
Master Thesis

University of Bergen

Department of Informatics

Neural Networks for
Lossy Weakly-Private Information Retrieval

Author:
Christopher Hærem

Supervisors:
Hsuan-Yin Lin
Eirik Rosnes

Yauhen Yakimenka

June 1, 2021

Acknowledgements
I want to start by expressing my gratitude towards my supervisors, Hsuan-Yin Lin,
Eirik Rosnes, and Yauhen Yakimenka, for the guidance, mentoring, and discussions.
Thank you for the opportunity to write this thesis and for sharing your expertise
with me. I would like to thank Chung-Wei Weng for answering all my questions and
for sharing invaluable insight. I also want to thank my wonderful family and friends
for all their support and encouragement.

Lastly, I would like to give a special thanks to my flatmates and study partners
throughout my time in Bergen, Jonas Mossin Wagle, Henrik Libeck Hexeberg, Håkon
Osland, Anders Mølster Hopland, and Sondre Eide Omland, for all the wonderful
memories which I will cherish for the rest of my life.

i

Abstract
The availability of information through public accessible databases has never been
greater, but do raise privacy concerns. Private information retrieval schemes guar-
antees full privacy regarding the servers ability to infer what the user retrieved,
but are highly unpractical for single server purposes since the only scheme is down-
loading the entire database. By allowing some leakage regarding what file the user
retrieved to the server, and some distortion between the original and received file,
Lossy Weakly-Private Information Retrieval (LWPIR) schemes manage to improve
the download rate while still preserving some degree of privacy. Optimal LWPIR
schemes are found by numerically solving a constrained optimization problem given
the distribution of the data. However, when the distribution is unknown it is in-
teresting to consider a data-driven approach leveraging recent advancements for
Generative Adverserial Nets (GANs). GANs have proven useful for similar appli-
cations such as in Generative Adversarial Privacy (GAP). This thesis explores this
opportunity, first by implementing the GAP model and validating its results, and
then secondly by implementing a new LWPIR model with the goal of finding LW-
PIR schemes. Achieved results for the GAP and LWPIR model are plotted against
the theoretical optimal ones with the conclusion that, even though training of the
models is challenging, there is great potential in using neural networks for LWPIR.

iii

List of Figures

2.1 A filter being applied to a two-dimensional input to create the feature
map . 18

2.2 Illustration of GAN training steps from [1] 21

3.1 Illustration of GAP framework from [2]. 22
3.2 Illustration of LWPIR system . 27

4.1 Neural network structure of the privatizer and adversary. 31
4.2 Illustration of the privatizer neural network in the LWPIR model. . . 36
4.3 Illustration of the answer neural network in the LWPIR model. Each

edge color represents the different queries; red: Q = 1, blue: Q = 2,
green: Q = 3, black: Q = 4. 38

4.4 Illustration of the adversary neural network in the LWPIR model. . . 39
4.5 Illustration of the complete LWPIR model. 40

5.1 Privacy-distortion trade-off for binary data model. Performance of
privacy mechanisms against MAP adversary for p = 0.5. Compar-
ing implementation from [2] with model implemented in this thesis.
Numerical results in Table A.1 and Table A.2. 45

5.2 Privacy-distortion trade-off for binary data model. Performance of
privacy mechanisms against MAP adversary for p = 0.5. Comparing
theoretical optimal results (according to Equation 4.4) with results
from model implemented in this thesis. Numerical results in Table A.1
and Table A.3. 46

5.3 Rate-distortion trade-off for LWPIR model with fixed optimal priva-
tizer. Comparing achieved results with theoretical results for leakage
2/3 under various rate and distortion constraints. Numerical results
in Table A.4. 47

5.4 Rate-distortion trade-off for LWPIR model trained with MSE loss.
Comparing achieved results with theoretical results for leakage 1/2
under various rate and distortion constraints. Numerical results in
Table A.5. 49

5.5 Rate-distortion trade-off for LWPIR model trained with MSE loss.
Comparing achieved results with theoretical results for leakage in re-
gion 0.7-0.8 under various rate and distortion constraints. Numerical
results in Table A.6. 50

5.6 Rate-distortion trade-off for LWPIR model trained with cross-entropy
loss. Comparing achieved results with theoretical results for leakage
1/2 under various rate and distortion constraints. Numerical results
in Table A.7. 51

v

5.7 Rate-distortion trade-off for LWPIR model trained with alpha loss.
Comparing achieved results with theoretical results for leakage 1/2
under various rate and distortion constraints. Numerical results in
Table A.8. 52

vi

List of Tables

A.1 Privacy-distortion tradeoff for binary data GAP model implemented
in this thesis. Performance of privacy mechanisms against MAP ad-
versary for p = 0.5 . 55

A.2 Privacy-distortion tradeoff for binary data GAP model presented in
[2]. Performance of privacy mechanisms against MAP adversary for
p = 0.5 . 56

A.3 Privacy-distortion tradeoff for binary data model from [2]. Perfor-
mance of theoretical optimal privacy mechanisms against MAP ad-
versary for p = 0.5 . 56

A.4 Distortion-accuracy trade-off for LWPIR model with fixed optimal
privatizer with leakage 2/3 . 57

A.5 Distortion-accuracy trade-off for LWPIR model with MSE leakage
loss with leakage 1/2 . 57

A.6 Distortion-accuracy trade-off for LWPIR model with MSE leakage
loss with leakage in range 0.7-0.8 . 57

A.7 Distortion-accuracy trade-off for LWPIR model with cross-entropy
leakage loss with leakage 1/2 . 57

A.8 Distortion-accuracy trade-off for LWPIR model with alpha loss for
leakage with leakage 1/2 . 58

viii

Contents

Acknowledgements . i
Abstract . iii
List of Figures . v
List of Tables . viii
Contents . x

1 Introduction 1
1.1 Motivation . 1
1.2 Objective . 2
1.3 Thesis Organization . 2

2 Background 4
2.1 Information Theory . 4

2.1.1 Entropy . 4
2.1.2 Joint Entropy . 5
2.1.3 Conditional Entropy . 5
2.1.4 Mutual Information . 6
2.1.5 Hamming Distance . 7
2.1.6 Quantitative Information Flow 7

2.2 Neural Networks . 9
2.2.1 Introduction to Machine Learning and Neural Networks 9
2.2.2 Feedforward Neural Network 10
2.2.3 Optimization in Neural Networks 12
2.2.4 Gradient Descent and Extensions 12
2.2.5 Error Backpropagation . 14
2.2.6 One-hot Encoding . 16
2.2.7 Convolutional Neural Network 17
2.2.8 Generative Adversarial Networks 19
2.2.9 Maximum a Posteriori . 21

3 Related work 22
3.1 Context-Aware Generative Adversarial Privacy 22
3.2 Private Information Retrieval and Extensions 26

4 Methodology and Model Architecture 29
4.1 GAP Model . 29

4.1.1 Model Design . 29
4.1.2 Loss Measures . 32
4.1.3 Training Algorithm . 33

4.2 LWPIR GAN Model . 34

x

4.2.1 Model Design . 34
4.2.2 Loss Measures . 40
4.2.3 Training Algorithm . 42

5 Results and Findings 44
5.1 GAP Results . 44
5.2 LWPIR Results . 47

6 Conclusions 53

Appendices 54

A Numerical Results 55

B Theorems 59

References 59

xi

Chapter 1

Introduction

1.1 Motivation
Publicly accessible databases have become an essential resource for accessing up-
to-date information. The ever-increasing availability of information has however
also raised concerns regarding the privacy of the user. It has evolved a growing
financial incentive for businesses to collect and store information pertaining to the
online activity of users. Information like user requests is used to extract intent and
behavioral patterns about both the online and offline presence of the user, commonly
regarded as private information. This private information may then be used in a
wide range of applications, both virtuous (e.g. improving the user experience) and
nefarious (e.g. unwanted user tracking of sensitive information like race, gender,
political affiliation, etc.).

Several attempts have been made to better preserve user privacy, such as private
information retrieval (PIR). PIR schemes have the goal of allowing a user to retrieve
information from a database, such as a file, without disclosing what was retrieved
to the server. For a single server database the only PIR scheme guaranteeing full
privacy is the one where the user download the entire database. This is however
highly inefficient when the database grows larger. Therefore, it has been proposed
extensions of PIR relaxing the condition of full privacy to improve the rate, called
weakly-private information retrieval (WPIR), and relaxing the condition of perfect
retrievability, called lossy weakly-private information retrieval (LWPIR). By allow-
ing for some leakage regarding what file the user retrieved to the server, and some
distortion between the original and received file, LWPIR schemes manage to im-
prove the download rate while still perceiving some degree of privacy. The optimal
LWPIR scheme is then a trifold tradeoff between leakage, distortion, and download
rate, which can be expressed as a constrained optimization problem.

Finding the optimal LWPIR scheme can be done by numerically solving the con-
strained optimization problem given the distribution of the data stored on the server.
However, for the case where the data distribution is unknown, it is interesting to con-
sider a data-driven approach, where the optimal LWPIR scheme is learned directly
from the data. Recent advancements in the neural network architecture Generative
Adversarial Nets(GAN) has the potential to solve such constrained optimization
problem formulated as a mini-max game, with many promising applications in sim-
ilar scenarios such as the Generative Adversarial Privacy (GAP).

1

1.2 Objective
The main objective of this thesis is to investigate the use of neural networks for
Lossy Weakly-Private Information Retrieval. The thesis examines previous work
done within the field. First, by researching the related privacy perceiving frame-
work "Context-Aware Generative Adversarial Privacy", and validate its results by
implementing and testing the described model. Additionally, the thesis will ex-
plore a new generative adversarial model named "LWPIR GAN", with ambitions of
finding Lossy Weakly-Private Information Retrieval schemes for given constraints
concerning leakage, distortion, and rate.

1.3 Thesis Organization
• Chapter 2: Overview of relevant key concepts from Information Theory and
Neural Networks

• Chapter 3: Overview of relevant related work

• Chapter 4: Explanation of methodology and model architecture

• Chapter 5: Detailed information of the results and findings

• Chapter 6: Conclusion regarding results obtained, and suggested future work

• Chapter 7: Appendix

2

Nomenclature

X Random variables denoted by capital italic letters

x Vectors denoted by bold italic font, thus X is a random vector

X Sets denoted by calligraphic capital letters

|X | Size of the set X

Pr[X = x] Probability for the event "X = x"

PX(x) Probability distribution for random variable X

EX [·] Expectation with respect to X

R Real numbers

H(X) Entropy fro random variable X

I(X;Y) Mutual information between X, Y

θp Neural network parameters denoted by theta with subscript for model name
(p for privatizer)

PIR Private Information Retrieval

WPIR Weakly-Private Information Retrieval

LWPIR Lossy Weakly-Private Information Retrieval

GANs Generative Adverserial Nets

GAP Generative Adverserial Privacy

CNN Convolutional Neural Network

MAP Maximum a Posteriori

Oxf Gradient of a function f with respect to x

3

Chapter 2

Background

This chapter introduces fundamental concepts within the field of information theory
and neural networks, relevant for this thesis. The explanations are meant to give a
concise introduction to relevant concepts in order to further explore the neural net-
work models presented in Chapter 4, with their associated notions from information
theory.

2.1 Information Theory
This section gives an introduction to fundamental concepts of information theory
and lay the ground work to further explore the field of private information retrieval.
If not otherwise mentioned, the definitions and expressions are taken from [3].

2.1.1 Entropy

In information theory, entropy (also referred to as Shannon entropy) measures "in-
formation content" or uncertainty of a random variable, which means a way of
measuring the spread of a distribution for a random variable.

Definition 2.1.1. For a discrete random variable X, with possible outcomes in the
alphabet x1, ..., xn, which occur with probability PX(x1), ..., PX(xn), the entropy of
X is defined as

H(X) =
n∑
i=1

PX(xi) log(1/PX(xi)). (2.1)

It is also possible to interpreter entropy as the expected value of log(1/PX(x))
giving

H(X) = EX [log(1/PX(x))]. (2.2)

It is worth noting that for the case where PX(xi) = 0 it can then be assumed
that PX(xi) log(PX(xi)) = 0, since limx→0 x log(x) = 0. It follows that entropy
never can be negative

4

H(X) ≥ 0, (2.3)

and if the occurrence probabilities are uniformly distributed (PX(x1) = 1/n,∀x ∈
X) the following property holds

H(X) =
n∑
x

1/n log(n) = log(n). (2.4)

2.1.2 Joint Entropy

Extending on the definition of entropy for one variable, joint entropy describes the
case for two variables by using the joint distribution.

Definition 2.1.2. For the discrete random variables X, Y with possible outcomes
in the alphabet X ,Y following the joint probability mass function PX,Y (x, y), the
joint entropy of X, Y is defined as

H(X, Y) = −
∑
x

∑
y

PX,Y (x, y) log(PX,Y (x, y)) = EX,Y [log(PX,Y (x, y))]. (2.5)

2.1.3 Conditional Entropy

Conditional entropy describes the amount of uncertainty remaining about a discrete
random variable Y given X. It can also be interpreted as the number of bits needed
to describe Y when X is known.

Definition 2.1.3.

H(Y | X) =
∑
x

PX(x)H(Y | X = x) = −
∑
x

∑
y

PX(x)PY |X(y | x) log(PY |X(y | x)).

(2.6)

Conditional entropy can also be interpreted as the expected value of the entropy
of the conditional distribution over the conditioned random variable

−
∑
x

∑
y

PX(x)PY |X(y | x) log(PY |X(y | x)) (2.7)

= −
∑
x

∑
y

PX,Y (x, y) log(PY |X(y | x)) (2.8)

= EX,Y [log(PY |X(y | x))]. (2.9)

Using the chain rule allows for the following

H(Y,X) = H(Y) + H(X | Y) = H(X) + H(Y | X) (2.10)
= −EX,Y [log(PX|Y (x | y))]− EX,Y [log(PY (y))] = −EX,Y [log(PX,Y (x, y))]. (2.11)

5

Further deduction gives the relation

H(X1, X2, ..., Xn) = H(X1) + H(X2 | X1) + ...+ H(Xn | X1, X2, ..., Xn−1). (2.12)

It should be pointed out that conditional entropy is not necessarily symmetric

H(Y | X) 6= H(X | Y). (2.13)

2.1.4 Mutual Information

Mutual information is, as the name implies, a measure of the mutual information
between two random variables. Meaning a measure of the mutual dependency be-
tween two variables. This can be interpreted as the amount of information (in units
such as bits) that can be obtained about a random variable from knowing another
random variable.

