1H), 7.53 (d, J = 893 
2.5, 1H), 7.11 (dd, J = 8.9, 2.5, 1H), 6.04 (s, 2H), 3.85 (s, 3H), 2.91 (s, 3H), 1.60 894 
(s, 6H). The spectrum contains additional peaks. LR-ESI-MS: Calcd. m/z for 895 
C19H20N3O5+ [M]+: 370.1; found: 370.2. 896 

Analytical data are in accordance with those reported previously [6]  897 

 898 

1-(5-Carboxypentyl)-5-methoxy-2,3,3-trimethyl-3H-indol-1-ium bromide 899 
(12): 900 

 901 

To a solution of 6 (1.11 g, 5.9 mmol) in 1,2-dichlorobenzene (6 mL) 6-902 
bromohexanoic acid (1.73 g, 8.8 mmol) was added. The reaction mixture was 903 
heated to reflux for 16 h under an argon stream, cooled to rt and then diluted with 904 
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diethyl ether (10 mL) upon which a black precipitate formed. The solvents were 905 
removed by decantation and the residue was triturated with dichloromethane. The 906 
residue was suspended in diethyl ether and the solid material was isolated by 907 
filtration and dried under high vacuum. 908 

Purple powder; 530 mg (24% crude yield). 1H-NMR (500 MHz, (CD3)2SO): δ = 909 
12.00 (bs, 1H), 7.87 (d, J = 8.9, 1H), 7.48 (d, J = 2.5, 1H), 7.14 (dd, J = 8.9, 2.5, 910 
1H), 4.41 (t, J = 7.7, 2H), 3.86 (s, 3H), 2.76 (s, 3H), 2.22 (t, J = 7.3, 2H), 1.86 - 911 
1.78 (m, 2H), 1.58 – 1.53 (m, 2H), 1.51 (s, 6H), 1.44 - 1.36 (m, 2H). LR-ESI-MS: 912 
Calcd. m/z for C18H26NO3+ [M]+: 304.2; found: 304.2. 913 

Analytical data are in accordance with those reported previously [6] 914 

 915 

3-(5-Carboxypentyl)-1,1,2-trimethyl-1H-benzo[e]indol-3-ium-7-sulfonate 916 
(13): [7] 917 

 918 

A mixture of potassium 7 (228 mg, 0.8 mmol) and 6-bromohexanoic acid (195 919 
mg, 1.0 mmol) in 1,2-dichlorobenzene (3 mL) was heated to reflux for 48 h. The 920 
solvent was decanted off and the solid residue was triturated with ethyl acetate. 921 
The product was then dissolved in distilled water and methanol and the solvents 922 
were evaporated under reduced pressure. The crude product was purified using RP 923 
flash chromatography (1 - 50% acetonitrile in water, both solvents containing 10 924 
mM of NH4CO2CH3) to give the title compound. 925 

Brown/orangish solid; 46 mg (14% yield). 1H NMR (500 MHz, (CD3)2SO): δ = 926 
7.99 (d, J = 1.9, 1H), 7.88 (d, J = 8.8, 1H), 7.77 (d, J = 8.7, 1H), 7.57 (dd, J = 8.8, 927 
1.9, 1H), 7.15 (d, J = 8.7, 1H), 3.61 (t, J = 7.3, 2H), 2.19 (t, J = 7.3, 2H), 1.90 (s, 928 
3H, overlaps with impurity), 1.56 (s, 6H), 1.54 – 1.49 (m, 2H), 1.38 – 1.31 (m, 929 

Br

O3S

O

OH

N

K

15 



 

 

160 

2H), 1.24 (s, 2H). The spectrum contains additional peaks. LR-ESI-MS: Calcd. 930 
m/z for C21H26NO5S+ [M + H]+: 404.2; found: 404.2. 931 

Analytical data are in accordance with those reported previously [8] 932 

 933 

(E)-3-hydroxy-4-((1,3,3-trimethylindolin-2-ylidene)methyl)cyclobut-3-ene-934 
1,2-dione (14): 935 

 936 

10 (1.72 g, 5.7 mmol) was dissolved in acetonitrile (40 mL) and reacted with a 937 
1M solution of NaOH (70 mL) for 1 h at rt. The final product was extracted by 938 
means of CH2Cl2 (3 x 30 mL), dried over MgSO4 and the excess of solvent was 939 
removed by rotary evaporation to give the activated Fischer base (989 mg, 5.7 940 
mmol). The dried activated Fischer base and 3,4-dimethoxy-3-cyclobutene-1,2-941 
dione (817 mg, 5.7 mmol) were dissolved in dry methanol (2.5 mL) and the 942 
resulting mixture was stirred at rt for 18 h and then cooled in the fridge for 2 h. 943 
The red solid was isolated by filtration and washed with cold methanol and cold 944 
diethyl ether and dried under high vacuum to give (E)-3-methoxy-4-((1,3,3-945 
trimethylindolin-2-ylidene)methyl)cyclobut-3-ene-1,2-dione as a yellow solid. 946 
The crude product (872 mg) was dissolved in acetic acid (9.5 mL) and a 1M 947 
solution of HCl (1.55 mL) was added. The yellow-orangish mixture was heated at 948 

80 °C for 5 h and the resulting mixture was evaporated under reduced pressure to 949 

give a dark green iridescent residue. This residue was triturated with diethyl ether, 950 
and the solid material was isolated by filtration and washed with diethyl ether and 951 
dried under high vacuum to give the title compound, which was used in the next 952 
step without further purification. 953 

Dark green solid; 783 mg (86% crude yield). 1H-NMR (500 MHz, (CD3)2SO): δ = 954 
7.43 – 7.36 (m, 1H), 7.29 – 7.22 (m, 1H), 7.14 – 7.08 (m, 1H), 7.04 – 6.97 (m, 955 
1H), 5.45 (s, 1H), 3.34 (s, 3H), 1.55 (s, 6H). The spectrum shows presence of 956 
acetic acid.  957 
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Analytical data are in accordance with those reported previously [10] 958 

 959 

(Z)-2-(((E)-1-(5-carboxypentyl)-3,3-dimethylindolin-2-ylidene)methyl)-4-((1-960 
(3,5-dinitrobenzyl)-3,3-dimethyl-3H-indol-1-ium-2-yl)methylene)-3-961 
oxocyclobut-1-en-1-olate (1): 962 

 963 

Compound 8 (999 mg, 2.1 mmol), 9 (765 mg, 1.9 mmol) and 3,4-dihydroxy-3-964 
cyclobuten-1,2-dione (238 mg, 2.1 mmol) were dissolved in pyridine (9.7 mL), 965 
acetic acid (9.7 mL) and acetic anhydride (2.2 mL) and the resulting mixture was 966 

heated at 110 °C for 3 h. The reaction mixture was partitioned between 967 

dichloromethane (10 mL) and water (10 mL). The combined organic phases were 968 
dried over MgSO4, filtered and evaporated under reduced pressure to give an 969 
iridescent blue sticky residue (1.261 g), which was purified using semi-970 
preparative RP-HPLC (50 - 90% acetonitrile in water, both solvents containing 971 
0.1% TFA) to give the title compound. 972 

Iridiscent blue solid; 109 mg (9% yield). 1H-NMR (850 MHz, (CD3)2SO): δ = 973 
12.00 (bs, 1H), 8.74 (d, J = 2.4, 1H), 8.40 (d, J = 2.4, 2H), 7.58 (d, J = 7.4, 1H), 974 
7.55 (dd, J = 7.4, 1.2, 1H), 7.42 (d, J = 8.0, 1H), 7.38 (td, J = 7.7, 1.2, 1H), 7.29 975 
(td, J = 7.7, 1.2, 1H), 7.24 – 7.22 (m, 2H), 7.16 (t, J = 7.4, 1H), 5.88 (s, 1H), 5.75 976 
(s, 1H), 5.66 (s, 2H), 4.14 (t, J = 7.6, 2H), 2.20 (t, J = 7.3, 2H), 1.79 (bs, 6H), 1.72 977 
(m, 2H), 1.65 (s, 6H), 1.55 (m, 2H), 1.39 (m, 2H); HR-ESI-MS: Calcd. m/z for 978 
C39H39N4O8+ [M+H]+: 691.2762; found: 691.2772. 979 

Analytical data are in accordance with those reported previously [11]  980 

 981 

N
O

O

N

O2N

O2N

OHO

17 



 

 

162 

(Z)-4-((1-(3,5-dinitrobenzyl)-3,3-dimethyl-3H-indol-1-ium-2-yl)methylene)-3-982 
oxo-2-(((E)-1,3,3-trimethylindolin-2-ylidene)methyl)cyclobut-1-en-1-olate (2): 983 

 984 

Squaric acid derivative 14 (398 mg, 1.5 mmol) and 8 (695 mg, 1.5 mmol) were 985 
dissolved in pyridine (7 mL), acetic acid (7 mL) and acetic anhydride (1.5 mL) 986 

and the resulting mixture was heated at 110 °C for 6 h. The reaction mixture was 987 

partitioned between dichloromethane (10 mL) and water (10 mL). The combined 988 
organic phases were dried over MgSO4, filtered and evaporated under reduced 989 
pressure to give an iridescent blue sticky residue (1.099 g). The crude residue was 990 
purified by flash chromatography (CH2Cl2/MeOH, 95:5) to give a green/bluish 991 
material (307 mg). This material was further purified using semi-preparative RP-992 
HPLC (50 - 90% acetonitrile in water, both solvents containing 0.1% TFA) to 993 
give the title compound. 994 

