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 Abstract 

Salmon lice (Lepeophtheirus salmonis) are one of the major challenges faced by the 

Atlantic salmon (Salmo salar) aquaculture industry. Due to the risk of poor welfare 

outcomes and high mortality during treatments against salmon lice, as well as 

increasing resistance towards many of the available chemical therapeutants, 

prophylactic measures that mismatch host and parasite environments are emerging. 

For salmon lice, these depth-based strategies exploit the positioning of free-living lice 

larvae in the upper part of the water column before they attach to salmon skin. They 

work by uncoupling salmon from mostly surface-dwelling lice larvae while still 

providing surface air access required for salmon swim bladder reinflation, buoyancy 

control and optimal welfare.  

One of the most extensively studied depth-prevention technologies is the snorkel sea 

cage. It consists of a standard cage fitted with a roof net to keep fish deeper and an 

enclosed tarpaulin tube (a snorkel), where salmon have access to the surface air used 

for filling their swimbladder while still avoiding surface waters where lice larvae are 

most abundant. Previous work show they can reduce salmon lice infestation levels in 

sea cages without major impacts on salmon welfare. However, long full-scale studies, 

which are crucial to understand the real-world consequences of these technologies on 

salmon lice infestation, are lacking. Knowledge is also needed on i) how additional 

lice removal strategies might work in combination with lice prevention technologies 

and ii) the effects of these controls on other co-occurring salmon parasites.  

The purpose of this thesis was to examine the impact of commercial-scale snorkel sea 

cages on external (L. salmonis and Paramoeba perurans) and internal parasites 

(Eubothrium sp.) of Atlantic salmon and investigate possible in situ control methods 

(cleaner fish and optical laser) for reducing remaining salmon lice infestations that 

develop. This knowledge will help reveal the successes, challenges, and solutions in 

managing parasites with snorkel sea cages in salmon farming and will provide 

insights on the ramifications of other lice barrier technologies combating the salmon 

lice problem.  
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In a study observing the long-term effects of depth-based technology at commercial 

scale, salmon lice infestations on Atlantic salmon were examined in triplicate snorkel 

and standard sea cages over a 12–month production cycle. Snorkel sea cages reduced 

newly settling lice on Atlantic salmon by 75 % and salmon lice treatments by nearly 

half throughout the study, confirming that snorkel sea cages can effectively control 

lice over commercial production cycles. Lice reductions depended on an environment 

free of layering with surface brackish water (salinities < 28 ppt) and warm water 

(temperatures > 16 °C), highlighting the importance of considering local environment 

conditions when applying depth-based prevention technologies. 

With the potential for depth-based technologies to influence salmon parasites other 

than lice, we document that snorkel sea cages reduced both prevalence and 

abundance of marine tapeworms (Eubothrium sp.) in salmon guts. In a study 

comparing commercial snorkel and standard sea cages, tapeworm prevalence was 3–5 

times lower and tapeworm abundance 10–20 times lower in snorkel sea cages. In 

separate studies, there are indications that the presence of snorkels might increase the 

risk and intensity of infestation by the marine amoeba P. perurans, the causative 

agent of amoebic gill disease (AGD). This problem seems to increase with shielding 

depth. However, creating a low salinity surface layer inside the snorkel may limit 

these infestations if salmon enter for sufficient time to reduce AGD levels.  

Continuous deployment of lice-eating cleaner fish and lice-shooting optical lasers are 

increasingly used to remove lice from farmed salmon. However, information about 

their effects are lacking. This is especially important in depth-based prevention cages, 

in which adding efficient lice reducing controls could prevent the need for removing 

the prevention technology to perform other de-licing procedures, saving time and 

effort for salmon farmers. In this thesis we document that using optical lasers in 

combination with 16 m deep snorkel sea cages during winter did not lower the 

infestation density of mobile salmon lice compared to cages without laser nodes 

installed. Additionally, based on high mortalities and minimal feeding by ballan 

wrasse and a possible mismatch between lumpfish and salmon swimming depths in 

standard salmon cages, which may be even more pronounced in depth-based 
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prevention cages, it was suggested that cleaner fish may have low effectiveness 

against salmon lice over autumn-winter.  

The main conclusions from this thesis is that snorkel sea cages have the potential to 

reduce both salmon lice and marine tapeworm infestations in commercial scale sea 

cages, while the risk and intensity of AGD seem to be increased compared to 

standard cages. However, freshwater filling inside the snorkel show promise as an in 

situ control method for the amoeba. On the other hand, even with several options 

available (e.g. cleaner fish and optical delousing), none of the in situ lice control 

methods stood out as a clear lice removal method to be used in combination with 

preventive technology. Optical lasers did not reduce lice compared to cages without 

lasers and cleaner fish experience high mortality, poor welfare and possible opposing 

depth distribution to salmon. More work focussing on depth distribution for both 

cleaner fish and salmon is needed to improve the efficiency of the lice removal 

options for depth-based prevention technologies.   
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1. Introduction 

1.1 General introduction  

Today aquaculture is one of the fastest growing food sectors in the world and is 

predicted to become the main source of marine food for humans by 2050 (FAO, 

2018; Stentiford et al., 2020). As the global human population increases, so too is the 

demand for aquatic food products. With capture fisheries yield stagnating since the 

1980s and reports that >30 % of marine fish stocks are overfished (FAO, 2018), 

aquaculture is now considered to be the best option for meeting these growing 

demands.  

One of the most successful aquaculture species is the Atlantic salmon (Salmo salar). 

Since production started in Norway in the 1970s it has grown from a few thousand 

tonnes per year to about 2.4 million tonnes per year in 2018 and is now a key industry 

in several countries; Norway, Chile, Tasmania, Canada, Scotland, Faroe Islands and 

Iceland (FAO, 2020). Norway is the leading country in salmon aquaculture producing 

>50% of the global production, with approximately 1.3 million tonnes sold at a value 

of 64.5 billion NOK in 2018 (Norwegian Directorate of Fisheries, 2020b). Presuming 

that it is environmentally sustainable, the Norwegian government has ambitions to 

increase production with 5 million tonnes by 2050 (Sandvik et al., 2020). However, 

concerns around environmental impacts have halted salmon farming growth over 

recent years (Fig. 1). 
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Figure 1. Salmon production (tonnes) in Norway from 1970–2018 (data taken from 

FAO, 2020). Arrow represents when salmon lice regulation was introduced by the 

Norwegian government.   

Intensive animal farming systems can often experience problems with parasite 

proliferation, causing production and profit losses and poor animal welfare (Barber, 

2007; Jansen et al., 2012; Overton et al., 2018a) This often results from abnormally 

high host densities increasing the risk of infections (Arneberg et al., 1998; Krkošek, 

2010) and constraints placed on the natural anti-parasite behaviours of hosts which 

normally avoid or minimise contact with parasites (Hart, 1990; Moore, 2002; Barber, 

2007). Understanding these behaviours has created opportunities to spatially separate 

parasite and host to reduce parasite encounters and infections (Bui et al., 2019). Such 

methods may be difficult to apply in marine animal farming systems where animal 

enclosures are open to the surrounding environment allowing parasite entry and their 

rapid spread over broad geographical scales (McCallum et al., 2003; McCallum et al., 

2004). However, success has come in the form of novel sea-cage designs or host 
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behaviour manipulations aiming to mismatch depths of farmed fish hosts from those 

of parasites in free-living stages (Bui et al., 2019). These preventive methods appear 

fruitful against the primary parasite issue in salmon farming, the salmon lice 

Lepeophtheirus salmonis.  

1.2 Salmon lice  

Sea lice is the common name for several marine ectoparasitic copepods belonging to 

the family Caligidae. Among these is the salmon louse (Lepeophtheirus salmonis) 

which naturally occurs in the northern hemisphere and is divided into two subspecies, 

the Pacific L. salmonis oncorhynchi and the Atlantic L. salmonis salmonis (Skern-

Mauritzen et al. 2014). Both subspecies live as specialized parasites of salmonids.   

The life cycle of salmon lice comprises of 8 life stages, with both free-swimming 

(two planktonic nauplii stages, one infective copepodid stage) and host-attached 

stages (two attached chalimus stages, two mobile preadult stages, one mobile adult 

stage) (Hamre et al., 2013). The nauplius larvae hatch directly from eggs carried in a 

pair of eggstrings that are extruded from the abdomen of the adult female. There are 

two non-feeding planktonic nauplius stages before moulting into free-living 

copepodids, the infective stage. The hatched larvae live entirely on energy reserves 

and need to find and attach to a host before these reserves are depleted (Tully, 1992). 

Lice development is temperature dependent (Hamre et al., 2019) with energy reserves 

lasting longer at colder temperatures and enabling dispersal long distances during 

winter compared to summer (Samsing et al., 2017).  

The free-swimming stages of salmon lice are dispersed by water currents. The lice 

larvae are not able to swim against this current, but they are able to adjust their 

vertical depth to some degree. Infective copepodids can vertically migrate into 

surface waters using positive phototaxis and possibly geotaxis (Bron et al., 1993; 

Heuch et al., 1995) at average swimming speeds of 1.55 mm s-1 (Heuch et al., 1995). 

Since migrating salmon are observed swimming at shallow depths (LaBar et al., 

1978; Rikardsen et al., 2007; Plantalech Manella et al., 2009; Strøm et al., 2018) this 
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could be an adaptation to improve host encounter rates (Johannessen, 1977; Heuch et 

al., 1995). Salinity also alters the vertical distribution of salmon lice, with both 

nauplii and copepods displaying a preference for full salinity water (Heuch et al., 

1995; Crosbie et al., 2019) as low salinities can be lethal (Bricknell et al., 2006; 

Sievers et al., 2019). They are therefore often found to aggregate just below the 

halocline (Crosbie et al., 2019). Nauplii show greater avoidance of low salinities than 

copepodids, which can still be found at salinities down to 16 ppt (Crosbie et al., 

2019). The copepodid is the infective stage and possibly need a higher tolerance 

toward low salinities than nauplii as salmon often swim at shallow depths where 

brackish waters often occur. Copepodids showed no obvious temperature preference, 

while nauplii showed a preference towards low temperatures (Crosbie et al., 2020). 

Coates et al. (2020) demonstrated that lice respond strongly to hydrostatic pressure; 

an increase in pressure, equivalent of 5 and 10 m depth, doubled the number of lice 

that migrated to the top of vertical columns. The distribution of salmon lice 

copepodids is therefore assumed to be the result of hydrodynamic forces and 

copepodids swimming towards the surface or avoiding unfavourable salinities.  

After successful infestation the copepodid and the remaining life stages feed and 

develop on the fish host (Hamre et al., 2013). There are two sessile stages (chalimus) 

that are attached to the fish by protein filaments and three mobile stages (pre-adult 

and adult) that are able to move around on the host using their cephalothorax region 

as a suction cup if in danger of being detached (Kabata, 1982). All stages feed on the 

skin, blood and mucus of the salmon (Costello, 2006), but pathology has mainly been 

associated with the larger mobile stages (Jones et al., 1990; Jónsdóttir et al., 1992; 

Grimnes and Jakobsen, 1996). Lice infestation negatively affects the welfare of hosts 

as it can lead to physical damage, skin lesions, osmoregulatory constraints, secondary 

infections, immunosuppression, chronic stress, decreased growth and worst-case 

scenario death for the host (Grimnes and Jakobsen, 1996; Tully and Nolan, 2002; 

Costello, 2006; Torrissen et al., 2013; Bui et al., 2016; Fjelldal et al., 2020). In 

addition to pathology on the host, lice can reduce harvest quality for salmon farmers.  
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Infestations by salmon lice have been a persistent problem in Norway for over 50 

years, with the first outbreaks soon after salmon cage culture began (Braaten, 1975; 

Brandal and Egidius, 1977). Salmon lice are a natural part of the environment and 

wild salmon returning to rivers are usually infested, with several accounts of this 

occuring prior to salmon farming and in areas with few farms (Torrissen et al., 2013). 

However, the amplification and constant availability of hosts due to industry growth 

has drastically increased salmon lice densities, posing a serious risk for wild salmon 

populations (Krkošek et al., 2011; Krkošek et al., 2013; Kristoffersen et al., 2018). 

Since the 1970s, total abundance of wild Atlantic salmon populations has declined 

(Chaput, 2012; ICES, 2020) and the proportion of salmon returning to rivers has 

more than halved (Anon., 2019). The decline has mainly been attributed to escaped 

farmed salmon and the proliferation of salmon lice from fish farms (Forseth et al., 

2017).  

To reduce the environmental impact of salmon lice infestations in aquaculture, the 

Norwegian government has implemented strict regulations. When lice infestations 

exceed an average of 0.5 adult females per fish (0.2 adult females during the out-

migration of wild salmon, weeks 16–21) farmers are required to intervene and 

delouse (Lovdata, 2012). In addition, the Norwegian lice surveillance program 

require farms to develop a plan for management of salmon lice, which include 

describing regional routines for delousing operations, evaluating treatment efficacy 

and fallowing (Lovdata, 2012). Furthermore, Norwegian authorities have introduced 

production volume limits in 13 defined production zones along the coast with a new 

“traffic light system” (Vollset et al., 2017; Myksvoll et al., 2018). In essense this 

regulation determines whether production in a zone is allowed to grow, keep its 

current production or must decrease production. It is based on the percentage of wild 

salmon estimated to die due to salmon lice in each production zone (<10 % = 

increased production (green), 10–30 % = no change in production (yellow), >30 % = 

reduced production (red)). In order to meet these regulations, the Norwegian salmon 

industry spent more than 5 billion NOK in 2015 in attempts to control the salmon lice 
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(Brooker et al., 2018). Consequently, there has been considerable research and 

investment into new prevention and treatment methods.  

1.3 Sea lice treatments 

When managing salmon lice in commercial salmon sea cages, the primary approach 

is to monitor lice abundance on farmed fish through weekly lice counts and delouse 

when allowable limits are approached or exceeded. Since the introduction of 

chemotherapeutants in the 1970s, the industry has relied on chemicals to treat against 

salmon lice (Burka et al., 1997; Aaen et al., 2015). Chemical treatments can be 

divided into two main categories: a) bath treatments with neurotoxins 

(organophosphates and pyrethroids) and hydrogen peroxide or b) oral treatment with 

medicated feed (emamectinbenzoate, diflubenzuron and teflubenzuon) (Burridge et 

al., 2010; Aaen et al., 2015). Bath treatments are performed either by adding 

chemotherapeutants directly into sea cages by lining a tarpaulin around the cage or by 

pumping fish into a well-boat, where the chemoterapeutant is then added (Overton et 

al., 2018a). After treatments chemotherapeutants are traditionally discarded into the 

surrounding water, although new technology development is currently underway to 

filter treatment water before it is released to the sea (Moore, 2021). For oral 

treatments the chemotherapeutant is added to the feed which is then administered as 

normal for a recommended treatment time. Waste feed and some active ingredient 

from feaces will spread to surrounding waters (Burridge et al., 2010). Oral treatments 

are less time-consuming and resource-intensive than bath treatments, but fish often 

require longer retention time before harvest to ensure product is chemical-free and 

treatment success can be variable due to differences in appetite and size of fish in sea 

cages.  

In recent years, salmon lice have begun developing a resistance towards many of the 

chemotherapeutants used (Grøntvedt et al., 2013; Aaen et al., 2015; Helgesen et al., 

2015) rendering most less effective. In addition, some chemoterapeutants may have 

an environmental impact, and there are concerns about both bioaccumulation in the 

surrounding environment and possible negative effects on non-target species 



 19 

(Burridge et al., 2010; Escobar-Lux et al., 2019; Samuelsen et al., 2020). 

Furthermore, the treatments are often costly and, as fish are usually treated repeatedly 

during a production cycle, and with bath treatments there is an increased risk of poor 

welfare outcomes (Overton et al., 2018a; Overton et al., 2018b).  

In response to this, several new chemical-free parasite controls have been developed, 

including mechanical and thermal delousing (Grøntvedt et al., 2015; Roth, 2016; 

Gismervik et al., 2017). Three types of mechanical delousing technologies (Flatsund 

(FLS) engineering AS, SkaMik AS and the Hydrolicer®) and two types of thermal 

delousing systems (Thermolicer® and Optilicer®) have been developed in the last few 

years (Overton et al., 2018a). All technologies require salmon to be crowded and 

pumped into a delousing system. Mechanical delousing uses pressure washers, 

brushes or vaccums to mechanically remove lice from fish (Overton et al., 2018a). 

Thermal delousing exposes fish briefly to warm seawater (<34°C) to detach lice from 

the host (Overton et al., 2018a). Both delousing methods have proven to be effective 

at removing mobile lice from salmon and have little to no impact on the environment 

or non-target species (Grøntvedt et al., 2015; Roth, 2016; Gismervik et al., 2017). 

However, as with the use of chemical treatments, they appear stressful for fish (Poppe 

et al., 2018; Gismervik et al., 2019; Nilsson et al., 2019) and can lead to high post-

treatment mortalities in certain circumstances (Overton et al., 2018a). Hence, for the 

Norwegian salmon aquaculture to be able to reach the goal of producing 5 million 

tonnes by 2050 there is a need for new technologies and strategies that can mitigate 

parasite infestations without negatively impacting the surrounding environment or 

fish welfare. 

1.4 Preventative methods 

Most research and development efforts on salmon lice control have focused on 

removing host-attached stages. However, the ideal situation would be to limit or 

prevent infestations from occurring. Preventative controls might invoke less 

resistance evolution in parasite populations and reduce the need for farms to delouse 

(Bui et al., 2019). Possible approaches include reducing encounter rates between 
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hosts and parasites (e.g. barriers, behavioural manipulations, spatiotemporal 

management) and reducing the infestation success of the parasite (e.g. vaccines, 

functional feed, breeding) (Barrett et al., 2020b).  

Several new preventive methods which manipulate the host-parasite relationship by 

mismatching their environments are emerging. In salmon farming, prevention 

strategies that exploit lice copepodids positioning in the upper part of the water 

column (Heuch et al., 1995; Hevrøy et al., 2003) have been developed in recent years. 

As Atlantic salmon typically spend extensive periods in the surface waters (Oppedal 

et al., 2011) prevention strategies that shield or move them away from surface-

dwelling salmon lice copepodid can be powerful controls. Technologies based on this 

strategy include barrier cages (skirt or snorkel tarpaulin wrapped around the upper 

part of the cage), submerged sea-cages (repeatedly submerged or submerged with an 

air dome), semi-enclosed cages (water pumped in from the deep) and submerged 

lighting and feeding (motivating salmon to swim at deeper depths) (Table 1). Several 

trials and case studies into these technologies mainly demonstrate that avoiding fish 

contact with surface waters reduces salmon lice infestations on salmon (Table 1). 

However, these new technologies are typically sub-optimally tested at i) research 

scale, ii) for short time periods or iii) using imperfect study designs (Table 1). 

Because of this, there remains some uncertainty around their performance in 

commercial settings.  

Testing new technology at commercial scale is essential when determining the 

effectiveness of the technology as it mimicks the normal conditions that salmon 

encounter. Only testing over a limited timeframe during a production cycle does not 

cover the full extent of season variations that occur. For example, seasonal changes in 

environmental variables, such as temperature, affect lice larvae development 

(Samsing et al., 2016b; Hamre et al., 2019), dispersal and connectivity between farms 

(Samsing et al., 2017). Periodic fluctuations in depth profiles of environmental 

variables, such as brackish surface layers, affecting vertical distributions in lice larvae 

(Heuch et al., 1995; Samsing et al., 2016a) may also not be captured over short 

periods of testing. In addition, there are a range of potential negative side effects of 
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technologies that could be missed without thorough testing at commercial scale. 

These include impact on fish welfare and behaviour, co-occuring parasites and the 

daily routine of salmon farmers. Full-production cycle investigations will therefore be 

vital to definitively elucidating overall performance of preventive technologies and 

identifying wider challenges.  

Table 1. The scale, replication and seasonal coverage of studies assessing salmon 

lice infections in preventive depth-based cage designs versus standard cages 

(modified from paper I, with new additions written in italic).  

Depth-based 

preventive cage 
Study 

Commercial 

scale 

≥3 

replicates 

All seasons 

covered 

Effect of 

in-situ lice 

control 

Other 

parasites 

 

Snorkel 

  

Stien et al. (2016)  x    

Oppedal et al. (2017)  a    

Wright et al. (2017b) x    x 

Paper III  x   x 

Paper I x x x   

Oppedal et al. (2019)  x    

Paper IV x xb  x  

Paper II x a x  x 

Skirt  
Stien et al. (2018) x x    

Grøntvedt et al. (2018) x x          

Floating enclosed Nilsen et al. (2017) x xc xd   

Deep light Hevrøy et al. (2003)      

Deep feed and light Frenzl et al. (2014) x     

Skirt, deep feeding 

and light 

Bui et al. (2020) x x x   

Gentry et al. (2020) x x  x  

Submerged 

Korsøen et al. (2009)  x    

Sievers et al. (2018)  x    

Glaropoulos et al. (2019)  x    

Dome 
Warren-Myers et al. 

(unpublished) 
 x x 

 
 

aRegression design 
bNo standard sea cages 
cDifferent sites used, with different lice infection pressures 

  

dCages stocked over inconsistent periods using different fish cohorts with variable lice 

infection dynamics 

  

   



 22 

1.5 Snorkel technology and salmon lice 

The snorkel sea cage is one of the most exstensively studied salmon lice prevention 

technologies (Table 1). It consists of a standard cage fitted with a roof net to keep 

fish deeper and an enclosed tarpaulin tube (a snorkel) where it a) allows salmon to 

access the surface air for filling their swim bladder to maintain buoyancy regulation 

(Fahlén, 1971; Dempster et al., 2011) and b) it serves as a barrier to surface waters 

where lice larvae are most abundant (Heuch et al., 1995; Hevrøy et al., 2003) (Fig. 2). 

Several experiments and case studies have been conducted on the performance of 

snorkel sea cages from a research scale for proof of concept (Stien et al., 2016; 

Oppedal et al., 2017) to a commercial scale at salmon farm sites (Wright et al., 

2017b). These demonstrate that sea lice infestation levels can be reduced in snorkel 

compared to control cages with negligible impacts on salmon welfare (Stien et al., 

2016; Wright et al., 2017b) and that effectiveness increases with increasing snorkel 

depth (Oppedal et al., 2017). However, the use of snorkel sea cage technology does 

not come without challenges. In a recent study, a brackish surface layer penetrating 

down to the snorkel depth negatively affected the performance of the snorkel 

(Oppedal et al., 2019). Lice copepodids, which avoid low salinity levels (Heuch et al., 

1995; Bricknell et al., 2006; Crosbie et al., 2019), most likely remained below the 

snorkel and were able to infect fish. Prior to 2019, studies had failed to address how 

this technology would perform during a whole production cycle with different 

seasons and environmental fluctuations and in fully replicated studies at commercial 

scale (Table 1).  
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Figure 2. Overview of a) fish farm (Låva, 2019) with 6 snorkel sea cages (screenshot 

from norgeibilder.no) and b) schematic of a commercial snorkel sea cage (modified 

from paper I).   

1.6 Snorkel technology and general parasite management 

Salmon farm management often extends beyond a single pathogen. Several pathogens 

can be transmitted through the same hydrodynamic pathways or infection of one 

pathogen can increase the susceptibility of another. Therefore, coordinated 

management of multiple pathogens may be advantageous for farmers. The use of new 

prevention technology and modified cages could have unknown implications on other 

salmon parasites. While depth-based prevention technologies can reduce salmon lice 

infestations (Stien et al., 2016; Wright et al., 2017b; Stien et al., 2018), minimal 

research has focused on how these techniques affect other salmon parasites (Table 1). 

If parasites display similar depth-related infestation patterns to salmon lice, snorkel 

sea cages and other depth-based prevention technologies could be effective. On the 

other hand, increased fish crowding inside the snorkel may intensify infestation of 

parasites relying on host proximity.  

A common parasite in salmon aquaculture which potentially displays the same depth-
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related infestation pattern as salmon lice are marine tapeworms (Eubothrium sp.). 

While marine tapeworms are of less concern than salmon lice for salmon farmers 

reports of infestations are increasing in Norway (Hjeltnes et al., 2019). Tapeworm 

infestations can significantly reduce salmon growth (Bristow and Berland, 1991; 

Saksvik et al., 2001a) and lead to production and profit losses, which in one study 

was estimated to equate to a 10% growth loss when reaching market size (Bristow 

and Berland, 1991). As tapeworm infestations primarily occur when salmon ingest 

intermediate copepod hosts, and these copepods are often associated with the surface 

layers, depth-based technologies aimed at salmon lice prevention could also work 

against marine tapeworm infestations.  

Respiratory diseases are a huge cause of loss in farmed Atlantic salmon in Norway 

(Herrero et al., 2018; Rozas-Serri, 2019) and the marine amoeba Paramoeba 

perurans, which is responsible for amoebic gill disease (AGD) (Young et al., 2007), 

is one of the culprits of this rising concern (Oldham et al., 2016; Marcos-López and 

Rodger, 2020). As these amoebae seem to be distributed throughout the water column 

(Wright et al., 2017a), depth-based prevention techniques are not expected to shield 

salmon from AGD outbreaks. On the contrary, salmon residing in snorkel sea cages 

appear more prone to AGD outbreaks (Wright et al., 2017b). Freshwater has long 

been used as a treatment against Paramoeba perurans (Nowak, 2012). Therefore, an 

in-situ treatment option with a freshwater layer inside the snorkel sea cage has been 

proposed to mitigate the impact of both parasites (Wright et al., 2017b). This method 

still lacks research attention in terms of effects on parasites, fish welfare (both salmon 

and cleaner fish) before adoption by the salmon industry. There is also concern that 

lice could develop a resistance towards freshwater (Ljungfeldt et al., 2017; Groner et 

al., 2019) which could have catastrophic consequences for wild salmon and sea trout. 

1.7 Snorkel technology and in situ control options 

While lice prevention effects of depth-based technologies can be significant, there are 

instances, as mentioned, that copepodids are deep enough to bypass these barriers and 

infest salmon (Oppedal et al., 2017; Wright et al., 2017b; Oppedal et al., 2019). This 
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likely occurs due to combinations of hydrodynamic processes pushing lice deeper in 

the water column via vertical mixing (Samsing et al., 2016a), lice sinking deeper to 

avoid brackish surface layers (Crosbie et al., 2019) or variation in depth preference 

between lice families (Coates et al., 2020). Hence, through a whole production cycle, 

additional control methods may have to be resorted to. While chemical, mechanical 

and thermal treatments are all options for lice removal, these require snorkels to be 

removed before treatment. Removing snorkels is a process requiring significant 

resources and time and periods without snorkels risk exposing fish to surface layers 

laden with salmon lice larvae. To avoid the latter concern, fish can be pumped into a 

second cage already fitted with a snorkel, but this requires an extra empty cage at a 

farm location. Thus, finding in situ control options that are effective in snorkel sea 

cages would be optimal from a farm management and cost perspective over controls 

that require dismantling or creating new snorkel cages.  

The main approaches currently aimed at continuously removing louse within salmon 

sea cages are lice-eating cleaner fish and optical lasers. Both methods can be used 

while keeping the snorkels in place. However, information about cleaner fish welfare 

and behaviour, and optical laser effects on salmon lice in commercial scale settings is 

needed before these methods can be widely used.  

Cleaning activity, where one species seeks out another to remove ectoparasites from 

their body, is a well-known phenomenon among marine species (Vaughan et al., 

2017). In salmon aquaculture, cleaner fish comprise several species of wrasse (ballan, 

corckwing and goldsinny wrasse) and in recent years also lumpfish (Skiftesvik et al., 

2013; Powell et al., 2017). First used in the 1980s, deployment of cleaner fish to 

remove salmon lice has increased considerably over the last few years (Norwegian 

Directorate of Fisheries, 2020a). Small-scale research studies have shown them to be 

effective in removing mobile lice from salmon with no negative effects on salmon 

welfare (Deady et al., 1995; Treasurer et al., 2002; Skiftesvik et al., 2013; Imsland et 

al., 2014). However, variable effects on lice have been reported from commercial 

salmon farms using cleaner fish (Barrett et al., 2020a) and few studies have been 

performed at commercial scale to back up the findings from smaller scale trials 
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(Overton et al., 2020). Additionally, concerns about cleaner fish welfare and 

mortality in commercial salmon sea cages have raised an ethical dilemma about their 

continued use (Mo and Poppe, 2018; Hvas and Oppedal, 2019; Yuen et al., 2019; 

Stien et al., 2020).  

Differences in environmental preferences and swimming depths between salmon and 

cleaner fish, which are more easily expressed in larger scale cages, could be a factor 

explaining the reduced efficiency and welfare at commercial scale. This is an 

increasingly important factor when using depth-based prevention techniques which 

could affect both cleaner fish and salmon behaviour and welfare (Gentry et al., 2020). 

Cleaner fish vary greatly in their biology and life history, with ballan wrasse being a 

temperate species inhabiting shallow reefs and kelp beds, while lumpfish is a cold-

water, semi-pelagic species. Based on their environmental preferences they might 

occupy different depths than salmon, thereby reducing lice-eating events. Therefore, 

understanding environemental preferences and swimming depth for both cleaner fish 

and salmon could be key to predicting encounter rates and potential lice-eating events 

and optimising cleaner fish deployment in both standard sea cages and cages using 

depth-based prevention techniques.  