Definition 2.1.4. For the discrete random variablesX, Y , with the joint probability
mass function PX,Y (x, y) and marginal probability mass functions PX(x) and PY (y),
the mutual information between X, Y is defines as

I(X;Y) =
∑
x

∑
y

PX,Y (x, y) log
PX,Y (x, y)

PX(x)PY (y)
= EX,Y

[
log

PX,Y (X, Y)

PX(X)PY (Y)

]
. (2.14)

In terms of entropy mutual information has the following relation

I(X;Y) =
∑
x

∑
y

PX,Y (x, y) log
PX,Y (x, y)

PX(x)PY (y)
=
∑
x

∑
y

PX,Y (x, y) log
PX|Y (x | y)

PX(x)

(2.15)

= −
∑
x

∑
y

PX,Y (x, y) log(PX(x)) +
∑
x

∑
y

PX,Y (x, y) log(PX|Y (x | y))

(2.16)
= H(X)− H(X | Y) = H(Y)− H(Y | X) (2.17)
= H(X) + H(Y)− H(X, Y). (2.18)

Other properties of mutual information are:

1. Mutual Information can never be negative, and is 0 only when X and Y are
independent

I(X;Y) ≥ 0. (2.19)

2. Conditioning can on average only reduce the uncertainty about one variable

H(X | Y) ≤ H(X). (2.20)

6

2.1.5 Hamming Distance

Hamming distance, or hamming distortion, is a measure used to define the distance
between binary vectors. For two equal length binary vectors the hamming distance
corresponds to the number of positions where the symbols are different. If the
vectors are of length 1 the hamming distance is defined as

Definition 2.1.5. For the binary vectors x, x̂ ∈ {0, 1}, the hamming distance is

d(x̂, x) =

{
1, if x̂ 6= x

0, if x̂ = x.
(2.21)

2.1.6 Quantitative Information Flow

Quantitative Information Flow [4] is a paper discussing a quantitative theory of
information flow. This has become of great interest in a variety of scenarios such as
secure information flow, anonymity protocols, and side-channel analysis. A general
consensus for theories of quantitative information flow is that they should be based
on concepts regarding Shannon entropy and mutual information. However, a useful
theory of quantitative information flow must also provide security guarantees in an
operational setting.

Classically approaches to the problem of protecting the confidentiality of sen-
sitive information involve seeking to enforce noninterference, meaning low inputs
should be independent of high inputs. This implies that an adversary would be
unable to deduce high inputs from low inputs. In practice however, achieving non-
interference is typically not possible, since in many contexts, it is necessary to reveal
some information that is dependent on high inputs. Examples of this are election
protocols, where individual votes should be confidential while naturally, the tally of
votes should be public. Another example is password checkers, which must reject
incorrect passwords and therefore indirectly reveal information regarding the actual
password. The framework presented in [4] aims to solve this problem by tolerating
a quantifiable amount of leakage while still providing guarantees regarding privacy.

The paper discusses a (probabilistic or deterministic) program c that receives
some high input H and produces some low input L. An observing adversary A may
then deduce something about H from L. The goal is to quantify the amount of
information in H (the initial uncertainty of A), how much information is leaked to L,
and the unleaked information about H (the remaining uncertainty of A). This can
intuitively be formulated as

initial uncertainty = information leaked + remaining uncertainty. (2.22)

In this context for probabilistic programs the amount of information leaked corre-
sponds to the mutual information I(H; L), the initial uncertainty is the entropy H(H),
and the remaining uncertainty is the conditional entropy H(H | L). If the program
is deterministic H(L | H) = 0, the following relation emerges

I(H; L) = I(L; H) = H(H)− H(L | H) = H(L). (2.23)

One justification for using the conditional entropy H(H | L) as the measure for
remaining uncertainty, is the bound of the guessing entropy G(H | L). G(H | L)

7

expresses the expected number of guesses required to guess H given L

G(H | L) ≥ 2H(H|L)−2 + 1, (2.24)

for H(H | L) ≥ 2. However, the adversaries expected number of guesses is not
necessarily an adequate measurement of the threat to H. The paper argues that
even for large G(H | L), the probability of an adversary guessing H in one try can be
significant. Classically the Fano’s inequality addresses this by giving lower bounds,
in term of H(H | L), on the probability of A failing to guess H given L. Unfortunately
the bound given by the Fano’s inequality is very weak for many cases, understating
the actual probability of error.

As a solution, the paper proposes to define a measure for the remaining uncer-
tainty directly in terms of the desired security guarantees, rather than inventing a
new measure and then try to prove good security guarantees. The proposed measure
is vulnerability, defined as

Definition 2.1.6. Given the random variable X ∈ X , the vulnerability V (X) is

V (X) = max
x∈X

Pr[X = x]. (2.25)

Mapping the vulnerability to an entropy measure by log 1
V (X)

, gives the min-
entropy as

Definition 2.1.7. The min-entropy of X, denoted H∞(X), is given by

H∞(X) = log
1

V (X)
. (2.26)

It is proposed to use H∞ as a measure of the initial uncertainty, and to measure
the remaining uncertainty thought conditional vulnerability

Definition 2.1.8. Given jointly distributed variables X and Y , the conditional
vulnerability V (X | Y) is

V (X | Y) =
∑
y∈Y

Pr[Y = y]V (X | Y = y) (2.27)

where

V (X | Y = y) = max
x∈X

Pr[X = x | Y = y], (2.28)

leading to the conditional min-entropy H∞(X | Y)

H∞(X | Y) = log
1

V (X | Y)
. (2.29)

This definition of vulnerability gives the immediate security guarantee V (H | L) =
2−H∞(H(H|L), meaning the expected probability of an adversary correctly guessing H

given L decreases exponentially with H∞(H | L). It is also demonstrated in [4] that for
various deterministic and probabilistic programs, the new definition of vulnerability
and min-entropy more precisely access an adversaries ability to infer H in one try,
compared to using Shannon entropy or mutual information. The LWPIR schemes,
on which the model presented in Section 4.2 is built, has privacy metrics concerning
maximal leakage which was derived using the above mentioned definitions. This will
further be explained in Section 3.2, introducing the concept of private information
retrieval and extensions of it.

8

2.2 Neural Networks
This section explains fundamental concepts of machine learning and gives an intro-
duction to neural networks, explores some of the most predominant architectures,
and finally describes the neural network framework, "Generative Adversarial Nets",
the framework used for building the models presented in Chapter 4. If not otherwise
mentioned, the following expressions and examples are taken from [5].

2.2.1 Introduction to Machine Learning and Neural Networks

Machine learning algorithms have risen as a prominent tool used in a wide variety
of applications. The core objective of machine learning is to create an algorithm
capable of generalizing from experience to solve a task, meaning an algorithm that
is able to learn from past experience to perform accurately on new unseen exam-
ples/tasks. Generally, this means an algorithm that takes in training examples from
some, usually unknown, probability distribution and uses it to build a general model
about the space in order to perform accurate predictions on new cases. The best
performing machine learning algorithm in the context of generalization is one where
the complexity of the model space matches the complexity of the function under-
lying the data. If the complexity is too low, the model will not be accurate since
the model does not capture all the complexity of the underlying data, called "under
fitting". While if the complexity is too high the model has "over fitted" the data
and will have made bad generalizations also resulting in poor accuracy.

Machine learning is traditionally divided into three categories, according to the
approach of the learning:

• Supervised learning: The model is trained on labeled data where input is
paired with desired output, with the goal of finding general rules that map
inputs to output.

• Unsupervised learning: The model is trained on unlabeled data, having to find
structure in the data without predefined labeled input-output pairs.

• Reinforcement learning: The model is trained by interacting with a dynamic
environment with a specified goal. Examples of reinforcement learning are
driving a car or playing chess. The reinforcement is happening as the model
navigates the problem space by providing feedback interpreted as rewards,
which it tries to maximize (avoiding collisions/capturing opponent chess pieces).

Typical tasks within machine learning are regression and classification tasks.
Regression are tasks of predicting a continuous quantity (age, weight, height etc.),
while classification are tasks of predicting a discrete class label (color, country, ani-
mal etc.). The most basic models are based on linear and logistic regression, using
linear combinations of fixed basis functions. These have proven useful for their an-
alytical and computational properties, but have lacked the power to express more
complex structures due to their inherent linearity. It has therefore been an ongoing
challenge to develop more sophisticated models that adapt the basis functions to
the data. One approach is support vector machines (SVMs), which first define a
large set of basis functions centered around the data, and then selects a subset of

9

those vectors (support vectors) during training. The goal of SVMs is to find a hy-
perplane in an N-dimensional space (where N is the number of labels) that distinctly
differentiates the data points.

In more recent years another approach, neural networks, has experienced sig-
nificant development. Neural networks, like SVMs, is built on the concept of basis
functions, but uses parametric forms of the functions that allows the parameter
values to evolve during training. The first and simplest form of neural network is
the feedforward neural network. The feedforward neural network can be interpreted
as stacked layers of logistic regression models, and is usually faster to train than
SVMs with the same generalization performance. In contrast with SVM, the maxi-
mum likelihood function, that is the function describing the parameter values best
estimating the real distribution, is for feedforward neural networks no longer con-
vex. This means that it is not possible to guarantee an optimal solution, however
in practice feedforward neural networks often finds a minimum that is acceptable.
The next section will further explore the feedforward neural network by extending
on the definition of linear and logistic regression to form a definition for the baseline
feedforward network.

2.2.2 Feedforward Neural Network

Before defining feedforward neural networks, it is helpful to look at linear and logistic
regression which use a fixed set of basis functions, denoted as φj(x), multiplied with
corresponding weights wj, to produce outputs

y(x,w) = h

(
M∑
j=1

wjφj(x)

)
. (2.30)

Here h(·) is identity for regression tasks or a non-linear activation for classifica-
tion tasks. The next step in order to use this definition to describe neural networks
is to express the basis functions as parametric functions with parameter values that
can adapt during training. This is done by picking basis functions on the form
(Equation 2.30), where each basis is itself a non-linear function of the linear combi-
nation of inputs.

Starting from prior to applying the activation function h(·), it is then possible to
group the inputs in M linear combinations and define the most basic neural network
consisting of one hidden layer (denoted by superscript 1) as

sj =
D∑
i=1

w
(1)
ji xi + b

(1)
j0 , j = 1, . . . ,M. (2.31)

The resulting sj is then passed to the activation function h(·),

zj = h(sj) (2.32)

to obtain the so called "hidden units", zj, corresponding to the output from the basis
function (2.30). The hidden units are then applied with another linear combination

10

sk =
M∑
j=1

w
(2)
kj zj + b

(2)
k0 , k = 1, . . . , K (2.33)

resulting in the unit activation sk, which is then finally transformed by an appro-
priate activation function to give the outputs yk. The type of activation function
depends on if it is a regression or a classification problem. If the problem is a re-
gression problem the activation function can be the identity yk = sk. For binary
classification problems the activation function transforms each unit output into a
probability using a logistic Sigmoid function

yk = σ(sk) =
1

1 + e(−sk)
. (2.34)

Multi-class classification problems uses a Softmax activation function which trans-
forms the output into a probability vector

yk = Softmax(sk) =
esk∑
k e

sk
. (2.35)

Nesting the hidden units inside the activation function (assumed to be Sigmoid),
results in the following output

yk(x,w) = σ

(
M∑
j=1

w
(2)
kj zj + b

(2)
k0

)
(2.36)

= σ

(
M∑
j=1

w
(2)
kj h

(
D∑
i=1

w
(1)
ji xj + b

(1)
j0

)
+ b

(2)
k0

)
. (2.37)

The equation (Equation 2.36) expresses a forward pass through the feedforward
neural network which can be used sequentially for each of the hidden layers in deeper
networks (networks with more than 1 hidden layer). The model has now achieved
the initial goal of transforming the inputs xi to the outputs yk through a non-linear
function parameterized by weights and biases encapsulated in the vector w. The
notation can further be simplified by defining a constant x0 = 1 as input, making
the input sum

sj =
D∑
i=0

w
(1)
ji xi, j = 1, ...,M (2.38)

such that the complete model simplifies to

yk(x,w) = σ

(
M∑
j=0

w
(2)
kj h

(
D∑
i=0

w
(1)
ji xi

))
. (2.39)

Feedforward neural networks have received much attention due to their strong
approximation properties. It has been shown that simple networks with as few as

11

one hidden layer are capable of approximating any continuous function on a compact
input domain as long as it is provided sufficiently many hidden units [6]. Hence, the
primary challenge of feedforward networks is to determine fitting parameter values
based on a set of training data. It is therefore essential to have good optimization
algorithms. One important characteristic of feedforward neural networks is that
they are differentiable with respect to their parameters. This is due to the fact
that the activation functions used are smooth and differentiable, making the entire
model differentiable. Using differentiable activation functions enables the use of the
very efficient optimization method gradient descent, which is introduced in the next
subsection about optimization in neural networks.