Dark blue solid; 171 mg (20% yield). 1H-NMR (850 MHz, (CD3)2SO): δ = 8.73 (s, 995 
1H), 8.40 (d, J = 2.1, 2H), 7.57 (d, J = 7.4, 1H), 7.55 (dd, J = 7.4, 1.2, 1H), 7.43 996 
(d, J = 7.7, 1H), 7.38 (td, J = 7.7, 1.2, 1H), 7.28 (td, J = 7.7, 1.2, 1H), 7.25 – 7.21 997 
(m, 2H), 7.15 (m, 1H), 5.85 (s, 1H), 5.75 (s, 1H), 5.65 (s, 2H), 3.64 (s, 3H), 1.80 998 
(s, 6H), 1.65 (s, 6H); HR-ESI-MS: Calcd. m/z for C34H31N4O6+ [M+H]+: 999 
591.2238; found: 591.2247. 1000 

MS data are in accordance with those reported previously [6] 1001 
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(Z)-2-(((E)-1-(5-carboxypentyl)-5-methoxy-3,3-dimethylindolin-2-1003 
ylidene)methyl)-4-((1-(3,5-dinitrobenzyl)-5-methoxy-3,3-dimethyl-3H-indol-1004 
1-ium-2-yl)methylene)-3-oxocyclobut-1-en-1-olate (3): 1005 

 1006 

5-Methoxy indolenine 11 (264 mg, 0.5 mmol), 5-methoxy indolenine 12 (200 mg, 1007 
0.5 mmol) and 3,4-dihydroxy-3-cyclobutene-1,2-dione (66 mg, 0.6 mmol) were 1008 
dissolved in pyridine (2.25 mL), acetic acid (2.25 mL) and acetic anhydride (0.5 1009 

mL) and the resulting mixture was stirred at 110 °C for 5 h. The resulting mixture 1010 

was evaporated under reduced pressure to give a green/bluish iridescent residue 1011 
(673 mg). This residue was purified by flash chromatography (CH2Cl2/MeOH, 1012 
90:10) to give a green/bluish material (96 mg). This material was further purified 1013 
using semi-preparative HPLC (50-90% acetonitrile in water, both solvents 1014 
containing 0.1% formic acid) to give the title compound. 1015 

Iridiscent blue solid; 62 mg (16% yield) 1H-NMR (850 MHz, (CD3)2SO): δ = 1016 
12.00 (s, 1H), 8.73 (bs, 1H), 8.38 (bs, 2H), 7.33 (d, J = 8.6, 1H), 7.23 (d, J = 2.5, 1017 
1H), 7.21 (d, J = 2.5, 1H), 7.16 – 7.11 (m, 1H), 6.93 (dd, J = 8.6, 2.5, 1H), 6.84 1018 
(dd, J = 8.6, 2.5, 1H), 5.78 (s, 1H), 5.65 (s, 1H), 5.61 (s, 2H), 4.14 – 4.07 (m, 2H), 1019 
3.79 (s, 3H), 3.78 (s, 3H), 2.19 (t, J = 7.2, 2H), 1.79 (bs, 6H), 1.71 – 1.69 (m, , 1020 
2H), 1.64 (s, 6H), 1.55 – 1.53 (m, 2H), 1.37 – 1.36 (m, 2H); HR-ESI-MS: Calcd. 1021 
m/z for C41H43N4O10+ [M+H]+: 751.2974; found: 751.2982. 1022 

MS data are in accordance with those reported previously [6]  1023 
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6-((E)-2-((2E,4E)-5-(1-(3,5-dinitrobenzyl)-3,3-dimethyl-3H-indol-1-ium-2-1025 
yl)penta-2,4-dien-1-ylidene)-1,1-dimethyl-7-sulfonato-1,2-dihydro-3H-1026 
benzo[e]indol-3-yl)hexanoate (4): 1027 

 1028 

Benzo(e)indolenine 13 (146 mg, 0.33 mmol), dinitrobenzyl indolenine 8 (169 mg, 1029 
0.36 mmol) and malonaldehyde bis(phenylimine) monohydrochloride (91 mg, 1030 
0.35 mmol) were dissolved in pyridine (4.5 mL), acetic acid (4.5 mL) and acetic 1031 

anhydride (1 mL) and the resulting mixture was heated at 110 °C for 5 h under an 1032 

argon stream. The resulting mixture was cooled to rt and evaporated under 1033 
reduced pressure to give a green/bluish iridescent oil (656 mg). A portion of the 1034 
crude product (242 mg) was purified by means of solid support resin using 2-1035 
chlorotrityl chloride (281 mg). Briefly, a mixture of 4 and DIPEA (4 equiv) in dry 1036 
DCM was loaded in the resin by agitation at rt for 3 h. The resin was then washed 1037 
with DCM (6 x 2 mL) until solvent was colourless. Cleavage from the resin was 1038 
facilitated by treatment with TFA, triisopropylsilane (TIS) and water (95:2.5:2.5, 1039 
2 mL) for 2 h. The mixture of sulfonate isomers obtained from the cleavage of the 1040 
resin was further purified by semi-preparative RP-HPLC (50 - 70% acetonitrile in 1041 
water, both solvents containing ammonium acetate 10 mM) to give the title 1042 
compound. 1043 

Dark greenish solid; 3.61 mg (1% yield). 1H-NMR (850 MHz, (CD3)2SO): δ = 1044 
8.75 (s, 1H), 8.53 – 8.46 (m, 1H), 8.44 (s, 2H), 8.32 (t, J = 13.0, 1H), 8.30 (s, 1H), 1045 
8.25 (d, J = 8.8, 1H), 8.20 (d, J = 8.8, 1H), 7.89 (dd, J = 8.8, 1.7, 1H), 7.83 (d, J = 1046 
9.0, 1H), 7.64 (d, J = 7.1, 1H), 7.33 (t, J = 7.6, 1H), 7.29 (d, J = 7.9, 1H), 7.19 (t, J 1047 
= 7.6, 1H), 6.54 (m, 2H), 6.19 (m, 1H), 5.62 (s, 2H), 4.30 (m, 2H), 2.08 (bs, 2H), 1048 
1.94 (s, 6H), 1.79 (s, 6H), 1.75 – 1.72 (m, 2H), 1.52 – 1.44 (m, 2H), 1.40 – 1.37  1049 
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(m, 2H) The spectrum contains additional peaks. HR-ESI-MS: Calcd. m/z for 1050 
C42H43N4O9S+ [M+H]+: 779.2745; found: 779.2754. 1051 

Analytical data not reported previously 1052 
 1053 

 (E)-6-(2-((2-ethoxy-3,4-dioxocyclobut-1-en-1-yl)methylene)-3,3-1054 
dimethylindolin-1-yl)hexanoic acid (15): 1055 

 1056 

To a solution of 9 (306 mg, 0.76 mmol) in dry ethanol (3 mL), 3,4-diethoxy-3-1057 

cyclobutene-1,2-dione (110 µL, 0.74 mmol) was added and the resulting mixture 1058 

was treated with triethylamine (300 µL, 2.15 mmol) and heated to reflux for 3 h. 1059 
After cooling to rt, the solvent was removed under reduced pressure to give a dark 1060 
brown viscous residue that was further evaporated under vacuum. The residue was 1061 
purified using flash chromatography (ethyl acetate to 10% methanol in ethyl 1062 
acetate) to give the title compound as a dark yellow solid. 1063 

Dark yellow solid; 251 mg (86 % yield). 1H-NMR (500 MHz, (CD3)2SO): δ = 1064 
11.99 (s, 1H), 7.43 (dd, J = 7.4, 1.2, 1H), 7.29 (td, J = 7.7, 1.2, 1H), 7.17 (d, J = 1065 
7.7, 1H), 7.07 (td, J = 7.4, 1.2, 1H), 5.35 (s, 1H), 4.81 (q, J = 7.1, 2H), 3.90 (t, J = 1066 
7.3, 2H), 2.19 (t, J = 7.3, 2H), 1.65 (p, J = 7.3, 2H), 1.59 – 1.49 (s and m, 6H and 1067 
2H), 1.44 (t, J = 7.1, 3H), 1.39 – 1.32 (m, 2H). LR-ESI-MS: Calcd. m/z for 1068 
C23H26NO5- [M+H]-: 396.2; found: 396.1. 1069 

Analytical data not reported previously 1070 
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(E)-3-((1-(3,5-dinitrobenzyl)-3,3-dimethylindolin-2-ylidene)methyl)-4-1072 
ethoxycyclobut-3-ene-1,2-dione (16):  1073 

 1074 

To a solution of 8 (133 mg, 0.39 mmol) in dry ethanol (4 mL), 3,4-diethoxy-3-1075 

cyclobutene-1,2-dione (60 µL, 0.39 mmol) was added and the resulting mixture 1076 

was treated with triethylamine (150 µL, 1.08 mmol) and it was heated to reflux for 1077 

3 h. The crude product was concentrated under reduced pressure to give a dark 1078 
purple residue that was further evaporated under vacuum.  1079 