As an alternative to cleaner fish, optical lasers are now in use at several locations in 

Norway (Overton et al., 2018a). This method aims to control salmon lice infestations 

using underwater lasers to beam and kill lice on fish. It consists of a vertically 

movable submerged node attached to a horisontally movable floating buoy inside the 

sea cages. The node contains an automated camera system that scans passing fish for 

potential lice and beam at them with a pulse of light when a suspected lice is detected 

(paper IV). The system is trained to identify and not beam salmon eyes and does not 

harm the skin of the salmon (Brown, 2016; Frenzl, 2017). Therefore, lasers do not 

appear to have negative impacts on either the environment or fish welfare. However, 

the delousing effects from this technology still requires scientific validation. Laser 

deployment in snorkel sea cages could improve beams on lice as salmon can be 

closely packed inside the snorkel. However, as snorkel sea cages are often deeper 

than standard cages, to account for restricted space caused by the snorkel, there is a 
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possibility that the salmon school could extend beyond the maximum operating depth 

(25 m due to restricted cable length) of the laser nodes.  

Therefore, to be able to efficiently manage salmon when using depth-based 

prevention technologies, more information is needed on their ramifications on general 

parasite management under commercial production conditions. This information is 

vital for farmers to accurately and cost-effectively choose which control options to 

use in the landscape of parasites they need to manage, salmon production they need 

to maximise, and fish welfare they need to ensure. 

.  

 



 28 

2. Aims of study 

The study aimed to, more comprehensively, evaluate production of Atlantic salmon 

(S. salar) in commercial-scale snorkel sea cages in terms of effects on lice, effects on 

other parasites and the suitability of simultaneously deploying in situ control 

methods. Specifically, it aimed to determine (paper 1–5):  

1. long-term effects of snorkel sea cage technology performance on salmon lice 

through a whole production cycle at commercial scale, 

2. long-term effects of snorkel barrier technology on marine tapeworm (Eubothrium 

sp.) infestations at commercial scale, 

3. short term effects of snorkel sea cage technology on marine amoebae (Paramoeba 

perurans) causing amoebic gill disease and in situ freshwater-filling of snorkels for 

treatment at semi-commercial scale,  

4. short-term effects of in situ optical lasers in snorkel sea cages on salmon lice at 

commercial scale,  

5. baseline information on how salmon sea cage culture affects cleaner fish welfare, 

behaviour and survival at semi-commercial scale (a front-running in situ control with 

snorkel cages).  
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3. Abstract of papers 

Paper I 

Snorkel sea-cage technology decreases salmon lice infestation by 75% in a full-cycle 

commercial test 

 

Lena Geitung, Frode Oppedal, Lars Helge Stien, Tim Dempster, Egil Karlsbakk, 

Velimir Nola, Daniel W. Wright 

 

Methods to prevent parasite infestations in farmed fish are becoming widespread, yet 

tests of their effects often lack commercial relevance and statistical power, which 

may lead to technology misuse.  Here, we examined salmon lice infestations on 

Atlantic salmon in triplicate commercial snorkel lice barrier and standard cages over 

a 12-month production cycle. Barrier cages reduced newly-settling lice on Atlantic 

salmon by 75%, with variability of parasite reduction through time depending upon 

environmental variables. The commercial, triplicate, long-term study design serves as 

a template to validate performance and detect weaknesses of anti-parasite techniques 

in fish mariculture. 
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Paper II 

Tapeworm (Eubothrium sp.) infestation in sea caged Atlantic salmon decreased by 

lice barrier snorkels during a commercial-scale study 

Lena Geitung, Daniel W. Wright, Lars Helge Stien, Frode Oppedal, Egil Karlsbakk 

 

Reports of infestation by marine parasitic tapeworms (Eubothrium sp.) and an 

associated growth reduction in Norwegian farmed salmon are on the rise. With few 

acceptable treatment options available, due to drug resistance evolution in tapeworms 

or negative drug impacts on fish, alternative controls against the parasite are in 

demand. In a 10-month commercial-scale study involving standard sea cages and lice 

barrier snorkel sea cages of different depths (4, 8, 12 and 16 m), we examined if this 

depth-based preventive technology primarily used against salmon lice 

(Lepeophtheirus salmonis) also reduced tapeworm infestation. A submerged net roof 

opening to a central barrier tube (snorkel) was added to standard cages to move 

salmon deeper but retain surface access; a cage manipulation that avoids contact with 

mostly surface-dwelling salmon lice larvae and may also separate fish from calanoid 

copepods, the intermediate hosts of Eubothrium sp. Salmon populations in 

unmodified standard cages had higher tapeworm prevalence (63–93 %) and 

abundances (4.6–5.7 Eubothrium sp. fish-1) than those in snorkel cages (20–36 % and 

0.2–0.6 Eubothrium sp. fish-1). Based on these observations, tapeworm prevention 

could be another beneficial parasite management outcome of snorkel cage technology 

or other depth-based prevention techniques against salmon lice. 
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Paper III 

Surface environment modification in Atlantic salmon sea-cages: effects on amoebic 

gill disease, salmon lice, growth and welfare 

 

Daniel W. Wright*, Lena Geitung*, Egil Karlsbakk, Lars Helge Stien, Tim Dempster, 

Tina Oldham, Velimir Nola, Frode Oppedal 

*Joint first authors 

 

Surface environment modification is a potential parasite control strategy in Atlantic 

salmon sea-cage farming. For instance, a temporary low salinity surface layer in 

commercial-scale snorkel sea-cages has coincided with reduced amoebic gill disease 

(AGD) levels after an outbreak. We tested if a permanent freshwater (FW) surface 

layer in snorkel sea-cages would lower AGD and salmon lice levels of stock relative 

to snorkel cages with seawater (SW) only and standard production cages with no 

snorkels. Triplicate cages of each type with 2000 post-smolts were monitored in 

autumn to winter for 8 wk and sampled 4 times. Lower proportions of individuals 

with elevated AGD-related gill scores were registered in SW and FW snorkel cages 

compared to standard cages; however, these proportions did not differ between SW 

and FW snorkel cages. Individuals positive for AGD-causing Paramoeba perurans 

were reduced by 65% in FW snorkel relative to standard cages, but values were 

similar between SW snorkel cages and other types. While total lice burdens were 

reduced by 38% in SW snorkel compared to standard cages, they were unchanged 

between FW snorkel and other cage types. Fish welfare and growth were unaffected 

by cage type. Surface activity was detected in all cages; however, more surface jumps 

were recorded in standard than snorkel cages. Overall, fish in FW snorkel cages 

appeared to reside too little in freshwater to consistently reduce AGD levels and 

salmon lice compared to SW snorkel cages. Further work should test behavioural and 

environmental manipulations aimed at increasing freshwater or low salinity surface 

layer use.  
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Paper IV 

 

Salmon lice survive the straight shooter: A commercial scale sea cage trial of laser 

delousing 

 

Samantha Bui, Lena Geitung, Frode Oppedal, Luke T. Barrett 

 

Ectoparasitic salmon louse (Lepeophtheirus salmonis) infestations are costly for 

Atlantic salmon (Salmo salar) farmers in Norway. As a result, there is a strong desire 

for solutions to prevent and control infestations, and new technologies are typically 

developed and commercialised rapidly, without rigorous validation. Here, we tested 

the efficacy of a new commercially available control measure—delousing by 

underwater lasers—using a replicated design at full commercial scale. Laser 

delousing was used in combination with a preventive method (snorkel cages), with 

laser nodes deployed in 3 of the 6 sea cages at the site. The trial ran for 54 days, after 

which time there was no difference in infestation density of mobile salmon louse 

stages (pre-adult, adult male or adult female) in cages with or without laser nodes 

installed. By the end of the trial, adult female lice numbers in all cages were close to 

the legislated trigger for mandatory delousing (0.5 adult female lice per fish). The 

laser nodes delivered a large number of pulses relative to the number of lice in the 

cages, indicating that a lack of lethality rather than a lack of target detection was the 

limiting factor. If all pulses had been effective, they should have removed between 4–

38 % of mobile lice each day. There was no effect on salmon welfare indicators such 

as skin condition or eye status. Our results highlight the importance of rigorous 

validation of new technologies across a range of conditions before widespread 

implementation by industry. 

 

. 
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Paper V 

 

Cleaner fish growth, welfare and survival in Atlantic salmon sea cages during an 

autumn-winter production 

 

Lena Geitung, Daniel William Wright, Frode Oppedal, Lars Helge Stien, Tone 

Vågseth, Angelico Madaro 

 

Cleaner fish used as a biological control agent against salmon lice is rapidly 

increasing in Atlantic salmon aquaculture. However, concerns have been raised about 

the welfare and mortality of cleaner fish in salmon cage systems, which could in turn 

affect their performance in controlling salmon lice. In a 4-month autumn-winter 

study, we monitored growth, welfare, mortality and daytime depth distribution of the 

most commonly used cleaner fish, farmed ballan wrasse and lumpfish, in six salmon 

production sea cages where thermo- and haloclines were present. Ballan wrasse did 

not grow (SGR: small: -0.01 % day-1, large: -0.06 % day-1), while lumpfish 

significantly doubled in size (SGR: 0.87 % day-1) during the study. High losses 

(registered mortality + unregistered loss) were observed in both species (57 and 27 % 

of ballan wrasse and lumpfish, respectively). The welfare status of remaining 

individuals generally improved over the study period, regardless of species. Brief 

daytime camera observations at hides found ballan wrasse were typically deeper at 

warmer (median 12.4 °C) more saline (median 31.7 ppt) depths, where salmon were 

expected to reside during day periods, compared to lumpfish generally occupying 

colder (median 7.3 °C), brackish (median 18.9 ppt) water in surface layers. 

Considerable mortalities, minimal feeding (inferred from ceased growth) by ballan 

wrasse and a possible mismatch in lumpfish and salmon depths (inferred from limited 

daytime camera observations) suggest that cleaner fish may have low long-term 

effectiveness against salmon lice in stratified salmon sea cages over autumn-winter. 

Similar studies across seasons, locations and cage types (e.g. depth-based cage 

technologies) are vital to understand the extent of these issues in salmon aquaculture 

more broadly.  
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4. Methodological considerations 

4.1 Experimental conditions 

With the aim of providing salmon farmers with knowledge on depth-based prevention 

technology performance, two semi-commercial scale studies and three commercial 

scale studies were carried out, leading to a mixture of study designs and 

methodological approaches.  

Research scale studies in smaller sea cages have the benefit of being more controlled, 

with a greater ability of to regulate sources of bias. On the other hand, these studies 

could suffer from scale-dependent differences linked to fish numbers and cage 

volumes that may mean results are not transferable to commercial-scale settings. In 

the semi-commercial trials performed for this thesis, experimental conditions were 

kept as close to commercial sea cage conditions as possible. Nonetheless, 12 m × 12 

m, 12–14 m deep cages were used instead of 160 m circumference commercial cages, 

25–50 m deep. This meant, for instance, that 4 m deep snorkels used in one of the 

research scale trials (paper III) were 179 times smaller in volume than regular 10 m 

deep snorkels used in commercial scale trials, giving fish much less space to reside 

in. It was concluded that salmon spent much less time in the snorkel than was 

observed in a previous commercial scale study, which possibly explained the 

difference freshwater-filling of snorkels had on controlling amoebic gill disease 

between the two studies. The study results were still valuable information, as it 

suggested that manipulations may be required to attract salmon into a freshwater 

layer for sufficient time to treat the gill disease. Additionally, the smaller sea cages 

used to observe depth distribution for cleaner fish (paper V) could have altered their 

behaviour, as larger deeper cages can enable both salmon and cleaner fish to express 

depth preferences more readily. It is therefore important to also commence such tests 

in larger commercial scale sea cages.   

Commercial scale studies are highly relevant to the salmon industry as they mimick 

the conditions that salmon are expected to encounter in everyday situations but are 
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often influenced by unexpected and uncontrollable factors. As an example, in a 

continuation of the trial with optical lasers (paper IV), cleaner fish were added to 

cages without lasers to document if there was a difference in lice reductions between 

cleaner fish or lasers when used in snorkel cages. Several unforeseen events 

transpired such as a lumpfish mortality event due to disease and fire in a cage, which 

altered cage setups (Fig. 3). In addition, delousing events due to commercial 

regulations were only performed in some of the cages (Fig. 3). To account for effects 

such as periodic delousing and variable use of cleaner fish, sessile lice (copepods, 

chalimus I, II) were used when assessing the snorkel cage effect on salmon lice 

(paper I). On occasions hydrogen peroxide and thermolicer treatments used could 

have reduced numbers of chalimus to some extent, but there were usually 

opportunities for chalimus to develop after a treatment and before the next sampling 

event. However, as control cages had more treatments during the trial, the amount of 

chalimus reduced due to treatments would have been higher in the standard cages 

compared to the snorkel cages. Therefore, the results presented were conservative 

(paper I). In addition, to minimize the time fish were exposed to surface waters the 

snorkels were always scheduled to be deployed the day after treatment. For marine 

tapeworm infestations (paper II), we decided to terminate the experiment when the 

first snorkel cage was removed, as exposure to surface waters could have influenced 

their subsequent tapeworm infestations.  

Commercial scale studies can also be problematic due to farm logistical issues. Fish 

batches and stocking time are often dependent on the salmon farm hatcheries and 

well-boat availability and delivering identical batches of high numbers of fish to a 

farm site at the same time can prove difficult. In paper I, Atlantic salmon came from 

two different strains and were stocked at two different times (Salmobreed strain in 4 

cages stocked in mid-June and Mowi strain in 2 cages stocked in mid-September). 

This created a growth difference between groups of fish possibly interfering with 

behavior and infestation pressure of salmon lice, AGD and tapeworms. To account 

for this the strains were split evenly between cage types. Nevertheless, even as they 

are more logistically difficult to perform than smaller scale studies, long term 
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commercial scale studies are the ultimate test of effectiveness and feasibility for new 

technologies. 

 

Figure 3. Mean (± SE) adult lice (male and female) in triplicate 16 m deep snorkel 

sea cages with two optical lasers and triplicate cages with cleaner fish (lumpfish and 

wild caught wrasse) at Prestholmane farm site. The trial was a continuation of paper 

IV. Arrows represents different events (ex. blue = cleaner fish stocking, red = 

treatment).  

4.2 Fish sampling 

An important consideration when sampling salmon in large sea cages is how to meet 

the assumption of random sampling. However, this can seldom be guaranteed or even 

expected in real situations (Nilsson and Folkedal, 2019). Several factors could 

contribute to sampling bias such as sampling method, sampling time and numbers of 
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fish sampled. We will try and cover all of these aspects and how we tried to deal with 

them.  

When sampling fish in larger sea cages there are various sampling techniques to 

choose from (Folkedal et al., 2016; Nilsson and Folkedal, 2019). In all the 

commercial scale trials we used sweep nets (10 m × 5 m), which are weighted in the 

bottom line and have floats attached on the surface line. To catch fish, the net is set 

around an area of the cage and fish are lured to the surface by hand feeding. The 

bottom net is then hauled in at both sides to crowd the fish and random individuals 

are netted out from the sweep net. This was chosen as it is the preferred method for 

farmers and was therefore well incorporated into farm operations and easy to 

perform. However, sampling fish with manual netting near the surface could create 

sampling bias as individual salmon occupy different cage areas depending on factors 

such as size, (i.e. smaller fish tend to swim near the surface, Folkedal et al., 2012), 

hunger (i.e. hungry fish tend to swim near the surface, Juell et al., 1994), 

physiological state (i.e. loser fish tend to swim near the surface, Vindas et al., 2016), 

and parasite infections (i.e. fish with higher lice loads swim deeper at night, Bui et al., 

2016). The presence of snorkel cages could make this sampling bias larger, as fish 

caught shallower than the snorkel depths were most likely not individuals from larger 

schools swimming below the snorkel edge. To compensate for this, feeders were 

stopped prior to sampling in each cage. As the fish were actively feeding throughout 

the day, withholding feed and hand feeding pellets to draw them towards the surface 

near the sweep net was expected to improve the chances of sampling fish 

representative of caged populations.  

In addition, the fact that cages were sampled at different times during the day could 

also create a sampling bias as individual fish occupy different areas of the cage 

during the course of one day (Juell et al., 1994; Oppedal et al., 2011). To compensate 

for this farm personell randomly chose the order the cages were sampled each time, 

however sampling in the order cage 1–6 or cage 6–1 are possibly overrepresented as 

this was the order they used when counting lice the weeks we were not present.  
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In most trials a sample size of 20 fish per cage were used. This protocol was chosen 

as it is recommended for lice counting in commercial aquaculture (Lovdata, 2012), 

standard among several previous papers (Stien et al., 2016; Oppedal et al., 2017; 

Wright et al., 2017b; Stien et al., 2018) and was manageable for personnel to 

perform. However, small sample sizes may lead to poor accuracy in results with sea 

lice counts on salmon farms known to vary significantly both between and within 

cages (Revie et al., 2005; Revie et al., 2007). Although, Revie et al. (2005) also 

highlighted that sampling smaller numbers of fish from larger numbers of pens 

typically results in a more accurate estimate of abundance than sampling “many fish 

from few pens”. For a majority of the trials, we sampled three replicate cages at 

several sampling times thereby accounting for some of the variance in lice counts. 

When comparing lice levels in cages with or without optical lasers (paper IV) 50 fish 

from each cage were counted at one sampling point, but the variance did not 

seemingly improve as the majority of lice ended up falling off and being counted in 

the sampling bucket for division equally across the cage. When sampling for marine 

tapeworms (paper II) the sample size were increased from 20 fish to 30 fish per cage 

to be able to pick up differences between cages as the abundance of tapeworm were 

quite low at a few sample times and cage types were not replicated.  
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5. General discussion 

The studies presented in the papers describe the production of Atlantic salmon in 

snorkel sea cages with emphasis on: (1) prevention effects against salmon lice (paper 

I, III), (2) prevention effects against co-ocurring parasites (paper II, III) and (3) in 

situ lice control methods (paper IV, V).  

5.1 Prevention effect against salmon lice  

5.1.1 Lice 

The concept of mismatching farmed salmon and salmon lice by using depth-based 

prevention techniques have proven to be successful. Based on several case studies it 

is clear that snorkel sea cage technology provides prophylaxis against salmon lice 

infestations (paper I, III) (Stien et al., 2016; Wright et al., 2017b; Oppedal et al., 

2019). A snorkel sea cage reduces encounter rates between farmed salmon and free-

living infective salmon lice larvae abundant in surface waters by forcing salmon to 

swim mostly below a net roof and inside a snorkel tube to the surface, and preventing 

parasite penetration into the snorkel space via semi-impermeable material. Its 

efficiency has been experimentally documented in shorter research and commercial 

scale trials where reduction in new lice infestation have ranged from 24–65 % (Stien 

et al., 2016), 33–47 % (paper III) and 76 % (Oppedal et al., 2019) using 4 m deep 

snorkels and 84 % lice reduction using 10 m deep snorkels (Wright et al., 2017b). In 

this thesis the prophylactic effect was further confirmed in a study of considerably 

more relevance to salmon farmers (Table 1), where using 10 m deep snorkels through 

an entire production cycle gave an average lice reduction of 75% in snorkel sea cages 

compared to standard cages (paper I). This is comparable with other barrier 

technologies. Skirts have been documented to reduce salmon lice by 30 % (5 m deep 

skirts, Grøntvedt et al., 2018) to 80 % (10 m deep skirts, Stien et al., 2018), and 

submerged cage fitted with a underwater dome filled with air reduced new lice 

infestation by up to 91 % compared to standard sea cages (submerged to 15 m depth, 

Warren-Myers et al. unpublished). Within the group of preventive barrier cage 
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technologies, skirts are considered to be moderately effective, snorkels highly 

effective, while closed containment systems almost entirely avoid lice infestations 

(Barrett et al., 2020b). In comparison with other preventive technologies, techniques 

utilising a constant physical barrier shielding or separating salmon from surface 

waters (e.g. skirt, snorkel, submerged cage with airdome, closed-contained cage) 

show a more consistent lice reducing effect than approaches focussing on 

manipulation of salmon swimming depth (e.g. deep feeding and lights) (Barrett et al., 

2020b). This adds to the theory that limiting exposure to surface waters is the main 

driver for obtaining persistent effects. The importance of shielding salmon from 

infective copepodids in surface water was further supported with results from 

Oppedal et al. (2017) where lice infestation rates decreased exponentially with 

increasing barrier depth, as salmon kept in snorkel cages near the surface (0–4 m) had 

10–20 times more lice than salmon kept in deeper snorkel cages (12–16 m). 

5.1.2 Environment 

The lice reducing effect of depth-based prevention technologies are dependent on 

environmental conditions. During a long-term study of commercial snorkel sea cages, 

effects on lice varied considerably throughout a production cycle, ranging from a 

35% increase to 100% reduction of new lice in snorkel compared to standard sea 

cages (paper I). It was determined that the snorkel effect were weakest when surface 

brackish water (salinities < 28 ppt) and warm surface waters (temperatures > 16 °C) 

occurred (paper I). Similarly, other studies report the presence of a strong vertical 

salinity gradient (Oppedal et al., 2019) and similar swimming depths by fish in both 

snorkel and standard cages (Stien et al., 2016) causing little difference in lice 

infestation between snorkel and standard sea cages. Infective copepodids are 

positively phototactic, but have reduced survival at salinities < 29 ppt, and are 

assumed to avoid brackish water and aggregate just below the halocline (Heuch et al., 

1995; Crosbie et al., 2019). In commercial sea cages, peaks of infestations have often 

occurred when salmon swim within 5 m of the halocline (Bui et al., 2020). The depth 

of the halocline is therefore an important factor in relation to infestation risk of 

salmon lice. As such, when the brackish surface layer extends close to, or below the 
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snorkel bottom edge, salmon lice are pushed deeper than the snorkel, thereby 

threatening parasite encounters for fish in these cage types (Oppedal et al., 2019). 

Warm surface temperatures also affect the lice reduction efficiency of snorkels. 

Caged Atlantic salmon prefer depths nearest 16 °C for thermoregulation (review by: 

Oppedal et al., 2011), clearly avoid warmer waters (Johansson et al., 2006; Stehfest et 

al., 2017) and likely swim deeper in snorkel and standard sea cages when surface 

temperatures are above this threshold. During these times fish in both snorkel and 

standard sea cages probably swim at similar depths and experience similar infestation 

pressures. Additionally, periods of turbulence could explain times of low lice 

reduction efficiency, where vertical mixing could transport lice larvae below the 

bottom of the snorkel (Johnsen et al., 2016). However, mixing of the water column 

seems to improve dissolved oxygen levels inside lice skirts and is worsened by the 

prescence of a strong pycnocline (Jónsdóttir et al., 2020). In a recent study more 

planktonic nauplii were found inside lice skirts than directly outside the cages, and 

the same was not seen for standard cages (Øverlid, 2017). From this it could be 

suggested that lice might not disperse as normal and develop and re-infect fish inside 

lice skirts (Oppedal et al. unpublished). This might also be true for snorkel sea cages, 

but the smaller volume makes water exchange easier and might therefore create less 

of a problem in these cages. There is also a theoretical risk of contamination of 

salmon lice from waves and rough weather, but this is unlikely as lice barriers often 

extend around one meter above sea level. Swimming depth of fish in standard sea 

cages, halocline prescence and depth and vertical turbulence are likely crucial in 

understanding and predicting variations in lice reduction effects from depth-based 

prevention technologies (Samsing et al., 2016a). 

With this information farmers can assess local environmental conditions and make 

informed decisions on whether to choose a prevention technology and how it might 

be optimised. For instance, farm sites near freshwater run-off with periodic or 

constant brackish surface waters (ex. fjord site) might not require snorkels or require 

deeper snorkels to obtain optimal results. As an option, lice skirts could be lowered 

deeper to shield salmon from the halocline while letting potential lice-free brackish 
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water in from the surface (Bui et al., 2020). Contrastingly, sites with similar salinity 

levels throughout the water column (coastal site) are locations where snorkels will be 

effective and farmers may see similar shielding effects between a range of snorkel 

depths, potentially leading to shallower snorkels in some instances. As deeper 

snorkels and skirts can be harder to operate, the use of barrier cages is most 

recommended for areas with more homogenous salinity depth profiles. It is important 

to note that other prevention technologies such as submerged light and feeding that 

encourage salmon to swim at depths of lower infestation risk (Hevrøy et al., 2003; 

Frenzl et al., 2014; Bui et al., 2020), could be used either on their own or together 

with barrier cages to cover the full range of environmental conditions that salmon 

farms experience. 

5.1.3 Fish welfare 

When implementing new technologies, it is vital to investigate any potential risks to 

fish welfare. With barrier technologies such as skirt and snorkel cages, occasions of 

low dissolved oxygen levels have occurred (Stien et al., 2012; Wright et al., 2017b; 

Stien et al., 2018) and may be an increasing issue as deeper snorkels are used with 

less water exchange (Oppedal et al., 2017). For salmon, periods of low oxygen levels, 

also seen in standard cages (e.g. Oldham et al., 2018; Solstorm et al., 2018; Burke et 

al., 2021), may cause poor appetite (reviewed by Remen et al., 2016), reduced growth 

(Remen et al., 2012) and in extreme cases death (Nilsson and Östlund-Nilsson, 2008; 

Remen et al., 2012). Increased mortality in a deep snorkel (16 m) was attributed to 

stress and low oxygen concentrations due to fish aggregation inside the snorkel, but 

with improved water exchange mortality rates were lowered (Oppedal et al., 2017). 

Previous research has so far not revealed any differences in growth of salmon 

between snorkel and standard sea cages (Stien et al., 2016; Oppedal et al., 2017; 

Wright et al., 2018; Oppedal et al., 2019). In commercial scale studies lasting 

between 6–12 months, measures of fish welfare (fin and snout damage) as well as 

condition factor did not differ in snorkel compared to standard cages (Table 2) 

(Wright et al., 2017b). In shorter studies at research scale (paper III) (Stien et al., 

2016; Oppedal et al., 2017; Oppedal et al., 2019), snout damage from possible 
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collisions with net roof and snorkel structures has occurred (Stien et al., 2016; 

Oppedal et al., 2019), and this may be avoided in larger commercial cages with much 

greater snorkel and cage volume. At commercial scale the volume to physical 

equipment ratio will also be much higher, thus reducing the potential for collisions 

considerably. Maintaining decent water flow and ensuring sufficient snorkel volume,  

therefore, appear a management key in upholding good fish welfare.  

Table 2. Mean (±SE) of fin damage (1–4), snout damage (1–3, higher values 

represent worse fin and snout scores) and condition factor (higher values specify 

better condition) of 20 fish per cage in three snorkel and three standard sea cages at 

every second sampling time (once a month) throughout the study period at Låva 

2016–2017 (additional data to paper I). 

Sampling 

time 
 

Mean (± SE) fin damage 

(1–4) 
 

Mean (± SE) snout damage 

(1–3) 
 

Mean (± SE) condition 

factor 

  Standard Snorkel  Standard Snorkel  Standard Snorkel 

2  3.1 ± 0.0 3.0 ± 0.0  1.0 ± 0.0 1.1 ± 0.1  1.13 ± 0.04 1.08 ± 0.06 

4  3.1 ± 0.0 3.1 ± 0.0  1.0 ± 0.0 1.0 ± 0.0  1.24 ± 0.03 1.16 ± 0.03 

6  3.0 ± 0.0 3.0 ± 0.0  1.0 ± 0.0 1.0 ± 0.0  1.26 ± 0.06 1.17 ± 0.08 

8  3.2 ± 0.1 3.0 ± 0.1  1.0 ± 0.0 1.0 ± 0.0  1.22 ± 0.08 1.19 ± 0.05 

10  3.1 ± 0.1 3.1 ± 0.0  1.0 ± 0.0 1.0 ± 0.0  1.23 ± 0.06 1.19 ± 0.04 

12  3.2 ± 0.2 3.1 ± 0.1  1.1 ± 0.1 1.1 ± 0.0  1.28 ± 0.09 1.22 ± 0.05 

14  3.1 ± 0.1 3.1 ± 0.1  1.6 ± 0.3 1.8 ± 0.2  1.22 ± 0.10 1.20 ± 0.04 

16  3.3 ± 0.1 3.3 ± 0.1  1.7 ± 0.1 1.6 ± 0.2  1.14 ± 0.09 1.13 ± 0.07 

18  3.2 ± 0.1 3.3 ± 0.1  2.3 ± 0.1 2.0 ± 0.1  1.20 ± 0.09 1.18 ± 0.09 

20  3.2 ± 0.1 3.5 ± 0.1  2.0 ± 0.3 2.0 ± 0.2  1.28 ± 0.18 1.17 ± 0.09 

22  3.2 ± 0.1 3.2 ± 0.0  1.9 ± 0.4 1.9 ± 0.3  1.17 ± 0.14 1.21 ± 0.09 

24  3.2 ± 0.1 3.3 ± 0.1  1.6 ± 0.3 1.8 ± 0.3  1.07 ± 0.12 1.21 ± 0.08 

26  3.1 ± 0.1 3.0 ± 0.0  1.4 ± 0.3 1.5 ± 0.3  1.03 ± 0.12 1.25 ± 0.06 

28  3.2 ± 0.1 3.3 ± 0.1  1.5 ± 0.3 1.4 ± 0.2  0.93 ± 0.17 1.16 ± 0.06 
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Additionally, there has been concern that constricted cage surface area could prove 

troublesome for salmon re-filling their swim bladder with air. Without surface access, 

salmon become negatively buoyant and experience welfare issues often within 6 

weeks (Dempster et al., 2009; Korsøen et al., 2009). However, even though previous 

studies reported slightly faster swimming and lower level of breaching behaviour in 

salmon snorkel sea cages compared to standard cages (Oppedal et al., 2017; Oppedal 

et al., 2019), they are unlikely to affect welfare status as salmon seem to use the 

snorkel sufficiently to maintain neutral buoyancy (Stien et al., 2016; Oppedal et al., 

2019). It is noteworthy that salmon lice create physical damage to their host and 

decrease fish welfare (Costello, 2006), and the lice treatments they necessitate often 

have poor fish welfare outcomes (Overton et al., 2018a). Thus, reducing lice loads 

and treatments through depth-based prevention technologies such as snorkel cages 

(paper I), has significant potential to improve fish welfare.  