2.2.3 Optimization in Neural Networks

Optimization in neural networks is the operations done to update the parameter
weights with the goal of determining fitting weights based on a set of training data.
Given a neural network y = f(x,w), a set of training data and the target function
E(w), it is usually not possible to determine a global optimum. This is because of
the fact that the models are non-convex, meaning it is not possible to find an analytic
solution for ∇E(w) = 0. A optimization function able to optimize over continuous
nonlinear functions is therefore needed, where the most prominent proposals revolve
around the use of gradient decent. Starting with an initial value w0, gradient decent
iteratively updates the preceding weight wt+1 as

wt+1 = wt −∆wt (2.40)

where ∆wt is the weight vector update, calculated using some optimization al-
gorithm. The optimization algorithm involves finding the gradient of the target
function ∇E(w), concerning specific input values to the function. Calculating the
gradient of parameters in the hidden layers of the network requires error backpropa-
gation, which passes the gradient from the last layer to the first using the chain rule.
Gradient descent and error backpropagation is further explored in the following two
subsections.

2.2.4 Gradient Descent and Extensions

The most popular and simplest optimization algorithm for neural network is gradient
descent. Gradient descent works by repeatedly taking small steps in the opposite
direction of the gradient (or approximated gradient), gradually moving toward the
local minimum which, can be described as

wt+1 = wt − γ∇E(wt), γ > 0 (2.41)

where γ is the step size (also called learning rate). The evaluation of ∇E(wt is
traditionally done for each time step on the entire dataset, called batch gradient
decent. Batch gradient decent is however in general highly inefficient for larger
datasets due to the high computational cost of calculating the full gradient. This
motivated the development of alternate variants of gradient decent which differ in
the amount of data used to calculate the gradient, resulting in a trade-off between
the accuracy of the parameter update and the cost of calculating the gradient. One

12

approach is stochastic gradient decent, or SGD, which in contrast to batch gradient
decent evaluates the gradient of the loss function for one data point and performs
an update to the parameters for each data point in the dataset

wt+1 = wt − γ∇En(wt). (2.42)

Here the error E(w) function is comprised of the sum of errors for each data point

E(w) =
N∑
n=1

En(w). (2.43)

There also exists other variants of gradient decent, such as mini-batch gradient
decent, which takes an intermediate approach where the data is split into smaller
mini-batches. Here the gradient is calculated as an average for every mini-batch and
then the update is performed to the parameter weights.

Using SGD or mini-batch gradient decent has shown to have many advantages
over traditional batch gradient decent. Firstly, by not calculating the full gradient
on the entire dataset, the training generally becomes much faster and more robust
to redundant data. Secondly, SGD (and mini-batch gradient decent to some extent)
can also experience higher variance during the training, which can have the positive
ability of being able to escape local minima during training to possibly find new
better local minima. Higher variance during training can however also introduce
the challenge of overshooting and oscillation, where the model struggles to converge
to an exact minimum. There have been numerous extensions made to address this
problem such as using a varying step size, called momentum,

νt = ηνt + γEn(wt), (2.44)
wt+1 = wt + νt. (2.45)

Momentum works by using a momentum coefficient, η, to add a fraction of the
past update vector to current update. Here νt is usually initialized at 0, and η to
a value slightly less than 1 like 0.9. The effect of momentum is analogous to the
movement of a ball down a hill, where the ball accelerates down the hill until it
reaches terminal velocity (η < 1). Using momentum reduces the oscillation and
can make the training converge faster, however overshoot is still a possibility. It is
therefore common practice to gradually lower the step size, such as initializing η to
0.5 and gradually anneal it to 0.9.

Another method addressing the problem of oscillation and overshooting is Root
Mean Squared Propagation (RMSProp). RMSProp adapts the learning rate for each
parameter by normalizing the gradient according to the magnitude of the recent
gradients. The update for each parameter wj in w can be expressed as

νt = ρνt−1 + (1− ρ) · g2t , (2.46)

∆wt = − γ√
νt + ε

· gt, (2.47)

wt+1 = wt + ∆wt. (2.48)

Here γ is the initial learning rate, νt is an exponential average of the past gra-
dients squared and gt is the gradient at time step t along wj. The first equation

13

calculates an exponential average of the square of the gradient. This is done by
multiplying the exponential average gradient, calculated for the gradient up to the
last update, with the hyperparameter ρ. Then the square of the current gradient
is multiplied with (1 − ρ). Finally they are added together, resulting in the expo-
nential average up to the current time step, νt. Using exponential average forces
the update to give more weight to the recent gradient update, causing weights of
the previous terms to fall exponentially. The second equation determines the step
size, by normalizing the initial learning rate γ with the exponential average squared.
The third equation is the actual weight update. Generally the hyperparameter ρ is
set to 0.9, and the ε to a small number such as 1e-10 to ensure no zero division. A
significant advantage of RMSProp over momentum is its inherent annealing prop-
erty; Continuing the analogy of the ball down the hill, RMSProp will gradually slow
down when approaching the bottom reducing the risk of overshooting. Since when
moving towards a minima the exponential average of past gradients νt will become
large, reducing the step size.

A final variant of gradient to be discussed in this thesis is the Adaptive Moment
Estimation (Adam) [7]. Adam was introduced in 2014 as a compromise between
the accelerated convergence towards the minima gained by momentum, and the
oscillation reduction through normalization of the step size achieved by RMSProp.
The update equations for Adam are

νt = β1 · νt−1 + (1− β1) · gt, (2.49)
st = β2 · st−1 + (1− β2) · g2t , (2.50)

∆wt = −γ νt√
st + ε

· gt, (2.51)

wt+1 = wt + ∆wt. (2.52)

Here νt is an exponential average of the gradient and st is the exponential average
of the past gradients squared for each parameter wj, with hyperparameters β1, β2
analogous to the ρ in RMSProp. The third equation determines the step size by
multiplying the learning rate with the average of the gradient (similar to momentum)
and then dividing it by the root mean square of the exponential average of the past
gradients (similar to RMSProp). Then finally applying the update in the fourth
equation. Generally the hyperparameters β1 and β2 are chosen to be around 0.9
and 0.99, respectively, while epsilon is a small value such as 1e-10 to ensure no zero
division. The models presented in this thesis were trained using the Adam optimizer
with these hyperparameter values.

2.2.5 Error Backpropagation

The previous section explored some of the various ways to update the weight param-
eters of a neural network with different optimizers using the gradient of each weight.
This section will describe the most prominent algorithm used for calculating the
gradients, called error backpropagation.

The error backpropagation was first introduced in [8] as an efficient method for
computing the derivative of the loss function in regard to the parameter weights
utilizing the chain rule. The "backward" part of the name derives from the fact
that the gradient is iteratively calculated backwards through the network, starting

14

with the gradient for the weights in the final layer and ending with the gradient for
the weights in the first.

To help illustrate error backpropagation, the following equations will walk through
each step of the algorithm given a feedforward neural network, such as the one de-
scribed in Section 2.2.2. The evaluation of ∆En(w) is done focusing on one data
point in the dataset. Starting with a linear model

yk =
∑
i

wkixi, k = 1, . . . , K (2.53)

with mean squared error as the error function

En =
1

2

∑
k

(ynk − tnk)2, (2.54)

where tnk is the label value and ynk is the estimate for one data-point.
The gradient for the weights wji is

∂En
∂wji

= (ynk − tnk)xni. (2.55)

As explained earlier in Section 2.2.2, a weighted sum of inputs for the activation
function is computed for each unit in the feedforward network

sj =
∑
i

wjizi (2.56)

where zi is the activation for the unit which is connected to the unit j with the
weight wij. Here, as in Section 2.2.2, the weights and biases are encapsulated into
the inputs and the hidden units, making the activation of the unit j

zj = h(sj). (2.57)

Using these equations it is possible to calculate the activations of all the units
through forward propagation, using the input values from the dataset and the weight
values. Since the derivative of En with respect to the weight wji is only dependent
on wji, through the sum sj, it is possible to utilize the chain rule

∂En
∂wji

=
∂En
∂sj

∂sj
∂wji

= ∂j
∂sj
∂wji

, (2.58)

where ∂j = ∂En/∂wji is used as notation for the errors. Further, define

∂sj
∂wji

= zi (2.59)

results in the expression

∂En
∂wji

= ∂jzi. (2.60)

Finding the derivative of En with respect to the weight wji is then only dependent
on the value of ∂j and the activation zi. Calculation of ∂j is therefore of great
importance, and is done for each output unit

∂k = yk − tk, (2.61)

15

and for each hidden unit using the chain rule

∂j =
∂En
∂sj

=
∑
k

∂En
∂sk

∂sk
∂sj

. (2.62)

Here the sum is for every unit k which has a connection from the unit j. Given the
above equations, the complete formulation of backpropagation becomes

∂j =
∑
k

∂En
∂sk

∂sk
∂sj

=
∑
k

∂k
∂sk
∂sj

(2.63)

=
∑
k

∂kwkjh
′(sj) = h′(sj)

∑
k

wkj∂k. (2.64)

These equations enable the calculation of the the unit derivatives ∂ throughout
the network by propagating the ∂ backwards from the output layer to the input
layer. The calculations can be done to find all the derivatives for the units in a feed
forward network, regardless of the topology or what activation function is used.

For batch training, because the error is defined as the total errors given for each
data point, the derivative is defined as the aggregated total of the error derivatives
for each data point in the batch

∂E

∂wjk
=
∑
n

∂En
∂wji

. (2.65)

Error backpropagation has since it first introduction become the industry stan-
dard within the field of machine learning. Also the model described in this thesis
was trained using an implementation of the error backpropagation. The next section
will introduce a class of neural networks called Convolutional Neural Network, and
then discuss two other architectures, Generative Adversarial Networks and Context-
Aware Generative Adversarial Privacy, both important for the design of the model
presented in this thesis.

2.2.6 One-hot Encoding

One-hot encoding is a process where categorical variables, or labels, are converted to
numerical values. This is often necessary in machine learning to make sure that the
data fit the model. Given the four different categorical variables red, blue, green,
and yellow, a one-hot encoding for each variable is

• red = [1,0,0,0],

• blue = [0,1,0,0],

• green = [0,0,1,0], and

• yellow = [0,0,0,1].

16

2.2.7 Convolutional Neural Network

The earlier described feedforward neural networks (Section 2.2.2) are considered
to be general, with no restrictions on the data. Feedforward neural networks are
however also computationally expensive to train, since they typically grow large.
Often there are structure in the data, such as in image data, where it is possible
to leverage the knowledge of the structure to improve training. Many attempts
have been made to improve the "quality" of the training parameters, one of which
is through weight sharing used in Convolutional neural networks (CNNs). First
introduced in [9], it was shown that training on hand-written digit data could be
improved by sharing the weights. CNNs exploit the structure of data by integrating
invariance to certain transformations. For image classification transformations such
as scaling or rotation is not important for correct labeling, and the model should
therefore have an invariance towards them. Also for images there usually is a closer
correlation between pixel values that are close to each other. Several techniques have
been developed to exploit relations like these by the use of filters, which extract useful
local features and combine them in order to detect higher order features. Different
types filters can then be used to extract different features.

CNNs integrate filters (also referred to as kernels) as part of what is known as a
convolutional layer. The convolutional layer applies the filter to the input in order to
create a feature map, summarizing the presence of the detected feature for the input.
The filter size is smaller than the input data, resulting the same filter being applied
several times in filter-sized patches across the full input space (called a convolution).
The filter is applied to the input as a dot product, where each filter-sized patch of
input is multiplied with the filter element-wise and then summed, resulting in a
single value. An image illustrating a filter being applied to a two-dimensional input
resulting in a feature map can be seen in Figure 2.1.

17

Filter

Input

Feature Map

Repeated over full input...

Figure 2.1: A filter being applied to a two-dimensional input to create the feature
map

As seen from the Figure 2.1, the convolution usually results in a down-sampling,
meaning the output dimensions are less than that of the input. The size of the
feature map is determined by the input size i (according to the input dimension
i× i), the filter size f , and by two additional parameters called padding p and stride
s. Here the padding is an optional number of zeros padded around the original input
(set to zero for Figure 2.1), and the stride refers to the amount which the filter is
shifted across the input. Given i, f , p, and s, the size of the generated feature map
is

i+ 2p− f
s

+ 1. (2.66)

There is also a reversed form of the standard convolutional layer, called the
transposed convolutional layer. While the standard convolutional layer performs a
down-sampling, the transposed convolutional layer performs an up-sampling, mean-
ing the output feature map has a greater dimension than the input. The transposed
convolutional layer is, like the standard convolutional layer, defined by the padding
and stride. Here the padding and stride corresponds to the values that were hypo-
thetically used on the output to generate the input, meaning performing a standard
convolution on the output with the defined stride and padding generates an output
of the same dimension as the input. The output size for the transposed convolutional

18

layer is given by

(i− 1) · s+ f − 2 · p. (2.67)

The motivation behind the transposed convolutional layer is to, through learning,
find a filter that maps the output to the initial input. For example given images
data, a standard convolutional layer takes the image as an input and generates a
vector, while the transposed convolutional layer takes the vector as input an tries
to replicate the image. This type of transposed convolutional layer is used in the
generator of Generative Adverserial Nets, which are introduced in the following
subsection. The transposed convolutional layer was also used in the implementation
of both the models presented in Chapter 4.