Purple solid; 305 mg (21% yield). 1H-NMRz (500 MHz, (CD3)2SO): δ = 8.59 (d, J 1080 
= 2.4, 1H), 8.14 – 8.11 (m, 1H), 7.45 (dt, J = 7.6, 1.0, 1H), 7.34 (td, J = 7.6, 1.0, 1081 
1H), 7.08 (td, J = 7.6, 1.0, 1H), 7.01 (d, J = 7.6, 1H), 6.23 (bs, 1H), 5.37 (bs, 2H), 1082 
4.47 (q, J = 7.1, 2H), 3.20 (q, J = 7.1, 2H), 1.42 (s, 6H), 1.28 (t, J = 7.1, 3H). The 1083 
rest of the signals correspond to 79% of unreacted starting material.  1084 

Analytical data not reported previously. 1085 
 1086 

(E)-3-((1-(3,5-dinitrobenzyl)-3,3-dimethylindolin-2-ylidene)methyl)-4-1087 
methoxycyclobut-3-ene-1,2-dione (17):  1088 

 1089 

To a solution of 8 (328 mg, 0.97 mmol) in dry methanol (7 mL), 3,4-dimethoxy-3-1090 
cyclobutene-1,2-dione (153 mg, 1.1 mmol) was added and the resulting mixture 1091 
was stirred at rt for 20 h. The reaction mixture was filtered and the filtrate was 1092 

N

NO2

O2N

O
O

O

N

NO2

O2N

O
O

O

22 



 

 

167 

evaporated under reduced pressure to give the crude product (855 mg), which was 1093 
purified using flash chromatography (hexanes/ethyl acetate, 6:4) to give the title 1094 
compound. Unreacted 8 (71 mg) was also isolated. 1095 

Orange powder; 106 mg (25% yield). 1H-NMR (500 MHz, (CD3)2SO): δ = 8.73 (t, 1096 
J = 2.1, 1H), 8.38 (d, J = 2.1, 2H), 7.54 - 7.50 (m, 1H), 7.30 - 7.24 (m, 1H), 7.19 – 1097 
7.16 (m, 1H), 7.14 - 7.08 (m, 1H), 5.55 (s, 2H), 5.42 (s, 1H), 4.36 (s, 3H), 1.65 (s, 1098 
6H). LR-ESI-MS: Calcd. m/z for C23H20N3O7+ [M+H]+: 436.1; found: 436.1. The 1099 
mass spectrum contains additional peaks and the product peak is of very low 1100 
intensity. 1101 

Analytical data not reported previously. 1102 
 1103 

(E)-3-((1-(3,5-dinitrobenzyl)-3,3-dimethylindolin-2-ylidene)methyl)-4-1104 
hydroxycyclobut-3-ene-1,2-dione (18): 1105 

 1106 

17 (280 mg, 0.62 mmol) was dissolved in acetic acid (6 mL) and a 1M solution of 1107 

HCl (0.45 mL) was added. The dark orange mixture was heated at 80 °C for 5 h 1108 

and the resulting mixture was evaporated under reduced pressure to give a brown 1109 
viscous residue. This residue was triturated with diethyl ether, and the solid 1110 
material was isolated by filtration and washed with diethyl ether and dried under 1111 
high vacuum to give the title compound, which was used in the next step without 1112 
further purification. 1113 

Olive green solid; 156 mg (58% yield). 1H-NMR (500 MHz, (CD3)2SO): δ = 8.73 1114 
(t, J = 2.1, 1H), 8.40 (d, J = 2.1, 2H), 7.47 (dd, J = 7.6, 1.2, 1H), 7.22 (td, J = 7.6, 1115 
1.2, 1H), 7.10 – 7.01 (m, 2H), 5.50 (s, 1H), 5.45 (s, 2H), 1.66 (s, 7H). The 1116 
material contains residual acetic acid and diethyl ether. LR-ESI-MS: Calcd. m/z 1117 
for C22H18N3O7+ [M+H]+: 436.1; found: 436.1.  1118 
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Analytical data not reported previously. 1119 
 1120 

Synthesis of 1 using immobilized 9: 1121 

2-Chlorotrityl chloride resin (71 mg, 0.15 mmol) was swelled in dry CH2Cl2 for 1 h at 1122 
rt in a 10 mL reactor vial (Biotage) and the solvent was drained off by vacuum 1123 
suction. A mixture of 9 (45 mg, 0.1 mmol) and DIPEA (25 µL, 0.2 mmol) in dry 1124 
CH2Cl2 (2 mL) was added to the swelled resin and the reaction mixture was agitated 1125 
for 4 h at rt. The resin was then rinsed four times with DCM (2 mL) and the resin was 1126 
agitated with a capping solution consisting of DCM/MeOH/DIPEA (8:1.5:0.5, 2 mL) 1127 
rt for 10 min (step repeated twice). After a DCM (2 mL) wash, DIPEA (0.2 mL, 10 1128 
mmol) in DCM (2 mL) was added and reacted for 1 h at rt. After washing with DCM 1129 
(3 x 2 mL), a mixture of 18 (45.1 mg, 0.1 mmol), DIPEA (25 µL, 0.2 mmol) and DIC 1130 
(15 µL, 0.1 mmol) in DCM (2 mL) was added to the resin. The reaction mixture was 1131 

transferred to a sealed vial and heated at 80 °C for 3 h. The resin was washed 1132 

thoroughly with DCM (6 x 2 mL). The final compound was then cleaved from the 1133 
resin with a mixture consisting of DCM/TFA (9.5:0.5, 2 mL) with agitation for 10 1134 
min at rt (step repeated twice). The TFA fraction was concentrated under reduced 1135 
pressure and cold diethyl ether was added to the residual TFA. The title compound 1136 
was isolated from diethyl ether by extraction with acetonitrile/water + 0.1%TFA 1137 
(50:50) and was purified by semi-prep RP-HPLC (50 - 90% acetonitrile in water, both 1138 
solvents containing 0.1% TFA) to give 1 as an iridiscent blue solid (0.5 mg, 1% 1139 
yield). 1140 

 1141 

1142 
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Figure S12: A: Analytical RP-HPLC chromatogram and UV trace of Substrate 1; B: HRMS spectrum of Substrate 1 

Acq. Data Name: ElviraG_160620_CytoC5S,CY5M,CYSulfo,CY5OMe_ESI+_LC 
Spec. Record Interval: 0.5[s] Internal Sample Id:  
Ring Lens Volt: 8[V] Orifice1 Volt Sweep: 16V Ionization Mode: ESI+ 
Time of Maximum: 10.342[min] Acquired m/z Range: 200.0..1500.0 MS Calibration Name: PEG_ESI+_2000 

Reduction History: Determine m/z[Peak Detect[Centroid,50,Area];Correct Base[5.0%]];Average(MS[1] 10.334..10.353)-1.0*Average(MS[1] 9.249..9.286);Correct Base[5.0%] 
Operator Name: Accutof Experiment Date/Time: 6/16/2020 10:34:28 
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Sample Name CytoCy5S 1mM stock solution in
DMSO

Project Name Elvira_2019

Injection Acq Method Name short col 0.4 ml 50 to 90 in 7 min 10 µl injection.amx

Injection Acquired Date 2020-06-09 10:27:33+02:00
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Figure S14: A: Analytical RP-HPLC chromatogram and UV trace of Substrate 2; B: HRMS spectrum of Substrate 2 

 

Acq. Data Name: ElviraG_160620_CytoC5S,CY5M,CYSulfo,CY5OMe_ESI+_LC 
Spec. Record Interval: 0.5[s] Internal Sample Id:  
Ring Lens Volt: 8[V] Orifice1 Volt Sweep: 16V Ionization Mode: ESI+ 
Time of Maximum: 26.329[min] Acquired m/z Range: 200.0..1500.0 MS Calibration Name: PEG_ESI+_2000 

Reduction History: Determine m/z[Peak Detect[Centroid,50,Area];Correct Base[5.0%]];Average(MS[1] 26.225..26.331)-1.0*Average(MS[1] 24.087..24.892);Correct Base[5.0%] 
Operator Name: Accutof Experiment Date/Time: 6/16/2020 10:34:28 
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Figure S16: A: Analytical RP-HPLC chromatogram and UV trace of Substrate 3; B: HRMS spectrum of Substrate 3 
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Figure S18: A: Analytical RP-HPLC chromatogram and UV trace of Substrate 4; B: HRMS spectrum of Substrate 4 
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Figure S23: Confocal fluorescence microscopy with substrates 1 – 4 with the same scale for “NTR substrate” channel 

 

10 mins 30 mins 120 mins 240 mins

GFP; NTR-substrate

1
2

3
4

47 



 

 

192 

Figure S24: A) Chemical structures of substrates 1 – 4, their respective B) absorbance spectra (200 – 900 nm) from the HPLC 

UV trace showing the absorbance of the acetonitrile used as the buffer and the absorbance of each substrate at the given 

wavelength and C) Vis-NIR absorbance spectra (500 – 700 nm) after two hours incubation of 4 µM of substrate with 0.2 µM 

NTR enzyme. 
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Figure S25: Flow cytometry analysis of unstained NTR- and NTR- and NTR+ stained with 3 µM of substrates 1 - 4 for four 

hours. Values are reported as Mean Fluorescence Intensity (MFI) with the corresponding statistically significant differences 

between groups (One-way ANOVA. p-values: *, p < 0.05 ** and p < 0.01). 