5.1.4 Resistance building 

Most methods used for lice treatment can drive treatment selection pressure in louse 

populations (Aaen et al., 2015; Gallardo-Escárate et al., 2019). It is currently unclear 

if implementing depth-based prevention methods in commercial production could 

result in the evolution of resistance against prevention methods in lice. There is, 

however, the possibility that shielding salmon from surface layers could select for 

deeper swimming lice that are able to circumvent prevention barriers (Coates et al., 

2020). To slow down this potential selection pressure Barrett et al. (2020b) suggested 

salmon farmers should use several management strategies, such as combining 

multiple prevention and treatment methods, using spatial “firebreaks” or fallowing to 

minimise connectivity of louse populations and performing selective breeding for 

louse-resistant salmon lineages. At the same time, some evolutionary trajectories 

could have benefits. For instance, selection pressure for deeper swimming lice might 

reduce infestation pressures on wild salmon (Barrett et al., 2020b; Coates et al., 2020) 

which often swim at shallow depths (LaBar et al., 1978; Rikardsen et al., 2007; Strøm 

et al., 2018). However, further studies and modelling efforts are required to test this 

hypothesis.  
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5.2 Effect on co-occuring parasites 

Depth-based prevention techniques have the potential to influence infestation rates of 

salmon parasites other than salmon louse. Snorkel sea cages were shown to have the 

potential to reduce infestation rates of marine tapeworm (Eubothrium sp.) (paper II) 

and increase the risk and intensity of infection by the amoeba P. perurans (Wright et 

al., 2017b), the causative agent for AGD (Young et al., 2007). This was also observed 

in two commercial studies where fish in snorkel sea cages had higher gill scores than 

standard cages (Fig. 4a), which also worsened with deeper snorkels (Fig. 4b). 

However, creating a freshwater surface layer inside the snorkel has the possibility of 

mitigating infection by amoebae (Wright et al., 2017b) if salinity in the freshwater 

layer is low enough and salmon reside within it for sufficient time (paper III).  

5.2.1 Marine tapeworm 

In a recent study at commercial scale, salmon populations in standard cages were 

observed to have 3–5 times as many fish infected with 10–20 times more marine 

tapeworms than salmon residing in snorkel sea cages (paper II). Due to the apparent 

effectiveness of the depth-based technology, but with no clear relationship between 

tapeworm infestation and snorkel depth, it was suggested that marine tapeworm 

transmission most likely occurs in surface waters. Atlantic salmon are infected when 

they ingest intermediate copepod hosts (Hodneland and Solberg, 1995; Saksvik et al., 

2001b) which are often associated with the surface layers. As salmon are usually fed 

from the surface in commercial sea cages this might lead to increased risk of 

voluntary or accidental ingestion of intermediate copepods and explain why 

infestations are reduced in snorkel sea cages. If this principle works, there is also the 

possibility that using other lice barrier cages or simply using deep feeders might 

prove to be similarly efficient at reducing tapeworm infestations. However, further 

studies using different depth-based and deep feeding technologies are needed to 

ascertain the consistency of these effects on tapeworm infestations in salmon 

aquaculture.  
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Figure 4. Mean gill-score (± SE) from 20 fish per cage a) in triplicate snorkel and 

standard sea cages at Låva in 2016 (additional data to paper I) and b) two standard 

cages and four snorkel cages with different shielding depths (4, 8, 12, 16 m) at 

Prestholmane in 2017 (additional data to paper II). 
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5.2.2 Amoebic gill disease 

In contrast, outbreaks of the amoeba Paramoeba perurans causing amoebic gill 

disease (AGD) have been a persistent problem when using and testing snorkel sea 

cages (Fig. 4) (Wright et al., 2017b). There is seemingly both a higher risk for AGD 

outbreaks (e.g. occurring earlier) and increased intensity of infestation in snorkel sea 

cages than in standard cages (e.g. higher AGD-related gill scores) (Fig. 4), which 

appear to increase with deeper snorkels (Fig. 4b). According to Wright et al. (2017b), 

a reason for this could be increased crowding of fish inside the snorkel cages, 

resulting in increased host-to-host transmission of P. perurans which relies on host 

proximity (Crosbie et al., 2010; Nowak, 2012), while another reason could be that the 

outbreaks were usually preceded by periods of brackish surface water which might 

have lowered AGD levels in fish held in standard cages by affecting the freshwater-

sensitive amoeba P. perurans (Oldham et al., 2016). However, by continuously 

adding freshwater into the snorkels, creating a low salinity layer, AGD outbreaks 

appear to be mitigated in commercial scale cages (Wright et al., 2017b) without 

having to remove the snorkels to treat (e.g. hydrogen peroxide or freshwater bath 

treatments). Though, creating a constant low salinity layer in large sea cages requires 

huge amounts of freshwater which might be difficult at some sites without adding 

large expenditures. Additionally, to maintain oxygen levels in larger sea cages it 

might be necessary to add oxygen to the freshwater, as creating the low salinity layer 

prevents for constant water exchange in the snorkel and could therefore cause low 

dissolved oxygen levels and poor fish welfare. 

When treating for AGD with freshwater the common exposure length is 3–4 hours 

(Powell et al., 2015). However, the theory behind the freshwater layer in the snorkel 

is that salmon will self-treat as they swim through the low salinity layer on their way 

to re-fill their swim bladder (Dempster et al., 2011) and that these small bursts of 

freshwater on the gills will delay and mitigate the AGD outbreaks. However, in a 

smaller scale trial, snorkel sea cages with a constant freshwater layer did not reduce 

AGD-related gill scores compare to fish in standard or seawater snorkels (paper III). 

It was argued that the lack of effect during this study was because salmon did not 
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have enough contact with the freshwater layer for it to effectively remove the 

amoeba. Therefore, for this to be an effective method it may be important to increase 

attraction to the freshwater layer, so salmon use it long enough to reliably treat 

against AGD. This could be achieved using i) submerged night lights in the 

freshwater to attract salmon (Juell and Fosseidengen, 2004; Wright et al., 2015), ii) 

freshwater temperatures more preferred by salmon  (e.g. around 16 °C, Johansson et 

al., 2006), iii) a more gradual salinity gradient in the freshwater and iv) making sure 

oxygen levels are within the preferred range for salmon (paper III). However, more 

work is needed to uncover the effects of these fish behaviour manipulations between 

standard, freshwater snorkel and saltwater snorkel cages, ideally at commercial scale.  

5.2.3 Multi-parasite management 

Collectively, the findings suggest that commercial use of snorkel technology could 

control both salmon lice, AGD and marine tapeworm when implemented 

strategically. Using the prevention technology at the start of a production cycle is 

likely important for both salmon lice and tapeworm prevention. Newly-transferred 

post-smolts often show a preference to swim near the halocline for the first couple of 

months in sea (Oppedal et al., 2011) placing fish in standard cages at high risk for 

infestation. Additionally, small salmon are more likely to ingest copepods (Ruud, 

2019), the intermediate host of tapeworm and using depth-based prevention 

technology when salmon are small might decrease the infestation of marine 

tapeworm. As it has been demonstrated that there are weak or no effects on lice 

infestations from snorkel cages during pycnoclines with warm brackish upper layers, 

depth-based prevention technology could be abandoned over late summer and early 

autumn when these situations often occur. Such a strategy could also be beneficial for 

infections of the amoeba, P. perurans, as this is often a problem during autumn. 

However, based on infestation dynamics, for optimal tapeworm prevention, depth-

based technologies should ideally be deployed from May-September. Yet, as snorkel 

sea cages at 4 m depth were as effective in preventing tapeworm infestations as 

deeper snorkels (paper II) and AGD outbreaks were less intense in shallower 

snorkels (Fig. 4b), pulling or moving up snorkels or other depth-based prevention 
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technologies during these periods might be beneficial. Deep feeding might also be an 

option if snorkels are not preferred at this time for lice and amoeba, as feeding could 

seem a crucial time to avoid surface waters for salmon not to obtain tapeworm. All 

these studies highlight the importance of monitoring a range of common parasites 

when testing the performance of a new parasite control strategy and adapting multiple 

controls in the fight against these parasites.  

5.3 In situ control methods  

Finding an approach to continuously treat against lice that can be used in combination 

with preventive depth-based technologies is exceedingly important in farm 

management. This is because lice infestation still occurs in these cage types (paper 

I), and if treatment is required disassembly of the snorkel sea cages is often needed 

which adds to labour and costs for the farmers. The main methods currently used for 

continuous lice removal within salmon sea cages are lice-eating cleaner fish and lice-

shooting optical lasers. They can both be combined with different preventive 

approaches, but it is important that the different combinations are trialled first to 

determine their lice removing efficiency (paper IV) (Gentry et al., 2020). 

Furthermore, in the case of cleaner fish, it is essential that the welfare of this 

biological agent is not unacceptably compromised during use (paper V). 

5.3.1 Cleaner fish 

Poor welfare and high mortality were observed in different cleaner fish species held 

in small salmon sea cages over autumn-winter (paper V). This relates to reports from 

the industry of mortalities ranging from 18–48 %, with individual farms experiencing 

up to 100 % mortality of cleaner fish (Nilsen et al., 2014; Stien et al., 2020). This 

suggests that fish welfare is of serious concern when using this lice control method 

and that high mortalities will either lead to weak effects on lice or require multiple 

introductions of cleaner fish to cages (paper V). High unregistered losses were also 

reported, creating concern for a weakening of genetic composition and local 

population structures of wild cleaner fish (Faust et al., 2018) if these losses are due to 

escaped cleaner fish (paper V). Therefore, to ensure their welfare and efficiency, 
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tailored cleaner fish husbandry will be required for the continued use of cleaner fish 

in salmon aquaculture. If this is achieved, cleaner fish may prove a suitable in situ 

control method, providing further reductions in lice infestations to snorkel cage 

technology (paper I).  

However, prevention technology may also alter cleaner fish welfare. Although lice 

skirts were not found to impact the welfare of corkwing wrasse in a recent study 

(Gentry et al., 2020). Using cleaner fish in depth-based prevention cages may 

improve cleaner fish welfare due to reduced delousing events (e.g. in snorkel sea 

cages) (paper I). Additionally, neither wrasse or lumpfish are capable of fast 

swimming speeds like Atlantic salmon (Hvas et al., 2018; Yuen et al., 2019), and 

could therefore experience challenges at sites with strong currents (Jónsdóttir et al., 

2019; Hvas et al., 2020). As depth-based prevention cages reduce surface current 

(Frank et al., 2015; Klebert and Su, 2020; Jónsdóttir et al., 2021a; 2021b) they may 

create a more sheltered environment for cleaner fish compared to standard sea cages, 

thereby improving cleaner fish welfare. However, this could reduce encounter rates 

between them and the salmon they clean for parasites, as cleaner fish may prefer to 

stay in the low-flow water conditions inside the snorkel or skirt (Skiftesvik et al., 

2015; Yuen et al., 2019), which are often avoided by salmon (Oldham et al., 2017). 

Furthermore, low dissolved oxygen events occurring in prevention cages (Stien et al., 

2012; Wright et al., 2017b; Stien et al., 2018) may negatively impact both cleaner fish 

welfare and their depth distributions compared to salmon. In events of low dissolved 

oxygen, salmon have been observed to swim deeper in cages below the hypoxic water 

(Oppedal et al., 2011; Oldham et al., 2017), while cleaner fish seem to have a higher 

physiological tolerance to similar levels of hypoxia (Hvas and Oppedal, 2019). This 

could create a mismatch between cleaner fish and salmon depth, where salmon swim 

below the snorkel to avoid the hypoxic water while the cleaner fish continue to stay 

inside the snorkel or skirt. However, hypoxia avoidance in salmon is not always 

observed (Stien et al., 2012). Even if depths do match under these conditions, 

lumpfish activity levels may be reduced at low levels of dissolved oxygen and 

negatively impact lice-eating performance (Hvas and Oppedal, 2019). 
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Differences in environmental preferences beyond dissolved oxygen levels and the 

need for shelter could also affect the depth distribution of cleaner fish and salmon. In 

a semi-commercial study during autumn-winter, we observed ballan wrasse deep in 

the cage at warmer, more saline depths while lumpfish were seen to occupy the 

colder, brackish surface layers (paper V). During these conditons salmon would be 

expected to reside at the same depths as ballan wrasse, preferring warmer 

temperatures up to 16 °C (Oppedal et al., 2011), thereby creating a mismatch in 

lumpfish and salmon depths. Depth-based prevention cages could increase this spatial 

mismatch between salmon and cleaner fish, leading to fewer interactions and lice-

feeding opportunities, as was observed in a commercial scale study where corckwing 

wrasse ate 10 times fewer lice when used in combination with skirts around cages 

(Gentry et al., 2020). With the increasing use of depth-based prevention cages a 

greater understanding of swimming depth and preferences of both cleaner fish and 

salmon across seasons, locations and cage types is vital to assess of encounter 

probabilities and optimize cleaner fish management.  

Behavioural manipulations could prove useful to close the potential gap between 

depth-distribution of cleaner fish and salmon. Cleaner fish depend on hiding places 

inside cages (Deady et al., 1995; Imsland et al., 2015), partly due to their need to rest 

and attach during night (Imsland et al., 2015). In addition, hiding places are often 

used to create a “cleaning station” for salmon inside cages. In standard cages hides 

are often placed at the surface extending 10 m deep (Imsland et al., 2018a; 2018b). In 

depth-based prevention cages however, hides should preferably extend the whole 

length of the cage to improve the chance of interactions between cleaner fish and 

salmon while still providing suitable conditions for optimal cleaner fish welfare. 

Deep feeding and deep lights are used to attract salmon deeper in cages (Frenzl et al., 

2014); concepts that could be applied to attract cleaner fish deeper in cages. 

Additionally, cleaner fish clean salmon during the day (Deady et al. 1995), when lice 

are visually detected. As light intensity is reduced with depth, the depth of snorkel 

may affect cleaner fish efficiency by reduced light and prey recognition. Adding deep 
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lights may therefore also have a positive impact on lice-eating efficiency of cleaner 

fish.  

5.3.2 Optical delousing 

Another commercially available control method suitable for deployment in 

preventive depth-based cages is optical delousing, using laser nodes to continuously 

target and beam lice off the fish. However, using this method in combination with 10 

m deep snorkel sea cages over the course of 54 days during winter did not lower the 

infestation density of mobile salmon lice compared to cages without laser nodes 

installed (paper IV). One possibility for why the lasers were ineffective could be 

salmon behaviour, with different environmental conditions and salmon hunger levels 

changing their depth preference and swimming patterns and influencing encounter 

rates with laser nodes (paper IV). It is therefore important to use available 

information on salmon behaviour to find the optimal placement for laser nodes 

throughout the day. In snorkel sea cages, salmon are confined to much smaller 

volumes than salmon in standard sea cages, which could increase the number of fish 

passing within the effective range of the node (~ 1.5 m). Fish in snorkel sea cages 

often swim off-centre and directly below the snorkel edge, possibly making it easier 

to predict where salmon reside and place laser nodes accordingly. However, the 

smaller volume of the snorkel might also restrict the horizontal movement of nodes, 

making it difficult to optimally place the laser. Using lasers in combination with other 

depth-based technologies such as skirts and deep feeding and lights would mitigate 

this issue. Snorkel cages are also normally deeper than standard cages to account for 

the volume lost by the snorkel. As the cable length for the laser nodes is currently 

restricted to 25 m, deep snorkels may push fish to depths outside the range of the 

laser. Even so, our study found laser nodes to deliver large numbers of pulses relative 

to the number of lice in the cage, indicating that a lack of lethality rather than target 

detection was the limiting factor (paper IV). There are no other scientific studies 

using optical lasers in standard cages making it difficult to compare and conclude if 

the low effect observed was due to snorkel cage construction or if the effect is the 

same when used in standard cages. There is therefore a need for more long-term 
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studies evaluating the effectiveness of optical lasers in different cage types and with 

different numbers and positions of laser nodes. Full-scale studies elucidating 

interactions between farm routines, environmental conditions and cage technologies 

will also be invaluably.  
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6. Conclusion and future perspectives 

The use of depth-based preventive technologies to reduce or limit salmon lice 

infestations are increasing in salmon aquaculture. These technologies can be 

successfully used without causing environmental or fish welfare issues. Based on the 

results from the present studies it is evident that using snorkel sea cages in 

commercial scale salmon farming provides prophylaxis against salmon lice (L. 

salmonis) and marine tapeworm (Eubothrium sp.) infestations throughout a 

production cycle with the potential to diminish the need treatments for both parasites 

(paper I, II). However, it was also seen that, under specific environmental conditions 

(i.e. deep halocline and warm surface waters), snorkel sea cages became less effective 

in preventing salmon lice infestations (paper I). It is therefore important to 

understand the environmental conditions at each aquaculture site when deciding 

which preventive method to deploy.  

Furthermore, salmon in snorkel sea cages may be more prone to AGD outbreaks. 

However, freshwater filling in snorkels show promise as an in situ therapeutic or 

prophylactic control method towards the freshwater sensitive amoebae, P. perurans, 

if salmon enter for sufficient time to affect amoebal survival (paper III). Because 

snorkel cages increase labour intensity and cost during lice treatments, as they need to 

be dismanteled and reassembled before and after treatment, in situ lice controls will 

be preferred in conjunction with this technology. We identified problems with two 

current options for in situ lice control within snorkel sea cages. Optical lasers did not 

significantly reduce lice compared to cages without lasers (paper IV). In addition, 

cleaner fish were found to experience high mortality and poor welfare, in addition to 

potentially having opposing depth distributions to the salmon they clean (paper V). 

Optimisation of optical laser and cleaner fish deployments is recommended before 

use as supplementary in situ lice controls for depth-based cage technologies.  

In order to provide salmon farmers with a comprehensive knowledge base for 

decision-making, it is necessary to test whether results from small scale trials are 

relevant to commercial scale farms. It is vital that control strategies used in salmon 
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sea cages are thoroughly tested before widespread deployment to i) confirm whether 

they are effective against a parasite, and ii) assess the potential welfare concerns for 

salmon and any biological control agents used. In that aspect, improving cleaner fish 

husbandry and lice-eating efficiency in commercial sea cages is an important 

consideration for future trials.  

Further monitoring of fish behaviour in snorkel cages and other depth-prevention 

cages is also key for improved farm management. Therefore, future trials on how to 

operate laser nodes more effectively based on salmon behaviour could help improve 

encounter rates with salmon and lasers. Large gains in lice reduction efficiency and 

fish welfare could also be achieved by understanding salmon and cleaner fish depth 

distributions in commercial snorkel sea cages and applying appropriate behavioural 

manipulations. More focus is therefore needed on the spatial overlap between cleaner 

fish and salmon in sea cages as a measure of likely interaction, where research 

conducted in large commercial scale sea cages is imperative as these effects are likely 

exacerbated in larger cages. With the increasing use of depth-based prevention 

technology it is also vital that the effects and welfare of cleaner fish and other in situ 

lice controls are tested in combination with the preventive measure.    

These studies also highlight the importance of monitoring a range of common 

parasites when testing the performance of a new parasite control strategy, to ensure 

the success of overall parasite management of farms. More research into co-occuring 

parasites is needed to conclusively determine the effect of depth-based prevention 

cages on marine tapeworms and improve in situ freshwater filling as a continuous 

treatment against AGD. However, research on the potential impact of using depth-

based prevention cages on other parasites should also be included, such as the sea lice 

Caligus elongatus, which seemingly increases in snorkel sea cages (pers. obs.). The 

Caligus lice larvae do not show the same aggregation towards the surface as salmon 

lice larvae (á Norði et al., 2015), and depth-based prevention technologies might 

therefore impact the infestation rates of C. elongatus differently (Stien et al., 2018). 

However, further studies are required to test this hypothesis.  
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In the future it will be important to use multiple controls in the fight against these 

parasites so that resistance evolution is not driven in a single direction. It is also 

imperative that future studies focus on whether implementing depth-based prevention 

technology impact resistance building or selection pressure of lice.  
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a b s t r a c t

Methods to prevent parasite infestations in farmed fish are becoming widespread, yet tests of their effec-
tiveness often lack commercial relevance and statistical power, which may lead to technology misuse.
Here, we examined salmon louse infestation on Atlantic salmon in triplicate commercial snorkel louse
barrier and standard cages over a 12 month production cycle. Barrier cages reduced newly settling lice
on Atlantic salmon by 75%, with variability in parasite reduction over time depending upon environmen-
tal variables. The commercial, triplicate, long-term study design serves as a template to validate perfor-
mance and detect weaknesses in anti-parasite techniques in fish mariculture.
� 2019 The Authors. Published by Elsevier Ltd on behalf of Australian Society for Parasitology. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Intensive animal farming systems are susceptible to parasite
outbreaks. However, understanding host-parasite interactions cre-
ates opportunities to prevent parasite encounters and infestations
in these systems (Bui et al., 2019). In fish mariculture, novel sea-
cage designs or host behaviour manipulations that mismatch host
and parasite environments have been developed (Wright et al.,
2017; Stien et al., 2018) in attempts to overcome the normal
free-flow of rapidly spreading marine parasites onto fish stocked
in open enclosures (McCallum et al., 2003). These preventive meth-
ods appear fruitful against the salmon louse, Lepeophtheirus salmo-
nis, the primary parasite causing issues for the world’s largest
finfish mariculture industry, sea-cage Atlantic salmon, Salmo salar,
farming. In 2015, Norway produced NOK 49 billion of farmed sal-
mon, but spent > NOK 5 billion to control the parasite (Brooker
et al., 2018). Adding a layer of complexity, wild salmonids dying
at unacceptable rates from farm-magnified salmon louse popula-
tions (Kristoffersen et al., 2018) have triggered the Norwegian gov-
ernment to enforce production volume limits and treatments when

salmon louse infestation levels are too high in salmon farms
(Lovdata, 2012, 2017).

For management of salmon louse infestation, prophylactic
depth-based technologies are emerging (Bui et al., 2019). These
include barrier cages (a skirt or snorkel tarpaulin wrapped around
the upper depths), submerged cages (repeatedly submerged or
submerged with an air dome), semi-enclosed cages (with deep
water pumped in), and deep lighting and feeding (motivating sal-
mon to swim deeper). They work by uncoupling salmon from
surface-dwelling salmon louse larvae but provide surface air access
required for salmon swim bladder reinflation, buoyancy control
and optimal welfare. Several trials and case studies report prophy-
lactic depth-based technologies reduce salmon louse infestation
levels, however their short-term, research-scale, or sub-optimally
replicated nature increases uncertainty surrounding the results
(Table 1). Short-term studies will not capture how seasonal varia-
tions in louse larvae development and dispersal (Samsing et al.,
2016, 2017) and environmental factors that influence host or par-
asite depths (Heuch et al., 1995; Stien et al., 2016) affect depth-
based technologies over full production cycles. In addition,
research-scale studies could suffer from scale-dependent differ-
ences such as fish numbers and cage volumes that mean their
results are not directly transferable to the salmon farming industry

https://doi.org/10.1016/j.ijpara.2019.06.003
0020-7519/� 2019 The Authors. Published by Elsevier Ltd on behalf of Australian Society for Parasitology.
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(Wright et al., 2017). To have sufficient statistical power, experi-
ments should also use at least three replicate cages to account
for expected random environmental variation (Ling and Cotter,
2003), with all cages at the same farm site so they experience sim-
ilar louse infestation pressures. In a best practice experiment, we
compared salmon louse infestation between three commercial-
scale snorkel and three standard cages at a single site over
12 months (Fig. 1). Environmental conditions were monitored to
assess the influence of periodic brackish water and high surface
temperatures, respectively, expected to push lice and fish in stan-
dard cages deeper, on snorkel technology effectiveness.

The study was conducted at a commercial salmon sea-cage farm
at Låva, Jelsafjorden, Finnøy commune, Norway (59.1� N, 5.6� E).
Data were collected through most of a production cycle from sea
transfer to harvest, from June 2016 to August 2017. Atlantic sal-
mon (S. salar, autumn transferred smolts, Salmobreed strain in four
cages and Mowi strain in two cages; the strains were split evenly
between cage types) were stocked in triplicate standard and snor-
kel cages (Fig. 1). The snorkels of 10 m depth were deployed before
fish arrival. Two snorkel and two standard cages were stocked
between 11–14 June, while one snorkel and one standard cage
were stocked on 22 September. At transfer, the number of fish
per cage ranged between 147,149–159,775 with an average weight
of 82–155 g. Co-stocked cleaner fish were in equal numbers
between cage types.

At fortnightly sampling events, we randomly netted and leth-
ally dosed (Benzoak vet., Benzocaine, 200 mg/ml, VESO Vikan,

Namsos, Norway) 20 fish per cage, and counted their sessile sal-
mon lice stages (copepodid, chalimus I, chalimus II) while sub-
merged in seawater-filled trays. Sessile lice stages were used to
represent new lice encounters when determining the effect of
snorkel technology on louse infestation because: (i) they were
expected to develop within the fortnightly sampling interval and
(ii) were less likely to be influenced by de-lousing measures and
cleaner fish compared with mobile stages. We monitored water
salinity and temperature between 0–20 m depth daily by profiling
a Conductivity, Temperature and Depth (CTD) recorder (SD208,
SAIV-AS, Bergen, Norway) at the feed barge. When louse infesta-
tions at the farm exceeded the maximum allowed limit of 0.5 adult
female lice per fish or 0.2 adult females during weeks 16–21
(Lovdata, 2012), cages over the limit were deloused with hydrogen
peroxide or thermolicer treatments. Delousing events that
occurred before a sampling event could have reduced the sessile
lice numbers recorded to some extent, but as the standard cages
were deloused more often, our results on louse reduction in snor-
kel compared with standard cages are conservative.

Data analyses were performed using R software v.3.1.0 (Copy-
right 2009, The R Foundation for Statistical Computing, Vienna,
Austria). We compared square-root-transformed newly attached
lice (copepodid to chalimus II) counts between cage types using
linear mixed-effect models, setting cage type as a fixed factor
and sampling time as a random effect. Square-root transformed
newly attached lice numbers were also compared between cage
types at individual times via a Welch’s t-test. Correlations between

Table 1
The scale, replication and seasonal coverage of studies assessing salmon louse infestation in preventive depth-based cage designs versus standard cages.

Depth-based preventive cage Study Commercial scale �3 replicates Seasons covered

Autumn Winter Spring Summer

Snorkel Stien et al. (2016) x x
Oppedal et al. (2017) a x
Wright et al. (2017) x x x
Wright et al. (2018) x x
This study x x x x x x

Skirt Stien et al. (2018) x x x
Grøntvedt et al. (2018) x x d d d d

Floating enclosed Nilsen et al. (2017) x xb xc xc xc xc

Deep light Hevrøy et al. (2003) x x x
Deep feed and light Frenzl et al. (2014) x x x
Submerged Korsøen et al. (2009) x x

Sievers et al. (2018) x x
Glaropoulos et al. (2019) x x

The current study is indicated in bold.
a Regression design.
b Different sites used, with different louse infestation pressures.
c Cages were stocked over inconsistent periods using different fish cohorts with variable louse infestation dynamics.
d Seasons were not known, but farm sites were tracked for 2–5 months.

Fig. 1. Schematic of commercial farm used in the study; (A) Låva fish farm, Norway and (B) commercial snorkel sea-cage. The fish farm had six circular cages on a line from
the feeding barge and perpendicular to the shoreline. The rectangle represents the feeding barge, the circles represent standard cages and the double circles represent snorkel
cages. All cages were 50 m in diameter and 30–50 m deep, while three cages were also fitted with a 30 m diameter and 10 m deep snorkel.
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the significance of cage type effects based on P values from t-tests
at individual times and the corresponding magnitude of salinity
(depth of 28 ppt contour) or temperature stratification (depth of
16 �C contour) in the preceding fortnight were assessed using Pear-
son’s product-moment correlation tests. Error distributions were
checked for variance and normality and the significance level
was set at P < 0.05.

Research data for this article are available in Mendeley Data,
DOI: https://doi.org/10.17632/3jn84ngx9t.1.