2.2.8 Generative Adversarial Networks

Generative Adversarial Networks (GANs) is class of machine learning that uses
two neural networks competing against each other as the training process, first
introduced by Goodfellow et al. [1]. The framework consists of a generative model
(the generator), and a discriminating model (the discriminator). The goal of the
generative model is to capture the data distribution from input data, and use it to
generate new data points, while the goal of the discriminating model is to estimate
the probability whether a sample came from the original data or was generated by
the generator. The training consists of the discriminator trying to maximize the
accuracy of predicting correct origin of the input (either generated or from the real
data), while simultaneously the generator is trained to minimize the accuracy of the
discriminator. The resulting framework can be described as a minimax two-player
game, where the generator (fG) and the discriminator (fD) are competing against
each other to respectively minimize and maximize a value function. The generator
wants to learn the distribution Pg over the input data x. The distribution over
the real data x is denoted by Pdata(x). Defining a prior on input noise variable
Z with probability distribution PZ(z), the generator is modeled as a the mapping
function fG(z; θg), where fG represent a neural network with the parameters θg. The
discriminator is also modeled as a neural network fD(x; θd), with the parameters θd.
fD(x; θd) outputs a scalar fD(x), representing the probability that x is from the the
original data rather than Pg. The resulting value function fV(fD, fG) is defined as

min
fG

max
fD

fV(fD, fG) = EX [log(fD(X))] + EZ [log(1− fD(fG(Z)))], (2.68)

where X ∼ Pdata(x) and Z ∼ PZ(z).
Examples of minimax games are chess or tic-tac-toe. The insight of describing

the framework as a minimax game is that according to theory there exists an op-
timal unique solution where neither participant can improve their outcome (Nash
equilibrium). It is shown in [1] that given infinite capacity in the discriminator and
generator, the optimal discriminator for a given generator is

f ∗D(x) =
Pdata(x)

Pdata(x) + Pg(x)
. (2.69)

Here the global minimum is achieved at Pg = Pdata, where the generated samples
are indistinguishable from the data. To achieve this optimum it is necessary to

19

alter between training the generator and the discriminator. The proposed training
algorithm from [1] is as follows:
Algorithm 1: Minibatch stochastic gradient descent training of generative

adversarial nets. The number of steps to apply to the discriminator, k, is a

hyperparameter.

for number of training iterations do

for k steps do
Sample minibatch of m noise samples {z(1), . . . ,z(m)} from noise

prior PZ(z).

Sample minibatch of m noise samples {x(1), . . . ,x(m)} from data

generating distribution Pdata(x).

Update the discriminator by ascending its stochastic gradient:

Oθd

1

m

M∑
i=1

[logD(x(i)) + log (1−D(G(z(i))))]

Sample minibatch of m noise samples {z(1), ...,z(m)} from noise prior

PZ(z).

Update the generator by ascending its stochastic gradient:

Oθg

1

m

M∑
i=1

log (1−D(G(z(i))))

As seen from the algorithm above the discriminator is trained k times for each
training iteration of the generator. Ideally the training will be similar to Figure 2.2,
illustrating the general stages of training. The figure consists of the discriminative
distribution fD(x) (blue dashed line), the distribution of the samples obtained from
the data generating distribution, denoted by Px (black dotted line) and the gener-
ative distribution Pg (green solid line). The lower horizontal lines represents the
domain from where samples z are drawn from (here uniformly), while the arrow
pointing to the upper horizontal line represents the mapping of samples z to the do-
main of x, x = fG(z). Starting from (a) the adversarial pair is near convergence, Pg

is similar to Pdata, while the discriminator fD is a moderately accurate classifier. (b)
illustrates the scheme after the discriminator fD has been trained in the inner loop of
the algorithm, converging to f ∗D(x) = Pdata(x)

Pdata(x)+Pg(x)
. Then in (c) an update is made

to the generator fG, guiding fG(z) to generate samples more likely to be classified
as data. Finally, (d) shows the scheme after several training iterations where, if fG
and fD have had enough capacity, it will have converged to an equilibrium where
neither fG or fD can improve because Pg = Pdata, resulting in fD(x) = 1

2
, since the

discriminator now longer is capable of differentiating the two distributions.

20

Figure 2.2: Illustration of GAN training steps from [1]

GANs have been shown to achieve excellent performance when generating sam-
ples from CIFAR-10 [10], MNIST [11] and the Toronto Face Database [12], from [1].
Advantages to GANs include the simplicity of the model, being only dependent
on backpropagation during training and allowing for any differentiable function for
both the generator and the discriminator increasing the flexibility of the framework.
However there are also disadvantages to GANs such as not achieving an explicit
representation of Pg(x) and the challenge of synchronizing the training of the gener-
ator and discriminator. As will be presented in Chapter 4, the model introduced in
this thesis was created using a GAN framework due to the promising properties de-
scribed. There has also been other work utilizing the GAN framework in the context
of privacy such as generative adversarial privacy (GAP), which will be discussed in
the next chapter on related work, Chapter 3.

2.2.9 Maximum a Posteriori

Maximum a posteriori (MAP) estimation is a method for estimating a distribution
and model parameters given an observed dataset.

Definition 2.2.1. Given the observation of the random variable Y = y, which
is dependent on the variable X, the MAP estimation of X is the value x that
maximizes:

• fX|Y when X is a continuous random variable, or

• PX|Y when X is a discrete random variable.

Hence, the MAP estimation for the value x is given by

arg max
x∈X

fX|Y (x | y) = arg max
x∈X

fY |X(y | x)fX(x)

fY (y)
. (2.70)

21

Chapter 3

Related work

This chapter explains two concepts closely relating to the models that are intro-
duced in Chapter 4. The first section discusses context-aware generative adversarial
privacy, a privacy framework built using a GAN framework. The second section
introduces the concept of private information retrieval and extensions on which the
model presented in Section 4.2 is built.

3.1 Context-Aware Generative Adversarial Privacy
Context-aware generative adversarial privacy (GAP) is a data-driven privacy per-
ceiving framework inspired by the advancement of GANs, first introduced in [2].
GAP uses a framework similar to the one described in Section 2.2.8, where two
neural networks compete against each other in a mini-max game with the goal of
learning a privacy mechanism. From the paper the setting is presented as a problem
where a data provider wants to publish a dataset D consisting of (X, Y) pairs, where
X is the public variable and Y the private variable. The goal is to find a privatized
version of X, noted as X̂, which contains many of the original properties of X with-
out revealing information useful for an adversary to infer the private variable Y .
The resulting framework consists of a privatizer competing against an adversary.
The privatizer has the goal of finding the privacy mapping X̂ = g(X, Y) under a
distortion constraint. While the goal of the adversary is to infer the private variable
Y from the privatised data, Ŷ = h(g(X, Y)). An illustration of the framework can
be seen in Figure 3.1.

X,Y Privatizer

Noise Sequence

Adversary Ŷ = h(g(X,Y)
X̂ = g(X,Y)

Figure 3.1: Illustration of GAP framework from [2].

The loss function for the framework is defined as the inference accuracy of the
adversary, where two different types of problems are presented:

22

• 0-1 binary loss, resulting in a maximum a posteriori (MAP) adversary (Sec-
tion 2.2.9),

• empirical log-loss, resulting in a minimum cross-entropy adversary.

The final goal of the framework is to guarantee privacy against a MAP adversary.
However, the binary loss function is not differentiable and thus not suitable for data-
driven approaches, since training of the adversary becomes infeasible. Therefore the
paper instead uses an adversary with a log-loss function, and shows performance
matching that of an theoretical optimal MAP adversary. The formal definition of
the framework is as follows:

First as mentioned earlier, the privatizer it defined as the randomized mapping

g(X, Y) : X × Y → X . (3.1)

Then given the output X̂= g(X, Y) the adversary becomes

Ŷ = h(g(X,Y)), (3.2)

and the corresponding loss function is modeled as

`(Ŷ = ŷ, Y = y) = `(h(g(X = x, Y = y)), Y = y) : Y × Y → R. (3.3)

The expected loss of the adversary with respect to X and Y is defined to be

fLoss(h, g) , EX,Y [`(h(g(X, Y)), Y)], (3.4)

where the expectation is over PX,Y and the randomness in g and h. Intuitively
the trivial solution to the problem of minimizing the adversaries ability of inferring
Y is to publish X̂ which is independent of X. This solution is however of little value,
since the data no longer is useful for learning the non-private variables from X̂. The
proposed solution is therefore to enforce a distortion constraint for the privatizer,
limiting the maximum difference between the privatized and original data. The
expected distortion based on a distortion function d(x, x̂) is

EX,Y [d(g(X, Y), X)] (3.5)

with expectation over PX,Y and randomness in g. The result is a mini-max game
with a privatizer aiming to be both privacy and utility perceiving, and an adversary
trying to minimize its expected loss, or equivalently maximize the negative of the
expected loss. This can be formulated as the following

min
g(·)

max
h(·)
−fLoss(h, g) (3.6)

s.t. EX,Y [d(g(X, Y), X)] ≤ D. (3.7)

There are no restrictions on the adversary, with different loss functions and
decision rules leading to different adversarial models. Various loss functions are
discussed in [2] under both hard and soft decision rules.

For hard decision rules the adversary, Ŷ = h(g(X, Y)), is an estimate of Y . For
continuous Y the considered loss function for the adversary is the squared loss

`(h(g(X, Y), Y) = (h(g(X, Y))− Y)2, (3.8)

23

also known as the `2 loss. Here the adversary’s optimal decision rule is
h∗ = E[Y | g(X, Y)], which is the conditional mean of Y given X̂ = g(X, Y). The
mini-max game (Equation 3.6) then simplifies to

min
g(·)
−{mmse(Y | g(X, Y))}, (3.9)

where mmse stands for the minimum mean square error. For the case when Y is
discrete, the adversary can maximize its classification accuracy by considering a 0-1
loss function given by

`(h(g(X, Y)), Y) =

{
0, if h(g(X, Y)) = Y

1, otherwise.
(3.10)

Here the adversary’s optimal decision rule is the MAP decision rule:
h∗ = arg maxy∈Y PY |X̂(y | x̂), and the mini-max game simplifies to

min
g(·)
−(1−max

y∈Y
PY |X̂(y | x̂) = min

g(·)
max
y∈Y

PY |X̂(y | x̂))− 1. (3.11)

For soft decision rules the adversary, h(g(X, Y)) = Ŷ , can be seen as a distribution
over Y ; i.e. h(g(X, Y)) = PŶ |X̂(ŷ | x̂)) for ŷ ∈ Y . The performance is then measured
under a log-loss

`(h(g(X = x, Y = y)), y) = log
1

PŶ |X̂(ŷ | x̂)
(3.12)

and the objective of the adversary simplifies to

max
h(·)
−E

[
log

1

PŶ |X̂(h(g(X, Y)) | g(X, Y))

]
= −H(Y | g(X, Y)). (3.13)

The mini-max game then reduces to

min
g(·)
−H(Y | g(X, Y)) = min

g(·)
I(g(X, Y);Y)− H(Y). (3.14)

Lastly, [2] introduces a more general α-loss function, which interpolates between the
0-1 loss and the log-loss via

`(h(g(X = x, Y = y)), y) =
α

α− 1
(1− PŶ |X̂(ŷ | x̂)1−

1
α), (3.15)

for any α > 1. It is shown that as α becomes very large (α → ∞), the loss will
approach that of the 0-1 (MAP) adversary. When α becomes smaller the estimator
becomes more probabilistic. While as α approaches 1 the loss becomes the logarith-
mic loss. Using the Arimoto mutual information [13] [14] Iaα and a Rényi entropy [15]
term Hα results in the mini-max game formulation

min
g(·)
−Ha

α(Y | g(X, Y)) = min
g(·)

Iaα(g(X, Y);Y)− Hα(Y). (3.16)

The above mini-max game formulations can be solved directly when the data
holder has access to PX,Y . For the case when PX,Y is unknown [2] proposes a

24

data-driven version of GAP. The data-driven version represents the privacy mecha-
nism via a conditional generative model g(X, Y ; θp) parameterized by θp, competing
against a computational adversary modeled as a neural network h(g(X, Y ; θp); θadv)
parameterized by θadv. The parameters θp and θadv can then be optimized through

min
θp

max
θadv
− 1

n

n∑
i=1

`(h(g(x(i), y(i); θp); θadv), y(i)) (3.17)

s.t. E[d(g(X, Y), X)] ≤ D. (3.18)

This data-driven version of GAP is further investigated in Section 4.1, where the
implementation of a binary data model is presented. Also in Section 5.1 achieved
results from the implemented model is compared to ones reported in [2].

25

3.2 Private Information Retrieval and Extensions
Private information retrieval (PIR) schemes have the goal of allowing a user to
retrieve information privately from a database. That is to obtain information stored
in a database (or a set of databases) without disclosing any information (in an
information-theoretic sense) about what information the user wants to retrieve to
server(s) storing the information. Meaning the server should be unable to infer the
index or identity of the file that the user retrieved. The concept of PIR was first
introduced in [16], and since then, there have been numerous attempts of creating
PIR schemes for both single and multiple database scenarios.

When evaluating the performance of PIR schemes, one usually measures the
download (or PIR) rate, neglecting the upload cost (number of queries) since the
download size typically greatly exceeds the upload. The optimal PIR scheme is one
achieving the best possible PIR rate, called the PIR capacity.

The most trivial PIR scheme achieving information-theoretic privacy is the scheme
where the user downloads the entire database directory to retrieve the desired file.
In a single-server scenario, this is also the only possible scheme guaranteeing full
information-theoretic privacy. This method is, however, highly inefficient when the
directory size grows larger. Therefore, it is useful to consider a relaxed form of
PIR, referred to as weakly-private information retrieval (WPIR). WPIR was first
addressed independently by [17] and [18] to achieve better rates than the PIR ca-
pacity. By relaxing the perfect privacy condition and allowing for some leakage of
private information, it has been shown that it is possible to improve the download
rate. Moreover, an exact expression for the WPIR capacity was derived using mu-
tual information and maximal leakage (see Section 2.1.6) as the privacy metrics [19].
In addition to relaxing the condition of full privacy of PIR (as WPIR), [20] proposes
a new scheme that simultaneously relaxes the conditions of perfect retrievability and
full privacy, named lossy weakly-private information retrieval (LWPIR). From [20],
the following scheme is considered.

Definition 3.2.1. An M-file LWPIR scheme for a single server storing M files.

• A single server storing M files X(1), . . . ,X(M), each with β symbols from the
alphabet X , where X(m) = (X

(m)
1 , . . . , X

(m)
β), for m ∈ [M], are assumed to be

independent and identically distributed.

• The objective is to find a scheme allowing a user to obtain a file with index
M while, to some degree keep M private from the server.

• The user generates the random query Q ∈ Q, for some set Q, according to the
conditional distribution PQ|M(q | m), which is sent to the server.

• Given the query Q and the files X, the server responds with the answer
A = A(Q,X) ∈ A, for some set A.