 

 

 

Video S1: Full time lapse for substrate 1 

 

Video S2: Full time lapse for substrate 2 

 

Video S3: Full time lapse for substrate 3 

 

Video S4: Full time lapse for substrate 4 
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Abstract 

Nitroreductases (NTR) are a family of bacterial enzymes used in gene directed enzyme prodrug therapy 
(GDEPT) that selectively activate prodrugs containing aromatic nitro groups to exert cytotoxic effects 
following gene transduction in tumours. The clinical development of NTR-based GDEPT has, in part, 
been hampered by the lack of translational imaging modalities to assess gene transduction and drug 
cytotoxicity, non-invasively. This study presents translational preclinical PET imaging to validate and 
report NTR activity using the clinically approved radiotracer, 18F-FMISO, as substrate for the NTR 
enzyme. 
Methods: The efficacy with which 18F-FMISO could be used to report NfsB NTR activity in vivo was 
investigated using the MDA-MB-231 mammary carcinoma xenograft model. For validation, subcutaneous 
xenografts of cells constitutively expressing NTR were imaged using 18F-FMISO PET/CT and fluorescence 
imaging with CytoCy5S, a validated fluorescent NTR substrate. Further, examination of the non-invasive 
functionality of 18F-FMISO PET/CT in reporting NfsB NTR activity in vivo was assessed in metastatic 
orthotopic NfsB NTR expressing xenografts and metastasis confirmed by bioluminescence imaging. 
18F-FMISO biodistribution was acquired ex vivo by an automatic gamma counter measuring radiotracer 
retention to confirm in vivo results. To assess the functional imaging of NTR-based GDEPT with 
18F-FMISO, PET/CT was performed to assess both gene transduction and cytotoxicity effects of prodrug 
therapy (CB1954) in subcutaneous models. 
Results: 18F-FMISO retention was detected in NTR+ subcutaneous xenografts, displaying significantly 
higher PET contrast than NTR- xenografts (p < 0.0001). Substantial 18F-FMISO retention was evident in 
metastases of orthotopic xenografts (p < 0.05). Accordingly, higher 18F-FMISO biodistribution was 
prevalent ex vivo in NTR+ xenografts. 18F-FMISO NfsB NTR PET/CT imaging proved useful for monitoring 
in vivo NTR transduction and the cytotoxic effect of prodrug therapy. 
Conclusions: 18F-FMISO NfsB NTR PET/CT imaging offered significant contrast between NTR+ and 
NTR- tumours and effective resolution of metastatic progression. Furthermore, 18F-FMISO NfsB NTR 
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PET/CT imaging proved efficient in monitoring the two steps of GDEPT, in vivo NfsB NTR transduction 
and response to CB1954 prodrug therapy. These results support the repurposing of 18F-FMISO as a 
readily implementable PET imaging probe to be employed as companion diagnostic test for NTR-based 
GDEPT systems. 

Key words: 18F-FMISO, Gene-directed enzymatic prodrug therapy, GDEPT, nitroreductase, NTR, cancer, 
xenograft, preclinical, mouse, PET/CT, imaging 

Introduction 
Gene directed enzyme prodrug therapy 

(GDEPT) is a promising anti-cancer strategy that aims 
to reduce off-target toxicity and limit severe 
side-effects by the combination of a prodrug and its 
activating enzyme [1]. In a first step, tumours are 
transduced to express a gene encoding for the 
prodrug-activating enzyme. In a second step, a 
non-toxic prodrug is delivered systemically and 
subsequently converted in situ to a cytotoxic 
derivative by the expressed enzyme [2]. In this way, 
GDEPT achieves high concentration of cytotoxic 
compounds locally, minimising systemic side effects 
associated with conventional cancer chemotherapy 
[3]. 

The most extensively studied prodrug/enzyme 
pairs for GDEPT are ganciclovir (GCV)/herpes 
simplex virus-thymidine kinase (HSV-TK) [4] and 5- 
(aziridin-1-yl)-2,4-dinitrobenzamide (CB1954, Figure 
1B)/E. Coli nitroreductase NfsB (onwards referred as 
NTR) [5]. HSV-TK phosphorylates GCV, allowing its 
incorporation into DNA, resulting in toxicity due to 
interference with the DNA synthesis [6]. NTR reduces 
the nitro groups (R-NO2) present in CB1954, into 
hydroxylamines (R-NHOH), resulting in the 
formation of an alkylating agent with cytotoxic 
activity [7, 8]. Moreover, the diffusion of the activated 
compound into neighbouring non-targeted cells 
amplifies this cytotoxic effect (bystander effect) [9, 10]. 
Several trials have evaluated the clinical application of 
HSV-TK and NTR-based GDEPT strategies with 
contrasting results [5, 11, 12]. The largest clinical trial, 
including 124 patients receiving HSV-TK-based 
GDEPT, reported no difference in comparison to 
standard therapy. Modest HSV-TK expression was 
suggested as a potential limiting factor [11]. Indeed, a 
phase II HSV-TK-based GDEPT trial using a more 
efficient gene transduction strategy reported a 
significant increase in survival [12]. These studies 
illustrate the need for monitoring the gene 
transduction efficiency. One of the NTR-based 
GDEPT clinical trials assessed the transduction 
efficiency using immunohistochemistry in tumour 
biopsies [5]. However, immunohistochemistry is time 
consuming and may be affected by inadequate 
sampling of representative tumoral areas. For large 
clinical trials, non-invasive techniques such as 

imaging, which allows for easier clinical 
implementation, are required. In this respect, positron 
emission tomography (PET), which is routinely 
employed in clinical settings, enables detection of the 
activity for some of the enzymes used in the GDEPT 
strategies and may be suitable for interrogation of 
transduction efficiency in clinical trials [13, 14]. 

The activity of HSV-TK can be evaluated using 
radiolabeled probes, such as 18F-FIAU (1-(2- 
deoxy-2-[18F]-fluoro-1-D-arabinofuranoside)-5-iodour
acil), 18F-FHBG (9-[4-[18F]fluoro-3-(hydroxymethyl) 
butyl]guanine) and GCV analogues [15, 16]. HSV-TK 
PET/CT imaging has indeed been successfully 
applied for monitoring transduction efficiency, tissue 
specificity and therapeutic effect preclinically [15, 17]. 
Subsequently, HSV-TK PET/CT imaging was 
incorporated into phase I clinical trials to monitor 
transduction efficiency in healthy individuals and in 
cancer patients [18, 19]. In an ongoing phase I clinical 
trial investigating the use of HSV-TK-based GDEPT in 
combination with immunotherapy (NCT04313868), 
HSV-TK PET/CT imaging with 18F-FHBG has been 
implemented to explore the effect of viral 
administration routes in transduction efficacy. 

NTR activity has been effectively imaged in a 
preclinical context using the near-infrared fluorescent 
probe CytoCy5S [20] and a caged bioluminescent 
substrate “NTR caged luciferin” (NCL) [21]. 
However, the non-invasive clinical application of 
optical imaging approaches is challenging due to 
limited tissue penetrance of light and associated 
autofluorescence. This could potentially be overcome 
by employing PET as the imaging modality, provided 
that an appropriate NTR specific tracer is available. 
For this purpose, we have focused on radiolabelled 
2-nitroimidazoles (2-NI) that have been extensively 
utilised as hypoxia imaging agents (e.g. FMISO or 
FETNIM) [22, 23]. Hypoxia induces expression of 
oxygen-sensitive nitroreductases, able to convert 2-NI 
(e.g. FMISO, Figure 1A) into the corresponding 
hydroxylamines, which covalently bind to 
macromolecules in the tumour, allowing PET contrast 
[24]. The mechanistic similarity between oxygen- 
sensitive and E.coli nitroreductases, oxygen- 
insensitive, (Figure 1B) and their ability to convert 
aromatic nitro groups of various substrates (Figure 
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1A) into aromatic hydroxylamines, render 2-NI as 
plausible probes for clinical imaging of NTR activity 
[25]. 

Recently, Mowday and co-workers [26] have 
demonstrated effective NTR PET imaging employing 
NfsA from E. Coli in combination with the 2-NI PET 
tracer 18F-HX4. Similarly, in this work we have 
investigated whether 18F-FMISO, a PET tracer 
approved by FDA as an investigational new drug for 
human use, could be repurposed as a PET probe for 
non-invasive imaging of NTR for application in the 
context of GDEPT. 18F-FMISO was validated as an 
NTR specific PET imaging tracer using mammary 
carcinoma xenograft models. Further, the 
applicability of 18F-FMISO imaging was demonstrated 
in the two steps of GDEPT i.e. gene transduction and 
cytotoxicity effects of prodrug therapy. These results 

support 18F-FMISO as a readily implementable NTR 
specific PET imaging probe to be employed as a 
companion diagnostic test for NTR-based GDEPT. 

Materials and methods 
In vitro experiments 

Cell culture 
Cells were maintained in a humidified 

atmosphere at 37 °C in 5% CO2 in complete medium, 
consisting of DMEM (Sigma-Aldrich, MO, USA) or 
RPMI-1640 supplemented with 10% FBS, 1% 
penicillin/streptomycin (Sigma-Aldrich), and 1% 
L-glutamine (Sigma-Aldrich). 293T cells were 
purchased from DSMZ (Braunschweig, Germany). 
MDA-MB-231Luc+ and NCI-H460 Luc+ cells, stably 
expressing luciferase, (onwards referred to as NTR-) 

 

 
Figure 1. Nitroreductases and nitroaromatic substrates for multiple applications. (A) Nitroreductase subtrates employed in imaging or GDEPT. (B) Comparison of 
the catalytic mechanisms of oxygen-sensitive and oxygen-insensitive nitroreductases in normoxic and hypoxic conditions. 