Overall, throughout the study period newly attached lice were
on average 75% lower in snorkel relative to standard cages (mean
of 0.17 ± 0.03 versus 0.71 ± 0.07: v2 = 104,18, P < 0.001). When
compared at individual times, counts of new infestations were sig-
nificantly lower in snorkel than in standard cages, 15 of 28 times
when 50–100% less lice were observed (Fig. 2). The significance
of snorkel effects on newly attached lice was negatively correlated
with the intensity of surface brackish water (t = �2.52, P = 0.018)
and surface warm water events (t = �3.38, P = 0.002) (Fig. 2). Louse
bath treatments were reduced by a factor of almost 2 in the three
snorkel cages (treated zero, two and two times) in relation to the
three standard cages (treated zero, four and three times).

In this study we demonstrate the effectiveness of spatially sepa-
rating Atlantic salmon from infective salmon louse larvae using
depth-based technologies in commercial-scale sea-cages. Over
12 months, approximating a full seawater phase production cycle,
installing a 10 m deep snorkel in sea-cages reduced louse infesta-
tion by a factor of 4 and louse bath treatments by a factor of almost
2, relative to standard cages (Fig. 2). The reductions are consistent
with previous snorkel cage studies at commercial- and research-
scales (Stien et al., 2016; Oppedal et al., 2017; Wright et al., 2017).
The salmon louse develops through both free-swimming and
host-attached stages, and initial host infection involves the infective
free-swimming copepodid stage. Infective copepodids vertically
migrate into surface waters using positive phototaxis and possibly
geotaxis (Bron et al., 1993), using average swimming speeds of
1.55 mm s�1 (Heuch et al., 1995). Sea-caged Atlantic salmon typi-
cally spend extensive periods in surface waters due to a combina-
tion of abiotic and biotic factors and sea-cage structures (Oppedal
et al., 2011) which typically expose them to infective lice, and likely
explains the success of depth-based prophylactic strategies.

However, depth-based technology effects were weakest when
surface brackish water (salinities <28 ppt) and warm surface

Fig. 2. Daily depth profiles between 0–20 m of (A) temperature (with a black line tracing 16 �C levels) and (B) salinity (with a black line tracing 28 ppt levels) from a reference
location at the feed barge at Låva fish farm, Norway. The dashed black line indicates snorkel depth (10 m). Also shown is the mean number (±S.E.) of newly attached lice fish�1

(copepodite, chalimus I and chalimus II) per cage type (snorkel and standard cage) for each sampling point (C). The percentage differences between cage types are displayed
above each sampling time and significance is indicated with an asterisk when P < 0.05.
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waters (temperatures >16 �C) occurred. Others have also reported
that snorkel sea-cages can make little to no difference in louse
infestation in the presence of a strong vertical salinity gradient
(Oppedal et al., unpublished data) and at times when fish in stan-
dard cages swim deeper and thus both control and snorkel cage
fish avoid lice equally (Stien et al., 2016). Infective copepodids have
reduced survival at <29 ppt and tend to sink out of low salinity lay-
ers to aggregate at haloclines (Heuch et al., 1995; Crosbie et al.,
2019), threatening encounters with snorkel fish when these layers
penetrate deep enough. Atlantic salmon prefer depths nearest
16 �C for thermoregulation (Oppedal et al., 2011), and likely swim
deeper in standard cages when surface temperatures are above this
threshold, avoiding infective copepodid encounters. Weak or no
effects on louse infestation from snorkel cages during pycnoclines
with warm brackish upper layers over late summer and early
autumn indicate that depth-based technologies could be aban-
doned in these situations.

Our experimental design expands on previous studies investi-
gating depth-based technology effects on salmon louse infestation
in its combined scale, replication and duration (Table 1). While
long-term controlled manipulative experiments in commercial fish
production systems are logistically difficult, they are the ultimate
test of effectiveness and feasibility for this type of technology.
Other fish parasite control methods preventively applied over
entire production cycles and lacking data, such as continuous
vision-based laser systems (www.stingray.no) and the use of many
species of cleaner fish, warrant investigations similar to ours to
conclusively reveal performance and weaknesses. Only then can
integrated parasite management strategies involving treatments
and preventive measures at individual farm and regional scales
(Groner et al., 2016) be effectively and adaptively prescribed.

Acknowledgements

We thank Bremnes Seashore, Norway, for commercial salmon
farm operations and access, especially Geir Magne Knudsen, Jarle
Langvik and Låva farm staff. Funding was provided by Bremnes
Seashore, Norway through time-restricted research licenses and
SkatteFUNN 279226, Institute of Marine Research, Norway and
University of Bergen, Norway. The work was conducted in accor-
dance with the laws and regulations controlling experiments and
procedures on live animals in Norway, following the Norwegian
Regulations on Animal Experimentation 1996.

References

Bron, J., Sommerville, C., Rae, G., 1837. Aspects of the behaviour of copepodid larvae
of the salmon louse Lepeophtheirus salmonis (Krøyer, 1837). In: Boxshall, G.A.,
Defaye, D. (Eds.), Pathogens of Wild and Farmed Fish: Sea Lice. Ellis Horwood,
Chichester, pp. 125–142.

Brooker, A.J., Skern-Mauritzen, R., Bron, J.E., 2018. Production, mortality, and
infectivity of planktonic larval sea lice, Lepeophtheirus salmonis (Krøyer, 1837):
current knowledge and implications for epidemiological modelling. ICES J. Mar.
Sci. 75, 1214–1234.

Bui, S., Oppedal, F., Sievers, M., Dempster, T., 2019. Behaviour in the toolbox to
outsmart parasites and improve fish welfare in aquaculture. Rev. Aquac. 11,
168–186.

Crosbie, T., Wright, D.W., Oppedal, F., Johnsen, I.A., Samsing, F., Dempster, T., 2019.
Effects of step salinity gradients on salmon lice larvae behaviour and dispersal.
Aquac. Environ. Interac. 11, 181–190.

Frenzl, B., Stien, L.H., Cockerill, D., Oppedal, F., Richards, R.H., Shinn, A.P., Bron, J.E.,
Migaud, H., 2014. Manipulation of farmed Atlantic salmon swimming behaviour
through the adjustment of lighting and feeding regimes as a tool for salmon lice
control. Aquaculture 424–425, 183–188.

Glaropoulos, A., Stien, L.H., Folkedal, O., Dempster, T., Oppedal, F., 2019. Welfare,
behaviour and feasibility of farming Atlantic salmon in submerged cages with
weekly surface access to refill their swim bladders. Aquaculture 502, 332–337.

Groner, M.L., Rogers, L.A., Bateman, A.W., Connors, B.M., Frazer, L.N., Godwin, S.C.,
Krkošek, M., Lewis, M.A., Peacock, S.J., Rees, E.E., Revie, C.W., Schlägel, U.E., 2016.
Lessons from sea louse and salmon epidemiology. Philos. Trans. R. Soc. B. Biol.
Sci. 371, 20150203.

Grøntvedt, R.N., Kristoffersen, A.B., Jansen, P.A., 2018. Reduced exposure of farmed
salmon to salmon louse (Lepeophtheirus salmonis L.) infestation by use of
plankton nets: Estimating the shielding effect. Aquaculture 495, 865–872.

Heuch, P.A., Parsons, A., Boxaspen, K., 1995. Diel vertical migration: a possible host-
finding mechanism in salmon louse (Lepeophtheirus salmonis) copepodids? Can.
J. Fish. Aquat. Sci. 52, 681–689.

Hevrøy, E., Boxaspen, K., Oppedal, F., Taranger, G., Holm, J., 2003. The effect of
artificial light treatment and depth on the infestation of the sea louse
Lepeophtheirus salmonis on Atlantic salmon (Salmo salar L.) culture.
Aquaculture 220, 1–14.

Korsøen, Ø.J., Dempster, T., Fjelldal, P.G., Oppedal, F., Kristiansen, T.S., 2009. Long-
term culture of Atlantic salmon (Salmo salar L.) in submerged cages during
winter affects behaviour, growth and condition. Aquaculture 296, 373–381.

Kristoffersen, A.B., Qviller, L., Helgesen, K.O., Vollset, K.W., Viljugrein, H., Jansen, P.
A., 2018. Quantitative risk assessment of salmon louse-induced mortality of
seaward-migrating post-smolt Atlantic salmon. Epidemics 23, 19–33.

Ling, E.N., Cotter, D., 2003. Statistical power in comparative aquaculture studies.
Aquaculture 224, 159–168.

Lovdata, 2012. Regulations on combating salmon lice in aquaculture facilities (in
Norwegian: Forskrift om bekjempelse av lakselus i akvakulturanlegg) https://
lovdata.no/dokument/SF/forskrift/2012-12-05-1140 (accessed July 2018).

Lovdata, 2017. Forskrift om produksjonsområder for akvakultur av matfisk i sjø av
laks, ørret og regnbueørret (produksjonsområdeforskriften) https://lovdata.
no/dokument/SF/forskrift/2017-01-16-61#KAPITTEL_2 (accessed July 2018).

McCallum, H., Harvell, D., Dobson, A., 2003. Rates of spread of marine pathogens.
Ecol. Lett. 6, 1062–1067.

Nilsen, A., Nielsen, K.V., Biering, E., Bergheim, A., 2017. Effective protection against
sea lice during the production of Atlantic salmon in floating enclosures.
Aquaculture 466, 41–50.

Oppedal, F., Dempster, T., Stien, L.H., 2011. Environmental drivers of Atlantic salmon
behaviour in sea-cages: a review. Aquaculture 311, 1–18.

Oppedal, F., Samsing, F., Dempster, T., Wright, D.W., Bui, S., Stien, L.H., 2017. Sea lice
infestation levels decrease with deeper ‘snorkel’ barriers in Atlantic salmon sea-
cages. Pest Manag. Sci. 73, 1935–1943.

Samsing, F., Oppedal, F., Dalvin, S., Johnsen, I., Vågseth, T., Dempster, T., 2016.
Salmon lice (Lepeophtheirus salmonis) development times, body size, and
reproductive outputs follow universal models of temperature dependence.
Can. J. Fish. Aquat. Sci. 73, 1841–1851.

Samsing, F., Johnsen, I., Dempster, T., Oppedal, F., Treml, E.A., 2017. Network
analysis reveals strong seasonality in the dispersal of a marine parasite and
identifies areas for coordinated management. Landsc. Ecol. 32, 1953–1967.

Sievers, M., Korsøen, Ø., Dempster, T., Fjelldal, P., Kristiansen, T., Folkedal, O.,
Oppedal, F., 2018. Growth and welfare of submerged Atlantic salmon under
continuous lighting. Aquac. Environ. Interac. 10, 501–510.

Stien, L.H., Dempster, T., Bui, S., Glaropoulos, A., Fosseidengen, J.E., Wright, D.W.,
Oppedal, F., 2016. ‘Snorkel’ sea lice barrier technology reduces sea lice loads on
harvest-sized Atlantic salmon with minimal welfare impacts. Aquaculture 458,
29–37.

Stien, L.H., Lind, M.B., Oppedal, F., Wright, D.W., Seternes, T., 2018. Skirts on salmon
production cages reduced salmon lice infestations without affecting fish
welfare. Aquaculture 490, 281–287.

Wright, D.W., Stien, L.H., Dempster, T., Vågseth, T., Nola, V., Fosseidengen, J.E.,
Oppedal, F., 2017. ‘Snorkel’ lice barrier technology reduced two co- occurring
parasites, the salmon louse (Lepeophtheirus salmonis) and the amoebic gill
disease causing agent (Neoparamoeba perurans), in commercial salmon sea-
cages. Prev. Vet. Med. 140, 97–105.

Wright, D.W., Geitung, L., Karlsbakk, E., Stien, L.H., Dempster, T., Oldham, T., Nola, V.,
Oppedal, F., 2018. Surface environment modification in Atlantic salmon sea-
cages: effects on amoebic gill disease, salmon lice, growth and welfare. Aquac.
Environ. Interac. 10, 255–265.

846 L. Geitung et al. / International Journal for Parasitology 49 (2019) 843–846



       

  

Paper II 

 

Geitung, L., Wright, D. W., Stien, L. H., Oppedal, F., Karlsbakk, E.  

(under review)  

 

Tapeworm (Eubothrium sp.) infestation in sea caged Atlantic salmon decreased  

by lice barrier snorkels during a commercial-scale study.  

 

II 



 



 

Tapeworm (Eubothrium sp.) infestation in sea caged Atlantic salmon decreased by lice barrier 1 

snorkels during a commercial-scale study 2 

Lena Geitunga,b,*, Daniel W. Wrightc,1, Lars Helge Stienc, Frode Oppedalc, Egil Karlsbakkb 3 

aBremnes Seashore AS, Øklandsvegen 90, 5430 Bremnes 4 

bDepartment of Biology, University of Bergen, 5006 Bergen, Norway 5 

cInstitute of Marine Research, Matre Research station, 5984 Matredal, Norway 6 

1Present address: Department of Primary Industries, Narrandera Fisheries Centre, PO Box 182, 7 

Narrandera, New South Wales, Australia 8 

 9 

*Corresponding author. Lena Geitung. Email: lena.geitung@uib.no  10 

Postal address: Department of Biology, University of Bergen, Thormøhlens gate 53A, 5006 Bergen, 11 

Norway. Telephone: +47 993 89 844 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 



   
 

Abstract 1 

Reports of infestation by marine parasitic tapeworms (Eubothrium sp.) and an associated growth 2 

reduction in Norwegian farmed salmon are on the rise. With few acceptable treatment options 3 

available, due to drug resistance evolution in tapeworms or negative drug impacts on fish, 4 

alternative controls against the parasite are in demand. In a 10-month commercial-scale study 5 

involving standard sea cages and lice barrier snorkel sea cages of different depths (4, 8, 12 and 16 6 

m), we examined if this depth-based preventive technology primarily used against salmon lice 7 

(Lepeophtheirus salmonis) also reduced tapeworm infestation. A submerged net roof opening to a 8 

central barrier tube (snorkel) was added to standard cages to move salmon deeper but retain surface 9 

access; a cage manipulation that avoids contact with mostly surface-dwelling salmon lice larvae and 10 

may also separate fish from calanoid copepods, the intermediate hosts of Eubothrium sp. Salmon 11 

populations in unmodified standard cages had higher tapeworm prevalence (63–93 %) and 12 

abundances (4.6–5.7 Eubothrium sp. fish-1) than those in snorkel cages (20–36 % and 0.2–0.6 13 

Eubothrium sp. fish-1). Based on these observations, tapeworm prevention could be another 14 

beneficial parasite management outcome of snorkel cage technology or other depth-based 15 

prevention techniques against salmon lice.  16 

Keywords: cestode, mariculture, pest control, salmon aquaculture, Salmo salar  17 



   
 

 

1. Introduction 18 

Intensive animal farming systems are often associated with a wide range of pathogens, primarily 19 

due to abnormally high host densities and host confinement (Hart, 1990; Krkošek, 2010). This is the 20 

case in the world’s largest finfish mariculture industry sea cage farming of Atlantic salmon Salmo 21 

salar (FAO, 2020). Norway is the top producer of Atlantic salmon, producing over 64 billion NOK 22 

of farmed salmon in 2018 (Norwegian Directorate of Fisheries, 2020). However, in the last few 23 

years, industry growth and production volume has stalled partly owing to outbreaks and control of 24 

pathogens. The main challenge for salmon farmers in Norway is the ectoparasitic salmon louse 25 

(Lepeophtheirus salmonis), as Norwegian regulations require low lice intensities on farmed fish to 26 

reduce impacts of the parasite on wild salmonids (Stien et al., 2020). Nevertheless, several other 27 

parasites also affect Norwegian farmed salmon, including marine tapeworms (cestodes). 28 

Tapeworms belonging to the genus Eubothrium have been detected in farmed salmonids for several 29 

decades (Berland and Bristow, 1990; Engelstad et al., 1990; Bristow and Berland, 1991a) and have 30 

become increasingly problematic in recent years. Reports of Eubothrium sp. tapeworm infestations 31 

are rising in central and western parts of Norway (Hjeltnes et al., 2018, 2019; Sommerset et al., 32 

2020), and now extend beyond historical ranges into regions north of the Trondheim fjord (Hjeltnes 33 

et al., 2019).  34 

Eubothrium spp. tapeworms are intestinal parasites commonly found in salmonids of the northern 35 

hemisphere (Shulman, 1961; Wardle et al., 1975; Kennedy, 1978). There are two Eubothrium 36 

species associated with salmonids in Norway; E. salvelini (commonly found in Arctic charr) and E. 37 

crassum (common in brown trout and Atlantic salmon), both associated with freshwater rivers and 38 

lakes (Vik, 1963; Kennedy, 1978). There is also a marine variant of E. crassum, often referred to as 39 

Eubothrium sp., found in sea running trout and Atlantic salmon returning from sea (Kennedy, 1978; 40 

Fahy, 1980; Berland, 1997). Controversy has surrounded the identity of this marine Eubothrium sp., 41 

whether it is identical with the freshwater E. crassum (Scholz et al., 2003), a marine form of E. 42 



  
 

crassum (Kennedy, 1978) or even a different species (Bristow and Berland, 1989). Here, it will be 43 

referred to as Eubothrium sp. following past studies (Bristow and Berland, 1989; Bristow and 44 

Berland, 1991b, a; Saksvik et al., 2001a; Saksvik et al., 2001b; Sundnes, 2003).  45 

Adult Eubothrium sp. are often found attached with their scolex to the anterior pyloric caeca of a 46 

fish host, while their strobila stretches out into the intestine as the parasite grows (Berland, 1997). 47 

Adults can grow very large (> 1 m length) and in some cases take up substantial space in a host’s 48 

gut. In a field study, Bristow and Berland (1991b) found a significant weight difference between 49 

farmed Atlantic salmon with and without marine Eubothrium sp. infestation. This was further 50 

confirmed in a controlled laboratory study where fish infested with Eubothrium sp. grew slower 51 

than non-infested fish, even at low intensities of one tapeworm per fish (Saksvik et al., 2001a). 52 

Significant reductions in salmon farm production and profit loss may be attributed to Eubothrium 53 

sp., through the direct loss of salmon growth. In one instance, they were estimated to reduce harvest 54 

fish size by 10% (Bristow and Berland, 1991b). Increased food consumption by fish due to 55 

tapeworm presence (Walkey and Meakins, 1970; Giles, 1987), potentially leading to additional 56 

feeding may also lower farm profits, but this is unstudied in salmon. Anthelminthic drugs 57 

administered in feed (Fenbendazole and Praziquantel) have been used by salmon farmers to treat 58 

against existing tapeworm infestations. Due to negative side-effects in salmon (e.g. anorexia, 59 

growth loss) Fenbendazole is rarely used (Sevatdal and Hellberg, 2006; Sevatdal, 2014) and 60 

treatment with Praziquantel have dominated. However, widespread resistance to Praziquantel by 61 

Eubothrium sp. throughout western Norway has meant this treatment is rarely used against 62 

tapeworm infestations (Sevatdal et al., 2008; Sevatdal, 2014; Hjeltnes et al., 2019). Therefore, new 63 

control methods are required to optimally treat or reduce Eubothrium sp. infestations.  64 

Bothriocephalidean tapeworms generally have a copepod first-intermediate host in their life cycle, 65 

but transport hosts may also be involved (Akhmerov, 1962; Vik, 1963; Mulcahy and Kennedy, 66 

1970; Scholz and Kuchta, 2017). Experimental infestations have demonstrated that only the 67 



  
 

copepod first-intermediate host is essential for Eubothrium sp. to complete their life cycle (Saksvik 68 

et al., 2001b). The final fish host can be infected directly via ingestion of a procercoid infected 69 

copepod (Saksvik et al., 2001b). Scolex-formation allows attachment to the caeca and further 70 

development into an adult tapeworm in the fish host (Berland, 1997; Saksvik et al., 2001b). It is 71 

unknown which copepod(s) are the main intermediate hosts leading to tapeworm infestations in 72 

wild or cultured salmon, but four calanoid copepods (Acartia tonsa, Acartia clausi, Temora 73 

longicornis and Pseudocalanus elongatus) are susceptible to infestation by ingesting Eubothrium 74 

sp. eggs (Hodneland and Solberg, 1995; Saksvik et al., 2001b). While not fully resolved, there is 75 

general consensus that Eubothrium sp. infestation intensity increases in summer and autumn 76 

months, coinciding with increases in intermediate copepod host abundances in the water column 77 

(Gundersen, 1953; Matthews, 1967; Saksvik et al., 2001b; Deschutter et al., 2019). Zooplankton, 78 

including copepods susceptible to Eubothrium sp. infestation, are often associated with surface 79 

waters in summer and autumn as primary production is confined to shallow areas. 80 

Infective free-living salmon lice larvae similarly reside in upper depths of the water column (Bron 81 

et al., 1993; Heuch et al., 1995; Hevrøy et al., 2003), and several depth-based parasite prevention 82 

technologies combatting this parasite could also reduce tapeworm infestations (Bui et al., 2019). 83 

These technologies include barrier cages (skirt or snorkel tarpaulin wrapped around upper depths), 84 

submerged cages (repeatedly submerged or submerged with an air dome), semi-enclosed cages 85 

(deep water pumped in), and deep lighting and feeding (motivating salmon to swim deeper). They 86 

work by either moving salmon deeper or shielding salmon from upper depths while still ensuring air 87 

access for salmon swim bladder reinflation so buoyancy control and optimal welfare are maintained 88 

(Fahlén, 1971; Dempster et al., 2009). Several studies show that these depth-based prevention 89 

techniques reduce salmon lice infestation with negligible impact on salmon welfare (Stien et al., 90 

2016; Nilsen et al., 2017; Stien et al., 2018; Geitung et al., 2019; Glaropoulos et al., 2019) and that 91 

increasing the shielding depth strengthens lice reductions (Oppedal et al., 2017). In addition, there is 92 



  
 

the potential to control more than one pathogen by using this technology (Wright et al., 2017; 93 

Wright et al., 2018). 94 

Here, we examined the effects of a depth-based prevention technology on tapeworm infestations in 95 

sea caged Atlantic salmon. In a 10-month study, we observed Eubothrium sp. infestations in 96 

Atlantic salmon kept in commercial-scale standard cages and lice barrier snorkel cages of different 97 

depths (4, 8, 12 and 16 m) to determine if a) the technology alters tapeworm infestations and b) 98 

whether a relationship exists between snorkel depth and tapeworm infestation, as previously 99 

described for salmon lice (Oppedal et al., 2017). Infestation dynamics were followed to detect the 100 

onset and peaks in tapeworm infestations in different sea cage types. We hypothesized that snorkel 101 

cage technology would reduce and delay Eubothrium sp. infestation and that these effects would 102 

strengthen with increasing snorkel depth.  103 

2. Materials and method 104 

2.1 Experimental setup 105 

The study was conducted at a commercial fish farm (Prestholmane) in Talgjefjorden, Finnøy 106 

commune (59.1° N, 5.8° E). Atlantic salmon (autumn transferred smolts, Salmobreed strain) were 107 

stocked at sea in 2 standard sea cages and 4 sea cages fitted with snorkels between 21 November – 108 

6 December 2017 (Fig. 1). The four snorkels were of 4, 8, 12 and 16 m depth, with net roofs placed 109 

accordingly, and were installed before fish arrival. At transfer, the number of fish per cage ranged 110 

between 142,473–161,651 with an average weight of 108−168 g. Throughout the experimental 111 

period the farm was managed according to standard rearing and feeding procedures in salmon 112 

aquaculture.  113 

Daily salinity and temperature measurements were performed at the feed barge with a Conductivity, 114 

Temperature and Depth (CTD) recorder (SD208, SAIV-AS, Bergen, Norway). Temperature 115 

followed normal seasonal variations for the area (Geitung et al., 2019), ranging from 2°C in March 116 



  
 

to 18°C in June and with thermal stratification causing warmer surface waters from mid-May to 117 

mid-August (Fig. 2a). Salinity varied slightly throughout the trial, but brackish surface water (< 28 118 

ppt) was generally absent (Fig 2b). Minor salinity stratification coincided with thermal stratification 119 

(Fig. 2).  120 

Tapeworm infestations in salmon were examined over the first 10 months of production, ceasing in 121 

September 2018, when the first snorkel was removed and exposed these fish to surface waters 122 

which potentially influenced their subsequent tapeworm infestations. To ascertain whether any 123 

tapeworms were of freshwater origin, 60 salmon were examined in the freshwater phase before 124 

stocking (Trovåg hatchery, Vindafjord commune). In the marine phase, sampling events were 125 

performed every second month with the first done two months after stocking (Table 1). At each 126 

sampling event, 20–30 fish per cage were randomly netted and lethally dosed with Benzoak vet. 127 

(Benzocaine, 200 mg/ml, VESO Vikan, Namsos, Norway). The fish were then weighed (g) and 128 

measured (cm) (Supplementary table 1), before the gastrointestinal tracts of the fish (i.e. pylorus 129 

region and intestine) were dissected out and placed in individually labelled bags. The intestines 130 

were stored at -20 °C prior to examination.  131 

2.2 Laboratory analyses 132 

In the laboratory (University of Bergen), the intestines were examined for tapeworm infestation. In 133 

order to maximise inferential power from a practical number of examinations, intestines from the 134 

most extreme groups (standard cages and 16 m snorkel cage) were examined for worms every 135 

second month, while all groups were examined at the final sample (Table 1). Before examination, 136 

the pylorus region and the intestine were separated and placed in Petri dishes with physiological 137 

saline (1% NaCl). The pylorus region was examined by squeezing it between two Petri dishes and 138 

viewing under a stereo microscope, noting the presence of Eubothrium sp. as well as the number of 139 

individuals per fish based on scolex counts. The intestines were cut open and mucosa scraped off 140 

with a scalpel before being squeezed and examined. For smaller fish, the pylorus region and 141 



  
 

intestine could be squeezed whole, while for larger fish both the pylorus region and intestine were 142 

cut into smaller pieces to sufficiently squeeze regions and observe tapeworms. Small (0.4–1.0 mm 143 

long) unstrobilated juveniles were referred to as ‘plerocercoids’, juveniles (<5 mm long) with a few 144 

proglottids as ‘plerocerciform’ and larger immature small worms as ‘juveniles’. All worms from 145 

each fish were dissected out, washed and either weighed (g) after removing excess moisture on 146 

absorbent paper or measured (length mm). The latter was necessary for specimens too small or 147 

fragile to be weighed and weight was then estimated from length using a standard length-weight 148 

relationship (Ruud, 2019).  149 

2.3 Data analysis  150 

Data analyses were performed in R software v.3.1.0 (package stats, R Core Team (2019)). The 151 

parasitological terms in this study are used as defined by Bush et al. (1997), with prevalence being 152 

the proportion of fish that are infected, abundance being the number of individual parasites in a host 153 

regardless of whether or not the host is infected and intensity being the number of individual 154 

parasites in an infected host. Tapeworm prevalence was compared using one-way Fishers Exact test 155 

(FET) (function fisher.test), while tapeworm abundances and total weights were compared using 156 

nonparametric Mann-Whitney U-tests (MW) (function wilcox.test). Differences between standard 157 

and snorkel cages were compared for the last sampling point which were representative of 158 

tapeworm infestations accumulated over the course of the study. Bootstrapping (function boot, 159 

Davison and Hinkley (1997)) was used to obtain 95% confidence intervals and the significance 160 

level was set at P < 0.05.    161 

3. Results 162 

3.1 Snorkel versus standard cages 163 

Tapeworm infestations were low in all examined cages until May and were lower in snorkel 164 

compared to standard cages at the end of the study (Fig. 3). At the final sampling time (September 165 



  
 

2018), sample prevalence appeared to decrease with increasing snorkel depth (Fig. 3a), but the only 166 

significant step was between standard cages (or 0 m depth) and the first snorkel depth (Fig. 3a, FET, 167 

p<0.001 and p=0.024 respectively). Similarly, mean abundance of Eubothrium sp. (Fig. 3b, MW, 168 

w=1562, p<0.001 and w=1158, p=0.019) and mean worm weight fish-1 was highest in standard 169 

cages (Fig 3c, MW, w=1577, p<0.001 and w=1173, p=0.014). Final mean numbers of Eubothrium 170 

sp. fish-1 were 5.7 [2.4–11.6] and 4.6 [0.8–12.3] (standard cage), 0.6 [0.3–1.0] (4 m snorkel), 0.5 171 

[0.1–1.2] (8 m snorkel), 0.3 [0.1–0.6] (12 m snorkel) and 0.2 [0.1–0.4] (16 m snorkel) Eubothrium 172 

sp. fish-1 (details in Supplementary table 2). This equated to salmon in standard cages having 10–20 173 

times more tapeworms than those in snorkel cages at the end of the experiment.  174 

3.2 Infestation dynamics 175 

No tapeworms were found in fish sampled in the freshwater phase. Tapeworm growth is variable 176 

and cannot be used to accurately back-calculate the duration of infestation (Saksvik et al., 2001b). 177 

Therefore, in the present study, significant increases in tapeworm prevalence and abundances 178 

between sampling times were taken as evidence that infestation had been recently acquired. In 179 

standard cage 1, in the cage row most distant from shore (Fig. 1), no tapeworm infestations were 180 

registered until May, when a 2 mm plerocerciform worm was found. Prevalence then markedly 181 

increased to 83% in July and 93% in September (Fig. 4a), while abundances increased to a mean of 182 