• Then finally the user tries to reconstruct the file X̂(M) = X̂(M)(Q,A), where
X̂(M) = (X̂

(M)
1 , . . . , X̂

(M)
β) ∈ X̂ (β), for some set X̂ .

An illustration of the full system can be seen in Figure 3.2.

26

User

X̂(M)(Q,A)

Server

M̂(Q)

M X [M]

X(1)

· · ·
X(M)

Q ∼ PQ|M

A(Q,X [M])

Figure 3.2: Illustration of LWPIR system

From this definition PQ|M is seen as the privacy mechanism, and the information
leakage is regarding the server inference of the indexM , given the random outcomeQ
from PQ|M . It is assumed that the server is honest-but-curious, meaning it serves the
user correctly according to the query, but attempts to learn what the requested file
was. Finding an optimal scheme results in a trifold tradeoff between the download
rate, the distortion between the original and reconstructed file, and the amount of
information leaked to the server concerning what file the user wants. Here schemes
with no distortion reduced to a WPIR scheme, and further schemes with no leakage
and no distortion reduces to a PIR scheme.

For ordinary PIR, the requirement of perfect privacy, that is, a server should
be incapable of differentiating the answer, implies that the returned answer’s file
size must be equal for all requested files. However, this limitation is not present
for LWPIR, where the download cost may be different depending on the file. For
the single-server LWPIR scheme, similar to the work [20, 21], the download rate in
this thesis is defined as the average coded length together with the entropy of the
message (referred to as information rate),

R ,
H(A | Q)

β
=

1

β

∑
q∈Q

PQ(q)H(A | Q = q). (3.19)

The distortion of the reconstructed file is defined as

EM,Q,X

[
d(X(M), X̂(M))

]
,

1

β

β∑
i=1

E
M,Q,X

(M)
i

[
d(X

(M)
i , X̂

(M)
i)

]
(3.20)

Here, d : X ×X̂ → R≥0 is a per-symbol distortion function chosen based on the type
of data, and

EQ,X(m)

[
d(X(m), X̂(m))

]
,

1

β

β∑
i=1

E
Q,X

(m)
i

[
d(X

(m)
i , X̂

(m)
i)

]
, ∀m ∈ [M]. (3.21)

For leakage, two information-theoretic measures are considered (introduced in
[19]), namely mutual information and MaxL. For mutual information, the informa-
tion leakage is quantified by

ρ(MI)(PQ|M) , I(M ;Q). (3.22)

27

The MaxL privacy metric, first introduced in [22], [23] is quantified by

ρ(MaxL)(PQ|M) , MaxL(M ;Q) (3.23)

= log2

∑
q∈Q

max
m∈[M]

PQ|M(q | m). (3.24)

It is also possible to define MaxL based on the min-entropy information leakage
I∞(M ;Q) for the privacy mechanism PQ|M , where

I∞(M ;Q) , H∞(M)− H∞(M | Q), (3.25)

and H∞(M) is the min-entropy (see 2.1.7). From these definitions, [20] then denotes
and defines the leakage for a given PQ|M as the probability of the maximum-likelihood
(ML) guess

ρ(PQ|M) ,
1

M

∑
q∈Q

max
m∈[M]

PQ|M(q | m), (3.26)

which is the leakage metric we used in this thesis. Here, leakage is in the range
1/M ≤ ρ ≤ 1, where ρ = 1/M corresponds to "no-leakage" (best effort is random
guess) and ρ = 1 corresponds to "no-privacy" (always correct guess).

When the data is binary data, a suitable distortion function is the Hamming
distance (Section 2.1.5). The distortion is here measured per symbol, and the dis-
tortion is the average number of incorrect reconstructed symbols of X(M). The best
estimation is then the per-symbol maximum likelihood estimate

X̂
(m)

= (X̂
(m)
1 , . . . , X̂

(m)
β), (3.27)

where

X̂
(m)
i (q, a) , arg max

y∈X
Pr[A = a |M = m,Q = q,X

(m)
i = y]. (3.28)

The goal is then to find schemes with the minimum download rate given constraints
for distortion and leakage. It was shown in [20, 21] that this optimization problem
can be solved numerically given the data distribution for the files stored on the
server. However, for the case where the distribution is unknown, it is interesting to
consider a data-driven approach where an optimal scheme is learned directly from
the data. In Section 4.2 a data-driven model is presented which utilizes neural
networks in a GAN fashion (see Section 2.2.8) to find LWPIR schemes.

28

Chapter 4

Methodology and Model
Architecture

This chapter will present the two models implemented in this thesis. First the
Context-Aware Generative Adversarial Privacy model (GAP), already introduced
in Section 3.1. Then the LWPIR GAN model, a new framework developed with
ambitions of finding LWPIR schemes, as described in Section 3.2. Each model is
presented in the following two sections, with subsections for general model design,
loss measures used and the training algorithm. The results and findings for each
model are presented the next chapter, Chapter 5.

4.1 GAP Model
As introduced in Section 3.1, Generative Adverserial Privacy illustrates a seemingly
very compelling privacy framework built in a GAN fashion (Section 2.2.8). As a
starting point to further investigate the use of GANs in a privacy perceiving context,
it is therefore interesting to first implement the GAP framework with the goal of
achieving similar results to those described in [2]. This implementation considers
the case where the public and private variables are binary valued random variables.
The public and private variables are denoted as (X, Y), with the joint probability pj,i
for (X, Y) = (i, j), where i, j ∈ {0, 1}. The next section introduces the theoretical
foundation for the binary GAP model and then describes the structure of the neural
network framework.

4.1.1 Model Design

Starting with the fundamentals, the framework consist of the two neural networks,
the adversary and privatizer, competing against each other in a GAN fashion. As
described in Section 3.1, the goal of the privatizer is to find a privacy mapping from
X, Y to X̂ which prevents the adversary from correctly inferring the private variable
Y (private-data dependent privacy mechanisms from [2]). The adversary considered
is a strong MAP adversary which;

1. has access to the joint distribution pj,i,

2. knows of the learned privacy scheme, and

3. is able to compute the MAP (Section 2.2.9) rule.

29

Theory

The privacy mechanism g(X, Y) maps the private and public variable pair (X, Y) to
X̂. Since the variables are binary this is represented by the conditional distribution
PX̂|X,Y as

PX̂|X,Y (0 | 0, 0) = s0,0, PX̂|X,Y (0 | 0, 1) = s0,1,

PX̂|X,Y (1 | 1, 0) = s1,0, PX̂|X,Y (1 | 1, 1) = s1,1.

The marginal distribution of X̂ is then given by

PX̂(0) =
∑
x,y

PX̂|X,Y (0 | x, y)PX,Y (x, y)

= s0,0p0,0 + s0,1p0,1 + (1− s1,0)p1,0 + (1− s1,1)p1,1,

PX̂(1) =
∑
x,y

PX̂|X,Y (1 | x, y)PX,Y (x, y)

= (1− s0,0)p0,0 + (1− s0,1)p0,1 + s1,0p1,0 + s1,1p1,1.

The inference accuracy of the adversary is

PY,X̂(0, 0) =
∑
x

PX,Y (x, 0)PX̂|X,Y (0 | x, 0) = p1,0(1− s1,0) + p0,0s0,0,

PY,X̂(1, 0) =
∑
x

PX,Y (x, 1)PX̂|X,Y (0 | x, 1) = p1,1(1− s1,1) + p0,1s0,1,

PY,X̂(0, 1) =
∑
x

PX,Y (x, 0)PX̂|X,Y (1 | x, 0) = p1,0s1,0 + p0,0(1− s0,0),

PY,X̂(1, 1) =
∑
x

PX,Y (x, 1)PX̂|X,Y (1 | x, 1) = p1,1s1, 1 + p0,1(1− s0,1).

Defining s = {s0,0, s0,1, s1,0, s1,1}, the MAP adversary’s inference accuracy for X̂ = 0,
is given by

P
(B)
d (s, X̂ = 0) , max{Pr[Y = 1, X̂ = 0],Pr[Y = 0, X̂ = 0]}, (4.1)

and for X̂ = 1

P
(B)
d (s, X̂ = 1) , max{Pr[Y = 1, X̂ = 1],Pr[Y = 0, X̂ = 1]}. (4.2)

Then, given a fixed privacy mechanism s, the MAP adversary’s inference accuracy
is defined as

P
(B)
d , max

h(·)
Pr[h(g(X, Y)) = Y] = P

(B)
d (s, X̂ = 0) + P

(B)
d (s, X̂ = 1). (4.3)

The optimal privacy mechanism s (referred to as the private-data dependent
(PDD) privacy mechanism in [2]) can be found by linearly solving the constrained
optimization problem parameterized by p = {p0,0, p0,1, p1,0, p1,1} and the distortion

30

constraint D

min
s1,1,s0,1,s1,0,s0,0,t0,t1

t0 + t1 (4.4)

s.t. 0 ≤ s1,1, s0,1, s1,0, s0,0 ≤ 1 (4.5)
p1,1(1− s1,1) + p0,1s0,1 ≤ t0 (4.6)
p1,0(1− s1,0) + p0,0s0,0 ≤ t0 (4.7)
p1,1s1,1 + p0,1(1− s0,1) ≤ t1 (4.8)
p1,1s1,0 + p0,0(1− s0,0) ≤ t1 (4.9)
p1,1(1− s1,1) + p0,1(1− s0,1) + p1,0(1− s1,0) + p0,0(1− s0,0) ≤ D,

(4.10)

where t0 and t1 are variables for the maxima in Equation 4.1 and Equation 4.2.

Neural Network Architecture

The optimal MAP adversary can however not be used during training since this does
not give the privatizer enough of a gradient for optimal training. Therefore training
of the privatizer is done against a computational adversary represented by a neural
network, intending to achieve a privatization scheme that matches the optimal game-
theoretic one. The privatizer is modeled as a single-layer neural network classifier
with the parameters θp = s = {s0,0, s0,1, s1,0, s1,1}. While the adversary is modeled
as a two-layer neural network classifier with the parameters θadv = (θadv,0, θadv,1),
where θadv,0 = Pr[Y = 0 | x̂ = 0] and θadv,1 = Pr[Y = 1 | x̂ = 1]. The resulting
formulation for the privatizer belief of an adversary guessing y(i) = 1 condition on
the input (x(i), y(i)) is

h(g(x(i), y(i); s); θadv) = θadv,1 Pr[x̂(i) = 1] + (1− θadv,0) Pr[x̂(i) = 0], (4.11)

where

Pr[X̂ = 0] =x(i)y(i)(1− s1,1) + (1− x(i))y(i)s0,1
+ x(i)(1− y(i))(1− s1,0) + (1− x(i))(1− y(i))s0,0,

Pr[X̂ = 1] =x(i)y(i)(1− s1,1) + (1− x(i))y(i)s0,1
+ x(i)(1− y(i))(1− s1,0) + (1− x(i))(1− y(i))s0,0.

An illustration of the neural network structure can be seen in Figure 4.1. The
following two subsections describe the loss measures and the training algorithm
used for finding the optimal parameters θp, θadv.

Input (X,Y)

Sampling

Noise

Ŷ = θadv,1X̂ + θadv,0(1− X̂)

s0,0

s0,1

s1,0

s1,1

X̂

θadv,0

θadv,1

Privatizer Network Adversary Network

Figure 4.1: Neural network structure of the privatizer and adversary.

31

4.1.2 Loss Measures

As already mentioned in Section 3.1, many different loss measures where proposed
in [2] leading to different model outcomes. Since this implementation considers
binary data, it makes sense to use an empirical log-loss for the adversary, similar to
what was introduced in Equation 3.17. The adversary’s loss function is

`(h(g(x(i), y(i); θp); θadv), y(i)) =− y(i) log h(g(x(i), y(i); θp); θadv)

− (1− y(i)) log(1− h(g(x(i), y(i); θp); θadv)).

The adversary then learns the optimal θ∗adv by maximizing

−fXE−Loss(h(g(X, Y ; θp); θadv), Y) =− 1

n

n∑
i=1

y(i) log h(g(x(i), y(i); θp); θadv)

− (1− y(i)) log(1− h(g(x(i), y(i); θp); θadv)).

Similarly, loss of the privatizer is the negative mean absolute error of the adversary.
Given a fixed adversary θadv, the privatizer then learns the optimal θp by minimizing
−fXE−Loss(h(g(X, Y ; θp); θadv), Y) subject to a distortion constraint,

−fXE−Loss(h(g(X, Y ; θp); θadv), Y) + pt max{1, d(g(x(i), y(i); θp), x(i))− D}.

Here the distortion considered is the Hamming distance (Section 2.1.5). The variable
pt is a penalty constraint which is gradually increased for each training iteration.

32

4.1.3 Training Algorithm

The used training algorithm for the network is taken from [2], and is as follows
Algorithm 2: Alternating minimax privacy preserving algorithm
input : Dataset D, distortion parameter D, iteration number T

output: Optimal privatizer parameter θp
procedure ALERNATE MINIMAX(D, D, T)

Initialize θ1p and θ1adv
for number of training iterations do

Random minibatch of M datapoints {x(1), ..., x(M)} drawn from full

dataset

Generate {x̂(1), ..., x̂(M)} via x̂(i) = g(x(i), y(i); θ
t
p)

Update the parameter θt+1
adv for the adversary

θt+1
adv = max

θadv
− 1

M

∑M
i=1 `(h(x̂(i); θadv), y(i))

Compute the descent direction ∇θp`(θp, θ
t+1
adv), where

`(θp, θ
t+1
adv) = − 1

M

∑M
i=1 `(h(g(x(i), y(i); θp); θt+1

adv), y(i))

subject to 1
M

∑M
i=1[d(g(x(i), y(i); θp), x(i))] ≤ D

Update the parameter θt+1
p for the privatizer

θt+1
p = θtp − αt∇θp`(θp, θ

t+1
adv), αt > 0

Exit if solution converged

return θt+1
p

Since the framework is built in a GAN fashion, the training needs to abide by the
synchronisation characteristics described in Section 2.2.8. The algorithm is therefore
very similar to Algorithm 1, where first the adversary is trained on a fixed privatizer
and then the privatizer is trained given a fixed adversary. Each weight update to the
privatizer is, as described in the previous section, subject to the distortion constraint.
Also αt is used as a hyperparameter that gradually scales the loss (increases for each
iteration), with the intention to achieve more stable training. The algorithm ends
after a set number of training iterations T, or earlier if the model converges on a
solution.