Theranostics 2021, Vol. 11, Issue 12 
 

 
http://www.thno.org 

6047 

were kindly provided by Prof. James Lorens 
(University of Bergen). Generation of MDA-MB- 
231Luc+GFP+NTR+ and NCI-H460Luc+GFP+NTR+ cells, stably 
expressing luciferase, GFP and NfsB (onwards 
referred to as NTR+) has been previously described by 
McCormack et al. [20]. Characterisation of the cell 
lines by flow cytometry can be found in Figures S1 
and S3. To avoid possible expression drift due to cell 
culturing, NTR+ cells were sorted prior to the 
experiments employing the flow cytometric methods 
described previously. 

NTR lentivirus production 
A custom-made lentiviral expression vector, 

pCDH-EF1α-NTR, containing the coding sequence of 
E. coli NfsB gene under the control of the 
EF1α promoter was produced by System Bioscience 
(CA, USA). Packaging into VSV-G pseudotyped viral 
particles was performed by co-transfection of 
pCDH-EF1α-NTR, pMD2.G and psPAX2 (Figure S1) 
into 293T cells. Viral titers were reported as 
transforming units (TU) per mL. TU were measured 
by transduction of 293T cells with serial dilutions of 
conditioned medium from virus packaging cells and 
analysis of NTR expression using a flow cytometric 
method described previously by McCormack et al. 
[20]. For validation purposes, it was confirmed that 
NTR expression levels in MDA-MB-231 cells 
transduced with pCDH-EF1α-NTR and in the NTR+ 
cell line were within the same range (Figure S1). 

Flow cytometry 
For the analysis of NTR expression 0.1 x 106 cells 

were incubated at 37 °C with DMEM supplemented 
with 1 µM of CytoCy5S for 1 hour. All samples were 
washed twice with PBS + 2% BSA before acquisition 
with the BD Accuri C6 flow cytometer (BD 
Biosciences, NJ, USA) with a laser excitation at 640 
nm and emission filter at 675 ± 12.5 nm. 

In vivo experiments 

General animal care 
All experiments were approved by The 

Norwegian Animal Research Authority (FOTS 
approval ID 9059) and conducted according to The 
European Convention for the Protection of 
Vertebrates Used for Scientific Purposes. NOD-scid 
IL2Rgnull mice (referred to as NSG) were bred at 
Vivarium (University of Bergen). Mice were housed in 
groups of ≤ 5 in individually ventilated cages 
(Techniplast, Italy). General condition and body 
weight were recorded twice per week. 

MDA-MB-231 and NCI-H460 subcutaneous 
xenografts 

Tumours were engrafted subcutaneously mono- 
or bi-laterally in the scapular area. 5 × 106 cells were 
prepared in 50 μL DMEM with 25% BD Matrigel™ (BD 
Science, CA, USA) and injected at each site to form a 
single tumour. Tumour volumes were measured 
weekly with a digital calliper and calculated using the 
ellipsoid volume formula: Volume = π (length × 
width × height)/6. 

MDA-MB-231 orthotopic xenografts 
1 × 106 cells were prepared in 50 μL of DMEM 

with 25% BD Matrigel™ (BD Science) and engrafted in 
the right inguinal mammary fat pad, as previously 
described [20, 27]. Prior to cell implantation, mice 
were injected with 0.1 mg/kg buprenorphine 
(Temgesic, Indivior, UK) for analgesia. 

CB1954 treatment 
CB1954 (Sigma-Aldrich) was resuspended in 

DMSO at 26.6 mg/mL. CB1954 treatment was 
initiated when mean tumour volumes reached 172 ± 
65 mm3 in NTR+ and NTR- xenografts or four weeks 
after in vivo transduction in NTR transduced 
xenografts. Animals received two intraperitoneal 
(i.p.) treatments in a six-day interval with a dose of 40 
mg/kg diluted in saline. 

In vivo NTR transduction with lentiviral particles 
NTR lentiviral particles were concentrated using 

Lenti-Pac Lentivirus Concentration solution 
(Genecopoeia, MD, USA). Subcutaneous xenografts 
were transduced in vivo by intratumoral injection of 8 
× 107 TU resuspended in 75 μL of the complete 
medium supplemented with 5 μg/mL Polybrene 
(Sigma-Aldrich) when mean tumour volume was 70 ± 
25 mm3. A single injection of viral particles per 
tumour was performed administering the viral 
suspension throughout the diameter of the tumour. 

18F-FMISO biodistribution 
Tumours and organs were harvested from four 

mice, two hours post i.v. administration of 18F-FMISO 
(150 µL, 8-12 MBq, 228-342 MBq/kg) and radiation 
was measured on a Wizard2® Automatic Gamma 
Counter (Perkin Elmer, MA, USA). The results are 
expressed as a percentage of the injected dose per 
gram of tissue (% ID/g). 

Histopathology examinations 
Following euthanasia, the tumour and the 

organs were fixed in neutral buffered formalin 
solution 10% (Sigma-Aldrich) at room temperature for 
24 hours and later kept in PBS and stored in darkness 
at 4 °C. 5 μm thick sections were stained with 
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haematoxylin and eosin (HE) and were examined by a 
pathologist for verification of malignancy. 

Immunohistochemical (IHC) staining was done 
on tumour tissue sectioned at 5 µm thickness. 
Deparaffinisation and antigen retrieval was 
performed with EnVision FLEX Target Retrieval 
Solution, Low pH (DAKO, Copenhagen, Denmark) on 
a Dako PT Link instrument (Dako). After antigen 
retrieval, tissues were incubated for 8 min with 
peroxidase blocker (Peroxidase Blocking Reagent, cat 
#S2001, Agilent Technologies) and thereafter for 10 
min with protein blocker (Protein Block Serum-free, 
cat # X090930-2, DAKO) at room temperature. The 
blocking solution was then removed and the slide was 
wiped dry around the tissue section before 
application of the primary antibody. The sections 
were then incubated overnight at 4 ºC degrees with 
the HIF1α primary antibody (ab51608, Abcam, 
Cambridge, UK) dilution 1:300. The staining was 
performed on a DAKO Autostainer using the 
EnVision+ System-HRP Labelled Polymer 
Anti-Rabbit K4002 as secondary antibody for 30 min 
(Agilent Technologies, Norway). 3,3`-Diaminobenzine 
(DAB+) Substrate-Chromogen was used as 
chromogen for 10 min. Sections were counterstained 
with haematoxylin (cat # S3301, Agilent Technologies) 
for 10 min, dehydrated, and mounted with a coverslip 
(Agilent Technologies) using Pertexx mounting 
medium (Histolab Products AB, Askim, Sweden). 
Human placenta with known reactivity to the selected 
marker was used as positive control. 

Whole tissues were scanned employing an 
Olympus VS120 S6 Slide scanner (Olympus 
Corporation, Tokio, Japan). Quantification of the 
normalised HIF1α positive area was performed 
employing FIJI [28], following the protocol described 
by Crowe et al. [29]. 

PCR for monitoring in vivo NTR transduction 
Following euthanasia, part of the tumour was 

snap-frozen on dry ice and stored at -80 ºC. DNA was 
purified using QIAamp DNA Mini Kit (QIAGEN, 
Germany). A 348 bp fragment of the coding sequence 
of E. coli NfsB gene was PCR amplified in a 
thermocycler under standard conditions using Taq 
DNA Polymerase (Invitrogen, CA, USA) and the 
following primers: NTR-F 5’ GCGTCATTCCACTAA 
GGCAT 3’ and NTR-R 5’ GCGAAGAACTTGCGACC 
TTT 3’. DNA amplification was visualised by gel 
electrophoresis followed by imaging on a Gel Doc EZ 
system (Bio-Rad, CA, USA). Nancy-520 (Sigma- 
Aldrich) was used as an intercalating agent and 1 kb 
DNA Ladder (Sigma-Aldrich) to estimate DNA size. 

Imaging techniques 
During bioluminescence and fluorescence 

imaging mice were anaesthetised with 1.5% isoflurane 
(Abbot Labor Ltd, IL, USA), 3-4% sevoflurane (Abbot 
Labor Ltd) during PET/CT imaging. 

Bioluminescence imaging 
D-Luciferin (Biosynth, Switzerland) was 

administered i.p. at a dose of 150 mg/kg 10 minutes 
before imaging. Images were acquired using an 
In-Vivo FX Pro molecular imaging system 
(Carestream Health Inc., NY, USA). Analysis was 
performed with the Carestream molecular imaging 
software v5.0.6.20. 

CytoCy5S-Fluorescence imaging 
CytoCy5S was synthesised following a 

published method [20]. 100 µL of a 1 mM CytoCy5S 
solution were injected intravenously. Imaging was 
performed after a 1-hour washout using an IVIS 
Spectrum imaging system (PerkinElmer, MA, USA.). 
Analysis was performed with the Living Imaging® 
software v4.5 (PerkinElmer). 

18F-FMISO PET/CT imaging 

18F-FMISO synthesis 
18F-fluoride was produced by the 18O(p,n)18F- 

reaction in a niobium target on a GE PETtrace6 
cyclotron (GE Healthcare,) with EOB-activities in the 
range of 80 - 100 GBq. The activity was delivered to 
the synthesis hot-cell by a Safe Transfer System 
(Skistad Elektroautomasjon AS, Norway). 18F-FMISO 
was produced on a FASTlab2 (GE Healthcare, IL, 
USA) with the synthesis sequence provided by the 
supplier. The radiosynthesis has been described in 
detail previously [30, 31]. Reagents and synthesis 
cassette were purchased from GE Healthcare Norway 
AS (Norway). Purification of 18F-FMISO was 
performed through a series of SPE-cartridges, and 
thus did not require any semi-preparative HPLC. The 
final 18F-FMISO formulation contained approx. 7% 
ethanol. Total synthesis time was approximately 50 
minutes and yields in the order of 20-30% (not decay 
corrected). 