2.5 Eubothrium sp. fish-1 in July and 5.7 Eubothrium sp. fish-1 in September (Fig. 4b). At the last 183 

sampling time in September both plerocerciform juveniles and larger adult worms (max. 75 cm) 184 

occurred. In standard cage 2, closest to shore (Fig. 1), the first tapeworm, a 14 mm juvenile, was 185 

found in January (70 days post sea transfer). The prevalence thereafter increased gradually, 186 

reaching 25% in May and 63% in September (Fig. 4a). Abundances also gradually increased, 187 

reaching a mean of 0.5 Eubothrium sp. fish-1 in May and 4.7 Eubothrium sp. fish-1 in September 188 

(Fig. 4b). In the 16 m snorkel cage, the first evidence for infestation was seen in July (13 %) with a 189 

mean abundance of 0.63 Eubothrium sp. fish-1, where both plerocercoids and juvenile worms were 190 



  
 

found (0.5–14 mm long) (Fig. 4). In September, mean abundance (0.23 Eubothrium sp. fish-1) and 191 

prevalence (20%) remained similar, but both plerciform and larger subgravid worms (37 cm) were 192 

present (Fig. 4).  193 

4. Discussion 194 

In this study we demonstrated the potential for depth-based technologies, currently used to prevent 195 

salmon lice, to also reduce Eubothrium sp. tapeworm infestations in Atlantic salmon kept in 196 

commercial-scale sea cages. Over the 10-month trial from winter to autumn, standard cages had 3–5 197 

times as many fish infected with 10–20 times more worms than lice barrier snorkel cages. All 198 

snorkel cages, even those with barriers of 4 m depth, decreased tapeworm prevalence and 199 

abundance. This suggests that prevention of Eubothrium sp. could be an additional benefit when 200 

using snorkel sea cages or other depth-based prevention techniques against salmon lice, as these are 201 

generally of 10 m depth when used in commercial-scale sea cages (Wright et al., 2017; Stien et al., 202 

2018; Geitung et al., 2019). To address additional aspects of the effects of depth-based prevention 203 

technologies further studies using alternate designs (e.g. cage replication, longer duration) are 204 

needed. 205 

Tapeworm prevalence appeared to decrease with increasing snorkel depth, however there was no 206 

clear relationship between tapeworm infestation and snorkel depth as previously observed for 207 

salmon lice (Oppedal et al., 2017). Effectiveness of a depth-based technology in this study suggests 208 

that Eubothrium sp. transmission events are more likely in surface waters. Transmission of 209 

Eubothrium sp. involves salmon ingesting infected copepods (Hodneland and Solberg, 1995; 210 

Saksvik et al., 2001b). Atlantic salmon are usually fed from the surface in commercial sea cages 211 

and typically spend extensive periods in surface waters due to a combination of abiotic and biotic 212 

factors (Oppedal et al., 2011). Calanoid copepods in the upper water masses may be voluntary or 213 

accidentally ingested by salmon in upper cage depths and forcing fish into deeper water in snorkel 214 

cages likely minimises exposure to them.  215 



  
 

Eubothrium sp. can affect salmon growth at both high and low intensities, even at one tapeworm 216 

fish-1 (Saksvik et al., 2001a). One reason for this is the ‘crowding effect’ causing worms at high 217 

intensities in a single host to remain small (Read, 1951; Roberts, 2000), while a single worm in a 218 

host can grow to > 1 m in length and 5.9 g in weight and weigh more than hundreds of smaller 219 

individuals (Berland and Bristow, 1994; Ruud, 2019). Hence worm biomass may be a better 220 

predictor of any effects on salmon growth than worm intensities. If the effects on host growth 221 

relates to parasite mass, it is vital that a prevention technique not only reduces the number of worms 222 

in each fish but also the proportion of fish infected, as observed in this study. However, contrary to 223 

the expectation from crowding (Saksvik et al., 2001b), worm weight per fish was lower for the 224 

lighter infestations occurring in snorkel cages compared to the higher intensity infestations 225 

occurring in standard cages. One reason is that infestations were delayed in snorkel compared to 226 

standard cages and more time may be needed before worm weight per fish in cages with lighter 227 

infestations exceed those in cages with higher intensity infestations. In addition, slower worm 228 

development may have occurred in snorkel fish exposed to lower temperatures below or within 229 

snorkels (filled with water at the snorkel depth) during thermal stratification over summer. As 230 

salmon and tapeworms are ectotherms, their growth rates are influenced by external temperatures 231 

with cooler water slowing growth (Chubb, 1982; Handeland et al., 2008). While depth-based 232 

manipulations like snorkel sea cages can alter the temperatures experienced by salmon and their 233 

parasites, previous research has found no difference in salmon growth between snorkel and standard 234 

sea cages (Stien et al., 2016; Oppedal et al., 2017; Wright et al., 2018; Oppedal et al., 2019). Our 235 

results, from this long-term 10-month study suggest that snorkels of 4–16 m depth lower tapeworm 236 

prevalence, abundance and worm weight which should minimise growth losses normally 237 

experienced due to worm presence. However, studies of even longer duration, at different locations 238 

(e.g. with strong vertical salinity gradients (Oppedal et al., 2019)), with designs adding cage 239 

replication and using different depth-based technologies should be conducted to ascertain the 240 

consistency of these effects on tapeworm infestations in salmon aquaculture.  241 



  
 

Determining tapeworm induced effects on fish in a field study can be difficult. Competition for 242 

limited food resources between parasite and host explains the reduced condition often observed in 243 

fish hosts with internal tapeworms (Smith, 1973; Hoffmann et al., 1986). However, sufficient food 244 

supply for the host is thought to diminish these effects (Rees, 1967). A normal feeding regime in 245 

salmon aquaculture may therefore reduce or eliminate growth differences caused by tapeworms 246 

compared with situations where fish are not fed to excess (Boyce, 1979; Saksvik et al., 2001a). In 247 

addition, as tapeworm growth is highly variable and size cannot be used to estimate the age of an 248 

infestation (Saksvik et al., 2001a), it is difficult to control for the time of infestation and potential 249 

concurrent infestations in field studies. Nonetheless, the potential for tapeworm presence to reduce 250 

growth rates (Boyce, 1979; Bristow and Berland, 1991b; Saksvik et al., 2001a), increase food 251 

consumption (Walkey and Meakins, 1970; Giles, 1987), or potentially cause immunodepression in 252 

fishes (Boyce and Yamada, 1977; Bristow and Berland, 1991b; Saksvik et al., 2001a) should be of 253 

concern to salmon farmers from both economic and fish welfare perspectives. Further controlled 254 

laboratory studies of tapeworm impacts on salmon are required to properly gauge the extent of these 255 

problems. 256 

Eubothrium sp. infestations observed in this study varied seasonally, with the first evidence of 257 

parasite acquisition in winter-spring and increasing prevalence and abundance from late May to 258 

September. Elevated infestation pressure during summer and autumn is in line with previous studies 259 

(Berland and Bristow, 1991; Ruud, 2019). Several cestodes show seasonal fluctuations in 260 

infestation pressure (Chubb, 1982; Kennedy, 1996; Scholz and Moravec, 1996; Hanzelová and 261 

Gerdeaux, 2003), often associated with the availability of infectious stages and changes in host 262 

behaviour throughout the seasons (Chubb, 1982; Williams and Jones, 1994). Information on the 263 

seasonality of Eubothrium sp. infestation is scarce but appears to be linked to the presence of 264 

possible intermediate hosts. The relevant calanoid copepods in Norwegian fjords peak in abundance 265 

from May–September (Gundersen, 1953; Matthews, 1967) covering the period when the highest 266 

infestation pressure of Eubothrium sp. are observed in farmed salmon. An alternative infestation 267 



  
 

route is through smaller fish acting as paratenic hosts (Rosen, 1919; Vik, 1963). However, this is 268 

unlikely since few possible paratenic hosts enter salmon sea cages holding large fish. Larger salmon 269 

may have a lower chance of infestation, as their coarser gill rakers make it more difficult to filter 270 

copepods (adult size range: 1.1–2.5 mm) (Enckell, 1980; Ruud, 2019). Based on these infestation 271 

dynamics, depth-based technologies such as snorkel cages should ideally be deployed from May-272 

September (possibly longer) for optimal tapeworm prevention and preferably in the first part of the 273 

seawater production cycle while fish are small.    274 

The use of depth-based prevention techniques to reduce or limit salmon lice infestations are 275 

increasing in salmon aquaculture (Bui et al., 2019), yet commercial-scale testing and effects on co-276 

occurring parasites are seldom documented (Geitung et al., 2019). Here we show that snorkel lice 277 

barrier cages, which reduce salmon lice (Stien et al., 2016; Oppedal et al., 2017; Wright et al., 2017; 278 

Geitung et al., 2019; Oppedal et al., 2019), also have the potential to limit Eubothrium sp. 279 

infestations in commercial-scale salmon sea cages. This adds to previous research on controlling co-280 

occurring parasites in snorkel sea cages where freshwater-filling of snorkels has been tested as a 281 

prophylactic control method for Amoebic Gill Disease (AGD) outbreaks (Wright et al., 2017; 282 

Wright et al., 2018), which appear to worsen in snorkel sea cages (Wright et al., 2017). This work 283 

underlines the importance and potential advantages of considering multiple parasites when 284 

developing new parasite control strategies (Groner et al., 2016) and testing these strategies at 285 

commercial-scale (Geitung et al., 2019).  286 
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Figure legends 491 

Figure 1. a) Overview of Norway and area surrounding Prestholmane fish farm, b) Prestholmane 492 

fish farm with arrows representing main current and c) cage setup. For b) Prestholmane fish farm, 493 

the rectangle represents the feeding barge, the circles represent standard cages (SC) and the double 494 

circles represent snorkel cages. All cages were 50 m in diameter and 30-36 m deep, while four 495 

cages were also fitted with a 30 m in diameter and 4, 8, 12 or 16 m deep snorkel.  496 

Figure 2. Daily a) temperature and b) salinity measurements at depths representing surface (1 m), 497 

mid cage (12 m) and bottom cage (25 m) from a reference location at the feed barge. 498 

Figure 3. a) Prevalence of Eubothrium sp., b) mean numbers (abundance) and c) mean worm 499 

weight (g) of Eubothrium sp. fish-1 in salmon examined from all cage types in September 2018. 500 

Standard cages (SC) are presented at 0 m depth (grey dot = SC1; black dot = SC2) while snorkel 501 

cages are presented with a dot at their respective shielding depths (4, 8, 12 and 16 m). The whiskers 502 

indicate the respective 95 % confidence interval. Stars mark significance level * = p < 0.05, *** = p 503 

< 0.001. 504 

Figure 4. a) Prevalence of Eubothrium sp. and b) mean numbers (abundance) of Eubothrium sp. 505 

fish-1 in salmon examined in two standard cages (SC) and one 16 m snorkel cage every second 506 

months from October 2017 until September 2018. Arrows indicate stocking time with the black 507 

arrow (21.11.2017) representing stocking time for SC2 and the grey arrow (06.12.2018) stocking 508 

time for SC1 and 16 m snorkel. The whiskers indicate the respective 95 % confidence interval. 509 
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Table legends 530 

Table 1: Dates for sampling events, number of fish and sampled cages. 531 

Supplementary table 1: Overview of mean length (cm), weight (g) and condition factor for salmon 532 

at all sampling times.  533 

Supplementary table 2: Occurrence of Eubothrium sp. in Atlantic salmon for all cages at the last 534 

sampling time (September 2018). 535 
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*total number of fish sampled 549 
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Sampling  Date Time at 

sea 

N fish sampled 

from each cage 

Cages analysed for Eubothrium sp. 

0 27 Oct 2017 Freshwater   60*  

1 31 Jan 2018 2 months 30 Standard cage 1, 2 and 16m snorkel cage 

2 27 Mar 2018 4 months 20 Standard cage 1, 2 and 16m snorkel cage 

3 25 May 2018 6 months 20 Standard cage 1, 2 and 16m snorkel cage 

4 17 Jul 2018 8 months 30 Standard cage 1, 2 and 16m snorkel cage 

5 19 Sep 2018 10 months 30 All cages 



  
 

Geitung et al. Supplementary table 1 562 

Sample             Cage  Length (cm) Weight (g) Condition 

factor 

Freshwater All Mean ± SD 19.5 ± 1.8 105.2 ± 30.2 1.39 ± 0.08 

Minimum 15.6 54.0 1.24 

Maximum 23.7 194.0 1.58 

Sample 1 Standard cage 

1 

Mean ± SD 22.5 ± 3.4 152.3 ± 62.2 1.26 ± 0.13 

Minimum 14.7 35.0 1.08 

Maximum 27.5 260.0 1.72 

Standard cage 

2 

Mean ± SD 29.4 ± 2.1 313.5 ± 76.4 1.21 ± 0.09 

Minimum 26.0 195.0 1.00 

Maximum 34.5 475.0 1.45 

16 m snorkel Mean ± SD 25.7 ± 2.9 213.8 ± 71.6 1.22 ± 0.17 

Minimum 19.2 75.0 0.51 

Maximum 31.5 380.0 1.55 

Sample 2 Standard cage 

1 

Mean ± SD 23.0 ± 2.6 150.8 ± 53.7 1.22 ± 0.20 

Minimum 18.0 70.0 0.70 

Maximum 28.8 290.0 1.84 

Standard cage 

2 

Mean ± SD 34.3 ± 2.1 519.5 ± 95,5 1.27 ± 0.07 

Minimum 29.5 310.0 1.13 

Maximum 36.8 670.0 1.40 

16 m snorkel Mean ± SD 28.8 ± 4.1 307.2 ± 113.7 1.23 ± 0.13 

Minimum 18.5 80.0 1.00 

Maximum 34.2 490.0 1.60 

Sample 3 Standard cage 

1 

Mean ± SD 35.2 ± 2.4 520.0 ± 119.3 1.17 ± 0.07 

Minimum 31.2 350.0 1.04 

Maximum 40.6 785.0 1.36 

Standard cage 

2 

Mean ± SD 39.1 ± 2.9 730.8 ± 186.6 1.20 ± 0.09 

Minimum 33.7 465.0 1.01 

Maximum 44.6 1155.0 1.37 

16 m snorkel Mean ± SD 36.5 ± 3.0 653.0 ± 197.4 1.31 ± 0.14 

Minimum 29.7 330.0 0.88 

Maximum 41.6 1040.0 1.50 

Sample 4 Standard cage 

1 

Mean ± SD 38.6 ± 3.8 596.7 ± 187.1 1.01 ± 0.07 

Minimum 32.0 295.0 0.85 

Maximum 45.5 1025.0 1.16 

Standard cage 

2 

Mean ± SD 42.4 ± 3.5 789.8 ± 253.4 1.01 ± 0.18 

Minimum 35.5 365.0 0.79 

Maximum 49.5 1385.0 1.62 

16 m snorkel Mean ± SD 36.3 ± 4.8 475.8 ± 184.5 0.97 ± 0.27 

Minimum 28.0 195.0 0.72 

Maximum 45.2 1005.0 2.28 

Sample 5 Standard cage 

1 

Mean ± SD 
46.1 ± 4.3 

1154.3 ± 

400.3 
1.13 ± 0.15 

Minimum 37.0 465.0 0.78 

Maximum 56.5 2235.0 1.37 

Standard cage 

2 

Mean ± SD 
49.6 ± 6.9 

1435.8 ± 

789.3 
1.05 ± 0.25 

Minimum 38.2 435.0 0.66 



  
 

Maximum 59.0 2660.0 1.46 

4 m snorkel Mean ± SD 44.2 ± 6.4 923.5 ± 658.4 0.93 ± 0.19 

Minimum 36.6 320.0 0.65 

Maximum 61.0 2930.0 1.30 

8 m snorkel Mean ± SD 40.1 ± 5.3 564.8 ± 286.7 0.80 ± 0.12 

Minimum 29.0 180.0 0.57 

Maximum 52.0 1425.0 1.10 

12 m snorkel Mean ± SD 39.8 ± 4.6 564.0 ± 296.4 0.84 ± 0.15 

Minimum 29.0 215.0 0.44 

Maximum 51.5 1635.0 1.22 

16 m snorkel Mean ± SD 39.4 ± 4.8 552.7 ± 302.7 0.83 ± 0.18 

Minimum 30.5 200.0 0.65 

Maximum 53.6 1775.0 1.56 
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 Standard 

cage 1 

Standard 

cage 2 

4 m  

snorkel 

8 m  

snorkel 

12 m 

snorkel 

16 m 

snorkel 

Number of fish 30 30 30 30 30 30 

Number of fish infected 28 19 11 8 7 6 

Prevalence (%) 

[95% CI] 

93.3 

[83.3–100.0] 

63.3 

[46.7–80.0] 

36.7 

[20.0–56.7] 

26.7 

[13.3–43.3] 

23.3 

[10.0–40.0] 

20.0 

[6.7–36.7] 

Abundance, mean 

[95% CI] 

5.7 

[2.4–11.5] 

4.6 

[0.8–12.2] 

0.6 

[0.3–1.0] 

0.5 

[0.1–1.2] 

0.3 

[0.1–0.6] 

0.2 

[0.1–0.4] 

Abundance, range 0–85 0–109 0–4 0–8 0–3 0–2 

Intensity, mean 

[95% CI] 

6.1 

[3.0–10.8] 

7.4 

[1.6–15.9] 

1.6 

[1.2–2.3] 

2.0 

[1.0–3.8] 

1.4 

[1.0–2.0] 

1.2 

[1.0–1.5] 

Intensity, range 1–85 1–109 1–4 1–8 1–3 1–2 

Worm weight fish-1, mean 

[95% CI] 

0.91 

[0.59–1.26] 

0.22 

[0.10–0.37] 

0.07 

[0.02–0.13] 

0.01 

[0.00–0.02] 

0.01 

[0.00–0.03] 

0.03 

[0.00–0.07] 

Worm weight fish-1, range 0.00–3.27 0.00–1.60 0.00–0.62 0.00–0.20 0.00–0.22 0.00–0.41 
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INTRODUCTION

Sea-cage Atlantic salmon Salmo salar farming pro-
duces more than 2.3 × 106 t yr−1 (FAO 2017). This new
and constant availability of large numbers of hosts
has led to an increased scale of salmon parasite out-
breaks in many marine ecosystems (Nowak 2007).
Outbreaks of the salmon louse Lepeophtheirus sal -
 mo nis, and of the amoeba Paramoeba perurans re -

sponsible for amoebic gill disease (AGD) (Young et
al. 2007, 2008b, Crosbie et al. 2012) are of particular
concern to the industry (Murray et al. 2016). Salmon
lice outbreaks are thought to harm wild salmonids
(Krkošek et al. 2011, 2013) and, as a result, strict reg-
ulations limit salmon lice loads on farmed fish. Many
farmers must treat their fish repeatedly against sea
lice during a production cycle, leading to increased
costs and considerable risk to fish welfare (Overton
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ABSTRACT: Surface environment modification is a potential parasite control strategy in Atlantic
salmon sea-cage farming. For instance, a temporary low salinity surface layer in commercial-scale
snorkel sea-cages has coincided with reduced amoebic gill disease (AGD) levels after an out-
break. We tested if a permanent freshwater (FW) surface layer in snorkel sea-cages would lower
AGD and salmon lice levels of stock relative to snorkel cages with seawater (SW) only and stan-
dard production cages with no snorkels. Triplicate cages of each type with 2000 post-smolts were
monitored in autumn to winter for 8 wk and sampled 4 times. Lower proportions of individuals
with elevated AGD-related gill scores were registered in SW and FW snorkel cages compared to
standard cages; however, these proportions did not differ between SW and FW snorkel cages.
Individuals positive for AGD-causing Paramoeba perurans were reduced by 65% in FW snorkel
relative to standard cages, but values were similar between SW snorkel cages and other types.
While total lice burdens were reduced by 38% in SW snorkel compared to standard cages, they
were unchanged between FW snorkel and other cage types. Fish welfare and growth were unaf-
fected by cage type. Surface activity was detected in all cages; however, more surface jumps were
recorded in standard than snorkel cages. Overall, fish in FW snorkel cages appeared to reside too
little in freshwater to consistently reduce AGD levels and salmon lice compared to SW snorkel
cages. Further work should test behavioural and environmental manipulations aimed at increas-
ing freshwater or low salinity surface layer use.

KEY WORDS:  Aquaculture · Cage environment · Salmo salar · Lepeophtheirus salmonis ·
Paramoeba perurans · Parasite control
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et al. 2018). Norwegian authorities have also recently
introduced the ‘traffic light system’, which limits
allowable production volume in defined production
zones according to the percentage of wild salmon in
each production zone estimated to die due to salmon
lice (Lovdata (2012)): <10% = in creased production
(green), 10−30% = no change in production (yellow),
>30% = reduced production (red). In parallel, the
expansion of AGD outbreaks to all major salmon
farming regions has caused mass mortality events
and a surge in AGD treatments (Shinn et al. 2015,
Oldham et al. 2016). Innovating parasite controls to
reduce both salmon lice and AGD could safeguard
the ecological sustainability and future expansions of
the salmon farming industry (Wright et al. 2017).

A range of chemotherapeutants can be used to treat
salmon lice (organophosphates, emamectin benzoate,
benzoyl ureas, hydrogen peroxide and pyrethroids)
(Aaen et al. 2015), whilst AGD is currently treated
with freshwater baths and hydrogen peroxide (Rodger
2014). Immersion in freshwater baths for 2 to 4 h
removes freshwater-sensitive AGD-causing amoebae
P. perurans from fish gills (Parsons et al. 2001, Clark
et al. 2003, Rodger 2014). Unfortunately, short dura-
tion freshwater baths are unlikely to affect host-
attached salmon lice which survive days to weeks in
freshwater after developing past the first copepodid
stage (Stone et al. 2002, Wright et al. 2016). In con-
trast, hydrogen peroxide use is rising rapidly (NIPH
2015, Murray 2016) due to its well known in-field
efficacy against both salmon lice and AGD (Tho -
massen 1993, Adams et al. 2012). However, potential
problematic effects on salmon welfare (Overton et al.
2018) and the evolution of chemical resistance
against hydrogen peroxide (Helgesen et al. 2015,
Helgesen et al. 2017) call into question the continued
heavy reliance on this chemical. These factors are
driving the development of chemical-free parasite
controls. For salmon lice, these controls aim to pre-
vent new lice from establishing themselves (fallow-
ing, lice barrier skirt or snorkel cages, semi-enclosed
cages, selective breeding of lice-resistant salmon)
(Bron et al. 1993, Stien et al. 2012, Gharbi et al. 2015,
Stien et al. 2016, Nilsen et al. 2017), or treat attached
lice without chemicals (cleaner fish, laser, thermo-
delousing, water jets) (Bjordal 1990, Aaen et al. 2015).
The challenge for these substitute controls will be to
simultaneously diminish both salmon lice and AGD.

Snorkel sea-cages incorporate a deep net roof open-
ing into a central tarpaulin-lined narrow net-tube
(snorkel) to the surface in an otherwise standard cage
(Stien et al. 2016). This impedes contact between
salmon hosts and free-swimming infective larval stages

of salmon lice which are positively phototactic and
pressure sensitive, causing them to typically aggregate
near the surface (Heuch 1995, Heuch et al. 1995). The
snorkel allows salmon to swim up and gulp air at the
surface to replenish their open swim bladder for buoy-
ancy regulation (Fahlén 1971, Dempster et al. 2011).
Snorkel cages can reduce salmon lice infestations rela-
tive to standard cages at research- and commercial
scales (Stien et al. 2016, Wright et al. 2017), with their
effectiveness increasing with increased depth of the
snorkel (Oppedal et al. 2017). AGD may also be treated
using this technology by adding a freshwater surface
layer inside a tarpaulined lined tube in the snorkel
space (Wright et al. 2017) that would remove P. peru-
rans from gills if the fish expose themselves sufficiently
to freshwater (Parsons et al. 2001, Clark et al. 2003,
Roberts & Powell 2003, Wright et al. 2016). Producing
a temporary low salinity layer within the snorkels of
commercial-scale cages has coincided with marked re-
ductions in AGD levels after an outbreak, suggesting
there is the potential for this technology to co-manage
salmon lice and AGD (Wright et al. 2017). However,
further testing is required to examine how variations of
this surface environment modification, such as a per-
manent freshwater layer, affect AGD levels and to vali-
date findings using standard production and seawater-
filled snorkel cages for comparison.

In this study, we tested if snorkel sea-cages with a
constant freshwater layer reduced AGD levels rela-
tive to standard cages and seawater-filled snorkel
cages. Even though it is well established that snorkel
cages reduce salmon lice levels (Stien et al. 2016,
Oppedal et al. 2017), we also examined cage type
effects on salmon lice infestations. Introducing fresh-
water into snorkel cages holding salmon might affect
salmon lice infestations by influencing the behaviour
and physiology of the host (McCormick et al. 1998,
Oppedal et al. 2011) or parasite, particularly at the
freshwater-sensitive copepodid stage (Bricknell et al.
2006, Wright et al. 2016). Additionally, we investi-
gated if growth, mortality and other welfare indicators
differed between cage types. Environmental condi-
tions were closely monitored at the farm as well as
within each snorkel cage to explain observed patterns.

MATERIALS AND METHODS

Study location and design

Nine steel frame sea-cages (12 × 12 m square, 12 m
deep) were used at the Institute of Marine Research
farm facility in Austevoll, southwest Norway (60° N).
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These consisted of 3 unmodified standard cages and 6
snorkel cages (snorkel dimensions were 3 × 3 m square,
4 m deep), with 3 snorkels filled with sea water pumped
(135 l min−1 pump, Xylem Water Solutions) from 4 m
depth (hereafter ‘SW snorkel’ cages) and 3 snorkels
filled with mains ozone-treated freshwater containing
no chlorine or fluoride (‘FW snorkel’ cages). The 2 treat-
ments (SW and FW snorkels) were interspersed in a
block design at the facility. We stocked each cage with
2000 post-smolt Atlantic salmon, naïve to both AGD and
salmon lice exposure, in a randomized block order from
26 to 28 October 2016. Fish (AquaGen strain) were pro-
duced at the Institute of Marine Research tank facility in
Matre as 0+ out of season autumn smolts using standard
protocols (e.g. Björnsson et al. 2000). Freshwater-filling
of FW snorkels began after transfers were complete.
Mean (± SD) fish weight was 76 ± 16 g, which led to
stocking densities of 0.09 kg m−3 in standard and snorkel
cages. Fish were continuously fed small portions
throughout daylight hours to ex cess with a commercial
diet (3 mm Spirit Supreme pellets, Skretting) via an au-
tomated system that operated screw pellet dispensers
which released feed centrally in standard cages and
into a pipe where it was transported by pumping sea-
water or freshwater to the top of snorkels. Because fish
were fed to excess, no food conversion ratio (FCR) data
was recorded in this trial. Inconsistencies in the man-
agement of one replicate FW snorkel cage compared to
others led to its removal from all analyses.

Environmental depth profiles

Daily depth profiles of salinity and temperature
were recorded by an automatic profiling CTD buoy
(APB5, SAIV) programmed to measure between 0 to
12 m starting at 12:00 h daily at a reference location
near the centre of the farm facility. We supplemented
these measurements with weekly depth profiles
between 0 and 12 m of salinity, temperature and
 dissolved oxygen (DO) using a CTD (SD204, SAIV) at
the reference location and within each snorkel cage,
to record differences between cage environments.
Weekly profiles began the week following stocking
and once freshwater layer creation was complete.
Profiles involved lowering the CTD at a rate of 1 m
min−1 to ensure the accuracy of oxygen recordings.

Amoebic gill disease and salmon lice

At fortnightly intervals, on 8−9 November (Time 1),
22−24 November (Time 2), 5−7 December (Time 3)

and 20−21 December (Time 4), 20 fish from each
cage were sampled. Fish were caught by ceasing
feeding at least 24 h prior, lowering a hoop net and
hand feeding to motivate surfacing of fish, followed
by swift lifting of the hoop net. We subjected sampled
fish to a lethal dose of anaesthetic (Finquel), then
transferred them to seawater-filled trays for counts of
all salmon lice stages (copepodid, chalimus I, chali -
mus II, preadult I, preadult II male, preadult II female,
adult male, adult female and adult female with
eggstrings). Counts of mobile stages in buckets hold-
ing the sampled fish were also included in the total
counts. New lice at each sampling time were consid-
ered to be attached copepodid, chalimus I and chal-
imus II lice stages, which developed in ≤2 wk at mean
observed temperatures of 9°C in the trial (Stien et al.
2005). Next, AGD-related gill scoring (0−5, with 0 for
no gill pathology and 1−5 for increasing severity of
gill pathology, using lesion-covered gill surface area
categories) was carried out on each of the 8 gill
arches (Taylor et al. 2009). The AGD-related gill
score given to an individual fish was based on the
maximum score of its arches. At Time 3, when gill
scores remained elevated, swabbing of the third right
gill arch (a half turn on the front and a half turn on
the back) was performed on 10 fish in each cage
type. The swab was inserted into 1 ml vials of RNA-
later and stored at 4°C for 24 h and thereafter at
−18°C until PCR analysis for P. perurans detection
(Pharmaq, Bergen, Norway). Analysed samples re -
turned a cycle threshold (CT) value  indicating P.
perurans presence when below a cut-off of 30.0, with
co-analysed control samples recording CT values
above it. We created a P. perurans load index, where
a CT value of 30.0 or greater had a P. perurans load
of 0, and lower CT values were transformed by sub-
tracting 30 and reversing the sign of the resulting
value (e.g. CT value of 28 = P. perurans load index of
2). AGD-related gill scores and P. perurans load were
positively correlated based on individuals swabbed
at Time 3 (Pearson’s correlation, t = 2.8, p < 0.05) pro-
viding support that gill scores resulted from AGD-
causing P. perurans, as reported by others (e.g.
Young et al. 2008a, Bridle et al. 2010).