33

4.2 LWPIR GAN Model
The second model implemented in this thesis is a data driven GAN model designed
with goal of finding LWPIR schemes, titled lossy weakly-private information retrieval
GAN (LWPIR GAN). As introduced in Section 3.2, LWPIR aims to enable users to
retrieve files from a server with quantifiable measures for

1. information leakage, regarding the servers ability to infer which file was re-
trieved,

2. file distortion, between the original file on the server and the user’s recon-
structed file, and

3. download rate, amount of data needed to be downloaded for the retrieval of
the file.

Ideally the model should be fully general, meaning it should handle a dataset con-
taining M binary files X(1), . . . ,X(M) stored on a single server, where each file
X(m) = (X

(m)
1 , . . . ,X

(m)
β) is a binary random vector of length β. However due to

challenges in development and time constraints, the scope of this implementation is
limited to the case where a single server stores two files each containing one binary
bit; M = 2 and β = 1. The entries are considered to be independent and identically
distributed (i.i.d.) according to Pr[X

(m)
i = 0] = Pr[X

(m)
i = 1] = 1/2. It is also

assumed that the files are independent, giving

PX(x
(1)
1 , x

(2)
1) =

1

2Mβ
=

1

22·1 =
1

4
. (4.12)

The marginal distribution of the requested file indexM = m is denoted as pm, where
m ∈ [1 : M], and is assumed to be

pm =
1

M
=

1

2
. (4.13)

The next section introduces the theoretical formulations for the LWPIR model and
then describes the structure of the neural network framework implemented.

4.2.1 Model Design

Similar to the GAP implementation described in the previous Section 4.1, the frame-
work is built in a GAN fashion (Section 2.2.8) with competing neural networks.
Before explaining the neural network framework it is helpful to first introduce the
theoretical foundation for the LWPIR scheme. As described in Section 3.2, the user
generates a query Q = q ∈ Q, with |Q| = α, according to a privacy mechanism
Q = fQ(M) and send it to the server. Given the query Q the server responds
with an answer A, generated according to an answer function A = A(Q,X([M])).
Additionally the server, curios about the index M , tries to guess M̂ = M based
on the query Q and the files X. Consequently the LWPIR scheme consists of the
privacy mechanism fQ(M) and the answer function A(Q,X([M])), chosen based on
constraints regarding information leakage, distortion and download rate.

34

Neural Network Architecture

As with the GAP implementation in Section 4.1, the framework consists of a pri-
vatizer model (generating the queries Q given the index M) competing against an
adversary model (inferring the index M̂ = m from the query Q). Additionally
the framework consists of a third neural network, the answer model, generating an
answer X̂ based on the query Q, that also competes against the privatizer and
adversary.

As mentioned in the introduction, even though the presented formulations are
general regarding the number of files and file size, this implementation considers the
case for a single server storing two files each containing one bit. The implemented
model is however general for the number of queries α, which is specified as an input
parameter. The final model was tested for different number of queries, but for
illustration purposes this considers a model with α = 4 (where M = 2 and β = 1).

Privatizer network Starting with the privatizer, the privacy mechanism is repre-
sented by a conditional distribution PQ|M(q | m) that maps the requested file index
M to a randomized output Q given by

PQ|M(qn | m) = pm,qn , m ∈ [1 : M] and n ∈ [1 : α] (4.14)

and the marginal distribution of Q can be expressed as

PQ(qn) =
M∑
m=1

PM(m)PQ|M(qn | m) (4.15)

=
M∑
m=1

pm · pm,qn , n ∈ [1 : α], (4.16)

These transition probabilities pm,qn can be represented by a transition probability
matrix

P ,

 p1,q1 p1,q2 . . . p1,qα
...

pM,q1 pM,q2 . . . pM,qα

 . (4.17)

The privatizer is then modeled as a single-layer neural network classifier with
the parameters θp = P = {p1,q1 , p1,q2 , p1,q3 , p1,q4 , p2,q1 , p2,q2 , p2,q3 , p2,q4} with the input
PM as a is a one-hot encoding (Section 2.2.6)

PM(1) = [1, 0], (4.18)
PM(2) = [0, 1]. (4.19)

An illustration of the privatizer network can be seen in Figure 4.2.

35

Input index m

PQ(q1)

PQ(q2)

PQ(q3)

PQ(q4)

m = 1

m = 2

p1,q1

p1,q2

p1,q3

p1,q4

p2,q1

p2,q2

p2,q3

p2,q4

Figure 4.2: Illustration of the privatizer neural network in the LWPIR model.

Answer network The server after receiving the query Q = qn sent by the user,
responds with the answer (X̂(1), X̂(2), · · · , X̂(M)) according to an answer function
(X̂(1), X̂(2), · · · , X̂(M)) = fA(X(1),X(2), · · · ,X(M), Q). Similar to the concept of
the privatizer, the answer function fA is represented by a conditional distribution

PX̂([M])|X([M]),Q(x̂(1), x̂(2), . . . , x̂(M) | x(1),x(2), . . . ,x(M), qn). (4.20)

By using the shorthand notation W , (X(1),X(2), · · · ,X(M)) ∈ {0, 1}Mβ and
Ŵ , (X̂(1), X̂(2), · · · , X̂(M)), the transitional probabilities of the answer scheme,
given a query Q = qn, n ∈ [1 : α], are denoted as

PŴ |W ,Q(ŵ | w, qn) = sw,ŵ;qn , (4.21)

and the corresponding transition probability matrix is defined as

Sqn , (sw,ŵ;qn)w,ŵ∈{0,1}Mβ . (4.22)

36

Given α = 4, M = 2 and β = 1, the answer scheme is then represented by the
conditional distribution

Sqn =

(
Pr[Ŵ=(0,0)|W=(0,0),Q=qn] Pr[Ŵ=(0,1)|W=(0,0),Q=qn] Pr[Ŵ=(1,0)|W=(0,0),Q=qn] Pr[Ŵ=(1,1)|W=(0,0),Q=qn]

Pr[Ŵ=(0,0)|W=(0,1),Q=qn] Pr[Ŵ=(0,1)|W=(0,1),Q=qn] Pr[Ŵ=(1,0)|W=(0,1),Q=qn] Pr[Ŵ=(1,1)|W=(0,1),Q=qn]

Pr[Ŵ=(0,0)|W=(1,0),Q=qn] Pr[Ŵ=(0,1)|W=(1,0),Q=qn] Pr[Ŵ=(1,0)|W=(1,0),Q=qn] Pr[Ŵ=(1,1)|W=(1,0),Q=qn]

Pr[Ŵ=(0,0)|W=(1,1),Q=qn] Pr[Ŵ=(0,1)|W=(1,1),Q=qn] Pr[Ŵ=(1,0)|W=(1,1),Q=qn] Pr[Ŵ=(1,1)|W=(1,1),Q=qn]

)

=

s0,0;qn s0,1;qn s0,2;qn s0,3;qn
s1,0;qn s1,1;qn s1,2;qn s1,3;qn
s2,0;qn s2,1;qn s2,2;qn s2,3;qn
s3,0;qn s3,1;qn s3,2;qn s3,3;qn

 .

The answer model is modeled as a single-layer neural network classifier with the
parameters θans = Sqn , with the input PW (w), w ∈ {0, 1}Mβ which, similar to the
privatizer model, is a one-hot encoding (Section 2.2.6) on the form

PW (0, 0) = [1, 0, 0, 0], (4.23)
PW (0, 1) = [0, 1, 0, 0], (4.24)
PW (1, 0) = [0, 0, 1, 0], (4.25)
PW (1, 1) = [0, 0, 0, 1]. (4.26)

The model weight then corresponds to PŴ |W ,Q(ŵ | w, q), which is used to calculate
the distortion loss described in Equation 4.34. The output of the model is PŴ |Q(ŵ |
qn) given by

PŴ |Q(ŵ | qn) =
∑

w∈{0,1}Mβ

PŴ |W ,Q(ŵ | w, qn)PW (w), (4.27)

which is used to calculate the rate loss described in Equation 4.35. From PŴ |W ,Q(ŵ |
w, q) it is also possible to further calculate the answer probability PŴ |W (ŵ | w) by

PŴ |W (ŵ | w) =
∑
q∈Q

PQ|W (qn | w)PŴ |W ,Q(ŵ | w, qn) (4.28)

(a)
=
∑
q∈Q

PQ(qn)PŴ |W ,Q(ŵ | w, qn), (4.29)

where (a) follows since without loss of generality, the queries generated by the user
can be assumed to be independent of the files stored in the server, i.e., Q and W
are independent.

An illustration of the answer network can be seen in Figure 4.3.

37

PW (0, 0)

PW (0, 1)

PW (1, 0)

PW (1, 1)

PŴ |Q(0, 0 | q1)

PŴ |Q(0, 0 | q2)

PŴ |Q(0, 0 | q3)

PŴ |Q(0, 0 | q4)

PŴ |Q(0, 1 | q1)

PŴ |Q(0, 1 | q2)

PŴ |Q(0, 1 | q3)

PŴ |Q(0, 1 | q4)

PŴ |Q(1, 0 | q1)

PŴ |Q(1, 0 | q2)

PŴ |Q(1, 0 | q3)

PŴ |Q(1, 0 | q4)

PŴ |Q(1, 1 | q1)

PŴ |Q(1, 1 | q2)

PŴ |Q(1, 1 | q3)

PŴ |Q(1, 1 | q4)

PŴ |W ,Q(ŵ | 00, q1)

PŴ |W ,Q(ŵ | 11, q4)

Figure 4.3: Illustration of the answer neural network in the LWPIR model. Each
edge color represents the different queries; red: Q = 1, blue: Q = 2, green: Q = 3,
black: Q = 4.

Adversary network The server also tries to infer the index M̂ = m with the
probability

PM,Q(m, qn) = PM(m)PQ|M(qn | m) = pm · pm,qn (4.30)

Given Q = qn, the probability of MAP(REF MAP) correct guess for the server is
given by

Pc(P, Q = qn) = max
m∈[1:M]

{Pr[M = m,Q = qn]} (a)
=

1

M
max
m∈[1:M]

pm,qn , (4.31)

where (a) holds if pm = 1/M, m ∈ [1 : M], i.e., M ∼ U([1 : M]). Then, given a
fixed privacy mechanism P, the average correct probability of the MAP guess for

38

the server is equal to

Pc(P) =
α∑
n=1

max
m∈[1:M]

{PM(m)PQ|M(qn | m)} =
α∑
n=1

max
m∈[1:M]

pm,qn . (4.32)

Similar to the GAP implementation the final privatizer is evaluated against a MAP
adversary, however during training a computational adversary is used. The ad-
versary is modeled as a two-layer neural network classifier with the parameters
θadv = PM̂ |Q(m̂ | q), and can be expressed by the equation

Pr[M̂ = m] =
∑
q∈Q

PQ(q) · PM̂ |Q(m̂ | q) (4.33)

An illustration of the adversary network can be seen in Figure 4.4.

PQ(q1)

PQ(q2)

PQ(q3)

PQ(q4)

PM̂ (1)

PM̂ (2)

PM̂ |Q(1|q1)

PM̂ |Q(1|q2)

PM̂ |Q(1|q3)

PM̂ |Q(1|q4)

PM̂ |Q(2|q1)

PM̂ |Q(2|q2)

PM̂ |Q(2|q3)

PM̂ |Q(2|q4)

Figure 4.4: Illustration of the adversary neural network in the LWPIR model.

The privatizer, adversary and answer network were all built using the transposed
convolutional layer, described in Section 2.2.7. The complete LWPIR model then
consists of the three neural networks; privatizer, adversary and answer network,
competing against each other in a GAN fashion. An illustration of the full model,
where each model is abstracted, can be seen in Figure 4.5.

39

User Server

M̂(Q)

Adversary model

M X([M])

X(1)

· · ·
X(M)

Q ∼ PQ|M

Privatizer model

A(Q,X([M]))

Answer model

Figure 4.5: Illustration of the complete LWPIR model.

4.2.2 Loss Measures

As stated in the introduction of this section, the three different losses considered are
file distortion, download rate and information leakage. The distortion is defined as
the average per-symbol distortion between two binary vectors x(m) and x̂(m). Based
on a given query Q = qn, n ∈ [1 : α], the distortion is defined as

D(m)
qn ,EX(m),X̂(m) [d(X(m), X̂(m)) | Q = qn]

=
1

β

β∑
i=1

E
X

(m)
i ,X̂

(m)
i

[d(X
(m)
i , X̂

(m)
i) | Q = qn]

=
1

β

β∑
i=1

∑
x
(m)
i ,x̂

(m)
i ∈{0,1}

P
X

(m)
i ,X̂

(m)
i |Q(x

(m)
i , x̂

(m)
i | qn)d(x

(m)
i , x̂

(m)
i)

(a)
=

1

β

β∑
i=1

∑
x
(m)
i ,x̂

(m)
i ∈{0,1}

P
X

(m)
i

(x
(m)
i)P

X̂
(m)
i |X(m)

i ,Q
(x̂

(m)
i | x(m)

i , qn)d(x
(m)
i , x̂

(m)
i),

for an arbitrary requested file index M = m, where d(x
(m)
i , x̂

(m)
i) is the Hamming

distance (Section 2.1.5). Here, (a) is from the fact that Q and W are independent.
To evaluate the conditional distribution P

X̂
(m)
i |X(m)

i ,Q
of a given answer scheme Sqn ,

one first compute

PX(m),X̂(m)|Q =
∑

x(1),...,x(m−1),x(m+1),...,x(M)

∑
x̂(1),...,x̂(m−1),x̂(m+1),...,x̂(M)

PW ,Ŵ |Q(w, ŵ | qn),

and then obtain

P
X

(m)
i ,X̂

(m)
i |Q =

∑
x
(m)
1 ,...,x

(m)
i−1 ,x

(m)
i+1 ,...,x

(M)
β

PX(m),X̂(m)|Q(x(m), x̂(m) | qn).