PET/CT imaging 
PET/CT scans were acquired using the 

integrated nanoScan PC PET/CT (Mediso Ltd, 
Hungary) featuring spatial resolution of 800 μm and 
300 μm of the PET and CT detector systems, 
respectively. The field of view (FOV) was 9.6 × 10 cm 
in axial direction and transaxial direction allowing 
whole-body imaging of the mice. The PET detectors 
consist of LYSO crystals, and acquisition was 
performed in a 1:5 coincidence and normal count 
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mode. Mice were scanned using a dual mouse bed 
with integrated heating (37 °C). Each PET scan was 
conducted over 30 minutes, 1.5 hours post i.v. 
administration of 18F-FMISO (8-12 MBq, 228-342 
MBq/kg). Prior to PET acquisition, a whole-body CT 
scan (helical projections with tube energy of 50kVp, 
exposure time 300 ms, 720 projections, max FOV, 
binning 1:4) was performed providing anatomical 
information, as well as attenuation correction PET 
image reconstruction. 

PET/CT reconstruction and processing 
PET images were reconstructed using the 

Nucline software by employing the Tera-Tomo 3D 
(OSEM) algorithm (four iterations and six subsets, 1-5 
coincidence mode) and the following corrections: 
depth-of-interaction (DOI), randoms, crystal dead 
time, normalisation. Prior to PET, a whole-body CT 
(low energy) was acquired for anatomic reference and 
attenuation correction. CT images were reconstructed 
using a RamLak filter. The PET and CT images were 
co-registered automatically. Images were 
reconstructed with a voxel size of 0.25×0.25×0.25 mm3 
for CT, and 0.4×0.4×0.4 mm3 for PET. Data analyses 
were performed using InterView Fusion version 
3.03.078.0000 (Mediso Ldt.). Standard uptake value 
(SUV) was calculated using the equation: SUV = 
CPET(T)/(ID/BW), where CPET(T) was the measured 
activity in tissue, ID the injected dose measured in 
kBq, and BW the mouse’s body weight in kg. For each 
scan a spherical volume of interest (VOI) with radius 2 
mm was drawn manually over the muscle in the neck 
and SUVmean was calculated to serve as reference. This 
value enabled segmentation of putative tumour tissue 
having SUV ratios of twice higher than reference for 
18F-FMISO. VOIs of primary tumours and of likely 
metastases were drawn semi-automatically in the PET 
images for estimation and calculation of SUVmax and 
SUVpeak values. SUVmax is the maximum SUV value of 
all voxels included in the VOI. For SUVpeak analysis a 
specific volume was set (5 mm3 for SUVp5 and 10 mm3 
for SUVp10) and all the possible spheres with that 
volume fitting inside the VOI were identified. The 
average SUV of all voxels within the spheres was 
calculated for all possible spheres and the highest 
average SUV values from this analysis were reported 
as SUVp5 and SUVp10. The SUVpeak analyses were 
performed using PMOD software (Version 3.8). 

Statistics 
Results are given as mean ± standard deviation 

(SD). All statistical tests were performed using 
GraphPad Prism v 6.0h (GraphPad Software Inc, CA, 
USA) and p < 0.05 was considered significant. After 
randomisation, a one-way ANOVA was applied to 

ensure unbiased assignment of tumour volumes 
among the experimental groups. Comparison of 
means was performed using Student’s t-tests. Test for 
equality of variances was performed using an F test. 
When variances were not equal Welch’s correction 
was applied to Student’s t-tests. Correlations were 
analysed by computing Pearson’s correlation 
coefficients. 

Results 
18F-FMISO permits imaging of NTR expression 
in subcutaneous xenograft models 

Although fluorescent [20] and chemiluminescent 
[21] substrates have been successfully applied to 
report NTR expression in preclinical models of 
cancers, their clinical potential is limited. We 
hypothesised that 18F-FMISO, a clinically approved 
PET tracer known to be sequestered and reduced in 
hypoxic cancer environments, may provide a 
PET-based imaging modality for the visualisation of 
NTR activity in vivo. To examine the potential of 
18F-FMISO as a PET tracer of NTR expression in vivo, 
18F-FMISO NTR PET/CT imaging and CytoCy5S-FLI 
were compared in a subcutaneous xenograft model. 

Briefly, mice were xenografted bi-laterally in the 
scapular region with either NTR+ or NTR- cells (n = 3 
mice per group) in addition to one mouse implanted 
with both NTR+ and NTR- on adjacent scapulae. Mice 
were imaged at three timepoints post-engraftment 
(weeks four, five and seven) and imaging results 
compared (Figure 2A). CytoCy5S-FLI confirmed 
significantly higher contrast between NTR+ and NTR- 
xenografts from week five (p < 0.05, Figure 2A), when 
mean tumour volumes reached 243.6 ± 94.6 mm3. 
18F-FMISO NTR PET/CT resulted in significantly 
higher contrast between NTR+ and NTR- xenografts 
earlier, at week four, when mean tumour volumes 
were 154.0 ± 75.8 mm3. At week four, NTR+ and NTR- 
xenograft SUVmax values were 3.64 ± 0.36 g/mL and 
1.24 ± 0.42 g/mL respectively (p < 0.0001). Contrast 
remained significantly higher at weeks five and seven 
(Figure 2A and 2B). To confirm these results, 
18F-FMISO tracer biodistribution was analysed ex vivo. 
The highest tracer retention was detected in the 
bladder, consistent with high renal clearance, and in 
the large intestine (Figure 2C), which is expected as a 
consequence of the expression of nitroreductases by 
the local microbiota. 18F-FMISO retention was higher 
in NTR+ compared to NTR- xenografts and remaining 
organs. Thus, our results suggest that 18F-FMISO can 
act as an NTR PET tracer. 

To confirm that the higher retention of 
18F-FMISO observed in NTR+ is specific for NTR 
expression, we wanted to compare the hypoxic status 
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of the NTR- and NTR+ xenografts. The hypoxic status 
of the subcutaneous MDA-MB-231 NTR- and NTR+ 
xenografts was assessed employing IHC to detect 
HIF1α accumulation (Figure S2A). Quantification of 
the normalised area positive for HIF1α shows no 
statistical significance between MDA-MB-231 NTR- 
and NTR+ xenografts (Figure S2B). This result 
suggests that 18F-FMISO retention in NTR+ xenografts 
is not related to increased levels of hypoxia, 
confirming 18F-FMISO as an NTR PET tracer. 

Next, we wanted to analyse the performance of 
18F-FMISO as an NTR PET tracer in the presence of 
other nitroreductases, both oxygen-insensitive and 
oxygen-sensitive. For this purpose we selected the 
non-small cell lung carcinoma NCI-H460 cell line, 
with high endogenous levels of the nitroreductase 
DT-diaphorase [32] and increased levels of hypoxia in 
comparison to MDA-MB-231 (hypoxic fractions of 
13.6% and 4.7% respectively [33, 34]). First we 

confirmed in vitro that NTR+/NTR- ratio was notably 
lower for NCI-H460 than for MDA-MB-231 cell line, 
being respectively 5.4 and 50 (Figure S3A). Then, mice 
were xenografted bi-laterally in the scapular region 
with either NTR+ or NTR- NCI-H460 cells (n = 4 
tumours per group). Mice were imaged two weeks 
after engraftment and imaging results compared 
(Figure S3B). 18F-FMISO NTR PET/CT resulted in 
significantly higher contrast between NCI-H460 NTR+ 
and NTR- xenografts with SUVmax values of 2.07 ± 0.36 
g/mL and 1.51 ± 0.30 g/mL respectively (p < 0.05; 
Figure S3C). Interestingly, no significant differences 
were observed between SUVmax values from 
MDA-MB-231 NTR- xenografts (1.24 ± 0.42 g/mL) and 
from NCI-H460 NTR- xenografts. These results 
suggest that 18F-FMISO can act as an NTR PET tracer, 
even in models with notable presence of oxygen- 
insensitive and oxygen-sensitive nitroreductases. 