Growth, mortality and other welfare indicators

At Time 4, sampled fish were measured for fork
length (cm) and weight (g), condition factor (K) calcu-
lated as (weight × length−3)/100 (Bolger & Connolly
1989), and scores of individual welfare indicators
(emaciation, vertebral deformity, sexual maturation,
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smoltification state, fin condition, skin condition, eye
status, opercula, mouth jaw wound, upper jaw de -
formity, lower jaw deformity) contributing to the
Semantic Welfare Index Model (SWIM) version 2.0.
Lice and gill welfare indicators were not incorpo-
rated into overall SWIM scores. Numbers of mor -
talities in each cage were recorded from checks per-
formed 3 times per week.

Surface activity

Beginning from the first sampling time, jumps and
rolls were counted in a 5 min period within each cage
on the same day at weekly intervals (Dempster et al.
2008). These numbers were recalculated to jumps
per fish per day.

Statistical analyses

Proportions of AGD-related ‘light plus’ gill scores
(≥2, with higher scores indicating increased gill
pathology) used as a measure of AGD levels in
salmon cages within industrial and research settings
(Maynard et al. 2016) were compared. Generalised
linear models with binomial error distributions,
including treatment (standard, SW snorkel and FW
snorkel) and cage (1−8) as factors, compared light
plus gill scores at each time (using the glm function
in R; Crawley 2012). For each comparison, models
incorporating treatment × cage, treatment + cage
and treatment only were built and the simplest model
was selected if no significant difference was identi-
fied between them via ANOVA tests (anova function
in R). Arcsine-transformed proportions of fish with
gills found to be P. perurans-positive in each cage
were compared between treatments using t-tests
(t.test function in R).

We assessed differences in new lice per fish
(count data with overdispersion) between treat-
ments at each time using generalised linear models
with  quasi-Poisson error distributions, which
included treatment and cage as factors. As before, a
simpler model was chosen from more complex ones
if no difference was found from ANOVA tests
between models. For an overall assessment of lice
infestation levels that fish incurred during the study,
we examined total lice numbers (including sessile
and mobile stages) on sampled fish and in their
bucket for each cage at the final sampling (Time 4).
These total counts per cage were compared be -
tween treatments via t-tests.

At Time 4, when fish had experienced the different
cage type treatments the longest, growth (based on
weight), condition and square-root-transformed SWIM
scores of sampled fish were compared using linear
mixed-effect models, with treatment as a fixed effect
and cage as a random effect (lme function in R). At
Time 4, arcsine-transformed proportions of fish with
fin (scores ≥3), skin (scores ≥3), eye (scores ≥2) and
cumulative mortalities in each cage were also com-
pared between treatments via t-tests, which were
also used to compare square-root-transformed jumps
per fish per day in each cage, pooled from all weekly
assessments, between treatments. Error distributions
were checked for variance and normality (plot func-
tion in R). Results are presented as means (±SE) and
95% confidence intervals (CIs).

RESULTS

Environment

Salinity remained high (>28.3) and non-stratified
at the reference location (reflecting conditions in
standard cages) and in the SW snorkel cages (Fig. 1,
Table S1 in the Supplement at www.int-res.com/
articles/ suppl/ q010 p255_ supp. pdf). Thermal stratifi-
cation with cooler upper layers occurred sporadically
in both standard and SW snorkel cages, though was
less severe in SW snorkels because snorkel water
was constantly replenished with pumped warmer
seawater from 4 m depth (Fig. 1, Table S1). In FW
snorkel cages, a stable freshwater layer was continu-
ously maintained (salinity ≤1 in top 2 m), of predomi-
nantly lower temperature than underlying water
(Fig. 1, Table S1). As a result, temperatures between
0 and 1 m depth in FW snorkels were 2.6, 1.4, 0.7 and
1.4°C cooler than SW snorkels and 1.5, 1.2, 0.0 and
0.7°C cooler than in standard cages in the sampling
interval periods before Times 1, 2, 3 and 4, respec-
tively (Table S1). DO saturation remained stable
between 77 and 85% for standard and SW snorkel
cages, but levels were much higher (up to 148%) in
the freshwater surface layer of FW snorkel cages,
particularly preceding Times 1 and 4, due to the
ozone treatment of freshwater (Table S1).

Amoebic gill disease

Soon after stocking at Time 1, AGD-related gill
scores remained low and the proportion of fish with
light plus scores (≥2) were similar between cage
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types (z ≥ −1.7, p ≥ 0.1; Fig. 2, Table S2).
Gill scores increased thereafter and be -
came highest in standard cages compared
to SW snorkel cages at Times 2 and 3 (z ≥
3.1, p < 0.05), but not at Time 4 (z = 1.7, p =
0.1; Fig. 2, Table S2). These scores also
remained lower in FW snorkel relative to
standard cages at Times 2−4 (z ≤ −2.4, p <
0.001; Fig. 2, Table S2). No differences
were observed in gill scores between SW
and FW snorkel fish at Times 2−4 (z = 0.01
to 1.9, p > 0.06; Fig. 2, Table S2). Cage and
treatment × cage interactions were pres-
ent for most comparisons between cage
types at Times 2−4 (Fig. 2, Table S2). At
Time 3, there was a 65% reduction in the
proportion of fish with gills testing positive
for Paramoeba perurans in FW snorkel
(15% of fish) compared to standard cages
(43% of fish) (t = −4.7, p < 0.05), but not
between SW snorkel cages (20%) and
other types (t ≥ −2.6, p ≥ 0.1; Fig. 2).

Salmon lice

New lice (copepodid and chalimus
stages) per fish were lower in SW snorkel
relative to standard cages at Times 1
(means of 1.6 vs. 2.8) (t = −4.3, p < 0.001), 2
(means of 1.6 vs. 3.0) (t = −5.3, p < 0.001)
and 4 (means of 3.3 vs. 5.1) (t = −2.4, p <
0.05), but not at Time 3 (means of 1.6 vs.
2.7) (t = −1.2, p = 0.9). At Time 3, an inter-
action between treatment and cage oc -
curred (t = −2.0, p < 0.05; Fig. 3). FW
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Fig. 1. Depth profiles over time of salinity (top) and temperature (bottom)
in a study of the effects of surface environment modification on parasites in
farmed Atlantic salmon Salmo salar in southwest Norway. Profiles were
measured daily by an automatic profiling CTD buoy at a reference loca-
tion, indicative of standard cage conditions and weekly using a CTD in
snorkel cages filled with seawater (SW snorkel) or freshwater (FW
snorkel). Measurements at the reference location were taken from 24 Oc-
tober 2016. Measurements in snorkel cages started on 1 November once
freshwater layers were established, and the preceding period is shown as
grey shading. Values are from a single FW and a single SW snorkel cage,
with similar conditions observed in replicate cages. The 4 sampling times 

(T1 to T4) are shown by dashed vertical lines

Fig. 2. Proportions of ‘light plus amoebic gill dis-
ease (AGD)-related gill scores’ (scores of ≥2; see
‘Materials and methods’ for further details) for
farmed Atlantic salmon in different cage treat-
ments. Results are shown for each replicate (n =
3 replicates) standard (white bars), SW snorkel
(grey bars) and FW snorkel cage (blue bars) at
Times 1−4. See Fig. 1 legend for details of cage
treatments and sampling times. Stippled bars
 indicate cages positioned closest to other  AGD-
affected cages at the farm and expected to be un-
der increased infection pressure. Open circles at
Time 3 denote proportions of Paramoeba peru-
rans-positive fish from gill swab PCR analysis
of 10 fish in each replicate cage. N/A indicates 1
FW snorkel cage discarded from analyses. *p < 

0.05, ***p < 0.001
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snorkel fish also had fewer new lice than those in
standard cages at Times 1 (means of 1.3 vs. 2.8 new
lice per fish) (t = −3.9, p < 0.001) and 4 (means of 3.3
vs. 5.1) (t = −3.3, p < 0.05), although similar counts
were observed at Times 2 (means of 3.0 vs. 3.0) (t =
−0.1, p > 0.05) and 3 (means of 2.2 vs. 2.7) (t = −1.3,
p < 0.05) (Fig. 3). Fish had fewer lice in cages with
SW snorkels than with FW snorkels at Times 2 (t =
−5.3, p < 0.001) and 3 (t = −2.1, p < 0.05; Fig. 3). By
Time 4, when all lice stages were present in the 3
cage types, total lice per fish differed between stan-
dard and SW snorkel cages (means of 15.7 vs. 9.8; i.e.
a 38% reduction) (t = 7.5, p < 0.05), but not between
standard and FW snorkel cages (means of 15.7 vs.
12.6) (t = 0.9, p = 0.5) or SW and FW snorkel cages
(means of 9.8 vs. 12.6) (t = 0.9, p = 0.5; Fig. 4).

Growth, welfare and mortality

At the last sampling point, there were
no differences in the weight (χ2 ≤ 2.2, p ≥
0.1) or condition factor (χ2 ≤ 2.7, p ≥ 0.1)
of sampled fish between cage types
(Table 1). Adequate and comparable
welfare scores of salmon were upheld in
all cage types (χ2 ≤ 3.5, p ≥ 0.1; Table 1).
When individual welfare indicators were
analysed separately, no differences in ob-
served skin (t ≤ 3.2, p ≥ 0.1), fin (t ≥ −0.4,
p ≥ 0.8) or eye damage (t ≤ 2.5, p ≥ 0.1) ex-
isted between treatments. Mouth damage
was only detected in standard cages
(3.4% of stock), and no fish were atypical
for other welfare indicators (Table 1). Cu-
mulative mortalities were similar be-
tween cage types (t ≥ −0.6, p ≥ 0.6).
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Fig. 3. Mean counts (±SE) of new lice
per fish (attached lice or copepodid,
chalimus I and chalimus II lice stages)
in farmed Atlantic salmon for each
replicate standard (white bars), SW
snorkel (grey bars) and FW snorkel
cage (blue bars) at Times 1−4. See
Fig. 1 legend for details of cage treat-
ments and sampling times. N/A in -
dicates 1 FW snorkel cage discarded
from analyses. *p < 0.05, ***p < 0.001

Fig. 4. Mean numbers of copepodids, chalimus I, chalimus II,
preadult I, preadult II and adult lice per fish (later stages in
increasingly darker shades from white to black) in farmed
Atlantic salmon for each replicate standard, SW snorkel and
FW snorkel cage at Time 4. See Fig. 1 legend for details of
cage treatments and sampling times. N/A represents 1 FW 

snorkel cage discarded from analyses. *p < 0.05

Parameter Standard SW snorkel FW snorkel

Mean weight (g) 197.1 ± 13.1 177.3 ± 4.8 179.7 ± 7.6
Mean condition factor 1.15 ± 0.02 1.14 ± 0.02 1.19 ± 0.01
Mean overall SWIM score 0.92 ± 0.01 0.93 ± 0.00 0.93 ± 0.00
Fin damage (scores ≥3) 64.4% 65.0% 62.5%
Skin damage (scores ≥3) 74.6% 63.3% 85.0%
Eye damage (scores ≥2) 84.7% 58.3% 40.0%
Mouth damage (scores ≥2) 3.4% 0.0% 0.0%
Emaciation (scores ≥2) 0.0% 0.0% 0.0%
Smoltification (scores ≥2) 0.0% 0.0% 0.0%
Sexual maturation (scores ≥2) 0.0% 0.0% 0.0%
Vertebral deformity (scores ≥2) 0.0% 0.0% 0.0%
Upper jaw deformity (scores ≥2) 0.0% 0.0% 0.0%
Lower jaw deformity (scores ≥2) 0.0% 0.0% 0.0%

Table 1. Mean (±SE) values for condition of farmed Atlantic salmon Salmo
salar in southwest Norway held in standard cages, and in snorkel cages filled
with seawater (SW snorkel) or freshwater (FW snorkel). Higher values for
condition factor and overall Semantic Welfare Index Model (SWIM) score in-
dicate better condition. Individual welfare indicator scores show proportions
of individuals with high scores indicating deviance from the normal condition



Wright et al.: Parasite control through surface environment modification

Surface activity

Surfacing by salmon was observed in all cage types
and increased during the study, particularly after
Time 2 (Fig. 5). Fish in standard cages performed
more jumps per fish per day (mean of 3.0) than SW
snorkel (mean of 0.8) and FW snorkel cages (mean
of 1.3) (t ≥ 2.8, p < 0.05; Fig. 5). No differences in
jump frequency were detected between SW and FW
snorkel fish (t = 0.04, p = 0.97; Fig. 5).

DISCUSSION

SW and FW snorkel cages outperformed standard
cages in terms of lowered AGD-related gill scores
and reduced numbers of new salmon lice at some
time points. All cage types had similar fish welfare
and growth outcomes. However, we did not consis-
tently detect reduced AGD and lice levels in FW
snorkels compared to SW snorkels as initially pre-
dicted, with increases in new lice in FW compared to
SW snorkel cages at certain time points. Daytime sur-
facing behaviour by salmon appeared unaffected
between SW and FW snorkel cages. This suggests
that while salmon frequently accessed the freshwater
surface layer, their exposure durations were likely
inadequate to alter AGD or salmon lice levels signifi-
cantly below those in SW snorkel cages. Our results
contrast with the AGD suppression observed in a
commercial trial where freshwater was added to a
snorkel to combat an AGD outbreak (Wright et al.
2017). There are several possible reasons for this,
including differences in snorkel sizes that may affect
salmon behaviours, and the multiple ways the fresh-
water layer water in the FW snorkel differed from the

SW snorkel other than salinity, including tem-
perature and oxygen content.

Effects of standard, SW and FW snorkels
cages on AGD

AGD-related gill scores, correlated with
loads of AGD-causing Paramoeba perurans
during the study, were often higher in stan-
dard cages, but similar between FW and SW
snorkel cages. A higher proportion of P. peru-
rans-positive fish were also found in standard
compared to FW snorkel cages. Harvest-sized
fish with high AGD-related gill scores were
held in shallow cages within the research
farm facility, measuring ~30 m width × 120 m

length. As swimming in the same depth and locality
as AGD-affected individuals may increase AGD risk
(Young et al. 2014), shallow swimming by fish in
standard cages could have partially explained their
higher AGD-related gill scores than snorkel fish. The
lack of difference in AGD-related gill scores between
FW and SW snorkel fish suggested that salmon
mostly failed to enter freshwater sufficiently to de -
crease P. perurans populations on their gills (2 to 4 h
freshwater baths are effective; Parsons et al. 2001,
Clark et al. 2003, Rodger 2014).

Effects of standard, SW and FW snorkel cages on
salmon lice

The lack of salmon lice reductions in FW snorkel
cages indicated that the development of salmon lice
on Atlantic salmon was unhindered by regular fresh-
water exposures during surface jumps (mean of 2.3
jumps per fish per day) and other possible times of
residence. Thus, these periods were likely too short
to eliminate freshwater-sensitive attached copepo-
dids which takes 1 to 3 h (Wright et al. 2016). High
salmon lice infestations of wild sea trout Salmo trutta
are associated with entry into shallower brackish
water or rivers, possibly for self-treatment against
lice (Gjelland et al. 2014). Once completing their sea-
ward out-migration, wild post-smolt Atlantic salmon
also use less saline environments and this may also
be a reaction to new salmon lice recruits (Mitamura
et al. 2017). Despite the potential for Atlantic salmon
to self-treat against salmon lice by moving from sea-
water to freshwater or low salinity environments, this
did not occur under the conditions created in FW
snorkel cages within the current trial.
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Fig. 5. Mean number (±SE) of jumps per fish per day by farmed At-
lantic salmon in standard (white circles), SW snorkel (grey circles) and
FW snorkel cages (blue circles) at weekly assessments. Values for
each cage type are aggregates from replicate cages (n = 3 replicates).
See Fig. 1 legend for details of cage treatments. The 4 sampling times 

(T1 to T4) are indicated by dashed lines
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In some instances, FW snorkel cages increased
new salmon lice infestations compared to SW cages.
There are several possible reasons for this. Firstly,
the freshwater exposures that salmon were subjected
to may have removed mucus or induced stress, mak-
ing them more susceptible to salmon lice infestations
as has been documented for other external parasites
such as Neobenedenia girellae skin flukes (Yama -
moto et al. 2011). Reduced sheltering by fish inside
snorkels filled with freshwater could also increase
salmon lice infestations of FW compared to SW snorkel
cages. While harvest-sized salmon have been found
to position themselves almost exclusively below 4 m
deep SW snorkels in identical cages in autumn (Stien
et al. 2016), periodic post-smolt presence inside
4 to 16 m deep SW snorkels, inferred from low oxygen
conditions, was detected by Oppedal et al. (2017).
Therefore, greater fish residency inside SW snorkels
may contribute to lice reduction effects typically seen
in this cage type (see Oppedal et al. 2017). More
work is needed to reveal differences in depth distri-
bution of Atlantic salmon among standard, SW and
FW snorkel cage types.

Effects of standard, SW and FW snorkels cages on
fish welfare and growth

Fish welfare indicators and weights were similar be -
tween snorkel and standard cages, including where
snorkels were filled with freshwater, confirming con-
clusions reached in previous snorkel cage investiga-
tions that use of this technology does not affect fish
welfare (Oppedal et al. 2017, Wright et al. 2017).
Snout damage, likely due to collisions with net roof
and snorkel structures, has been observed in one
research scale snorkel cage study (Stien et al. 2016)
but we did not observe this negative effect here.

FW in snorkels: contrasting results in commercial
and experimental trials

Commercial snorkels (10 m circle diameter × 10 m
deep; volume 6448 m3; Wright et al. 2017) have a vol-
ume 179 times greater than our research snorkels.
The greater volume within the snorkel may promote
greater fish residence time. Greater numbers and
densities of fish within larger snorkels may enable
them to school in their standard circular swimming
pattern (~500 individuals are required to initiate
schooling behaviour in 500–2000 m3 cages; Oppedal
et al. 2011) and thus spend longer periods at a given

depth. However, the smaller snorkels used in this
study may have limited this behaviour and allowed
only enough room for surfacing for swim-bladder re-
filling before returning to swimming in a school for-
mation below the snorkel. Further, while feed entered
the snorkel at the surface in both the commercial trial
and this experiment, we observed that fish in the
commercial trial entered the snorkel to take the feed,
while in this trial they mostly waited until the feed
had fallen below the snorkel depth. The restricted
space in the smaller snorkel may have inhibited for-
mation of the typical feeding aggregation at the sur-
face and limited use by salmon of this layer.

In this trial, the freshwater layer was created by
applying mains ozone-treated freshwater, whereas
in the commercial trial, where far greater quantities
were required, snorkels were filled with freshwater
from a local river (Wright et al. 2017). These different
methods of application and volumes of added fresh-
water created quite different outcomes in the surface
layer’s salinity, temperature and oxygen levels. Due
to larger freshwater volumes and greater instability
in a larger snorkel, salinity conditions achieved by
filling snorkels with freshwater at a commercial scale
(salinity of 4–5) were higher than the current study
(always <1) (Wright et al. 2017). Salinity gradients
also tended to be steeper in this research scale study
(stable salinity between 0 and 2 m depth, then
 constantly increasing salinity between 2 and 4 m)
compared to the commercial-scale study (constantly
increasing salinity throughout the snorkel) (Young et
al. 2014). The higher salinity and its more gradual
gradient may have provided a more attractive self-
treatment space for Atlantic salmon to enter than an
abrupt change to an almost completely fresh layer.

Freshwater filling with cooler temperature water,
less preferred by salmon, has been typical in com-
mercial- (Wright et al. 2017) and research-scale
snorkels. At the commercial scale, surface water tem-
peratures in individual snorkels filled with fresh-
water to varying degrees were 0.6 to 1.9°C cooler at
the surface than reference conditions at one time
(Wright et al. 2017), whereas in this study FW snorkels
ranged from 1.5, 1.2, 0 and 0.7°C cooler than reference
conditions across 4 sampling points. Similarly lower
surface temperatures in FW snorkels between these
2 studies point to these relatively small temperature
differences being unimportant in freshwater layer
use by salmon. However, a more attractive water
temperature within the FW area should be tested to
increase fish residence (Oppedal et al. 2011).

Oxygen supersaturation from ozone treatment oc -
curred in the research scale FW snorkels used here,
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reaching levels (maximum 148% DO saturation at
Time 4) approaching those known to cause stress,
gas bubble disease and behavioural and physiologi-
cal changes in parr and pre-smolt Atlantic salmon
(Brauner et al. 2000, Espmark & Baeverfjord 2009,
Espmark et al. 2010). In contrast, the low salinity
layer in commercial snorkel cages filled from a local
river had DO saturations of <100% and was not
ozone treated (Wright et al. 2017). Therefore, the
oxygen supersaturation and, potentially, residual
ozone in the surface freshwater layer in this study
may have acted as a deterrent. However, limited
information exists on the effects of oxygen supersat-
uration and residual ozone in post-smolt Atlantic
salmon, so we are unable to gauge the extent of this
possible effect in this trial.

Mean AGD-related gill scores in snorkel cages
(mean gill scores in cages up to 1.9) in this study were
lower than in the commercial trial, which experi-
enced a major outbreak (mean gill scores in cages up
to 2.8; Wright et al. 2017). Low stocking densities and
holding caged fish at declining water temperatures
in autumn to winter, rather than increasing tempera-
tures in summer to autumn (elevated water tempera-
ture is associated with increased AGD incidence;
Oldham et al. 2016), potentially contributed to the
lower AGD-related gill scores and limited the detec-
tion of gill score differences between cage types. A
follow-up investigation, where salmon in SW and FW
snorkel cages experience a more severe AGD out-
break, would improve the detectability of AGD dif-
ferences between these cage types.

CONCLUSIONS

In our autumn to winter study, a permanent fresh-
water surface layer maintained within snorkel lice
barrier sea-cages holding Atlantic salmon did not
affect their freshwater-sensitive ectoparasites, Para -
moeba perurans and salmon lice. Salmon may have
had limited contact time with the freshwater layer
because of how they vertically positioned within
snorkel cages or because they avoided the cool,
super-oxygenated freshwater surface layer created
to the extent that the parasites were not exposed suf-
ficiently to the freshwater layer to produce an effect.
Multiple changes to the freshwater surface layer to
attract salmon to it are possible, including temporary
night lighting strategies (Juell & Fosseidengen 2004,
Wright et al. 2015) and making surface waters warmer,
less hyperoxic and more saline (Oppedal et al. 2011).
These may intensify freshwater or low salinity layer

use by salmon to the point where P. perurans and
salmon lice are reliably diminished.
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A B S T R A C T

Ectoparasitic salmon louse (Lepeophtheirus salmonis) infestations are costly for Atlantic salmon (Salmo salar)
farmers in Norway. As a result, there is a strong desire for solutions to prevent and control infestations, and new
technologies are typically developed and commercialised rapidly, without rigorous validation. Here, we tested
the efficacy of a new commercially available control measure—delousing by underwater lasers—using a re-
plicated design at full commercial scale. Laser delousing was used in combination with a preventive method
(snorkel cages), with laser nodes deployed in 3 of the 6 sea cages at the site. The trial ran for 54 days, after which
time there was no difference in infestation density of mobile salmon louse stages (pre-adult, adult male or adult
female) in cages with or without laser nodes installed. By the end of the trial, adult female lice numbers in all
cages were close to the legislated trigger for mandatory delousing (0.5 adult female lice per fish). The laser nodes
delivered a large number of pulses relative to the number of lice in the cages, indicating that a lack of lethality
rather than a lack of target detection was the limiting factor. If all pulses had been effective, they should have
removed between 4–38 % of mobile lice each day. There was no effect on salmon welfare indicators such as skin
condition or eye status. Our results highlight the importance of rigorous validation of new technologies across a
range of conditions before widespread implementation by industry.

1. Introduction

Aquaculture is a relatively young industry compared to terrestrial
production systems (Nash, 2011), with systematic research and devel-
opment only becoming a key focus since the 1970s (Kumar and Engle,
2016). However, commercial production of finfish has become a highly
lucrative industrial process analogous to modern agriculture (Asche
et al., 2018; Ashche, 2008), with rapid technological advances facil-
itating substantial productivity growth in recent decades (Asche et al.,
2018).

The farming of Atlantic salmon (Salmo salar) is a shining example of
rapid industry growth, with commercial production initiated only ∼50
years ago. Although the production volume of Atlantic salmon is less
than 5% of global finfish production, it is the most valuable fish product
(FAO, 2018). Norway is the principal producer of salmon, and its suc-
cess can be partly attributed to technological innovation, productivity
advancements, and efficiency at multiple levels of the production pro-
cess. However, the industry faces significant obstacles in sustainability

(Klinger and Naylor, 2012; Olesen et al., 2010), with the most promi-
nent risk factor being the proliferation of the ectoparasitic salmon lice,
Lepeophtheirus salmonis (Murray et al., 2016). There has been sub-
stantial focus on prevention and control of lice in aquaculture, to reduce
environmental and welfare impacts of infestations on both wild and
farmed salmonids (Costello, 2009; Heuch et al., 2005; Krkosek et al.,
2007; McVicar, 2004; Overton et al., 2018; Thorstad et al., 2015;
Torrissen et al., 2013).

To manage and reduce the negative impacts of salmon lice, the
Norwegian Ministry of Trade, Industry and Fisheries enforces a limit on
infestation levels on all Norwegian salmonid farms, whereby companies
must ensure less than 0.5 adult female lice on their fish (0.2 during the
season of out-migration for wild salmonids) (Norwegian Ministry of
Fisheries and Coastal Affairs, 2012). In the last decade, there has been
an increase in technological innovation development around the man-
agement of lice in farms as traditional chemical or medicinal treatments
have become less effective and unsustainable (Aaen et al., 2015;
McNair, 2015). Most of these innovations can be considered short-term
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(i.e. minor adjustments to current farming practices), and classed as
preventive, continuous, or immediate strategies (Brakstad et al., 2019).
Preventive approaches aim to minimise exposure of the host to the
infective planktonic stages of the lice, for example by shielding a sec-
tion of the cage (Frank et al., 2015; Stien et al., 2018), changing the
cage structure (Stien et al., 2016), or using stimuli to move the school’s
vertical distribution (Bui et al., 2019). Continuous approaches attempt
to control levels of lice on the fish by use of invertivorous cleaner fish
(Imsland et al., 2018; Treasurer, 2002) or functional feed (Jensen et al.,
2015). Immediate delousing control methods are implemented when
preventive or continuous strategies are unsuccessful and lice levels are
nearing or exceeded the legislative threshold, requiring rapid reduc-
tions in infestation. Delousing treatments can include chemical ther-
apeutants, freshwater bathing, mechanical removal, and thermal
treatments (Overton et al., 2018).

Optical or laser delousing is a unique innovation that has overcome
multiple technical challenges to produce an instrument that combines
machine learning louse detection with targeted louse removal. The
method aims to control salmon lice infestation levels using laser pulses
(concentrated photons) targeted at machine-identified lice to injure the
parasite but not the host. ‘Nodes’ submerged under buoys within the sea
cage contain an automated camera system that scans passing fish,
identifies potential lice on the fish, and instigates a pulse of light di-
rected at the suspected lice. The images of lice on salmon collected from
nodes are transmitted back to the database and are used to continually
train the machine learning system. The pulses apparently do not harm
the skin of the salmon, while the system can identify and avoid the
fish’s eye (Brown, 2016; Frenzl, 2017). Generally, multiple nodes are
deployed in each sea cage, and are monitored externally by a technical
support team. The system has been commercially available since 2014
and at present, is reportedly in use in around 150 cages in Norway.

Here, we present a case study for a technology that has been
adopted by industry, but has not yet been validated scientifically. This
study aimed to test the efficacy of laser delousing for the control of
salmon lice at a commercial salmon farm, as well as its short-term ef-
fects on salmon welfare. The farm had applied an integrated pest
management strategy – prevention (snorkel cages; Geitung et al., 2019)
in combination with continuous control (lasers). The laser delousing
strategy was implemented over 54 days, to a point where the lice level
was nearing the threshold that triggers delousing action.

2. Methods

The trial was conducted at a commercial fish farm (Låva) in
Jelsafjorden, western Norway (59.1 °N, 5.6 °E). The farm had 6 circular
sea cages (Ø = 50.9 m, C = 160 m, 36 m deep) arranged in a single row
from the feed barge (from south-west to north-east). All cages had a 16
m deep snorkel (Ø = 28.4 m, C = 90 m) installed before the fish ar-
rived. The cages were stocked with Atlantic salmon (Salmo salar, au-
tumn-transferred smolts, SalmoBreed strain) one month before trial
start. Throughout the experimental period the farm was managed ac-
cording to standard rearing and feeding procedures for commercial
salmon aquaculture.