40

The average distortion for a given requested file index M = m is then given by

D(m) =
α∑
n=1

PQ|M(qn | m)D(m)
qn =

α∑
n=1

pm,qnD
(m)
qn ,

and the average distortion for the whole scheme is equal to

fD-Loss = EM [D(M)] =
M∑
m=1

pmD
(m). (4.34)

The download rate is defined as the per-symbol information download rate (see
Equation 3.19). Given a query Q = qn the server encodes W into Ŵ with the rate
defined as

H(Ŵ | Q = qn)

β
, (4.35)

calculated from PŴ |Q(ŵ | qn) corresponding to the weights of the answer model.
The overall efficiency is measured in terms of the average per-symbol information
download rate over all random queries, i.e., the rate of the entire scheme is defined
as

fR-Loss =
1

β

α∑
n=1

PQ(qn)H(Ŵ | Q = qn).

For leakage three different measures were tested in this implementation, namely
mean square error, cross-entropy and a general α-loss function (first introduced in
Equation 3.15). The mean square error function is defined as

fMSE-Loss =
1

M

M∑
i=1

(Mi − M̂i)
2,

while the cross-entropy loss is defined as

fCE-Loss = −
M∑
i=1

Mi · log(M̂i).

Here M̂ is the adversary estimate of M given a query Q, and the log is of base 2.
The third leakage measure tested was a general α-loss function, first introduced

in Section 3.1, defined as

falpha-Loss =
M∑
i=1

α

α− 1
(Mi(1− M̂i

1− 1
α) + (1−Mi)(1− (1− M̂i

1− 1
α))),

for a constant α > 1.
The total loss function combines the three losses and also, similar to the GAP

implementation, scales the distortion- and rate loss according to two input hyper-
parameters ζ and η

fT-Loss = (ζ · fD-Loss)− fL-Loss + (η · fR-Loss),

where fL-Loss denotes the loss function that we will use for leakage. Training of the
model is done by minimizing the described loss through gradient descent. The next
section describes the algorithm used for training the LWPIR model.

41

4.2.3 Training Algorithm

The training of the LWPIR model is done with the following algorithm.
Algorithm 3: LWPIR model training algorithm
input : Dataset D, leakage parameter L, distortion parameter D, rate

parameter R, iteration number T, minibatch size J

output: Optimal privatizer and answer parameters θp, θans
procedure ALERNATE MINIMAX(D, L, D, R, T, J)

Initialize θ1p, θ1ans θ1adv
for number of training iterations do

for k steps do
Sample minibatch of J file indexes {m(1), . . . ,m(J)} drawn

according to the the marginal distribution pm = 1
M

= 1
2

Generate the query probabilities {PQ(q(1)), . . . , PQ(q(J))} via
PQ(q(i)) = g(m(i), q(i); θ

t
p)

Compute the descent direction ∇θadv`(θ
t
adv, θ

t
p), where

`(θadv, θ
t
p) = fMSE-Loss/fCE-Loss/falpha-Loss

Update the parameter θt+1
adv for the adversary

θt+1
adv = max

θadv
− 1
J

∑J
i=1 `(h(PQ(q(i)); θadv),m(i))

Sample new minibatch of J file-indexes {m(1), . . . ,m(J)}

Generate the query probabilities {PQ(q(1)), . . . , PQ(q(J))} via
PQ(q(i)) = g(m(i), q(i); θ

t
p)

Generate the answer probabilities {PŴ |Q(ŵ | q1), . . . , PŴ |Q(ŵ | qj)}
via PŴ |Q(ŵ | qi) = ans(PW (w), PŴ |W ,Q(ŵ | w, q(i)); θtans)
Compute the descent directions ∇θp`(θ

t
p, θ

t+1
adv) and ∇θans`(θ

t
ans, θ

t
p),

where `(θtp, θ
t+1
adv) and `(θtans, θtp) is the Tloss subject to

fD-Loss ≤ D,

fR-Loss ≤ R, and

fL-Loss ≤ L

Update the parameters θt+1
p and θt+1

ans for the privatizer and answer

models

θt+1
p , θt+1

ans = max
θp,θans

−
∑J

i=1

fT-Loss(PŴ |Q(ŵ | q(i)), PŴ |W ,Q(ŵ | w, q(i)), PQ(q(i)),m(i))

Exit if solution converged

return θt+1
p , θt+1

ans

42

Here g() notates the privatizer function, h() the adversary and ans() the answer
function. The algorithm follows the same principles as the algorithm presented in
Algorithm 1 for training GAN models, where the algorithm alters between training
the competing neural networks. Each training iteration consists of an inner loop
where the adversary is trained on a fixed privatizer k times, and then the privatizer
and answer models are trained on a fixed adversary once. Each weight update to the
privatizer and answer model is subject to the three constraints regarding leakage (L),
distortion (D) and rate (R). As introduced in the previous section (Section 4.2.2)
the two hyperparameters ζ and η are used to scale the distortion and rate loss. The
training finishes after T -iterations or if the model converges to a solution.

43

Chapter 5

Results and Findings

This chapter displays the results from the two implementations introduced in the
previous chapter. First Section 5.1 presents the achieved results for the thesis im-
plementation of the binary GAP model and compares them with both the paper
implementation and the theoretical result for the scheme, as presented in [2]. Then
Section 5.2 presents and discusses the results for the LWPIR model and compares
them with the theoretical optimal schemes presented in [20,21]. Note that in [20,21]
the download rate is quantified by the so-called operational rate. However, it can
be shown that the the proposed schemes are also optimal in terms of the considered
information rate in this thesis.

5.1 GAP Results
Some of the main motivations behind implementing this binary GAP model was
to get a better understanding of the implementation details, and hopefully be able
to achieve similar results to those presented in [2]. The model was trained using
a synthetic dataset in which Y = X ⊕ N , where N ∈ {0, 1} is a random variable
independent of X and following a Bernoulli distribution [24]. The dataset was gen-
erated with 10,000 training samples and 2000 test samples, following the Bernoulli
distribution for (p, q) equal to (0.5, 0.25). Both the privatizer and adversary were
trained using the Adam optimizer (Equation 2.49) with a learning rate of 0.005 and
minibatch size of 400. For the penalty constraint pt, introduced in Section 4.1.2,
different initial values and scales were used for different result regions. The test
results are for fully trained privatizers, limited by different distortion constrained,
put up against MAP adversaries, as described in Section 4.1.1.

44

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Distortion

0.50

0.55

0.60

0.65

0.70

0.75

A
cc
ur
ac
y

Thesis data-driven privatizer
Paper data-driven privatizer

Figure 5.1: Privacy-distortion trade-off for binary data model. Performance of pri-
vacy mechanisms against MAP adversary for p = 0.5. Comparing implementation
from [2] with model implemented in this thesis. Numerical results in Table A.1 and
Table A.2.

Starting with comparing the thesis implementation with the paper model, seen
in Figure 5.1. As seen from the figure it is apparent that, although the results of
the thesis model is close to the results presented in the paper, there are still result
regions with discrepancies. For certain distortions regions, such as around 0.15, it
was especially challenging to obtain any results. Reasons for this could be due to not
using the correct parameters, such as the for the penalty constraint pt, and perhaps
some randomness in the model. There is also an inherent difficulty in training
neural networks in a GAN fashion because of the synchronization characteristics
(see Section 2.2.8). The numerical thesis and paper results can be seen in Table A.1
and Table A.2.

45

0.0 0.1 0.2 0.3 0.4 0.5 0.6

Distortion

0.50

0.55

0.60

0.65

0.70

0.75

A
cc
ur
ac
y

Thesis data-driven privatizer
Theoretical optimal privatizer

Figure 5.2: Privacy-distortion trade-off for binary data model. Performance of pri-
vacy mechanisms against MAP adversary for p = 0.5. Comparing theoretical op-
timal results (according to Equation 4.4) with results from model implemented in
this thesis. Numerical results in Table A.1 and Table A.3.

Even though there are some discrepancies between the thesis- and paper imple-
mentation, the model still achieves some promising results. Figure 5.2 compares
the thesis implementation against the optimal theoretical privatizer. Disregarding
the regions where the model lacks results, the thesis implementation is relatively
close to the theoretical optimal results. Overall implementing the model gave valu-
able insight into the theoretical foundations of the privacy perceiving mechanism
presented in [2], and also essential experience in implementing a neural network in
a GAN fashion. The numerical theoretical results can be seen in Table A.1 and
Table A.3.

46

5.2 LWPIR Results
The goal for implementing the LWPIR model was to explore the opportunity of
finding LWPIR schemes using neural networks. Ideally the implemented model
should be fully general regarding the number of files and file sizes, however as already
stated, this implementation considers the case for a single server storing two files
each containing one binary bit. The entries are considered to be independent and
identically distributed (i.i.d.) according to Pr[X

(m)
i = 0] = P [X

(m)
i = 1] = 1/2. It is

also assumed that the files are independent, giving

PX(x(1), x(2)) =
1

2Mβ
=

1

22·1 =
1

4
. (5.1)

The marginal distribution of the requested file indexM = m is denoted as pm, where
m ∈ [1 : M], and is assumed to be

pm =
1

M
=

1

2
. (5.2)

The final model is evaluated by comparing the rate, distortion and leakage
against a theoretical optimal LWPIR scheme presented in [20, 21]. However, before
training and evaluating the complete model, it was interesting to first experiment
with a model with a fixed optimal privatizer. This was done to asses the feasibility
of training the complete model, since training with a fixed optimal privatizer should
easier evaluate to a scheme closer to a theoretical optimal one. The weights for the
optimal privatizer are fixed according to Theorem 2 [20].

0.0 0.1 0.2 0.3 0.4 0.5

Distortion

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

R
at
e

LWPIR fixed privatizer
Theory

Figure 5.3: Rate-distortion trade-off for LWPIR model with fixed optimal privatizer.
Comparing achieved results with theoretical results for leakage 2/3 under various rate
and distortion constraints. Numerical results in Table A.4.

47

Figure 5.3 shows the best achieved results for the LWPIR model with a fixed
optimal privatizer for leakage 2/3 compared with the theoretical optimal scheme from
Theorem 2 [20]. The model was trained using a synthetic dataset containing 10 000
samples of file indexesM following the above mentioned distribution (5.2). Both the
adversary and the answer network were trained using the Adam optimizer (Equa-
tion 2.49) with a learning rate of 0.01. For the hyperparameters ζ and η, described
in Section 4.2.2, different initial values and increments were used for different result
regions. The loss functions used are described in Section 4.2.2, with the leakage
formulated as fMSE-Loss (Equation 5.1). The numerical results can be seen in Ta-
ble A.4. Generally the results seem promising, with many result regions relatively
close to the theoretical optimal ones. However, similar to the GAP results, for some
results regions there were difficulties to obtain any good results - such as for distor-
tion ranging from 0.2 to 0.3. The results could potentially be improved by choosing
better values for the hyperparameters ζ and η, by altering other parameters such as
the learning rate, or by using other loss functions. This is further explored in the
evaluation of the complete model.

As mentioned earlier, three different leakage loss formulations where considered
for training of the complete LWPIR model, namely mean square error (MSE), cross-
entropy and a general α-loss (Section 4.2.2). The model was trained under various
leakage, loss and rate constraints for each loss formulation. Only the best achieved
results are included in this section, with the less optimal results discarded. The
results are plotted, similar to the results for LWPIR model with the fixed privatizer,
as a tradeoff between the rate and distortion for a given leakage. Even though the
leakage is not directly specified as is the case with a fixed privatizer, the model
is trained with leakage constraints and the results with similar leakage are plotted
together to illustrate the difference against the theoretical optimal rate-distortion
tradeoff. The training is done using the Adam optimizer with a learning rate of
0.0001 for the adversary and 0.009 for the privatizer and answer networks. Different
sized learning rates were used since this showed more promising results.

48

0.0 0.1 0.2 0.3 0.4 0.5

Distortion

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

R
at
e

LWPIR MSE loss
Theory

Figure 5.4: Rate-distortion trade-off for LWPIR model trained with MSE loss. Com-
paring achieved results with theoretical results for leakage 1/2 under various rate and
distortion constraints. Numerical results in Table A.5.

49

0.10 0.15 0.20 0.25 0.30 0.35 0.40

Distortion

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
at
e

LWPIR MSE loss
Theory

Figure 5.5: Rate-distortion trade-off for LWPIR model trained with MSE loss. Com-
paring achieved results with theoretical results for leakage in region 0.7-0.8 under
various rate and distortion constraints. Numerical results in Table A.6.

Starting with the results for the MSE loss, Figure 5.4 and Figure 5.5 show results
for leakage equal 1/2 and in the range 0.7-0.8 respectively. For leakage 1/2 four dif-
ferent optimal schemes were achieved for distortion 0, 0.125, 0.25 and 0.5, with rate
equal to the theoretical optimal schemes. Also for the results plotted in Figure 5.5
for leakage 0.7-0.8, the model achieved several close to optimal schemes. It proved
however to be a significant challenge to achieve schemes with certain distortion-
rate trade-offs, since the model very often evaluated to the same schemes even with
different distortion and rate constraints.

50

0.0 0.1 0.2 0.3 0.4 0.5

Distortion

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

R
at
e

LWPIR cross-entropy loss
Theory

Figure 5.6: Rate-distortion trade-off for LWPIR model trained with cross-entropy
loss. Comparing achieved results with theoretical results for leakage 1/2 under various
rate and distortion constraints. Numerical results in Table A.7.