18F-FMISO imaging of NTR+ metastatic lesions 
in orthotopic xenograft 
models 

Having demonstrated the 
ability of 18F-FMISO to act as an 
NTR PET tracer in subcutaneous 
tumours, we next examined the 
suitability of the tracer for the 
detection of small metastatic 
lesions. We have previously 
visualised the axillary lymph 
node metastatic capacity of 
MDA-MB-231 cells when 
implanted orthotopically in 
immunodeficient mice via BLI 
[27]. Thus, 1 × 106 NTR+ cells 
were xenografted orthotopically 
in the mammary fat pad (n = 3) 
and imaged weekly with BLI 
and, from the initiation of 
metastasis, also with 18F-FMISO 
NTR PET/CT for five weeks 
(Figure 3A). Axillary lymph 
node metastases were clearly 
visible from week 8, with 
progressive increase in BLI up to 
week 12 (Figure 3A). 
Comparative 18F-FMISO NTR 
PET/CT imaging of the same 
mice demonstrated contrast at 
the axillary lymph node 
metastatic site with SUVmax 
values of 2.37 ± 0.88 g/mL from 
week 9 (Figure 3B). Metastatic 
contrast increased in weeks 10, 
11 and 12 with SUVmax values of 

 

 
Figure 2. 18F-FMISO permits imaging of NTR expression in subcutaneous xenograft models. (A) 
Representative 18F-FMISO PET/CT MIP images and CytoCy5S-FLI 2D surface weighted images over four weeks. NTR- 
tumour (right flank) and NTR+ tumour (left flank). (B) SUVmax values, were significantly higher in NTR+ xenografts for all 
the time points (****, p < 0.0001, n=7). (C) Ex vivo biodistribution (n = 3) of 18F-FMISO obtained at week seven. 
Biodistribution observed mainly in large intestines and bladder. Biodistribution was higher in NTR+ tumours than in 
NTR- tumours and remaining organs. The p-values are represented as indicated: * p < 0.05, ** p < 0.01, *** p < 0.001 and 
**** p < 0.0001. 
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2.88 ± 1.41, 3.36 ± 1.37 and 4.25 ± 2.04 g/mL, which 
were significant from background (SUVmax of 
reference tissue range: 0.4-0.56 g/mL; p < 0.05). 
Further analysis of 18F-FMISO NTR PET/CT images 

of NTR+ xenografts revealed additional contrast in the 
thoracic and lumbar regions of metastatic mice 
suggestive of hepatic and pulmonary metastasis 
(Figure 3C, upper). Subsequently, mice were 

euthanised, and suspected metastatic 
organs excised. Histological 
examination of HE stained sections of 
the lungs, liver and axillary lymph 
node demonstrated the presence of 
metastases in organs where 
accumulation of 18F-FMISO had been 
observed by 18F-FMISO NTR PET/CT 
imaging (Figure 3C, lower). 

18F-FMISO allows assessment of 
NTR expression after in vivo 
transduction 

While the aforementioned 
18F-FMISO imaging results 
demonstrate the useful application of 
18F-FMISO NTR PET/CT imaging for 
detection of constitutive NTR 
expression, the imaging demands of 
GDEPT are far greater. Initially, 
imaging of GDEPT should permit 
visual confirmation of in vivo viral 
transduction, which will occur in a 
discrete fraction of the tumoral cells 
[11, 12]. To examine the potential of 
18F-FMISO NTR PET/CT imaging to 
assess in vivo transduction of tumour 
cells by NTR, an NTR lentiviral 
construct was designed (Figure S1). 
Viral particles were collected, 
concentrated and 8 x 107 TU injected 
intratumorally into NTR- subcutaneous 
xenografts (Figure 4A). 

NTR transduced xenografts (n = 
10), in addition to NTR+ and NTR- 
controls (n = 4 per group) were 
18F-FMISO NTR PET/CT imaged, two 
and four weeks post-transduction 
(Figure 4A). Clear contrast of NTR+ 
controls could be demonstrated over 
NTR- controls both at week 2 and 4 
(SUVmax of 3.97 ± 0.40 and 3.82 ± 0.57 
g/mL respectively; p <0.001 Figure 4B 
& C). At week 2, minimal contrast was 
visualised in NTR transduced 
xenografts, albeit non-significant 
compared to NTR- controls (SUVmax of 
1.94 ± 0.38 and 1.74 ± 0.32 g/mL 
respectively; Figure 4C). Imaging at 
week 4 demonstrated significant 
contrast compared with NTR- controls 

 

 
Figure 3. 18F-FMISO imaging of NTR+ metastatic lesions in orthotopic xenograft models. (A) 
Representative images from week eight to 12. Presence of primary tumour (inguinal area) and axillary 
metastases (red square) by BLI. 18F-FMISO NTR PET/CT imaging in the axillary area. (B) Evolution of lymph 
node metastasis SUVmax compared to the reference tissue. Significant difference is observed at weeks ≥ 10 (*, 
p < 0.05), n = 3. (C) Whole body MIP images of 18F-FMISO NTR PET/CT show contrast in the primary tumour, 
liver, lung and axillary lymph node. HE staining shows widespread metastatic neoplasia in all the analysed 
organs. The histological features associated with neoplasia (marked with black arrows) include atypical mitosis, 
pyknosis, hyperchromatism, desmoplasia, irregular shape and size. Excessive extranodal tumour extension 
invading the adjacent muscle tissue can be seen in the axillary lymph (marked with black arrow). The lungs 
show signs of scattered micrometastases and venous infiltration (marked with black arrow). The p-values are 
represented as indicated: * p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001. 
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(SUVmax of 4.12 ± 3.18 and 2.03 ± 0.20 g/mL 
respectively; p < 0.05). Similar results were obtained 
when SUVpeak was analysed (Figure S4). Interestingly, 
contrast in lentiviral transduced tumours was 
observed at discrete foci (Figure 4B). 

At week 4, NTR transduced xenografts were 
randomised to receive CB1954 (two 40 mg/kg i.p. 
injections in a six-day interval) or vehicle (Figure 4A). 
Post-treatment 18F-FMISO NTR PET/CT imaging, at 

week 6, showed a further increase in contrast in 
xenografts treated with vehicle, although non- 
significant (pre-treatment SUVmax of 3.5 ± 2.5 and 
post-treatment SUVmax of 4.4 ± 3.0 g/mL Figure 4D & 
E). On the other hand, a significant decrease in 
contrast was observed in xenografts treated with 
CB1954 (pre-treatment SUVmax of 5.57 ± 3.73 and 
post-treatment SUVmax of 2.02 ± 0.32 g/mL; p < 0.05; 
Figure 4D & E). 

 

 
Figure 4. 18F-FMISO allows assessment of NTR expression after in vivo transduction. (A) Experimental set-up for in vivo NTR lentiviral transduction, CB1954 
treatment and 18F-FMISO PET/CT imaging. (B) Representative 18F-FMISO PET/CT MIP images suggesting the expression of NTR in the in vivo transduced tumours both at week 
two and four after transduction. (C) Four weeks after transduction, the SUVmax in the in vivo transduced tumours was significantly higher (*, p < 0.05 and ***, p < 0.001), n = 10). 
(D) Representative 18F-FMISO PET/CT MIP images suggesting a decrease in 18F-FMISO PET contrast in NTR transduced xenografts treated with CB1954 (E) SUVmax of the in vivo 
transduced tumours treated with vehicle showed a non-significant increase. SUVmax of the in vivo transduced tumours treated with CB1954 decreased significantly (*, p < 0.05 n 
= 6) (F) Confirmation of NTR transduction by PCR amplification of NTR coding sequences only in NTR+ xenografts and NTR transduced xenografts treated with vehicle. The 
p-values are represented as indicated: * p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001. 
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To confirm these imaging results, tumours were 
isolated post necropsy, DNA isolated and NTR 
transduction was corroborated by PCR amplification 
of an NTR coding sequence in the NTR transduced 
xenografts treated with vehicle and NTR+ controls 
(Figure 4F). These results confirm the utility of 
18F-FMISO NTR PET/CT imaging for detecting NTR 
expression after in vivo viral transduction. 

To exclude any possible confounding effect on 
18F-FMISO NTR PET/CT imaging arising from 
hypoxia induced by intratumoral injection, at the end 
of the experiment the accumulation of HIF1α was 
measured in NTR- transduced xenografts and 
compared with NTR- tumours not receiving an 
intratumoral injection. The spatial pattern of HIF1α 
accumulation was similar in both tumour groups 
(Figure S5A) and the mean normalised HIF1α positive 
area was indeed significantly lower in intratumorally 
injected tumours (Figure S5B). All the above- 
mentioned data confirms 18F-FMISO NTR PET/CT 
imaging as a technique able to detect in vivo NTR viral 
transduction. 

18F-FMISO NTR PET/CT imaging reports 
CB1954 treatment efficacy in NTR expressing 
xenografts 

Having demonstrated the potential of 18F-FMISO 
NTR PET/CT imaging to successfully visualise in vivo 
NTR transduction, the capacity of 18F-FMISO NTR 
PET/CT imaging to report on CB1954 prodrug 
treatment efficacy was examined. NTR- and NTR+ 
subcutaneous xenografts (n = 7 per group) were 
treated with CB1954 (two 40 mg/kg i.p. injections in a 
six-day interval) (Figure 5). 18F-FMISO NTR PET/CT 
imaging was performed pre-treatment (day -4), 
during treatment (day 3) and following completion of 
treatment (day 17), in addition to calliper 
measurements of tumour volumes (Figure 5A). As 
expected, pre-treatment 18F-FMISO NTR PET/CT 
imaging of NTR+ xenografts resulted in significant 
contrast in comparison to NTR- xenografts (SUVmax of 
4.07 ± 0.23 and 1.22 ± 0.35 g/mL respectively; p < 0.001 
(Figure 5B and C). At day 3, a significant decrease in 
NTR+ tumour volumes was observed versus 
corresponding NTR- xenografts (normalised tumour 
volumes 2.53 ± 0.27 and 1.43 ± 0.41 mm3; p < 0.0001). 
Similarly, significant decrease in NTR+ tumour 
SUVmax values was also noted in 18F-FMISO PET 
contrast performed at day 3 in comparison to 
pre-treatment SUVmax values (SUVmax 4.07 ± 0.23 and 
3.19 ± 0.41 g/mL; p < 0.001). Progressive reductions in 
NTR+ xenograft tumour volume continued following 
the completion of CB1954 treatment at days 7, 10 and 
14 (p < 0.001), with normalised volumes of 0.1 ± 0.02 at 
termination of the experiment (Figure 5A). Final PET 

imaging of xenografts on day 17 (Figure 5B) 
confirmed calliper measurement results, with 
observed SUVmax values reduced to 0.72 ± 0.12 g/mL 
(p < 0.0001) (Figure 5C). These preclinical results 
validate translational development of 18F-FMISO 
PET/CT for prodrug treatment efficacy monitoring in 
the context of NTR-based GDEPT. 