The trial ran for 54 days between 6 December 2018 to 28 January
2019. At the start of the experiment, each cage held between

157000–165000 salmon with an average weight of 250–450 g. Every
second cage (i.e. the 2nd, 4th and 6th cages heading north-east along
the single-row site) was equipped with 2 lasers (Optical Delousing™,
Stingray Marine Solutions AS, Norway), as recommended for cages of
this size and this number of fish, to undergo the continuous laser de-
lousing treatment. The remaining 3 cages had no additional delousing
strategies and therefore acted as controls. The lasers were installed at
the location by Stingray’s service team in cooperation with the fish
farmers on 5 December 2018. As is the standard protocol, daily op-
eration and monitoring of the laser nodes were performed by a tech-
nical support team at Stingray’s main offices in Oslo, not onsite. Each
day had a variable operational time, the period during which the lasers
were active; this varied depending on the decision of Stingray’s op-
erations team and is directly correlated with the number of pulses
emitted. Thus, pulses per day was the best measure of effective op-
eration and was used as such in the analyses. Daily updates on salmon
positioning from fish farmers were used to place the laser nodes at the
most optimal depth in the cage (the largest proportion of fish visible to
the cameras). Nodes could be rotated and moved vertically from the
surface to a maximum depth of 25 m. The nodes were cleaned once a
month during the experimental period, according to manufacturer re-
commendations. On day 34 of the experimental period (9 January
2019) one laser was taken out of Cage 6 and sent for repair. Cage 6
continued with a single laser for the remainder of the trial.

Daily salinity and temperature profiles between 0–40 m depth were
collected from a reference point (the feed barge) using a Conductivity,
Temperature and Depth (CTD) recorder (SD208, SAIV-AS, Bergen,
Norway). Thermal stratification with cooler upper layers occurred
throughout most of the study period, with temperatures ranging from
9.2 to 4.9 °C in the surface and from 10.8 to 7.4 °C in the deeper waters.
The salinity profile was relatively stable throughout, with high salinity
(> 28.9 ppt) and only minor stratification.

At fortnightly intervals, 20–50 fish from each cage were sampled
(Table 1). Fish were randomly netted and subjected to a lethal dose of
anaesthetics (Benzoak vet., benzocaine, 200 mg ml−1, VESO Vikan,
Namsos, Norway) before salmon lice were assessed on each fish while
submerged in seawater-filled trays. The number of lice were counted
and classified according to life stages: copepodid, chalimus I, chalimus
II, preadult I, preadult II (male and female) and adult (male, and female
with and without egg-strings). Counts of mobile stages that had de-
tached from the host and were found in sedation vessels were also in-
cluded in the total counts, and divided among the individuals sampled
in that vessel. In addition to lice counts, fish welfare was scored ac-
cording to the Salmon Welfare Index Model 1.0 (SWIM 1.0) (Stien et al.,
2013). Ten welfare indicators described the condition of the individual,
including assessments of emaciation status, presence of deformities
(vertebral, opercula, upper jaw, lower jaw), fin and skin condition, eye
and gill status, and presence of mouth/jaw wounds. Individual in-
dicators were scored from 1 (good condition) to a maximum of 3–7,
with higher scores representing increasing severity (Stien et al., 2013).

2.1. Data handling and statistical analyses

To test for an effect of the laser treatment on mobile lice abundance,
pre-adult, adult male and adult female lice densities were tracked over

Table 1
Dates and corresponding day number since experiment start for sampling events. The number of fish sampled across 3 replicate cages are shown for each sample
point.

Experimental Day Date N fish sampled in laser-free cages N fish sampled in laser cages

1 6 Dec 2018 62 61
11 17 Dec 2018 62 61
28 3 Jan 2019 61 59
40 15 Jan 2019 153 158
53 28 Jan 2019 93 93
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time in cages with and without lasers deployed. Rates of increase in lice
density are not expected to be linear, so lice density data were modelled
using generalized additive models (GAMs) fitted using the mgcv
package for R (Wood, 2011; R Core Team, 2019). Treatment group
(with or without laser) and cage ID were fitted as factors, with trial day
as the smoothing term (k = 3). A treatment × cage ID interaction term
was also tested and removed from the model if not significant. Model fit
was checked using the gam.check function in mgcv. Cage-level mean
louse densities at each sampling date were treated as replicates. We
avoided using individual fish as replicates due to the non-independence
of individuals within the same cage.

To determine the effect of laser treatments on individual welfare
indicators, a multivariate ANOVA model was run with all welfare
measures included as response variables, and treatment and sample day
as predictor variables, with cage ID as a random factor.

3. Results

After the 54 days of laser operation, mean abundance of all mobile
lice stages was similar between cages with laser delousing (1.26±0.08
lice fish−1) and those without (1.25±0.20 lice fish−1). This lack of
effect remained when focusing on specific lice stages (Table 2); mean
abundance of adult females was similar between cages with lasers
present (0.17±0.03 females fish−1) and those without lasers
(0.15±0.004 females fish−1), and abundance of adult male (laser:
0.32±0.02; no laser: 0.31±0.03 males fish−1) and pre-adult lice
stages (laser: 0.29±0.10; no laser: 0.31±0.12 pre-adults fish−1) also
did not differ between treatment groups (Supplementary Table 1).

Tracking relative lice abundance over time (GAM analysis) revealed
a considerable increase in pre-adult, adult male and adult female lice
abundance over the 54-day trial (Sample day smoothing term: Table 2).
All cages started with very few lice, then acquired up to 20× more lice
during the study period (Fig. 1). This trend was not significantly af-
fected by the presence of lasers, regardless of lice stage (Treatment
term: Table 2). A power analysis based on the R2 of the fitted models
indicated that there was adequate power to detect an effect with

sampling days within cages treated as replicates (for power = 0.80,
required sample size for pre-adult lice: n = 15.1; adult male lice: n =
6.8; adult female lice: n = 11.6).

Operational time of the lasers was 83 % per day on average (range:
22–99 %), i.e. 20 h per day. Rate of laser activity was likely influenced
by lice levels in cages but was also controlled externally by the service

Table 2
Results of generalised additive models fitting temporal changes in pre-adult
(Model 1), adult male (Model 2) and adult female (Model 3) lice abundance in 6
sea cages (Cage ID term). Three cages contained an operational laser lice re-
moval system, while 3 did not (Treatment term). Sample day was the smoothing
term, fitted within treatment groups (k = 3).

Model 1: pre-adult lice
Term df F p
Treatment 1 2.1 0.16
Cage ID 5 1.5 0.24

Smoothing term edf Ref.df F p
Sample day (with laser) 1.81 1.96 5.8 0.02
Sample day (without laser) 1.85 1.98 9.6 0.002

Model 2: adult male lice
Term df F p
Treatment 1 0.05 0.82
Cage ID 5 4.1 0.01

Smoothing term edf Ref.df F p
Sample day (with laser) 1.88 1.99 22.7 <0.0001
Sample day (without laser) 1.79 1.96 24.2 <0.0001

Model 3: adult female lice
Term df F p
Treatment 1 0.4 0.54
Cage ID 5 2.8 0.047

Smoothing term edf Ref.df F p
Sample day (with laser) 1.60 1.84 7.9 0.002
Sample day (without laser) 1.78 1.95 7.7 0.002

Fig. 1. Mean infestation density of fish in cages with (green triangles) and
without (grey circles) lasers present, with the three replicate cages represented.
Panels show abundances of three categories of mobile lice stage (top to bottom:
pre-adult 1 and 2 with sexes pooled; adult males; adult females). Temporal
patterns in infection levels are represented by generalised additive model
(GAM) fits, with k = 3. Shaded areas indicate the 95 % confidence interval
around the GAM fit (green: lasers; grey: no lasers) (For interpretation of the
references to colour in this figure legend, the reader is referred to the web
version of this article).

S. Bui, et al. Preventive Veterinary Medicine 181 (2020) 105063

3



provider and adjusted according to their management strategy. Even so,
for each period between sampling days where lice numbers were
manually assessed, there was a weak positive relationship between the
number of lice per fish recorded on sample days, and the number of
pulses per day (since last sample day; i.e. 11–17 days between). More
pulses were emitted when higher lice numbers were present on the fish
in Cage 2 (R2 = 0.38) and Cage 6 (R2 = 0.38), whereas Cage 4 ex-
hibited a stronger correlation (R2 = 0.96; Fig. 2). After Day 7, 2 cages
with 2 lasers installed emitted an average of 17,500–21,664 pulses per
day. One cage (Cage 6) only had one laser operational from Day 34
onwards.

To compare the activity of the laser to the number of lice ‘available’
to detect, the total number of mobile lice in each cage was estimated by
multiplying the number of fish by the mean density of lice observed
during manual counts. Thus, when considering the possible population
of lice available to be targeted in a cage, there were 2–16× more lice
available than the number of pulses per day (Table 3), excluding the
last sample where Cage 6 (with one operational laser) had 24 times
more lice present than pulses shot. This translated to 0.04–0.38 pulses
per louse per day (Table 3).

Differences in welfare scores between treatment groups were

negligible (Fig. 3), indicating that there was no impact of laser de-
lousing on the salmon welfare indicators monitored (Pillai’s trace =
0.33, F(10,12) = 0.59, p = 0.79). There was a slight decrease in welfare
scores over time for both treatment groups (Pillai’s trace = 0.77,
F(10,12) = 4.1, p = 0.01). For skin condition, severe scores (5–7) only
occurred on 3 fish out of the 607 assessed across both treatment groups.
All 3 were from control cages. For eye status, severe scores (4–5) were
observed on 7 out of 607 fish, 5 of which were from cages with lasers.
Mortality during the experimental period was on average 1.05 %
(±0.15 % SE) of total fish in control cages, and 0.98 % (± 0.10 % SE)
for treatment cages.

4. Discussion

Automated laser delousing had no detectable benefit when deployed
for 54 days within snorkel cages at a commercial salmon farm.
Legislative thresholds of lice levels on Norwegian farms focus on lim-
iting the adult female stage; abundances of adult female stages in-
creased throughout the trial and were expected to reach the limit within
a few weeks of the study’s conclusion (Fig. 1).

It is not clear why the laser system was ineffective, but one possi-
bility is that the automated detection system was unable to detect or
fire an effective pulse at a sufficient number of lice. Snorkel structures,
as used in the present study, can have reduced water exchange and
could conceivably concentrate particulate matter or plankton in areas
that the nodes occupy. However, conditions in this trial were relatively
conducive to laser delousing, with generally low turbidity and algal
concentrations at the time of the trial (winter 2018/2019). Salmon
behaviour may also be influential; while salmon are not expected to
actively avoid nodes, their depth preferences and changes in swimming
patterns may frequently draw them away from the nodes’ target areas
and limited action distance. For example, salmon exhibit strong beha-
vioural responses to feed stimuli and increased activity during feeding
periods, particularly during the first feed deliveries of the day (Juell
et al., 1994; Oppedal et al., 2011). Environmental conditions such as
temperature or light will also drive depth preferences (Oppedal et al.,
2007, 2011), with most schools displaying considerable changes in
swimming depth (Føre et al., 2017; Johansson et al., 2009). As a result,
the node depth must be changed frequently to match that of the school.
Further, in a typical commercial cage (∼50,000 m3), only a small
proportion of salmon are likely to pass within effective range (∼1.5 m)
of a node over a given duration. Snorkel structures in the cages confine
salmon to a smaller volume of water and could improve encounter rates
between salmon and nodes (Geitung et al., 2019; Stien et al., 2016),
assuming the school is not beyond the maximum operating depth of the
nodes (25 m). However, while all of the above are considerations in
deployment of laser delousing nodes, in the present study, the large

Fig. 2. Correlation between mean pulses per day during the period between
sample points (11 – 17 days) in treatment cages with recorded mobile lice per
fish, over the experimental period. Regression lines indicate linear correlation
between infection intensity and laser delousing function; R2 values ranged from
0.38 (both Cage 6, black dotted line, and Cage 2, grey solid line) to 0.96 (Cage
4, black solid line). Each data point is labelled with the experimental day of the
sample point. Mobile lice includes the pre-adult and adult life-history stages.
Note that cage 6 only had one laser node operating from Day 34 onwards, while
the remaining two cages continued with 2 operating nodes.

Table 3
Estimated number of lice available in a cage to be targeted by the laser de-
lousing technology, and the ratio of laser pulses to available lice. Note that cage
6 only had one laser node operating from Day 34 onwards, while the remaining
two cages continued with 2 operating nodes.

Day Cage N fish Mobile lice
per fish

Total lice in
cage§

Pulse per
day*

Daily pulse
per louse

11 2 156,317 0.15 23,448 6455 0.28
4 160,378 0.14 22,911 8718 0.38
6 161,495 0.55 88,822 5562 0.06

28 2 155,996 0.85 132,597 15,523 0.12
4 160,145 0.47 75,858 17,814 0.23
6 161,304 0.85 137,108 13,872 0.10

40 2 155,583 0.71 111,131 23,585 0.21
4 159,725 1.04 165,752 26,586 0.16
6 160,797 1.23 198,125 16,222 0.08

53 2 154,977 1.31 203,407 17,562 0.09
4 159,276 1.37 217,677 29,058 0.13
6 160,237 1.10 175,744 7400 0.04

§ Total number of fish in the cage multiplied by the mean lice density re-
corded during manual sampling events.
* Mean pulse over the days between sample points.

Fig. 3. Mean scores of individual welfare indicators for salmon in cages with
laser delousing and cages without, over the 54-day study period.
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number of pulses per day (relative to the estimated number of available
lice: Table 3) suggests that infrequent target detection was not the
reason for the apparent lack of effect.

A more likely explanation is that most laser pulses did not result in
the removal of a louse, either due to an imperfect detection system
resulting in the targeting of non-louse objects (we do not have access to
data on this), or because the laser pulse is not sufficient to remove a
correctly targeted louse. Anecdotal reports from manufacturer testing
indicate that each laser pulse is close to 100 % effective, yet results from
the present study are consistent with lice staying alive and attached.
Specifically, the number of laser pulses relative to the estimated
number of mobile lice suggests that if all pulses were lethal, around
4–38 % of the lice population would have been removed each day
(Table 3). Instead, we found no significant effect on lice density after 54
days. Occasionally, individual lice were found during manual sampling
events with superficial damage that could be attributed to a laser pulse
– these were still alive and attached to the host (pers. obs. L. Geitung). It
is not known how lice survive the laser pulse (e.g. insufficient power
after travelling some distance and attenuating through the water
column, or imperfect accuracy resulting in shots to non-lethal areas of
the body). Further testing in a range of environmental conditions and
cage types may help to identify the potential drivers of poor detection
and/or lethality. Adjustments in management tactics of the laser de-
lousing system at a site could also be explored, such as increasing nodes
per cage or more frequent changes in depth distribution. Close-range
pulses may be more accurate and attenuate less through the water
column.

Although our analyses indicated no effect of laser delousing on lice
abundance or salmon welfare status at this site, the power to detect
such differences must be considered. A post-hoc power analysis in-
dicated that our sample size was adequate for a difference to be de-
tected, however we cannot be certain that the fish sampled were re-
presentative of the much larger group in the cage. For the vast majority
of studies at commercial scale, the logistical challenge of sampling even
1% of the fish in a sea cage of 150 000 individuals, and repeating that
for multiple cages, is impractical. Because estimation of sea lice levels
in commercial sites is required for mandatory reporting, there has been
a focus on modelling the representativeness of different sampling
strategies, and these strategies can similarly be applied to sampling for
welfare metrics. With the skewed distribution of abundance of lice in-
fections and correlation with prevalence, current literature emphasises
the approach of sampling “few fish from many pens” being more ben-
eficial than “many fish from few pens” (Revie et al., 2007). Even with
low sample numbers, prevalence can be indicative of abundance and
thus cage-level differences can inform the status of the site (Jeong and
Revie, 2020). Similarly, prevalence of poor welfare scores in a sampled
group will indicate any rise in negative welfare status. Nevertheless,
conclusions from sampling protocols of low sample numbers in such
large groups should be interpreted with caution.

Overall welfare score declined over the experimental period for all
cages, which is commonly observed in commercial settings (Bui et al.,
2018; Folkedal et al., 2016). However, during the period of operation,
the laser delousing strategy did not negatively impact salmon welfare in
any of the welfare indicators recorded. Concerns have been raised
around the potential for injuries to the eyes (which could be mistaken
for a louse) and skin, however both of these metrics scored similarly
after 50 days of laser operation (Fig. 3). The long-term effect of con-
tinuous exposure to light pulses is unknown past 50 days, but any re-
lated welfare issues on other commercial sites that have used laser
delousing over a full production cycle have not been brought to light.
As the exposure rate of individual salmon to laser pulses is unknown,
further testing is needed to map impacts on welfare metrics such as
cellular skin damage, mucosal layer and eye health, and to ensure that
exposure does not cause behavioural distress in salmon. If physical and

behavioural welfare indicators are unaffected by laser delousing, then
welfare concerns could be allayed for this technology. More powerful
lasers may be required to increase lethality; if so, their effects on wel-
fare should be rigorously tested.

In general, there is a disparity between the rapid rate of commercial
product development in the aquaculture industry, and scientific vali-
dation of those technologies. The Norwegian salmon farming industry
benefits from continuous innovation, leading to advances in pro-
ductivity and efficiency (Asche et al., 2013). There are substantial op-
portunities for start-up businesses and corporations to develop products
that can be available on the market relatively quickly, with anecdotal
evidence or personal connections largely driving the acquisition of
these new strategies by farming companies (Brakstad et al., 2019). A
case study of one relatively small Norwegian salmon farming company
estimated production losses from lice and related management ex-
penses totalled approximately 6.89 million NOK per licence (site) in
2016 (Brakstad et al., 2019). This substantial financial and social
pressure drives aquaculture companies to seek immediate solutions,
and the nature of the Norwegian market is such that rapid commer-
cialisation of technologies is possible. The industry is responsive to
emerging innovations and are quick to adopt new strategies to combat
salmon lice. This fast-paced acquisition and implementation of tech-
nologies can promote progress, but if the strategy is not fully developed
or well-tested, investments and resources may be misdirected. Few
strategies are robustly validated before implementation.

New technologies, especially those central to production and dis-
ease control, should be validated at a commercial scale across a range of
conditions. This is particularly important when there are potential
welfare implications beyond the scope of Norwegian Food Safety
Authority assessments. An example of thorough validation is the
snorkel cage for prevention of salmon lice infestations. Its efficacy and
potential welfare impacts have been experimentally documented under
a range of conditions (Oppedal et al., 2019), with different iterations of
the snorkel structure (Oppedal et al., 2017), with a range of fish sizes
(Oppedal et al., 2019; Stien et al., 2016), focusing on secondary in-
fections (Wright et al., 2017), and finally at commercial scale over a full
production cycle (Geitung et al., 2019). In contrast, there are several
examples of lice control technologies that have been widely adopted by
the industry without a full understanding of their efficacy or their
consequences for animal welfare. These include cleaner fish (small
number of studies, mostly poorly replicated and at less than commercial
scale: Overton et al., 2019), and thermal and mechanical delousing
(Gismervik et al., 2019; Overton et al., 2018). In both cases, the evi-
dence base is now improving, but too late to (a) avoid unacceptable
welfare outcomes for billions of vertebrate animals, or (b) guide pru-
dent financial investment by the industry (Brakstad et al., 2019). Proper
validation of new techniques before widespread uptake is crucial for the
maintenance of high ethical, environmental and financial standards in
the industry.
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A B S T R A C T

Cleaner fish used as a biological control agent against salmon lice is rapidly increasing in Atlantic salmon
aquaculture. However, concerns have been raised about the welfare and mortality of cleaner fish in salmon cage
systems, which could in turn affect their performance in controlling salmon lice. In a 4-month autumn-winter
study, we monitored growth, welfare, mortality and daytime depth distribution of the most commonly used
cleaner fish, farmed ballan wrasse and lumpfish, in six salmon production sea cages where thermo- and halo-
clines were present. Ballan wrasse did not grow (SGR: small: −0.01% day−1, large: −0.06% day−1), while
lumpfish significantly doubled in size (SGR: 0.87% day−1) during the study. High losses (registered mortality +
unregistered loss) were observed in both species (57 and 27% of ballan wrasse and lumpfish, respectively). The
welfare status of remaining individuals generally improved over the study period, regardless of species. Brief
daytime camera observations at hides found ballan wrasse were typically deeper at warmer (median 12.4 °C)
more saline (median 31.7 ppt) depths, where salmon were expected to reside during day periods, compared to
lumpfish generally occupying colder (median 7.3 °C), brackish (median 18.9 ppt) water in surface layers.
Considerable mortalities, minimal feeding (inferred from ceased growth) by ballan wrasse and a possible mis-
match in lumpfish and salmon depths (inferred from limited daytime camera observations) suggest that cleaner
fish may have low long-term effectiveness against salmon lice in stratified salmon sea cages over autumn-winter.
Similar studies across seasons, locations and cage types (e.g. depth-based cage technologies) are vital to un-
derstand the extent of these issues in salmon aquaculture more broadly.

1. Introduction

The primary obstacle to production growth for the world's largest
finfish mariculture industry, sea-cage Atlantic salmon Salmo salar
farming (FAO, 2019), is the ectoparasitic salmon louse Lepeophtheirus
salmonis. Due to potential negative impacts on wild salmonid popula-
tions from farm-produced lice (Krkošek et al., 2011; Kristoffersen et al.,
2018), the Norwegian government have enforced production volume
limits and treatments when infestations exceed 0.5 adult females per
fish (0.2 adult females during the out-migration of wild salmon, weeks
16–21) (Lovdata, 2012, 2017). This led the Norwegian industry to
spend>5 billion NOK (or €425 million at present currency exchange
rates) in 2015 in attempts to control the parasite, with costs likely to
have continued to rise since then (Brooker et al., 2018a). Several

delousing methods are currently in use, such as chemical, thermal and
mechanical treatments. However, these methods can result in poor
welfare and increased mortalities (Overton et al., 2018a, 2018b), in
addition to salmon lice developing a resistance to many of the chemical
therapeutants (Grøntvedt et al., 2013; Aaen et al., 2015; Helgesen et al.,
2015). Lice-eating cleaner fish on the other hand, have become widely
accepted as a biological control of salmon lice due to a lack of negative
effects on salmon welfare compared to chemical or physical delousing
methods (Deady et al., 1995; Treasurer et al., 2002; Skiftesvik et al.,
2013; Imsland et al., 2014a).

Wild-caught wrasse species from the Labridae family, primarily
ballan (Labrus bergylta), corkwing (Symphodus melops) and goldsinny
wrasse (Ctenolabrus rupestris) (Deady et al., 1995; Treasurer et al.,
2002), were first used as cleaner fish in salmon aquaculture in the late
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1980s (Bjordal, 1988, 1991). In recent years, their use in Norway has
dramatically increased from 1.7 million cleaner fish in 2008 to over 54
million in 2017 (Norwegian Directorate of Fisheries, 2019). To meet the
increasing demand, cleaner fish supply has shifted from being ex-
clusively of wild-caught origin to being increasingly hatchery-pro-
duced, which has also improved stock quality and sustainability. Cur-
rently there are two species farmed; ballan wrasse (L. bergylta) and
lumpfish (Cyclopterus lumpus) (Brooker et al., 2018b), and in 2017,
around 56% (29.7 million lumpfish and 1.0 million ballan wrasse) of all
stocked cleaner fish in Norway were hatchery-produced (Norwegian
Directorate of Fisheries, 2019).

Although typically cohabiting in salmon sea cages, ballan wrasse
and lumpfish differ widely in their biology and life history. Ballan
wrasse are a temperate species, inhabiting shallow coastal rocky reefs
and kelp beds< 30 m (Dipper et al., 1977; Figueiredo et al., 2005;
Villegas-Ríos et al., 2013) in the north-east Atlantic, from Morocco to
southern Norway (Quignard and Pras, 1986; Porteiro et al., 1996).
Contrastingly, lumpfish is a cold-water semi-pelagic species (Blacker,
1983; Daborn and Gregory, 1983; Ern et al., 2016) dwelling in coastal
and offshore habitats, often in association with floating seaweed
(Davenport, 1985; Ingólfsson and Kristjánsson, 2002; Kennedy et al.,
2016) across the North Atlantic (Stein, 1986). Lumpfish lack a swim
bladder but possess an abdominal suction disc formed by a modified
pelvic fin (Budney and Hall, 2010) which allows it to adhere onto
different surfaces (Imsland et al., 2015). Both species are diurnal (Morel
et al., 2013; Villegas-Ríos et al., 2013; Imsland et al., 2015) and neither
species are fast swimmers such as Atlantic salmon (Hvas et al., 2018;
Yuen et al., 2019). Shelters and hides are therefore offered in sea cages
for nocturnal resting, in addition to provide protection from strong
currents, rough weather and winter conditions. Due to higher activity
with increasing temperature (Yuen et al., 2019) and becoming seden-
tary at temperatures below 10 °C (Morel et al., 2013), ballan wrasse are
often preferred stocked during summer months, while active feeding at
low temperatures (Nytrø et al., 2014) as well as a preference and high
physiological tolerance to cooler temperatures (Hvas et al., 2018;
Mortensen et al., 2020) has led salmon farmers preferring to stock
lumpfish during winter months (Brooker et al., 2018b; Eliasen et al.,
2018; Imsland et al., 2018d) and in northern Norway (Barrett et al.,
2020). While stocking timing may vary, all cleaner fish species can
occupy salmon sea cage environments throughout annual cycles, de-
spite possessing different physiological limits and preferences to en-
vironmental variables.

Environmental preferences may override typical depth distributions
of cleaner fish species when strong vertical gradients in temperature
and salinity are present (Oppedal et al., 2011a). Lumpfish have a low
thermal range and die from extended periods at 18 °C (Hvas et al.,
2018), which likely results in a preference for depths of cooler tem-
perature. Whereas ballan wrasse, which display low activity and be-
come sedentary at temperatures below 10 °C (Morel et al., 2013; Yuen
et al., 2019), are expected to prefer depths of warmer temperature. Both
species are marine-adapted fish but can tolerate brackish water (Sayer
and Reader, 1996; Skiftesvik et al., 2018; Treasurer and Turnbull,
2019). However, ballan wrasse and lumpfish may both prefer depths of
high rather than low salinity (Sayer et al., 1993; Powell et al., 2018). It
is unknown how each cleaner fish species responds to competing en-
vironmental preferences (e.g. temperature and salinity), but this is key
to understanding their depth distribution and interactions with salmon
in sea cages.

The commercial use of cleaner fish comes with a responsibility to
secure their welfare and survival according to animal welfare legisla-
tion (Lovdata, 2008). Reports of poor cleaner fish survival in com-
mercial salmon sea cages is cause for concern (Nilsen et al., 2014;
Skiftesvik et al., 2014; Mo and Poppe, 2018; Stien et al., 2020). A short
6-week trial involving 5 m deep sea cages recorded high ballan wrasse
losses (14.8%) compared to salmon (0.03%) and noted that many losses
were not confirmed mortalities at dead fish collection (Skiftesvik et al.,

2013). Longer studies in larger salmon sea cages are needed that
carefully monitor a) registered mortalities at regular dead fish collec-
tions, and b) additional unregistered losses at final whole-of-cage
counts of cleaner fish (Overton et al., 2020). Conducting such in-
vestigations in a range of environments and sea cage types (Nilsen
et al., 2017; Stien et al., 2018; Geitung et al., 2019; Glaropoulos et al.,
2019) is required to fully grasp the extent of the issue and potential
solutions which would improve the effectiveness of this biological
control.

Here, over autumn-winter at a location with thermoclines and ha-
loclines present, we monitored growth, welfare, registered mortality
and unregistered loss of the two most common cleaner fish species,
farmed ballan wrasse and lumpfish, in salmon production sea-cages
over four months. We also explored the effects of Floy and Passive
Integrated Transponder (PIT) tags, which are increasingly used in
cleaner fish research (Imsland et al., 2014b, 2016a, 2018c), on growth,
welfare and mortality by comparing tagged to untagged individuals. We
hypothesised ballan wrasse to have more welfare issues and mortalities
than lumpfish during the winter period when they feed less and become
more inactive. Brief daytime camera observations at hides also mon-
itored daytime depth distribution of cleaner fish throughout the study,
with the expectation that lumpfish and ballan wrasse would prefer
cooler and warmer depths, respectively, but that both marine-adapted
species would avoid low salinity depths.

2. Material and methods

2.1. Experimental setup

The study was conducted in six steel framed sea cages (12 × 12 m
square, 12 m deep) at the Institute of Marine Research sea-cage farm
facility (Solheim, Masfjorden commune; 60.9° N, 5.46° E) from 17
October 2018 to 20 February 2019 (126 days). The farm is situated in
the end of a long fjord system and is rarely affected by strong currents
or rough seas. Atlantic salmon (Salmo salar, Aquagen strain) were
stocked two months before the beginning of the present trial, with
6000–6280 salmon per cage at a mean weight of 240–320 g.