Moving on to the results using the cross-entropy loss function, Figure 5.6 show
the achieved results for leakage equal to 1/2. As seen from the figure and the nu-
merical results in Table A.7, the different schemes achieved were optimal but it was
challenging to get schemes for other rate-distortion-leakage tradeoff. Similar to us-
ing the MSE loss it was very difficult to achieve schemes with other distortion-rate
trade-offs than those presented, with no achieved results for any leakage other than
1/2. Also since the initial results using other loss functions such as MSE proved
more promising, the amount of experimenting with training using cross-entropy was
limited compared to MSE.

51

0.0 0.1 0.2 0.3 0.4 0.5

Distortion

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

R
at
e

LWPIR alpha loss
Theory

Figure 5.7: Rate-distortion trade-off for LWPIR model trained with alpha loss.
Comparing achieved results with theoretical results for leakage 1/2 under various
rate and distortion constraints. Numerical results in Table A.8.

The last Figure 5.7 shows the results achieved using the α-loss (described in
Section 4.2.2). Similar to the results for the other loss functions, a few optimal results
were achieved, but it was still difficult to achieve schemes for other rate-distortion-
leakage tradeoff. Compared to the other two loss functions, α-loss provides flexibility
in the opportunity of different α values potentially resulting in improved training. It
was however still difficult to obtain other optimal schemes than the ones presented.
The next chapter further discusses the results of the thesis as a whole and potential
for future work.

52

Chapter 6

Conclusions

The initial objective of this thesis was to investigate the use of neural networks
for Lossy Weakly-Private Information Retrieval. Firstly, by examining previous
work done within the field through implementing the Context-Aware Generative
Adversarial Privacy model presented in [2], and then secondly explore the use of
generative adversarial nets to find LWPIR schemes as presented in [20,21].

The implementation and testing of the GAP model gave valuable insight into
both the technical and practical aspects of using neural networks in a privacy per-
ceiving context. The achieved GAP results indicated the usefulness of privacy mech-
anisms modeled by neural networks and also illustrated some of the challenges con-
cerning training generative adversarial nets. Even though the GAP thesis results
were considerably close to the results reported in [2], there were still some notable
discrepancies. As discussed earlier, the reasons for the discrepancies could be due to
not choosing the optimal hyperparameters like the penalty constraint or other imple-
mentation details, such as the optimizer and learning rate. Nevertheless, the GAP
implementation gave a solid starting point for implementation of the new LWPIR
GAN model introduced in this thesis.

The implementation of the LWPIR model turned out to be a more significant
challenge than initially anticipated. As presented in the previous chapter, the
achieved results were promising regarding being close to theoretical optimal ones,
but it was challenging to get other schemes for different tradeoff than those pre-
sented. However, the results still display the potential for using neural networks as
a tool for finding LWPIR schemes. It is conceivable that, given the suitable con-
figurations (loss formulation, optimizer, hyperparameter values, etc.), the LWPIR
model could achieve a wider range of optimal results than those presented in this
thesis. Also, as explained earlier, even though this implementation only considers
the more narrow case of a single server storing two files, each containing one bit,
most of the theoretical foundation on which the model is built considers a broader,
more general setting. Therefore, a natural continuation is to generalize the LWPIR
GAN model to handle an arbitrary number of files and file sizes.

53

Appendices

54

Appendix A

Numerical Results

Distortion Accuracy thesis data-driven privatizer
0 0.750002

0.034388 0.737651
0.097483 0.690472
0.180039 0.58997
0.201596 0.563361
0.245595 0.504647
0.318167 0.504702
0.411162 0.503944
0.450934 0.504967
0.47214 0.504739
0.503149 0.502324
0.544412 0.501762
0.5975 0.505

Table A.1: Privacy-distortion tradeoff for binary data GAP model implemented in
this thesis. Performance of privacy mechanisms against MAP adversary for p = 0.5

55

Distortion Accuracy paper data-driven privatizer
0 0.75

0.027281679 0.714335308
0.063213501 0.681137895
0.099062917 0.651809451
0.134870147 0.620434747
0.170898608 0.590148022
0.20620435 0.563672218
0.242604788 0.529536602
0.277703253 0.501515779
0.312964817 0.501486787
0.347475774 0.501040174
0.38248791 0.500846628
0.417033043 0.501053788
0.452457856 0.501130527
0.486507298 0.502013065
0.522028408 0.501817285
0.55650894 0.502367098
0.591561614 0.501094143

Table A.2: Privacy-distortion tradeoff for binary data GAP model presented in [2].
Performance of privacy mechanisms against MAP adversary for p = 0.5

Distortion Accuracy theoretical optimal GAP privatizer
0 0.75

0.063049042 0.679136207
0.099075503 0.643773145
0.134706484 0.609837273
0.171134877 0.574786121
0.206645961 0.539634991
0.24205293 0.504702134
0.277739436 0.499089642
0.312749723 0.498956643
0.347751155 0.499113644
0.382246194 0.499188355
0.416998681 0.499164954
0.451567202 0.498606182
0.486944421 0.499031188
0.591908538 0.498083472
0.556791444 0.498168296
0.521150654 0.498737476

Table A.3: Privacy-distortion tradeoff for binary data model from [2]. Performance
of theoretical optimal privacy mechanisms against MAP adversary for p = 0.5

56

Distortion Rate theory Rate LWPIR model Difference
0 1.666666667 1.833333373 0.1666667064
0.05 1.428922292 - -
0.08333333 1.270426057 1.50000006 0.2295740023
0.1 1.191177916 - -
0.15 0.9534335413 - -
0.19798252 0.7725619493 0.8184944391 0.04593248985
0.3333333 0.3333334415 0.3735464662 0.04021302473
0.34999996 0.30000008 0.3000000715 0.000000008474426993
0.39999995 0.2000001 0.2000000775 0.000000022513962
0.44999978 0.10000044 0.1000001729 0.000000267146531
0.4999998 0.0000004 2.60E-07 0.0000001404124201

Table A.4: Distortion-accuracy trade-off for LWPIR model with fixed optimal pri-
vatizer with leakage 2/3

Leakage Distortion Rate theory Rate LWPIR model Difference
0.510389 0 1.979221 2 0.020779
0.5 0.125 1.405639 1.5 0.094361
0.5 0.25 0.811279 0.811279 0
0.5 0.5 0 0 0

Table A.5: Distortion-accuracy trade-off for LWPIR model with MSE leakage loss
with leakage 1/2

Leakage Distortion Rate theory Rate LWPIR model Difference
0.800436 0.099782 0.924676 1 0.075324
0.7492 0.24263562 0.524 0.578 0.054
0.81173 0.34413117 0.3117376 0.3117376 0
0.69176 0.40412 0.191761 0.191761 0

Table A.6: Distortion-accuracy trade-off for LWPIR model with MSE leakage loss
with leakage in range 0.7-0.8

Leakage Distortion Rate theory Rate LWPIR model Difference
0.5 0.125 1.405639 1.5 0.094361
0.5 0.25 0.811279 0.811279 0
0.5 0.5 0 0 0

Table A.7: Distortion-accuracy trade-off for LWPIR model with cross-entropy leak-
age loss with leakage 1/2

57

Leakage Distortion Rate theory Rate LWPIR model Difference
0.5 0 1.979221 2 0.020779
0.5 0.125 1.405639 1.5 0.094361
0.5 0.25 0.811279 0.811279 0
0.5 0.295251 0.664432 0.731324 0.066892
0.5 0.5 0 0 0

Table A.8: Distortion-accuracy trade-off for LWPIR model with alpha loss for leak-
age with leakage 1/2

58

Appendix B

Theorems

Theorem 2 [20]. Optimal tradeoff for M = 2, β = 1 under various distortion
D and leakage L constraints. The formulation for the optimal information rate
R∗inf (D,L) and operational rate R∗op(D,L) (see Section 3.2) are

R∗inf (D,L) =

4D(Hb(1/4)− 2) + (3− 2L), for 0 ≤ D ≤ 1−L

2
,

4Hb(1/4)(1−D − L) + 2L+ 1, for 1−L
2
≤ D ≤ 1− L,

−2D + 1, for 1− L ≤ D ≤ 1
2
,

R∗op(D,L) =

{
−4D + (3− 2L), for 0 ≤ D ≤ 1− L,
−2D + 1, for 1− L ≤ D ≤ 1

2

Below are three schemes achieving these optimal curves, simultaneously for R∗op
and R∗inf .

1) 0 ≤ D ≤ (1−L)/2: The scheme Q = {q1, q3, q5, q6} and the description is as
follows:

q P (q|1) P (q|2)
q1 2− 2L− 4D 2− 2L− 4D
q5 4D 4D
q3 2L− 1 0
q6 0 2L− 1

2) (1−L)/2 ≤ D ≤ 1 − L: The scheme Q = {q3, q5, q6, q7} and the description is
as follows:

q P (q|1) P (q|2)
q5 4− 4D − 4L 4− 4D − 4L
q3 2L− 1 0
q6 0 2L− 1
q7 4D + 2L− 2 4D + 2L− 2

3) 1 − L ≤ D ≤ 1/2: The scheme Q = {q3, q6, q7} and the description is as
follows:

q P (q|1) P (q|2)
q3 1− 2D 0
q6 0 1− 2D
q7 2D 2D

59

Bibliography

[1] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial networks,” 2014.

[2] C. Huang, P. Kairouz, X. Chen, L. Sankar, and R. Rajagopal, “Context-aware
generative adversarial privacy,” Entropy, vol. 19, p. 656, Dec 2017.

[3] T. Cover, J. Thomas, and J. W. . Sons, Elements of Information Theory. Online
access: EBSCO Computers & Applied Sciences Complete, Wiley, 1991.

[4] G. Smith, “On the foundations of quantitative information flow,” in Foundations
of Software Science and Computational Structures, pp. 288–302, 03 2009.

[5] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. Adaptive Compu-
tation and Machine Learning series, MIT Press, 2016.

[6] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks
are universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, 1989.

[7] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2017.

[8] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning Internal Rep-
resentations by Error Propagation, p. 318–362. Cambridge, MA, USA: MIT
Press, 1986.

[9] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[10] A. Krizhevsky, “Learning multiple layers of features from tiny images,” tech.
rep., Citeseer, 2009.

[11] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[12] J. Susskind, A. Anderson, and G. E. Hinton, “The toronto face dataset,” tech.
rep., Technical Report UTML TR 2010-001, U. Toronto, 2010.

[13] S. ARIMOTO, “Information measures and capacity of order α for discrete mem-
oryless channels,” Topics in Information Theory, pp. 41–52, 1977.

[14] C. Cai and S. Verdú, “Conditional rényi divergence saddlepoint and the maxi-
mization of α-mutual information,” Entropy, vol. 21, pp. 1–6, 10 2019.

60

[15] A. Rényi et al., “On measures of entropy and information,” in Proceedings of the
Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume
1: Contributions to the Theory of Statistics, The Regents of the University of
California, 1961.

[16] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan, “Private information re-
trieval,” in Proceedings of IEEE 36th Annual Foundations of Computer Science,
pp. 41–50, 1995.

[17] H. Lin, S. Kumar, E. Rosnes, A. G. i. Amat, and E. Yaakobi, “Weakly-private
information retrieval,” in 2019 IEEE International Symposium on Information
Theory (ISIT), pp. 1257–1261, 2019.

[18] I. Samy, R. Tandon, and L. Lazos, “On the capacity of leaky private informa-
tion retrieval,” in 2019 IEEE International Symposium on Information Theory
(ISIT), pp. 1262–1266, 2019.

[19] H. Y. Lin, S. Kumar, E. Rosnes, A. G. i. Amat, and E. Yaakobi, “The capacity of
single-server weakly-private information retrieval,” in 2020 IEEE International
Symposium on Information Theory (ISIT), pp. 1053–1058, 2020.

[20] Y. Yakimenka, H.-Y. Lin, E. Rosnes, and J. Kliewer, “Optimal rate-distortion-
leakage tradeoff for single-server information retrieval.” to be presented at 2021
IEEE International Symposium on Information Theory (ISIT’21), 2021.

[21] Y. Yakimenka, H.-Y. Lin, E. Rosnes, and J. Kliewer, “Optimal rate-distortion-
leakage tradeoff for single-server information retrieval.” submitted to IEEE
Journal on Selected Areas in Communications, June 2021.

[22] G. Barthe and B. Kopf, “Information-theoretic bounds for differentially private
mechanisms,” in 2011 IEEE 24th Computer Security Foundations Symposium,
pp. 191–204, 2011.

[23] I. Issa, A. B. Wagner, and S. Kamath, “An operational approach to information
leakage,” IEEE Transactions on Information Theory, vol. 66, no. 3, pp. 1625–
1657, 2020.

[24] Y. Dodge, “Bernoulli distribution,” in The Concise Encyclopedia of Statistics,
(New York, NY), pp. 36–37, Springer New York, 2008.

61

	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Contents
	Introduction
	Motivation
	Objective
	Thesis Organization

	Background
	Information Theory
	Entropy
	Joint Entropy
	Conditional Entropy
	Mutual Information
	Hamming Distance
	Quantitative Information Flow

	Neural Networks
	Introduction to Machine Learning and Neural Networks
	Feedforward Neural Network
	Optimization in Neural Networks
	Gradient Descent and Extensions
	Error Backpropagation
	One-hot Encoding
	Convolutional Neural Network
	Generative Adversarial Networks
	Maximum a Posteriori

	Related work
	Context-Aware Generative Adversarial Privacy
	Private Information Retrieval and Extensions

	Methodology and Model Architecture
	GAP Model
	Model Design
	Loss Measures
	Training Algorithm

	LWPIR GAN Model
	Model Design
	Loss Measures
	Training Algorithm

	Results and Findings
	GAP Results
	LWPIR Results

	Conclusions
	Appendices
	Numerical Results
	Theorems
	References