Discussion 
GDEPT has been suggested as an attractive novel 

therapeutic strategy aiming to address both drug 
resistance and off-target cytotoxicity [35], with 
promising preclinical results [36-39] and a number of 
HSV-TK-based GDEPT phase II/III clinical trials 
opened in the last five years (NCT02831933; 
NCT02768363; NCT03004183; NCT03541928; 
NCT03603405; NCT03596086; NCT02446093). Recent 
phase I studies (NCT03281382; NCT04313868) are 
evaluating the use of HSV-TK-based PET imaging as a 
companion diagnostic tool, facilitating the analysis of 
HSV-TK transduction efficacy and prodrug therapy 
response. 

In the current study, we have investigated the 
repurposing of 18F-FMISO, an FDA approved PET 
tracer as investigational new drug for human use, as a 
companion diagnostic tool for NTR-based GDEPT. 
Employing a mammary carcinoma xenograft model 
constitutively expressing NTR, we demonstrated that 
18F-FMISO PET/CT imaging is sensitive for detection 
of NTR, even in small metastases. 18F-FMISO NTR 
PET/CT imaging was found to be effective for 
detection of in vivo NTR transduction and for 
monitoring response to CB1954 treatment, 
demonstrating the feasibility of 18F-FMISO NTR 
PET/CT imaging in the context of GDEPT. 

Whilst this work has utilised breast and lung 
cancer models, 18F-FMISO NTR PET/CT imaging is 
expected to be applicable to any solid tumour type. As 
suggested by our results, the interaction between 
18F-FMISO NTR and 18F-FMISO hypoxia PET/CT 
imaging does not appear to compromise this NTR 
imaging strategy. Indeed, preclinical 18F-FMISO 
hypoxia PET/CT imaging in many different tumour 
types reported SUVmax values in the range of 0.19-0.70 
mg/mL [40-45], notably lower than the SUVmax values 
values for 18F-FMISO NTR PET/CT imaging reported 
in this study (1.5-9.95 mg/mL). 

The general applicability of 18F-FMISO NTR 
PET/CT imaging might be limited by the distribution 
of the tracer to the bladder and large intestine [46], 
which might interfere with the imaging of tumours in 
the abdominal cavity. One strategy to reduce PET 
signal in the abdominal cavity is to increase the bowel 
motility using laxatives prior to imaging, this has been 
explored in preclinical models [47]. Another possible 
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solution would be to employ NfsA, which is an NTR 
orthologue with higher affinity towards 18F-FMISO 
[26]. NfsA may permit the use of lower 18F-FMISO 
doses, resulting in a decrease in the retention in the 

abdominal cavity. 
We acknowledge the limitations and 

sub-optimal PK properties of 18F-FMISO. However, 
the extensive clinical use of this tracer for PET 

 

 
Figure 5. 18F-FMISO NTR PET/CT imaging reports CB1954 treatment efficacy in NTR expressing xenografts. (A) CB1954 treatment response and 
experimental set-up for treatment monitoring employing 18F-FMISO PET/CT imaging (B) Representative 18F-FMISO PET/CT MIP images from NTR- tumour (left flank) and NTR+ 
tumour (right flank) before treatment and three and 17 days after CB1954 dosing. (C) Before treatment, the SUVmax values were significantly higher in NTR+ than in NTR- 
tumours (****, p < 0.0001, n = 7). Three and 17 days after, the SUVmax became significantly lower in NTR+ xenografts in comparison to before treatment (****, p < 0.0001, n = 
7). After 17 days, SUVmax of NTR+ xenografts became significantly lower than the corresponding SUVmax of NTR- xenografts (***, p < 0.0001, n = 7). The p-values are represented 
as indicated: * p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001. 
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imaging of hypoxia makes the process of approval for 
a repurposed application easier. In parallel, novel 
tracers with optimised pharmacokinetic properties, in 
order to achieve high tumour accumulation and rapid 
healthy tissue clearance, are under development. A 
second generation 2-NI, 18F-DiFA, has displayed 
slightly improved hypoxia sensitivity in clinical 
studies, accompanied by minimal distribution into the 
gastrointestinal tract [46, 48] and is an interesting 
candidate for further studies in the context of NTR 
imaging. 

In comparison to HSV-TK-based GDEPT, NTR- 
based GDEPT possesses higher therapeutic potential, 
as NTR-based GDEPT targets cells independently of 
the cell cycle phase or proliferation status [49] and it 
results in a notable bystander effect caused by the 
diffusion of activated derivatives through the cell 
membrane [9, 10]. Despite the superior therapeutic 
potential of NTR-based GDEPT, clinical development 
is still in the early phases, as several of the steps for 
the NTR-based GDEPT strategy still need 
optimisation. 

Efforts for optimisation of NTR-based GDEPT 
have in recent years focused on the key aspects of the 
technology, namely the delivery system, the 
NTR-enzyme and the prodrug. In an NTR GDEPT 
clinical trial, immune responses to the viral particles 
were detected [5]. Although it is not known if immune 
mediated responses will compromise the therapeutic 
efficacy, new gene delivery systems amenable for 
clinical translation, such as extracellular vesicles [50] 
and ultrasound and microbubble mediated 
sonoporation have been investigated [51]. While NfsB 
from E. coli has been the most commonly employed 
gene for NTR-based GDEPT, different NTR orthologs 
and homologs, with a much higher catalytic activity, 
such as NfsA from E. coli and Nme from N. meningitidis 
have been evaluated [26, 52, 53]. Finally, development 
of improved prodrug candidates is ongoing [54], since 
CB1954 has been associated with dose-limiting 
hepatotoxicity in humans [55]. Indeed, the last two 
aspects, NTR-enzyme and prodrug, have been 
optimised simultaneously through the engineering of 
a modified NTR enzyme that confers higher catalytic 
activity for an improved prodrug. Remarkable efforts 
by Gungor and co-workers employing an NTR from 
S. saprophyticus, Ssap-NtrB, and a library of different 
nitro-containing scaffolds has led to promising in vitro 
prodrug candidates, such as benzamide derivatives 
N-(2,4-dinitrophenyl)-4-nitrobenzamide, A5 or A20, 
and piperazine derivatives NHN12 or NHN14 [54, 
56-58]. Other examples of such a strategy include 
HChrR6 with CNOB [59, 60] and NfsA variant no. 22 
with PR-104A [61]. Interestingly, NfsA variant no. 22 
retained reductive activity towards the hypoxia PET 

tracers, 18F-EF5 and 18F-HX4, allowing the possibility 
of NTR PET/CT imaging as companion diagnostic 
tool, as shown in the recently published work of 
Mowday et al. [26, 61]. 

Increasing preclinical knowledge will contribute 
significantly to the successful clinical translation of 
NTR-based GDEPT. The combination of a clinically 
amenable gene delivery system, optimised NTR 
enzymes and improved prodrugs is expected to boost 
the clinical application of NTR-based GDEPT. 
18F-FMISO NTR PET/CT imaging should be 
integrated into the clinical testing of future 
NTR-based GDEPT strategies, providing a robust and 
sensitive technology to monitor forthcoming clinical 
trials. 18F-FMISO NTR PET/CT is an FDA 
methodology readily available for clinical application. 
Our preclinical studies further establish this strategy 
as a strong candidate for companion diagnostic 
testing of NTR-based GEDPT. 
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SUPPLEMENTARY FIGURES: 

 

 

 

 

FIGURE S1 

NTR lentiviral packaging plasmids. In vitro analysis of the levels of expression of NTR in the MDA-

MB-231 NTR+ cell line and in the MDA-MB-231 after transduction and sorting with the lentiviral 

NTR particles. Similar levels of expression were observed in both cell lines. 
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FIGURE S2 

 (A) Example of HIF1α IHC in NTR- and NTR+ MDA-MB-231 xenografts. (B) No significant 

difference was observed in the normalised area positive for HIF1α between NTR- and NTR+ MDA-

MB-231 xenografts (n = 3, per group). 
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FIGURE S3 

(A) NTR+/NTR- ratio was notably lower for NCI-H460 than for MDA-MB-231 cell line. (B) 

Representative 18F-FMISO PET/CT MIP images of NCI-H460 xenografts. NTR- tumour (right flank) 

and NTR+ tumour (left flank). (C) SUVmax values were significantly higher in NTR+ xenografts. (*, p 

< 0.05, n = 4). 

The p-values are represented as indicated: * p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 

0.0001. 
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FIGURE S4 

SUVmax , SUVp5 and SUVp10 analyses show similar results in the in vivo transduced tumours. 

The p-values are represented as indicated: * p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 

0.0001. 

 

 

 

FIGURE S5 

 (A) The spatial pattern of HIF1α accumulation was similar in both intratumorally injected and non-

injected tumours MDA-MB-231 NTR- xenografts. (B) The normalised HIF1α positive area was 

significantly lower in intratumorally injected xenografts (n = 4 per group). 
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