Ballan wrasse were supplied by Mowi ASA in two different year
classes termed “small” (n= 900, initial weight ± SD= 33.5 ± 9.0 g)
and “large” (n= 180, initial weight ± SD = 96.0 ± 18.4 g). “Small”
ballan wrasse were transported directly from the Mowi Øygarden site
while “large” ballan wrasse were transported from Institute of Marine
Research, Matre (previously delivered from Mowi Øygarden and con-
tinued reared at IMR facilities). They were both transported in vehicles
with holding tanks (“large”: 43.3 kg/m3 and “small”: 60.2 kg/m3) and
were oxygenated and monitored for the duration of these periods.
Lumpfish were obtained from Institute of Marine Research (n = 900,
initial weight ± SD = 53.0 ± 14.1 g) and vaccinated with AMARINE
micro 3–1 (Pharmaq AS, Oslo, Norway). They were transported by boat
in holding tanks (15.9 ± 0.2 kg/m3) with oxygen distributed and
monitored throughout the transport. Sedation was not added to the
holding tanks during transport. The cleaner fish were regularly mon-
itored and screened for diseases (ex. Amoebic Gill Disease) following
normal guidelines in the rearing phase. Ballan wrasse were transported
and deployed at the farm on 17 October 2018, while lumpfish were
transported and deployed six weeks later on 28 November 2018.
Cleaner fish were divided equally between sea cages, with 150 lump-
fish, 150 small ballan wrasse and 30 large ballan wrasse in each cage.
The cleaner fish were slowly introduced to the sea cages at the surface
in close proximity to the hides.

One artificial kelp station (Krantare™, NorseAqua, Norway), with 6
ropes of 10 m depth each, was placed across a corner of each sea cage as
substrate and shelter for the cleaner fish. This amounts to 5.5 cleaner
fish per metre of artificial kelp and is within the recommended amount
of 15–50 cleaner fish per metre of artificial kelp (Lusedata.no, 2017;
Rabadan, 2018). Ballan wrasse were offered feeding blocks (Symbio
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Blocks, BioMar AS, Norway) at five depths (1, 3, 5, 7 and 9 m) near the
shelters, while lumpfish were offered pellet feed (2 mm pellets, Atlantic
Gold, Pacific Trading Aqua Ltd., Ireland) dispersed at the surface near
the shelters from an automatic feeder (Rognkjeksautomat, NorseAqua,
Norway) for four hours every day. All cages were checked for registered
mortalities at daily dead fish collections and the number and species
were recorded. Dead fish collection was not performed the day after
stocking events due to anecdotal evidence from farmers that live
cleaner fish would reside at the cage bottom at this time and were likely
to be pumped out. Ballan wrasse were not distinguishable between
“small” and “large” sizes when recording registered mortalities at dead
fish collection. In addition, due to a PIT tag reader malfunction and
uncertainty of tag presence when cleaner fish were decomposing, tag
type was also not included in the registered mortality data. Daily sali-
nity and temperature depth profiles (0–17 m) were recorded by an
automatic profiling CTD (Conductivity, Temperature and Depth) buoy
(APB5, SAIV AS, Norway) at a reference location on the outer end of the
farm facility.

One day after lumpfish transfer, a hole (30 × 16 cm) at 10–12 m
depth was discovered and repaired in the net wall of one of the sea
cages. This was suspected to cause the mass escape of ballan wrasse
from this cage as only 5 (3.3%) ballan wrasse were left at the end of the
trial, leading to abnormally high unregistered losses. Therefore, this
cage was removed and only 5 cages were used in analyses involving
ballan wrasse. However, this did not appear to affect registered mor-
talities and unregistered losses of lumpfish, with similar mortalities and
losses between the cage with a hole and the other cages, and so all six
cages were used in lumpfish analyses.

At the termination of the study, the net bottom was lifted, and
cleaner fish were sorted from salmon and netted out for whole-of-cage
counts to determine unregistered losses in each sea cage. Artificial kelps
were lifted out of the water and closely inspected to retrieve fish that
were still attached to (lumpfish) or within it. Finally, cleaner fish of
both species were collected and counted after an overdose of anaes-
thetic (100 mg L−1, Finquel®vet., ScanAqua AS, Årnes, Norway).

2.2. Tagging

Prior to stocking, two-thirds of the cleaner fish (600 lumpfish, 600
small ballan wrasse and 120 large ballan wrasse) were anesthetised
(60 mg L−1, Finquel®vet., ScanAqua AS, Norway) and half were tagged
intraperitoneally with a Passive Integrated Transponder (PIT)
(2 × 12 mm) while the other half were tagged with a Floy tag
(1.2 × 55 mm, anchor: 7 mm) in dorsal musculature below the dorsal
fin. After tagging, fish were returned to a seawater bucket and mon-
itored for recovery until upright swimming resumed, at which point
they were transferred to the sea cages. The remaining cleaner fish (300
lumpfish, 300 small ballan wrasse and 60 large ballan wrasse) were
transferred directly to the sea cages.

2.3. Growth and welfare

All tagged cleaner fish at the start of the trial and all remaining
cleaner fish at the termination of the trial were individually weighed
and measured for length. From this, Fulton's condition factor
(K = 100 ×W L−3, where W is the weight of the fish and L corresponds
to the total length) was calculated to estimate cleaner fish condition.
The condition factor of lumpfish is higher than most other teleost, but
the species follow an isometric growth pattern so the method of using
condition factor is valid (Coull et al., 1989), and has been used as an
indicator in several papers describing lumpfish growth (ex. Imsland
et al., 2014a, 2018a, 2018b, 2019b). Specific growth rate (SGR) was
calculated according to the formula of Houde and Schekter (1981)
SGR= (eg − 1) × 100, where g= ln (W2) − ln (W1) / (t2 − t1) andW2

and W1 are weights on days t2 and t1, respectively. In addition, cleaner
fish were scored according to 7 welfare indicators (fins, skin, eyes, jaw

and sucker disc deformity, snout, opercula) based on Operational
Welfare Indicators (OWI) from RENSVEL (Noble et al., 2019a, 2019b),
Gentry et al. (2020) and Katharine Gentry, pers. comm. (Table 1). At
the start of the trial, Floy tagged cleaner fish were scored, while at the
termination of the trial a subsample of the remaining tagged and un-
tagged cleaner fish were scored (Table 2).

2.4. Daytime depth distribution

Daytime depth distribution of cleaner fish was monitored by brief
underwater camera observations at hides (Imenco Gemini Aquaculture
camera, Imenco AS, Norway) two to four times per week for 12 weeks
(42 times during the experimental period). The cameras were situated
outside the corner hides, with the ability to be moved up and down by a
winch and rotate 360° in the horizontal plane. Depth distribution at
hides was classified by performing 1 min observations at each metre
from the surface (0 m) down to 16 m, recording the numbers of both
cleaner fish species present at each depth. The observations were per-
formed between 10 and 12 am; the period cleaner fish are most active
(Blanco Gonzalez and de Boer, 2017; Brooker et al., 2018b; Powell
et al., 2018) and believed to be interacting with salmon to remove lice.
Although camera observations only gave a snapshot of fish depth be-
haviour (e.g. compared to continuous monitoring by implanted elec-
tronic tags), they were chosen here to a) provide data on large sample
sizes, b) minimally disturb fish behaviour, and c) monitor during day-
light when interactions between cleaner fish and salmon are expected.
Ballan wrasse size was not recorded in the depth observations due to
difficulties in determining size from camera observations and therefore
ballan wrasse distribution data included both small and large ballan
wrasse.

2.5. Data analysis

Data analyses were performed using R software v.3.1.0 (package
stats, R Core Team (2019)). Data are presented as mean ± standard
error, unless otherwise stated. Data were checked for variance and
normality and the significance level was set at P < .05. To compare
specific growth rate values between tag types (i.e. untagged, Floy
tagged, PIT tagged) for each cleaner fish species, a one-way ANOVA
was used (function aov). A two-way ANOVA (function aov) was used to
compare the effects of sample time and tag types on weight and con-
dition factor. Lumpfish weight data were ln-transformed in order to
satisfy the assumptions of parametric analysis. To test for effects of

Table 1
Scores and definitions of welfare indicators.

Score Definition

Fins 1 No erosion, splitting or rays exposed
2 Any minor damage on fins; up to 60% deep fin

split, or 1–2 splits, or up to 50% erosion
3 Split of > 60% depth, or 3+ splits, or > 50%

erosion
Skin 1 No damage

2 Some skin damage (< 0.5 cm2) or previous
wounds (evidence of scars)

3 Wound present (> 0.5 cm2)
Eyes 1 No damage

2 Some minor damage to one or both eyes, but
still some vision in both eyes

3 Blind in one or both eyes, or at least > 50%
blind (moderate cataracts) in both eyes

Deformities (Jaw,
sucker disc)

0 No damage
1 Damage or wound present

Snout 0 No damage
1 Damage or wound present

Opercula 0 No damage
1 Damage or wound present
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mortality, percentage values were arcsine transformed before input to
Welsh two-sample t-test (function t.test) or one-way ANOVA (function
aov) as recommended by Crawley (2007). Fishers Exact Test were used
to compare welfare scores between first and last sample points and
between different tag types (function fisher.test). Following Nakagawa
(2004) we did not use Bonferroni or similar adjustments to correct for
multiple comparisons of welfare indicators to be able to observe sig-
nificant differences, which should be taken into account when obser-
ving the results.

3. Results

3.1. Environment

During the experimental period, temperature followed normal

seasonal variations (Oppedal et al., 2011a) (Fig. 1a). Throughout the
trial there was a distinct thermocline, with warm deep waters and
cooler surface waters. The highest temperatures were observed at the
beginning of the trial of up to 16 °C in deeper waters, and temperatures
cooled to 6–8 °C in deeper waters and 2–4 °C in surface layers at the end
of the study. Salinity varied through the trial with long periods of
brackish water (< 16 ppt) between 0 and 5 m (Fig. 1b).

3.2. Growth

Ballan wrasse condition decreased, and weight did not change
during the trial (Fig. 2) for both sizes and tag types (i.e. untagged, Floy
tagged, PIT tagged). In contrast, lumpfish increased in both weight and
condition factor, with their mean weight doubling over the trial period,
regardless of tagging (Fig. 2). There was no effect from either tag type

Table 2
Proportions of welfare scores for small ballan wrasse, large ballan wrasse and lumpfish (fins, skin, eye score ≥ 2; deformities (jaw, sucker disc), snout, opercula
score ≥ 1). For each fish type, the start values are from a single sample before stocking, while the end values are mean (± SE) values from samples of individual
cages. Higher scores indicate deviance from normal condition (fins, skin, eye score = 1–3; deformities (jaw, sucker disc), snout, opercula score = 0–1). **p < .01,
***p < .001.

Parameter Small ballan wrasse Large ballan wrasse Lumpfish

Start (n = 67) End (n = 87) Start (n = 50) End (n = 76) Start (n = 91) End (n = 120)

Dorsal fin (scores ≥2) 44.8% 22.1 ± 3.6% ** 64.0% 33.2 ± 6.2% ** 7.7% 7.1 ± 1.7%
Anal fin (scores ≥2) N/A N/A N/A N/A 3.3% 4.5 ± 2.9%
Pectoral fin left (scores ≥2) 98.5% 94.5 ± 3.4% 100% 96.1 ± 1.6% 6.6% 5.3 ± 1.9%
Pectoral fin right (scores ≥2) 98.5% 97.8 ± 1.4% 100% 96.1 ± 1.6% 13.2% 5.8 ± 2.1%
Caudal fin (scores ≥2) 71.6% 63.4 ± 6.0% 86.0% 60.7 ± 5.9% ** 82.4% 74.3 ± 5.0%
Skin condition (scores ≥2) 14.9% 21.0 ± 3.4% 26.0% 27.5 ± 7.9% 3.3% 4.0 ± 2.5%
Eye condition (scores ≥2) 0.0% 3.9 ± 2.5% 0% 2.9 ± 1.8% 0% 16.4 ± 4.0% ***
Jaw deformity (scores ≥1) 10.4% 7.6 ± 4.3% 22.0% 12.6 ± 4.8% 0% 0.0 ± 0.0%
Sucker disc deformity (scores ≥1) N/A N/A N/A N/A 0% 0.0 ± 0.0%
Snout damage (scores ≥1) 0.0% 0.0 ± 0.0% 0% 0.0 ± 0.0% 0% 0.0 ± 0.0%
Opercula damage (scores ≥1) 0.0% 1.2 ± 1.2% 0% 0.0 ± 0.0% 0% 0.0 ± 0.0%

Fig. 1. Daily depth profiles between 0 and 17 m of a) temperature and b) salinity from a reference location at the outer end of the farm at Solheim, Norway.
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compared to untagged individuals in terms of growth or condition
factor for both species (F ≤ 2.758, p > .08).

3.3. Mortality and losses

Registered accumulated mortalities of ballan wrasse and lumpfish
were similar over the study period, 7.2 ± 1.3% and 9.9 ± 2.3%,
respectively, while registered salmon mortality was considerably lower
at 0.3 ± 0.1% during the same time interval (Fig. 3). When accounting
for deployment interval disparities, there was no difference in regis-
tered mortalities between ballan wrasse or lumpfish (0.06 ± 0.01%

day−1 vs. 0.12 ± 0.03% day−1, t = −2.1466, p = .068). Ballan
wrasse stocking was immediately followed by a rise in mortalities,
while lumpfish mortalities were largely absent until a spike in mid-
January or week 6 after deployment. Based on the remaining cleaner
fish at whole-of-cage counts at the end of the trial, there were sub-
stantial additional unregistered losses leading to a cumulative total loss
of ballan wrasse and lumpfish of 56.8 ± 1.7% and 27.3 ± 1.7%,
respectively (Fig. 3). After correcting for different deployment intervals,
ballan wrasse had higher total losses than lumpfish (0.45 ± 0.01%
day−1 vs. 0.33 ± 0.02% day−1, t= 4.8113, p < .001). Tagged (floy
and PIT respectively) ballan wrasse had similar total cumulative losses
to untagged individuals (60.2 ± 3.5% and 58.3 ± 1.8% vs.
52.0 ± 2.7%, F = 2.402, p = .133), as did tagged lumpfish
(25.4 ± 3.0% and 32.0 ± 3.1% vs. 24.3 ± 1.9%, F = 2.173,
p = .148).

3.4. Welfare

Welfare scores generally improved during the course of the trial for
both cleaner fish species (Table 2). Large ballan wrasse had better
dorsal and caudal fins at the end of the study (Table 2), with a higher
proportion of untagged individuals showing better dorsal fin scores
than tagged individuals (17.6 ± 5.0% vs. 41.6 ± 9.4%, p = .001,
Fishers Exact Test, FET), and a lower proportion of Floy tagged in-
dividuals showing an improvement in caudal fin damage than untagged
individuals (80.3 ± 5.5% vs. 42.9 ± 12.2, p = .022, FET) (Supple-
mentary Table 1). Fin damage was the most common issue for both
ballan wrasse and lumpfish, with caudal fin damage most prevalent for
lumpfish, while ballan wrasse experienced a high prevalence of both
caudal and pelvic fin damage (Table 2). For lumpfish, eye condition
decreased during the trial (Table 2), and poor eye condition was seen in
a higher proportion of tagged compared to untagged individuals
(19.9 ± 5.3% vs. 5.2 ± 3.5%, p = .0345, FET) (Supplementary
Table 1). These patterns were not evident for ballan wrasse (Table 2).

3.5. Daytime depth distribution

From brief daytime observations at hides, the two cleaner fish
species appeared to exhibit different daytime depth distributions and
environmental preferences (Fig. 4). Ballan wrasse were observed pre-
dominantly below the halocline and thermocline (pycnocline) present
at 2–4 m depth (Fig. 4a) while lumpfish were mainly above the

Fig. 2. Overview of a) mean weight (g); b) condition factor (K) and c) specific
growth rate (% day−1) from the initial and final sampling points for untagged,
floy tagged and PIT tagged lumpfish, small and large ballan wrasse.
***p < .001.

Fig. 3. Overview of mean (± SE) registered mortality (lines) for ballan wrasse,
lumpfish and salmon as well as mean (± SE) total losses (dots) for ballan
wrasse and lumpfish. Registered mortality is taken from daily mortality regis-
trations while total losses was calculated at the end of the experiment based on
how many individuals were left in the cages.
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Fig. 4. Depth distribution of a) ballan wrasse and b) lumpfish from brief underwater camera observations at hides every 2–3 days with 1 min observation at every
metre from 0 to 16 m depth. Lumpfish was added to the cages four weeks after ballan wrasse.

Fig. 5. Boxplots showing range of a) temperature and
b) salinity values measured throughout the water
column inside the cages as well as temperature and
salinity conditions experienced by both ballan wrasse
and lumpfish based on their depth from each ob-
servation day from the deployment of lumpfish to the
end of study (study day 44–126).
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pycnocline (Fig. 4b). Compared to the available temperatures (median
11.1 °C) in the water column, ballan wrasse tended to select slightly
warmer depths (median 12.4 °C) and lumpfish selected cooler depths
(median 7.3 °C) (Fig. 5a). While compared to the available salinities
(median 32.4 ppt), ballan wrasse selected depths of higher salinity
(median 31.7 ppt) and lumpfish selected depths of considerably lower
salinity (median 18.9 ppt) (Fig. 5b). Both cleaner fish species were
observed in lower cage sections at the first observation after stocking,
before adjusting to shallower depths (Fig. 5).

4. Discussion

Farmed cleaner fish (ballan wrasse and lumpfish) are becoming the
dominant species used as biological controls against salmon lice in the
Atlantic salmon farming industry (Brooker et al., 2018b). In this au-
tumn-winter study in salmon production cages, we show that temperate
ballan wrasse (Yuen et al., 2019) failed to grow, while cold-water
specialist lumpfish (Ern et al., 2016; Hvas et al., 2018) doubled in
weight, suggesting that ballan wrasse may under-perform as a biolo-
gical control agent compared to lumpfish over this period. In addition,
total cumulative losses were high in both cleaner fish species (27–57%)
within our 4-month sea cage trial, suggesting that losses are a key factor
in explaining the performance of cleaner fish as biological controls.
Finally, brief camera observations suggested that these cleaner fish
species vary in their daytime depth distribution and preference for
environmental variables in sea cages, which may lead to species-spe-
cific differences in salmon-cleaner fish interactions.

Over the course of the study ballan wrasse showed a negative
growth rate and had reduced condition, while in lumpfish, weight
doubled, and their condition improved. This supports the notion that
wrasse species enter a dormant phase and discontinue feeding in cooler
winter periods (Sayer and Davenport, 1996; Sayer and Reader, 1996;
Morel et al., 2013; Yuen et al., 2019). The increased weight by a growth
factor of 0.87% day−1 and improved condition of lumpfish, on the
other hand, indicated they were actively feeding. The observed growth
rate was similar to a previous study in commercial scale salmon sea
cages spanning autumn-winter months (0.68% day−1) (Imsland et al.,
2018d), but faster growth rates have been recorded in tank trials over a
range of temperatures (Nytrø et al., 2014). Our findings suggest that
lumpfish but not ballan wrasse will actively feed during autumn-winter
periods in salmon sea cages. However, as lumpfish prefer colder tem-
peratures (Mortensen et al., 2020) a repeat of the study during spring-
summer could be interesting to observe if ballan wrasse out-perform
lumpfish in warmer conditions.

Total losses were high regardless of cleaner fish species, reaching
27% (0.33% day−1) in 12 weeks for lumpfish and 57% (0.45% day−1)
in 18 weeks for ballan wrasse. This draws attention to current concerns
about the utilization of cleaner fish in salmon aquaculture (Nilsen et al.,
2014; Mo and Poppe, 2018). According to industry reports, cleaner fish
mortalities in commercial sea cages range from 18 to 48%, with in-
dividual farms observing up to 100% mortality or loss (Nilsen et al.,
2014). A recent study reported> 65% mortality of ~193,000 cleaner
fish in 12 commercial salmon sea cages during most of a production
cycle (Bui et al., 2018) and a recent industry survey reported a regis-
tered cleaner fish mortality of 42% (Stien et al., 2020). Such high re-
gistered mortalities and unregistered losses over short periods as de-
scribed here, have rarely been observed in more controlled studies
using small-scale sea cages and highlight the need for larger scale ex-
periments to gather industry relevant data on both mortalities and
losses. Heavy losses of cleaner fish in this study and in other commer-
cial-scale sea cage studies suggest that this could be a major determi-
nant of their long-term effectiveness in controlling salmon lice in
salmon sea cages.

Primary causes of cleaner fish mortality or loss are purportedly es-
cape, disease, handling and predation (Nilsen et al., 2014; Skiftesvik
et al., 2014). Most losses in this study were unregistered, especially for

ballan wrasse, making it difficult to determine an exact cause of death.
However, registered mortalities of ballan wrasse spiked in the first two
weeks after stocking, suggesting that initial acclimation, handling and
dead fish pumping played a role. Acclimatization of farmed ballan
wrasse to sea cage conditions before stocking have been suggested to
make them more efficient biological control agents (Brooker et al.,
2020), however further studies is required to determine if this would
improve cleaner fish welfare and survival. Pumping of live fish from the
cage bottom (16 m depth here and 20–40 m depth in commercial sea
cages) would be most harmful to physoclistous ballan wrasse, as their
closed swim bladder can over-inflate causing barotrauma from rapid
depth changes towards the surface (Helfman et al., 2009). In contrast,
lumpfish lack a swim bladder (Davenport and Kjørsvik, 1986). Lump-
fish registered mortalities were low after stocking, but increased in mid-
January when temperatures in surface waters occupied by this species
(0–4 m) decreased to<4 °C for several days. Imsland et al. (2018d)
also reported high registered mortalities of lumpfish at tempera-
tures< 4 °C, which may represent the lower thermal niche of the
species. However, no lumpfish mortalities have been registered in
smaller scale tank studies at temperatures ≤4 °C (Nytrø et al., 2014;
Hvas et al., 2018). Low temperatures may also have explained ballan
wrasse mortality, although this species tended to reside in depths with
warmer waters during the winter period. Loss of wrasse during winter
has often been observed in commercial sea cages (Bjelland et al., 1996;
Sayer and Reader, 1996; Treasurer et al., 2002). There were no reports
of disease outbreaks during the study, however disease cannot be ruled
out as a factor contributing to the large numbers of unregistered losses.
Another reason could have been that dead ballan wrasse may get stuck
and decompose on the net side and are therefore not taken up by the
dead fish pumping system. In addition, ballan wrasse are often asso-
ciated with net sides and corners (Tully et al., 1996; Leclercq et al.,
2018), so predation of resting or dead cleaner fish from outside pisci-
vorous predators (Dempster et al., 2009; Uglem et al., 2014; Stien et al.,
2020) could also explain the unregistered losses. While lumpfish mor-
talities were similar between all cages, almost 100% ballan wrasse loss
in one cage was attributed to mass escape through a hole (the cage was
discounted from ballan wrasse mortality analysis). As ballan wrasse
escaped so efficiently in this one cage, one may argue that the 50–60%
loss in the other cages was most likely due to other causes, however,
smaller less detectable holes could be another potential source of the
high unregistered losses in other cages. We therefore suggest that
handling, cold water, predation, escapees and possibly disease con-
tribute to cleaner fish losses in salmon sea cages over autumn-winter.

Of the welfare indicators assessed, fin damage (degree of splitting
and erosion) was the most common issue for both cleaner fish species,
which is in accordance with other studies (Treasurer and Feledi, 2014;
Gentry et al., 2020). However, damage here was not only acquired in
sea cages, as fin splitting and erosion was prevalent before trial com-
mencement. During the trial some welfare indicators (fin and jaw da-
mage) for both cleaner fish species improved, either due to healing or
mortalities of individuals experiencing poor welfare, thereby “im-
proving” the welfare condition of remaining fish. The only indicator
that deteriorated was lumpfish eye condition which reached a moderate
level of cataract prevalence and severity. Only severe cataracts are
expected to reduce feed intake (Savino et al., 1993), which were not
observed over the 12-week study. However, cataract prevalence and
severity has been shown to increase with time (Jansson et al., 2017;
Imsland et al., 2018c, 2019a). Therefore, this may become problematic
over extended periods and impact their ability to prey on lice and
source feed for growth and survival.

Ballan wrasse and lumpfish displayed different daytime depth dis-
tributions based on brief camera observations at hides. During day
periods ballan wrasse were rarely observed above the thermocline or
halocline, seemingly preferring the highest temperatures and salinities
available deeper in the cage. This coincides with vertical behaviours
previously observed (Leclercq et al., 2018), higher activity and coping
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at warmer temperatures up to 25 °C (Yuen et al., 2019), and avoidance
of low salinity habitats (Sayer et al., 1993; Tully et al., 1996). In con-
trast, lumpfish stayed at the surface during all the daytime observa-
tions, seemingly preferring cold, brackish water. This could be ex-
plained by lumpfish being a cold water species (Ern et al., 2016) that
fail to cope with temperatures> 15 °C (Hvas et al., 2018), and which
tolerate periods in both fresh- and brackish water despite being marine-
adapted (Skiftesvik et al., 2018; Treasurer and Turnbull, 2019). The
surface daytime depth use by lumpfish in this study was at odds with
the expected deeper daytime swimming depths of salmon, due to sur-
face avoidance in daylight and a temperature preference of ~16 °C
(Oppedal et al., 2011a). This suggests that stratified sea-cage conditions
over autumn winter may result in lumpfish having limited salmon in-
teractions in day periods, when they are thought to be most active
(Brooker et al., 2018b; Powell et al., 2018).

While ballan wrasse and lumpfish stocked together were studied
here, single species stocking or combined species stocking where more
than two cleaner fish species are used can occur and could alter how
fish behave. For instance, lumpfish is the only species stocked in
Northern Norway and when using wild-caught wrasse several species
are often stocked together (i.e. goldsinny, corkwing, cuckoo and ballan
wrasse) (Barrett et al., 2020). Lumpfish have been shown to be ag-
gressive towards each other in tank rearing phases (Noble et al., 2019a)
and towards goldsinny wrasse in small (1.5 m3) tanks (Imsland et al.,
2016b). However, in larger cage-based studies no apparent intra- or
interspecific aggression has been observed (Imsland et al., 2014b,
2016a; Skiftesvik et al., 2018) and the cleaner fish species displayed
similar depth preferences regardless of which species they were stocked
together with (Skiftesvik et al., 2018). Thus, the authors suspect that
depth distributions may vary little between the stocking of one or more
cleaner fish species, but further study is required to test this hypothesis.

Neither of the two tag types (Floy - 1.2 × 55 mm, anchor: 7 mm and
PIT - 2 × 12 mm) used during this study had a major influence on
growth or mortality of ballan wrasse or lumpfish. Several previous
studies have used these tag types on lumpfish (Imsland et al., 2014b,
2016a, 2018c), but did not assess tagging effects compared to untagged
fish. Using larger acoustic tags (6.8 × 20.0 mm), on 115 g ballan
wrasse and 281 g lumpfish, Leclercq et al. (2018) observed high tag
signal loss due to reasons that included mortality, and tagging effects
compared to untagged fish was not assessed. While not necessarily the
case in all instances, large tags and the tagging process can lead to
potential negative effects, such as altered behaviour, decreased swim-
ming performance, reduced feeding and growth, and increased mor-
tality (Cooke et al., 2011; Thorstad et al., 2013; Jepsen et al., 2015;
Wright et al., 2018), and it is therefore important to be aware of these
effects when choosing to use tags. Our study suggests smaller Floy and
PIT tags have minor effects on growth, welfare and mortality, but there
is still the possibility that these tags could cause deviations from normal
behaviour.

High losses of the most commonly stocked farmed ballan wrasse and
lumpfish in salmon sea cages, observed here, could be a) severely re-
ducing the effectiveness of this biological agent as a lice control method
and b) markedly increasing the expense needed to replace cleaner fish
stocks. The potential for substantial cleaner fish mortalities in the
salmon industry also raises an ethical dilemma about the widespread
use of cleaner fish (Hvas and Oppedal, 2019; Stien et al., 2019; Yuen
et al., 2019). Farmed ballan wrasse appeared prone to escape from sea
cages and if escape is a major source of unregistered mortalities or
losses in salmon sea cages, hybridization with wild populations could
be significantly weakening the genetic composition and local popula-
tion structure (Faust et al., 2018). Autumn-winter conditions and as-
sociated low water temperatures halted growth and reduce condition in
ballan wrasse, and so this species may be unlikely to substantially re-
duce lice during such periods. In contrast, cold water specialist lumpfish
appear to feed and grow well over autumn-winter periods, but a stra-
tified environment could cause them to occupy cooler surface waters

during the day when salmon are predicted to swim in warmer, deeper
waters (Oppedal et al., 2011a, 2011b, 2019). These environments may
also drive a lack of interaction between salmon and lumpfish. It is
hoped that this study expedites broader research into the status and
optimised husbandry of cleaner fish in the full range of situations the
animals are used in salmon farming, including different locations,
seasons and sea cage types (e.g. lice barrier skirt or snorkel cages,
submerged cages, enclosed cages) (Korsøen et al., 2012; Nilsen et al.,
2017; Stien et al., 2018; Geitung et al., 2019; Glaropoulos et al., 2019).
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